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aAix Marseille Université, CNRS, PIIM UMR 7345, 13397, Marseille, France.

Abstract

The purpose of this paper is to illustrate our contribution to general plasma physics studies obtained since the
90s with multiple versions and adaptations of the classical molecular dynamics (CMD) simulation interactive
code called BinGo. After a description of the particulars of the CMD simulation models and the BinGo
code suite, some applications are discussed for illustration. These results validate the CMD simulation as a
powerful tool of investigation for hot dense plasmas.

Keywords: Classical Molecular Dynamics, Simulations, Dense plasmas

1. Introduction

Classical molecular dynamics (CMD) was born
years ago with computers [1, 2]. Its primary mo-
tivation was to provide alternative statistical re-
sults (numerical experiments) and at the same time,
overcome complexity (N-body problem) in statisti-
cal physics calculations. These developments re-
sulted into helpful discussions and comparisons.
Nowadays, the motivation remains the same but
benefits from the extraordinary growing capabili-
ties of computers giving to CMD the status of a real
investigation tool. Due to the interaction length
between charged particles, CMD is well adapted to
plasmas for a wide domain of composition, tem-
perature and density conditions. By going from
the simulation of one-component plasmas to simula-
tions of electron-ion two-component plasmas, CMD
is an unavoidable tool with a great versatility which
allows one to consider various applications in plas-
mas.

The BinGo code suite is one of these CMD codes.
It has been developed for more than two decades
in order to accompany studies of plasma spectro-
scopic diagnostics. It has been used not only to
generate the field histories required for the simula-
tion of spectral line shapes in plasmas but it has
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also been very useful for various studies of parti-
cle correlation effects on plasma statistical proper-
ties. Among these, the effects of particle correla-
tions on the broadening due to the radiator mo-
tion (Doppler broadening) in the framework of a
detailed analysis of the different processes that con-
tribute to the spectral broadening of the Ni-like Ag
XUV laser line, have been studied using BinGo ap-
plied to a one-component Yukawa plasma [3]. The
study of electron dynamics around an ion impurity
provided results for comparisons with theoretical
modeling of field correlation and distribution func-
tions measured at an ion [4, 5]. The CMD code
enabled us to explore micro field statistical proper-
ties in the context of line shape studies for plasma
diagnostic by spectroscopy in both cases, an im-
purity (or a small percentage) of hydrogen-like he-
lium in protons [6] and neutral hydrogen in an infi-
nite system of interacting electrons and protons [7].
The most recent investigations have been performed
with BinGo-TCP, a version of BinGo designed for
two component (TCP) electron ion plasma simula-
tions. This version led us to explore warm-dense
and hot-dense plasma conditions with simulations
of dynamics structure factors [8] and the evaluation
of the mechanism of ionization potential depression
in dense plasmas [9], respectively.

The purpose of this paper is not to make a revue
article but to illustrate our contribution to general
plasma physics studies obtained since the 90s with
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multiple versions and adaptations of the interactive
CMD code called BinGo. In the following, after a
section devoted to give the particulars of the CMD
simulation models and the BinGo code suite, we will
come back on some of the previously cited applica-
tions for illustration. These advances and results
validate the CMD simulation as a powerful investi-
gation tool for hot dense plasmas.

2. CMD basis

2.1. Generalities

Classical molecular dynamics is a technique
shared by many physicists and its detailed descrip-
tion is not needed here (for more details see for
example [10] and references there in). It consists
in the simulation of the movement of interacting
atoms or molecules treated as classical non rela-
tivistic pointlike particles. In its standard form,
CMD deals with a three dimensional infinite sys-
tem in thermodynamical equilibrium composed of
joint identical cubic cells. All the step by step cal-
culation work is done into a unique cubic cell with
the so called minimum image convention [11] im-
plying that the acceleration on a given particle is
calculated considering a box centered on this par-
ticle. The number of interacting particles consid-
ered at a time and moving according to Newton’s
laws integrated using for instance the velocity Ver-
let algorithm [12], is constrained by computer ca-
pabilities. Different adaptations of this basic CMD
have been developed. A non exhaustive list of ex-
amples is given here after for illustration: mirror
walls approximation for the boundaries of the sim-
ulated system [13], rectangular periodic boxes, non
periodic finite systems [14, 15], systems with an in-
terface [16, 17], etc.

The standard CMD simulations are performed
for thermodynamic state characterized by a fixed
number of atoms, N , a fixed volume, V , and a
fixed energy, E. These extensive variables (N ,
V , E) of the microcanonical ensemble should be
strictly conserved (i.e., time-independent) during
the run of the simulation. The corresponding in-
tensive variables, namely the chemical potential,
ν, the pressure, P , and the temperature, T , are
not conserved. In a simulation at equilibrium, the
corresponding instantaneous observables fluctuate
around well-defined average values and in a non-
equilibrium simulation, these quantities may un-
dergo a systematic drift. For studies dedicated to

equilibrated system, the preparation, i.e., the ther-
modynamical equilibration at a given temperature
of an assembly of interacting particles is a crucial
step to be performed before any further relevant
statistical samplings. In general, tricks like ther-
malization are used to accelerate this preparation
following practical considerations. A number of
methods have been developed to keep the temper-
ature constant while using the microcanonical en-
semble, e.g. velocity rescaling, the Andersen ther-
mostat, the Nosé-Hoover thermostat, Nosé-Hoover
chains, the Berendsen thermostat or Langevin dy-
namics [18]. A system will be considered as equi-
librated, if the intensive variables do not show any
drift and if the total energy of the particles in
the box undergoes negligible numerical fluctuations
that do not affect the static or dynamic measure-
ments being performed when the system evolves.

