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a  b  s  t  r  a  c  t

Objectives:  To determine  the best  method  and  combination  of  methods  among  global  positioning  system
(GPS),  accelerometry,  and heart  rate  (HR)  for  estimating  energy  expenditure  (EE)  during  level  and  graded
outdoor  walking.
Design: Thirty  adults  completed  6-min  outdoor  walks  at  speeds  of  2.0,  3.5,  and  5.0  km  h−1 during  three
randomized  outdoor  walking  sessions:  one  level  walking  session  and  two  graded  (uphill  and  downhill)
walking  sessions  on  a 3.4%  and  a 10.4%  grade.  EE  was  measured  using  a portable  metabolic  system
(K4b2).  Participants  wore  a GlobalSat® DG100  GPS  receiver,  an  ActiGraphTM wGT3X+  accelerometer,  and
a Polar® HR  monitor.  Linear  mixed  models  (LMMs)  were  tested  for EE  predictions  based  on GPS  speed  and
grade, accelerometer  counts  or HR-related  parameters  (alone  and  combined).  Root-mean-square  error
(RMSE)  was  used  to determine  the  accuracy  of the  models.  Published  speed/grade-,  count-,  and  HR-based
equations  were  also cross-validated.
Results:  According  to the  LMMs,  GPS  was as  accurate  as accelerometry  (RMSE  =  0.89–0.90  kcal  min−1)  and
more  accurate  than  HR (RMSE  =  1.20  kcal  min−1)  for  estimating  EE during  level  walking;  GPS  was  the
most  accurate  method  for estimating  EE  during  both  level  and  uphill  (RMSE  =  1.34  kcal  min−1)/downhill
(RMSE  = 0.84  kcal  min−1) walking;  combining  methods  did  not  increase  the  accuracy  reached  using  GPS
(or  accelerometry  for level  walking).  The  cross-validation  results  were  in  accordance  with  the  LMMs,
except  for downhill  walking.
Conclusions:  Our  study  provides  useful  information  regarding  the  best  method(s)  for  estimating  EE  with
appropriate  equations  during  level  and  graded  outdoor  walking.

© 2017  Sports  Medicine  Australia.  Published  by Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Walking, the most popular physical activity (PA), has a substan-
tial impact on public health and is a leading therapeutic modality.1

An accurate assessment of walking-related energy expenditure (EE)
is crucial to determine its overall biological impact on the human
body2 and appropriately study its effects on health. From this per-
spective, accurately estimating walking EE in outdoor settings is of

∗ Corresponding author.
E-mail address: alexis.lefaucheur@ens-rennes.fr (A. Le Faucheur).

primary interest. Indeed, it has been shown that (i) walkers pre-
fer neighborhood streets and parks for walking3; (ii) accumulating
walking trips at a sufficient intensity (≥3 metabolic equivalents
of task (METs)) and of sufficient duration (≥10 min) to meet PA
recommendations4 may  be easier outdoors; and (iii) outdoor walk-
ing sessions are of interest in clinical populations for both walking
capacity assessment and rehabilitation purposes.5

Because the direct measurement of EE in real-life settings is
challenging, wearable devices have been validated and used for
years in field-based research to track walking EE.6 Historically,
wearable devices relied on a single objective method for estimating
EE. Accelerometry or heart rate (HR) monitoring have been among

https://doi.org/10.1016/j.jsams.2017.10.004
1440-2440/© 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
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the most frequently used objective methods.6 However, accelerom-
etry has several well-known drawbacks, including the inability to
accurately assess EE during graded walking.7 HR monitoring is of
particular interest when measuring walking EE because the method
relies on the measurement of the physiological response of a given
individual.8 Unfortunately, a number of factors are responsible
for the biological variability of HR, which lowers the accuracy of
this method when the intensity of PA (including walking) is low.8

Interestingly, we recently showed that the use of speed and grade
data obtained using a low-cost global positioning system (GPS)
receiver allowed highly accurate estimations of EE during level and
uphill outdoor walking compared to the use of actual speed and
grade.9 Although that study supported the feasibility of using GPS
alone for estimating EE during level and graded outdoor walking,
it is unknown how GPS compares with classical methods, such as
accelerometry or HR monitoring, for this purpose.