2.2. Interaction potentials

A molecular dynamics simulation requires the
definition of the potential function that governs in-
teractions between the particles inside the simula-
tion box. This issue will be considered differently
according to the studied plasma conditions.

2.2.1. The one component plasma (OCP and
Yukawa OCP) systems

The one component plasma (OCP) model, which
consists in dense systems of charged particles of
one species interacting through a Coulomb poten-
tial, embedded in a uniform background of oppo-
site charge ensuring over-all electrical neutrality, is
of great astrophysical interest. It provides an ex-
cellent model for describing superdense, completely
ionized matter typical of white dwarfs or the outer
layers of neutron stars [19]. This model is valid
mainly when the plasma conditions are such as the
electrons can be considered as a highly degener-
ate electron gas and then as a rigid uniform back-
ground. When it is necessary to account for the
electron gas polarization by the ionic charge distri-
bution, the bare Coulomb potential is replaced by
an effective screened potential [20]. This is called
one-component Yukawa systems. Depending of the
degree of electron degeneracy, the screening length
will be chosen differently, e.g. the Debye length for
ions in a pure classical electron gas or the Thomas-
Fermi screening length in the case of partially de-
generate electrons.

In all cases, the interaction length in CMD is lim-
ited, by construction, to the box size a, defined as
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a = (N/n)1/3, with n the density of charges. For
pure Coulomb potential or if the interaction length
is larger than the simulation box, it is necessary to
account for particles outside the simulation box. In
these cases, different methods can be used such as
Ewald sum, particle mesh Ewald (PME) or particle-
particle particle-mesh (P3M) techniques [21].

2.2.2. The two component ion and electron plasma
systems

A step further towards more realistic plasma
models is done simulating ions and electrons to-
gether provided that an ion-electron potential fi-
nite at short distance prevent electron-ion collapse.
Such effective regularized potentials are designed to
approximately account for known quantum proper-
ties appropriate for the kind of investigated plasma,
e.g. quantum interference and diffraction effects
at small distances involved in electron-electron or
electron-ion collisions for hydrogenic systems [22]
or the correct ionization energy of the ions in the
ground state when the electrons are situated on top
of the ions for nano plasma properties [23]. The
computer cost of these simulations is important as
the time steps have to be short enough for a good
description of electron motion and the total number
of time steps has to be large enough to allow ions
to move significantly in order to build, self consis-
tently, their spatial structure. However, they enable
us to study electron dynamics, which is the key to
understanding a number of plasma mechanisms.

As mentioned above, the TCP simulations can
be performed provided that an effective regularized
ion-electron potential is used. The choice of this po-
tential can affect the measurement of certain prop-
erties, in particular those that are strongly depen-
dent on quantum effects. Since the pioneering work
of Hansen and McDonald in the 1980s [24] who first
used such potentials in classical MD simulations, a
great deal of work has been devoted to determining
the effective potentials describing classical systems
composed of ionic charges and free electrons. The
classical approach is guided by an analysis of the
quantum diffraction of an electron by a ionic charge
allowing to determine an equivalent classical regu-
larized potential. This potential depends on tem-
perature and because the regularization a potential
energy minimum becomes effective for an electron
at null distance from the ion. Several regularized
potentials have been developed by different authors
[25–29] in which a common regularization distance
used is the DeBroglie wave length.

A widely used regularized electron-ion potential,
i.e., finite at short distances is defined as [26]:

Vie(r) = −Zie
2

r
(1− exp(− r

δie
)), (1)

where the regularization distance is the DeBroglie
wave length of the relative electron motion, δie =
~/(2πµiekBT )1/2 with µie the ion-electron reduced
mass. Here, the spatial distribution of the bound
electrons is not considered, their charges are in-
cluded in Zi. Thus, it is important to make sure
that in the MD simulations most of the electrons are
free. The simulated electrons occupying the quasi-
periodical orbits with r � r0, r0 being the inter
ionic distance, around individual ions can be con-
sidered bound. It has been shown in [13] that the
plasma conditions must be selected such that the
regularization distance δie is large enough to sup-
press the formation of the classical bound states of
electrons while satisfying δie . r0 so not to affect
the free electron density at r ∼ r0. An estima-
tion of the probability to find an electron within
the volume r . δie shows that for Γie & 0.5, with