Beyond determining the best single method for estimating
outdoor walking EE, it would be helpful to identify the best com-
bination of methods for this purpose. Technological development
has allowed the measurement of PA and EE by various sensors
embedded into either several small devices (e.g., an accelerometer
and an HR monitor10,11) or a single device, such as the SenseWear
Mini Armand12 or the Actiheart.13 Moreover, ubiquitous consumer
technologies, such as smartphones and watches, are now likely to
embed several sensors (including GPS chipsets, accelerometers, and
HR sensors), which has opened new perspectives in the field of
mobile health.14

Several studies have investigated whether combining
accelerometry with other methods could close the gap classi-
cally observed between actual and estimated EE values during
graded walking when using accelerometry alone.12,15,16 Some of
these studies have assessed the benefits of combining accelerom-
etry and measurements of altitude change (using barometry15,16

or GPS15) to improve the accuracy of EE estimates during outdoor
uphill and downhill walking. The value of combining accelerom-
etry and HR monitoring for estimating walking EE has also been
assessed, but only on motorized treadmills, and studies have
produced conflicting results: some authors found no improve-
ment in the accuracy of EE estimates,11 while others reported an
improvement.10,17 Of note, accurately estimating EE when subjects
are walking uphill or downhill seems to remain a challenge when
combining accelerometry and physiological parameters.12,13

To our knowledge, no study has compared the accuracy of using
different combinations of parameters, including GPS speed and
grade, accelerometer counts, and HR parameters, for estimating
outdoor walking EE. Therefore, we still do not know the opti-
mal  combination to be implemented by researchers and users to
study outdoor walking EE when several methods are simultane-
ously available. Furthermore, it seems relevant to assess whether
using several combined methods for estimating EE is worthwhile
because increasing the number of methods and wearable devices
would probably increase the burden perceived by subjects, limiting
acceptability and compliance.

Thus, the purposes of the present study were the following: (i) to
determine which method among GPS, accelerometry, and HR mon-
itoring is the most accurate for estimating EE during level, uphill
and downhill outdoor walking; and (ii) to determine the extent to
which a combination of these methods increases the accuracy of EE
estimates.

2. Methods

This cross-sectional study was part of the “Acti-GPS” project
(NCT01805219), which was approved by the local Institutional
Ethics Committee (CPP OUEST II, Angers). A total of 30 healthy par-

ticipants were recruited for the present study, as recommended
for criterion-related validity studies.18 Most of participants (26/30)
were recruited from the Department of Sports Sciences and Physical
Education of the University of Angers and the University of Rennes.
The participants were between 20 and 30 years of age, with equal
numbers of men  and women. Each participant signed an informed
consent form and underwent an inclusion visit, a resting metabolic
rate measurement, a peak oxygen uptake (V̇O2peak) measurement
during an incremental field-running test, and three outdoor walk-
ing sessions. The incremental running test and the outdoor walking
sessions were separated by at least 24 h. In addition, the three out-
door walking sessions, which corresponded to three different levels
of grade (0.0%, 3.4% and 10.4% mean grades), were performed on 2
or 3 different days, with at least one and a half hours between two
sessions. The sequential order of the outdoor walking sessions for
each participant was counterbalanced according to the number of
grade conditions (n = 3). The methods of the Acti-GPS project have
been extensively described elsewhere.9

During the inclusion visit, the participants provided their med-
ical histories and underwent a physical examination. Weight,
height, and body fat percentage using the skin fold method were
measured, as previously reported.9

The resting metabolic rate was measured early in the morn-
ing (between 07:00 and 10:30) in the supine position and in a
noise-free and thermoneutral (22 ± 1 ◦C) room. Participants were
asked to fast for at least 12 h, to refrain from vigorous PA and alco-
hol for 24 h, and to sleep for 8 h or more prior to testing. After a
20-min adaptation period, gas exchange was recorded over a 30-
min  period. Resting HR and gas exchange were measured with
a portable metabolic system (K4b2, Cosmed® , Rome, Italy). The
V̇O2peak value was  determined using the K4b2 during an outdoor
maximal incremental field-running test performed on a 400-m ath-
letic track.9

On 2 or 3 other and different days, each participant completed
six-minute walking periods at speeds of 2.0, 3.5 and 5.0 km h−1 dur-
ing each of the three outdoor walking sessions (0.0%, 3.4% and 10.4%
mean grades for the three sessions, respectively). During the out-
door walking sessions on the 3.4% and 10.4% mean grades, each
walking speed was  tested uphill and downhill (Supplemental mate-
rial (SM) #1). Thus, each participant completed 15 walking periods
through the study: 3 on the level; 6 on the 3.4% mean grade (3
uphill and 3 downhill); and 6 on the 10.4% mean grade (3 uphill and
3 downhill). The sequence of walking speeds within each walking
session was randomized for each participant. The actual walking
speed was  calculated for each walking period by dividing the total
distance walked (measured with an odometer) by the time (mea-
sured with a chronometer). At each location, the actual grade of the
walking courses was measured every 25 m along the courses by a
certified surveyor using a Trimble S6 Total Station (Trimble, Sunny-
vale, CA) and a Trimble R8 Global Navigation Satellite System. All
the locations were free of motorized vehicles, buildings and dense
vegetation. For only one of the two hiking trails, there were trees
at one extremity of the pathway.

The K4b2 was  calibrated according to the manufacturer’s
guidelines before each test, and reliability data have been previ-
ously published.9 During all walking sessions, participants were
equipped with a low-cost DG100 GPS receiver (GlobalSat® Inc.,
Taipei, Taiwan; ∼AUD80) that recorded at a 1-Hz sampling rate,
as previously described.9 Participants also wore a wGT3X+ set at
a 90-Hz sampling rate on the iliac crest of the hip (ActiGraphTM,
LLC, Pensacola, FL; ∼AUD295; firmware 2.2.1). The HR was recorded
using the K4b2 Polar® belt.

All devices were initialized approximately 10 min prior to each
walking session. Synchronization between the different data files
was ensured by simultaneously performing a time mark on the
K4b2 unit and reporting the current Coordinated Universal Time
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(www.timeanddate.com/worldclock). At the end of each walking
session, data were downloaded from all devices to a personal com-
puter using the manufacturers’ software. For each walking period,
the mean values of weather parameters (temperature (◦C), relative
humidity (RH in %), wind speed (km h−1), and barometric pressure
(hPa)) were also recorded using information provided by French
weather stations.

For data analysis, all data were exported to Excel® (Microsoft,
Redmond, WA,  version 2010) spreadsheets. The absolute resting
V̇O2 was recorded as the mean V̇O2 value over the 30-min measure-
ment period. The relative resting V̇O2 was obtained by dividing the
absolute resting V̇O2 by the participant’s body mass. The V̇O2peak

was the highest 30-s average V̇O2 value measured during the max-
imal incremental field-running test. Participants were required
to have a peak respiratory exchange ratio ≥1.10 and a peak HR
≥95% of the age-predicted maximum HR19 to ensure that the test
value was maximal and to validate the obtained V̇O2peak value.
The absolute gross V̇O2 values obtained from the different walking
sessions were averaged over the last three minutes of each walk-
ing period to reflect steady-state exercise. Values were adjusted
using terrain coefficients for energy cost prediction,20 as previ-
ously described.9 EE was calculated as kcal min−1 = [15.913 × V̇O2
(L min−1) + 5.207 × V̇CO2 (L min−1)]/4.186.21

For each walking period, the GPS speed data were averaged
over the last three minutes to match the average EE data.9 The
corresponding mean uncorrected and corrected GPS grades were
obtained using raw and corrected altitude data, respectively,
according to our previously published procedure.9 The raw data
recorded by the wGT3X+ accelerometer were accumulated into 1-s
epoch data (i.e., into counts s−1) using the normal filter to compute
the counts per second on the vertical axis (VA) and the vector mag-
nitude (VM). Counts per second for both VA and VM were averaged
over the last three minutes of each walking period. The average over
the last three minutes of each walking period was  calculated for the
following HR-related parameters: (i) the raw HR recorded during
the walking periods (HR(raw), in beats per minute (bpm)); (ii) the
HR above the resting HR value (HR(aR), in bpm = HR(raw) − the aver-
age HR recorded during the resting metabolic rate measurement
(HR(rest)); and (iii) the HR reserve (HR(res), in %). These HR param-
eters have previously been used alone (SM #2) or in combination
with other parameters (e.g., accelerometer counts10,17) to estimate
EE; however, to our knowledge, they have never been tested and
compared for the study of outdoor walking.

The first step of our statistical analysis was to test linear mixed
models (LMMs).22 In that way, we developed equations to pre-
dict EE that used GPS speed and grade (uncorrected or corrected),
accelerometer counts (VA or VM), HR-related parameters (HR(raw),
HR(aR), or HR(res)), or a combination of two (e.g., VA counts and
HR(raw)) or three (e.g., GPS speed and corrected grade, VA counts,
and HR(raw)) of these parameters. Separate equations were devel-
oped using (i) the level walking periods, (ii) both the level and
uphill walking periods, or (iii) both the level and downhill walking
periods. We  developed separate equations because the relation-
ship between the energy cost of walking and the gradient differs
according to the gradient condition (uphill vs. downhill).23 The use
of both the level and graded walking periods to develop a single
equation is in accordance with previous works and the components
of commonly used equations.4,24 Of note, the models that used GPS
speed and grade were also compared to the models that used the
actual speed and grade. The addition of the following covariates
into the models was also tested: mass, gender, body fat percent-
age, and discomfort index (forward stepwise selection procedure).
The discomfort index (thermohygrometric index25) was calculated
as follows: t − (0.55 − 0.0055·RH) × (t − 14.5), with air temperature
(t) measured in ◦C and RH in %. The coefficient of determination

Table 1
Participants’ characteristics.

Variable Women  (n = 15) Men  (n = 15) All (n = 30)

Age, yr 22.2 ± 1.3 21.9 ± 1.6 22.0 ± 1.4
Height, cm 169 ± 5 176 ± 5 172 ± 6
Body mass, kg 62.2 ± 8.0 71.9 ± 8.1 67.1 ± 9.3
BMI, kg m−2 21.9 ± 2.2 23.2 ± 2.6 22.5 ± 2.4
Body fat, % 17.8 ± 3.0 10.1 ± 4.5 14.0 ± 5.4
RMR, ml  min−1 kg−1 4.1 ± 0.5 3.8 ± 0.9 3.9 ± 0.7
V̇O2peak, ml  min−1 kg−1 48.1 ± 5.0 56.4 ± 7.7 52.1 ± 7.6

Note: Values are the means ± standard deviation. All participants were Caucasian.
BMI, body mass index; n, number of participants; RMR, resting metabolic rate;
V̇O2peak, peak oxygen uptake.

(R2), standard error of the estimate (SEE) and Akaike information
criterion (AIC) were reported for each model. The higher the R2

and the lower the SEE, the better the predictive model. The lower
the AIC value, the better the quality of the model. The AIC value
reflects both the goodness of fit and the “efficiency” (parsimony) of
a model for a given number of predictor variables included in the
model. An efficient or parsimonious model accomplishes a desired
level of prediction with as few predictor variables as possible. The
accuracy of the LMMs  was tested using the leave-one-out (LOO)
procedure26 and was  reported as the average root-mean-square
error (RMSE): the lower the RMSE, the higher the accuracy. Statis-
tical modeling was  performed using R software (R Foundation for
Statistical Computing, Vienna, Austria, version 3.2.4).

The second step of our statistical analysis was to cross-
validate available published equations for EE (kcal min−1) and
MET  on our own EE (kcal min−1) and MET  data, respectively.
These commonly used speed/grade-based, accelerometry-based,
and HR-based equations are shown in SM #2. The cross-validation
procedure was performed to quantify any potential “equation
effect”, that is, a change in the accuracy of the EE estimate accord-
ing to the prediction equation used. MET  values were computed
by dividing the absolute gross V̇O2 by the body mass plus equip-
ment mass and then by 3.5. The cross-validation procedure was
performed separately for the level, uphill, and downhill outdoor
walking periods, when appropriate. RMSE, bias (95% confidence
interval), limits of agreement and standard deviation of the dif-
ferences (SDdiff) were computed. The prediction equations were
ranked according to the RMSE.

3. Results

The participant characteristics are shown in Table 1. The medi-
ans [interquartile ranges (IQRs) = 25th–75th percentiles] of the
weather parameters during outdoor walking periods were 17.5 ◦C
[9.1–20.0], 54.0% [34.0–65.4], 11 km h−1 [2.0–16.0], and 1019.3 hPa
[999.3–1023.9] for temperature, RH, wind speed, and barometric
pressure, respectively.

All GPS data were correctly recorded, except for the data col-
lected for one participant during the graded outdoor walking
session on a 3.4% mean grade (due to loss of the GPS satellite signal).
Regarding the HR data, 10% (9/90), 7% (13/180), and 13% (24/180) of
the values were lost during the level, uphill, and downhill walking
periods, respectively, due to a malfunction of the HR sensor. There-
fore, 8% (22/270) and 12% (33/270) of the HR values were missing
from tests of the level/uphill models and the level/downhill mod-
els that used HR data, respectively. All wGT3X+ data were correctly
recorded.

The medians [IQR] for the EE, accelerometer counts, and HR-
related parameters measured during the last three minutes of the
walking periods are shown in SM #3. Throughout the range of
tested grades, the EE and HR parameters increased exponentially,
whereas the accelerometer counts followed a U-shape curve.
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Table 2
Best models for predicting energy expenditure (kcal min−1) during both level and uphill outdoor walking.

Model R2 AIC SEE RMSE

Without covariates
No combination

Actual(speed & grade) 0.91 586.74 1.22 1.25
GPS(corrected) 0.87 735.96 1.31 1.34
GPS(uncorrected) 0.73 867.18 1.49 1.53
ACC(VM) 0.58 989.67 1.71 1.74
HR(aR) 0.59 855.62 1.84 1.89

Combination of 2 methods
GPS(corrected) + ACC(VM) 0.87 740.14 1.30 1.34
GPS(corrected) + HR(aR) 0.90 637.67 1.35 1.40
ACC(VM) + HR(aR) 0.65 814.38 1.58 1.64

Combination of 3 methods
GPS(corrected) + ACC(VM) + HR(aR) 0.90 644.49 1.34 1.40

With  covariates
No combination

Actual(speed & grade) + DI + M 0.93 560.11 0.98 1.02
GPS(corrected) + M 0.87 723.13 1.04 1.08
GPS(uncorrected) + M 0.80 848.00 1.24 1.27
ACC(VM) + M 0.67 974.69 1.50 1.53
HR(res) + Gen 0.67 840.28 1.52 1.58

Combination of 2 methods
GPS(corrected) + ACC(VM) + M 0.87 727.87 1.04 1.07
GPS(corrected) + HR(aR) + DI + Ht 0.90 630.44 1.20 1.27
ACC(VM) + HR(res) + Gen + M 0.76 795.08 1.25 1.32

Combination of 3 methods
GPS(corrected) + ACC(VA) + HR(aR) + DI + Ht 0.89 637.15 1.18 1.26

Notes: The models shown were the most accurate models (i.e., with the lowest RMSE) obtained in their respective categories, which were defined by both the number of
parameters combined and the type of parameters used (GPS, ACC, or HR). Covariates appear in italics. The models were ranked according to the RMSE value. Actual(speed & grade),
model  using the actual speed and grade; ACC(VA), model using accelerometry and the vertical axis; ACC(VM), model using accelerometry and the vector magnitude; AIC, Akaike
information criterion; DI,  discomfort index; Gen, gender; GPS(corrected), model using both the GPS speed and corrected grade, with the grade calculated using GPS altitude
data  and corrected with map  projection software; GPS(uncorrected), model using both the GPS speed and uncorrected grade; HR(aR), heart rate above the resting heart rate;
HR(res), heart rate reserve; Ht, height; M,  body mass plus equipment mass; R2, R-squared for linear mixed model; RMSE, average root-mean-square error obtained with the
leave-one-out methodology; SEE, standard error of estimate. All equations are available in SM #4.

All the tested models and their related equations and statistical
outcomes are shown in SM #4. Summaries of the results obtained
for the LMMs  using the level walking periods, both the level and
uphill walking periods, or both the level and downhill walking peri-
ods are shown in SM #5, Tables 2 and 3, respectively. Except for the
models using GPS data only (for which both of the models based
on uncorrected and corrected grades are shown), these tables show
only the models that reached the lowest RMSE in their respective
categories, as defined by both the number of methods combined
(1, 2, or 3) and the type of parameters used (GPS-, accelerometry-,
and HR-related parameters).

For level walking, when each of the methods was used alone
without covariates, higher R2 values were obtained from the
GPS models (SM #5, R2 = 0.75–0.76), although the error in EE
estimation was quite similar when using either GPS speed and
grade (RMSE = 0.90–0.91 kcal min−1) or accelerometer VA counts
(RMSE = 0.89 kcal min−1). When covariates were added to the sin-
gle method-based models, the RMSE for accelerometry was slightly
lower than for GPS, but the RMSE values for both of these mod-
els remained in a narrow range (0.63–0.71 kcal min−1). When HR
monitoring was used, the RMSE was clearly increased compared
to that with GPS or accelerometry, regardless of which HR-related
parameter was used (RMSE ≥1.20 kcal min−1 without covariates
and ≥0.99 kcal min−1 with covariates). Compared with GPS and
accelerometry alone, no combination of methods produced a lower
RMSE.

Table 2 shows the results for the LMMs  tested using both the
level and uphill outdoor walking periods. First, when the sin-
gle method-based models (“No combination”) were tested without
covariates, the lowest RMSE was achieved using the actual speed
and grade. The RMSE for the GPS-based models was lower than
for the accelerometry-based models (by at least 0.40 kcal min−1

using corrected GPS grade) and HR-based models (by at least

0.55 kcal min−1 using corrected GPS grade). The RMSE for the GPS-
based models was close to that obtained using the actual speed
and grade. A slightly lower RMSE was achieved when using the
corrected GPS grade than when using the uncorrected GPS grade
(decrease of 0.19 kcal min−1 without covariates). Second, although
combining GPS and HR, or combining the three tested methods,
produced slightly higher R2 coefficients and lower AIC than GPS
alone, no combination of methods reduced the RMSE achieved by
the most accurate single GPS-based model. Combining accelerome-
try and HR produced a lower RMSE than accelerometry or HR alone
(RMSE decreased by 0.10 and 0.25 kcal min−1 for accelerometry and
HR, respectively, without covariates).

Table 3 shows the results obtained for the LMMs  tested using
both the level and downhill outdoor walking periods. Overall, the
ranking of the models was similar to that using both the level and
uphill outdoor walking periods. Of note, both the RMSE values and
the variance explained were reduced (e.g., all R2 < 0.75) when mod-
els were tested using the downhill (Table 3) compared to the uphill
walking periods (Table 2).

Mass was a significant covariate for most models. Height, gender
and the discomfort index were also significant covariates in several
models. As shown in SM #5, Tables 2 and 3, the addition of signif-
icant covariates improved nearly all the models (increased R2 and
decreased AIC and RMSE), regardless of (i) the walking periods used
(level, level/uphill, or level/downhill), (ii) the type of parameters
used (GPS, accelerometry, or HR), and (iii) the number of methods
combined (1, 2, or 3). However, the addition of a covariate did not
markedly change the ranking of the models presented above.

The results obtained from the cross-validation of other EE
and MET  prediction equations for level walking are presented
in SM #6. Regarding the EE predictions, the unique GPS-based
equation tested (Pandolf et al.24; SM #2) was less accurate than
the best accelerometry-based equation (Brooks et al.21; SM #2),
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Table  3
Best models for predicting energy expenditure (kcal min−1) during both level and downhill outdoor walking.

Model R2 AIC SEE RMSE

Without covariates
No combination

Actual(speed & grade) 0.68 304.87 0.81 0.84
GPS(uncorrected) 0.67 352.31 0.82 0.84
GPS(corrected) 0.67 315.78 0.82 0.85
ACC(VM) 0.16 686.09 1.00 1.02
HR(aR) 0.29 577.83 1.07 1.09

Combination of 2 methods
GPS(corrected) + ACC(VM) 0.68 324.58 0.82 0.84
GPS(corrected) + HR(raw) 0.71 292.16 0.83 0.86
ACC(VM) + HR(aR) 0.29 573.93 1.01 1.04

Combination of 3 methods
GPS(corrected) + ACC(VM) + HR(raw) 0.71 300.40 0.82 0.85

With  covariates
No combination

GPS(uncorrected) + DI + M 0.71 325.55 0.66 0.68
Actual(speed & grade) + DI + M 0.74 280.39 0.66 0.69
GPS(corrected) + DI + M 0.72 281.66 0.68 0.71
ACC(VM) + M 0.38 670.97 0.86 0.88
HR(aR) + Ht + M 0.49 568.56 0.87 0.93

Combination of 2 methods
GPS(uncorrected) + ACC(VA) + DI + M 0.71 322.07 0.67 0.69
GPS(uncorrected) + HR(raw) + DI + M 0.71 307.45 0.67 0.71
ACC(VM) + HR(aR) + M + Ht 0.51 562.41 0.82 0.87

Combination of 3 methods
GPS(uncorrected) + ACC(VA) + HR(raw) + DI + M 0.71 306.16 0.68 0.72

Note: The models shown were the most accurate models (i.e., with the lowest RMSE) obtained in their respective categories, which were defined by both the number of
parameters combined and the type of parameters used (GPS, ACC, or HR). Covariates appear in italics. The models were ranked according to the RMSE value. Actual(speed & grade),
model  using the actual speed and grade; ACC(VA), model using accelerometry and the vertical axis; ACC(VM), model using accelerometry and the vector magnitude; AIC, Akaike
information criterion; DI,  discomfort index; GPS(corrected), model using both the GPS speed and corrected grade, with the grade calculated using GPS  altitude data and corrected
with  map  projection software; GPS(uncorrected), model using both the GPS speed and uncorrected grade; Ht,  height; HR(raw), raw heart rate; HR(aR), heart rate above the resting
heart  rate; M,  body mass plus equipment mass; R2, R-squared for linear mixed model; RMSE, average root-mean-square error obtained with the leave-one-out methodology;
SEE,  standard error of estimate. All equations are available in SM #4.

with an RMSE of 1.23 kcal min−1 using uncorrected GPS grade
(vs. RMSE = 1.00 kcal min−1 for the Brooks et al. equation, SM #2).
Regarding MET  predictions, the best GPS-based equation and the
best accelerometry-based equation produced similar RMSE values
(0.50 and 0.52 MET, respectively). The equation by Rue and Kramer
(for the reference, see SM #2) led to the highest error in the estima-
tion of MET  (RMSE = 1.95 MET  using corrected GPS grade) among
the available GPS-based equations. Previously published HR-based
equations were associated with higher RMSEs both for EE (RMSE
≥1.80 kcal min−1) and METs (RMSE ≥1.39 METs) than for most of
the GPS-based or accelerometry-based equations.

Regarding uphill outdoor walking (SM #7), the GPS-based equa-
tions clearly allowed more accurate estimations of EE (RMSE
range = 1.60–2.04 kcal min−1) and MET  (RMSE range = 1.18–2.78
METs) than the accelerometry- (RMSE range = 2.34–3.74 kcal min−1

for EE and 2.12–3.05 for METs) or HR-based equations (RMSE
range = 1.62–2.88 kcal min−1 for EE and 1.38–2.53 for METs). Com-
pared to the best accelerometry-based equations, the estimation
of EE and METs was more accurate with some of the available
HR-based equations (SM #7). The trend obtained for downhill out-
door walking (SM #8) was quite different: the highest accuracy
for estimating EE (RMSE = 1.31 kcal min−1) or METs (RMSE = 1.22
METs) was achieved using the accelerometry-based equations
by Brooks et al. (SM #2), whereas the unique tested GPS-based
equation by Rue and Kramer (SM #2) led to lower accuracy
(RMSE = 1.74 kcal min−1 and 1.57 METS, using corrected GPS grade)
than the best HR-based equations (RMSE = 1.63 kcal min−1 for EE
and 1.23 for METs).

4. Discussion

The present study aimed to determine the best method and the
most valuable combination of methods among GPS, accelerometry,

and HR monitoring for estimating EE during outdoor walking. Our
analyses led to different conclusions for studies of outdoor walk-
ing involving (i) level walking only or (ii) both level walking and
walking under various grade conditions.

The LMMs  and cross-validation results showed that GPS is as
valuable as accelerometry and more valuable than HR monitoring
for estimating EE during level outdoor walking. Interestingly, as
shown by the LMMs,  no combination of methods increased the
accuracy of the EE estimates obtained for GPS or accelerometry
alone.

Our finding of equivalence between GPS and accelerometry for
estimating level walking EE challenges the use of accelerometry as
the preferred method for measuring PA and EE. It has been claimed
that from a theoretical point of view, acceleration is more directly
reflective of the energy cost than speed.27 However, this point of
view is not supported by the literature on walking. Indeed, sev-
eral studies have shown that speed is an important predictor of EE
during walking,9 and only the study by Brooks et al.21 compared
the use of speed and acceleration for estimating walking EE in the
same sample of subjects. Of note, the authors21 reported that walk-
ing speed was  a better predictor of EE (prediction equations with
higher R2 coefficients) than accelerometer counts (VA) during level
outdoor walking.

The differences between the conclusions drawn by Brooks
et al.21 (superiority of speed on acceleration) and our findings
(equivalence between GPS and accelerometry) are likely to be due
to the statistical procedures implemented. Brooks et al.21 used the
R2 coefficient and did not cross-validate their equations using the
LOO procedure, as we did in the present study. As shown in SM
#5, although higher R2 coefficient could be obtained for the GPS-
based models vs. the accelerometry-based models, the same errors
(RMSE) in EE estimation were finally obtained for both models fol-
lowing the LOO cross-validation.
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The error found for HR monitoring seems consistent with
reports that showed that HR fails to have a linear relationship
with EE at low intensities.8 Because of methodological consider-
ations, the walking speeds tested in the present study were in the
lower range of human level walking speeds (2–5 km h−1). Since car-
diorespiratory fitness influences the relationship between HR and
EE,28 the HR-EE relationship obtained across the range of walk-
ing speeds and grades tested in the present study may  have been
even more flattened for the fittest subjects. As there were differ-
ent levels of V̇O2 peak among the study’s participants, it could be
assumed that adding V̇O2 peak as covariate in the HR-based mod-
els would have increased their accuracy for predicting walking EE.
It was indeed the case, but the accuracy remained inferior to that
obtained with the parameters related to the other methods (data
not shown). Importantly, HR is also influenced by factors other
than PA intensity.8 In this way, the significant effect of the dis-
comfort index on EE observed in the present study underlines a
possible detrimental influence of environmental conditions on the
prediction of EE when using HR. Of note, contrary to the results of
most of laboratory studies,10,17 the accuracy of EE estimates dur-
ing level outdoor walking was not increased by combining HR and
accelerometry compared to using accelerometry alone.

The cross-validation results regarding the estimation of outdoor
level walking EE/METs (SM #6) underline the major impact of the
equations used. Future studies should, however, cross-validate our
LMM-derived equations in other samples and compare them to
these available published equations.

The LMMs clearly show that GPS offers more accurate estimates
of EE for both level and graded (uphill and downhill) outdoor walk-
ing than accelerometry or HR monitoring. Further, it appears that
no combination of methods provides a better estimation of EE than
GPS alone. To the best of our knowledge, this finding is unique
and confirms the value of very popular equations4,24 developed in
studies demonstrating the importance of speed and grade as two
powerful predictors of walking EE (see SM #2 and de Müllenheim
et al.9). The previously mentioned drawbacks of accelerometry dur-
ing graded walking explain the lower accuracy obtained in the
prediction of EE.7 However, as suggested by our LMMs,  if the GPS
method is not available, combining HR and accelerometer counts
could be better than using either method alone (except for both
level and downhill walking). This last conclusion is in accordance
with previous laboratory studies that combined HR and accelerom-
etry during treadmill walking.13

When testing models using GPS data, the use of corrected grades
from map  projection software was particularly valuable for increas-
ing the accuracy of the prediction of walking EE, particularly for
both the level and uphill conditions (Table 2), which is consistent
with a previous study.9 Although the prediction of walking EE using
GPS for both level and downhill conditions was not affected by the
use of uncorrected grades (Table 3), based on previous data,29 the
use of corrected grades, if possible, is preferable.

Again, the cross-validation results (SM #7, SM #8) highlight the
major impact of the equation used for the prediction of EE and METs
during graded outdoor walking. For instance, when using the GPS
method to estimate METs during outdoor uphill walking, the ACSM
equation4 seems to be the most suitable (lowest prediction error).
In contrast, the equation provided by Rue and Kramer (SM #2)
was highly inaccurate. The use of this last equation could explain
why the GPS method did not provide a better EE prediction than
accelerometry when considering the downhill walking periods for
the cross-validation.

The finding that mass (mostly) and gender were significant
covariates for several models is in accordance with previous
studies.21 However, to our knowledge, the present study is the first
to show that the discomfort index could be a significant covariate in
several models when estimating outdoor walking EE. This finding

is of importance because outdoor walking can occur under very dif-
ferent atmospheric conditions on a day-to-day basis. However, the
discomfort index does not take into account wind speed, and the
possibility that high wind speed values might impact walking EE
cannot be excluded.30 In the present study, adding wind speed as a
covariate to the models had no effect on the prediction of walking
EE (data not shown).

The R2 coefficients obtained for the models tested using the
downhill walking periods were lower than those obtained for the
models tested using the uphill walking periods. This result may be
partly explained by (i) the loss of linearity between the EE of walk-
ing and the grade when the grade is below 0.0%23 and (ii) the lower
range of measured (actual) EE values during downhill walking than
during uphill walking (SM #3).

Although the RMSE values were decreased when testing the
“level/downhill” models (Table 3) compared to those when test-
ing the “level/uphill” models (Table 2), the median value of the
actual EE data used for testing the “level/downhill” models was
also decreased. Thus, when the RMSE values were normalized to
the median of our EE data, the RMSE values for both conditions
were within the same range (data not shown).

Our results regarding the GPS method might not extend to
environments that have higher levels of obstruction than those
encountered in the present study. However, finding the same
experimental conditions as the present study in locations with high
levels of obstruction would be almost impossible. Environmental
obstruction should have only a moderate impact on the final esti-
mation of EE during outdoor walking if the GPS altitude is corrected
via map  projection software, as proposed here. This issue, however,
deserves additional research, particularly in view of free-living and
prolonged measurements of walking EE.

The accelerometry-based equations that were cross-validated
in the present study were originally validated using count data
obtained from an older ActiGraphTM accelerometer (SM #2), which
may  have influenced the EE estimation. Furthermore, equations
developed using accelerometer counts remain dependent on the
monitor used because activity counts cannot be directly compared
across monitors.

Finally, additional studies should be conducted to develop
population-specific equations, which was  not the aim of the present
study. Furthermore, our equations developed herein should be
cross-validated in other samples, particularly for level/downhill
outdoor walking conditions since prediction equations for EE are
lacking.

5. Conclusions

This study is the first to determine the best method among
GPS, accelerometry and HR for estimating walking EE during level
and graded (uphill and downhill) outdoor walking. This work
involved testing LMMs  using data obtained from participants who
walked on both positive and negative grades at different walk-
ing speeds. Moreover, for the first time, both speed/grade (GPS)-,
accelerometry-, and HR-based published equations were cross-
validated under these conditions.

Practical implications

• When the estimation of outdoor level walking EE is planned dur-
ing a session, (i) either GPS or accelerometry can be used with
similar accuracy; (ii) using HR monitoring alone is not recom-
mended; and (iii) combining two or three methods adds no value.

• When the estimation of outdoor walking EE is planned during a
session of both level walking and various grades, (i) GPS should be
preferred; (ii) the corrected GPS grade obtained from map  soft-
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ware should be used, if available; (iii) combining two or three
methods adds no value; and (iv) if no GPS receiver is available to
the user, combining accelerometry and HR monitoring should be
preferred.

• Regardless of the methods used, for either level walking or both
level and graded walking, the prediction of EE is greatly influ-
enced by the prediction equation used.
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