Γie = Zie
2

kBTr0
the ion-electron coupling parameter,

the bound electrons represent a significant fraction
of all simulated electrons. Thus, the MD simula-
tions clearly do not correspond to the formulation
of the initial problem, since the simulated Zi and
the electronic density are effectively reduced. Fur-
thermore, for plasma conditions such that bound
electrons exist, the simulation equilibrium state is
difficult to reach. The filling of negative energy
states by electron trapping, i.e. the adjustment of
electrons to ions, results from three-body collisions
involving one ion and two electrons, which are rare
events. Nevertheless, this preliminary phase is nec-
essary as at start the ions and electrons are put
together at random in the simulation box and the
ion-electron interaction is switched on inducing a
non equilibrium state of the ion-electron plasma.
Because the pairwise exchange of kinetic and poten-
tial energy, this non equilibrium state, would evolve
towards a state far from the density temperature
conditions expected regarding the objective of the
simulation.

Ion-ion and electron-electron potentials are
Coulomb potentials,

Vii,ee(r) =
Z2
i,ee

2

r
. (2)

Accounting in some way for electron degeneracy
can be achieved using an electron-electron poten-
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tial finite at short distances to account for quantum
diffraction effects plus an effective Pauli potential
with symmetry effects [30]:

Vee(r) =
e2

r
(1− exp(− r

δee
))

+ kBT (ln2)exp(− r2

πδ2ee(ln2)
).

(3)

The domain of application of these pair-wise po-
tentials is limited, for a given temperature, to not
too high densities as they do not treat many-body
effects. For an analysis of this issue and of the tech-
niques to model many-body effects see [31] and ref-
erences therein. Implementing those potentials in
MD leads necessarily to the Maxwell momentum
distribution and not to the momentum distribution
of an electron gas governed by Fermi statistics. This
may be corrected by using a momentum-dependent
potential [32–34].

2.2.3. Virtual neutral plasma systems

For various purposes, it is necessary to simu-
late virtual plasmas composed of electrons and ions
in different ionization states. Depending on the
plasma conditions, e.g. when they are such that the
electron-ion interactions are strong or those gener-
ated by direct target interaction with intense laser
beams, it is required to account, in the simulations,
for bound states as well as quantum mechanical
processes to create and destroy them. This per-
mits to avoid non-physical Coulomb collapse and
to extend the applicability of classical MD simu-
lations, which are ideally suited for fully-ionized,
non-degenerate plasma, to a widest range of plasma
conditions. Various approaches have been devel-
oped and proposed by different groups, to perform
molecular dynamics simulations in such systems. A
powerful method is the quantum molecular dynam-
ics (QMD), in which the dynamics of the ions is
solved through classical MD techniques according
to the electronic structure obtained at each time
step using density functional methods [35]. This
method is widely used to generate benchmark data
but it is very computationally expensive and it
is limited to low temperature plasma conditions.
To extend QMD to higher temperatures, orbital
free density functional theory molecular dynamics
(OF-DFT-MD) simulations have been developed.
In these simulations based on the Thomas-Fermi
approximation, the electronic fluid is represented
by a free energy entirely determined by the lo-
cal density [36, 37]. Both these methods use the

Born-Oppenheimer approximation, i.e., they sup-
pose that the electrons adjust instantaneously to
ions, and do not solve explicitly the electron dy-
namics. Moreover, even though the OF-DFT-MD
simulation is more efficient than QMD in term of
computational time, it still does not allow to sim-
ulate a large number of particles over a long pe-
riod of time. This has been a strong motivation
for developing alternative methods. Among these,
it is worthwhile to mention the ddcMD code which
has been designed to simulate high energy density
plasmas undergoing thermonuclear burn and which
is the backbone of the Cimarron project based
at Lawrence Livermore National Laboratory [38].
This code is a massively parallel molecular dynam-
ics code in which quantum processes such as emis-
sion and absorption of X-ray photons, thermonu-
clear fusion or collisional ionization and recombi-
nation have been incorporated by using the ”Small
Ball” (SB) method [39]. The latter combines a clas-
sical MD technique as defined previously to solve
the many-body classical dynamics when interparti-
cle distances are greater than the SB radius and a
Monte Carlo technique to solve the two-body quan-
tum mechanics governed by probabilities for inter-
particle distances lower than the SB radius.

Another example concerns studies on cluster dy-
namics for which TCP ion-electron MD simula-
tion incorporates some quantum mechanical effects
through the interaction pseudopotential between
ions and electrons [23]. In these simulations, ions
and electrons are treated as classical particles rep-
resented by a Gaussian of fixed width leading to a
inter-particle potential of the form:

Vij(r) = ZiZje
2 erf(r/σij)

r
, (4)

where σij is given by σ2
ij = σ2

i + σ2
j with σi the

Gaussian width of the particle i. Depending on the
choice of σi, core and valence electrons can then be
treated at the same level in the simulations. For
example, in [15] devoted to a study of laser excited
small sodium clusters, σi is chosen in order to repro-
duce the ionization energy for sodium in the ground
state when the electrons are situated on top of the
ions.

In our BinGo-TCP model, we have also chosen to
simulate ions and electrons as classical particles and
to incorporate the ionization potentials of isolated
ions as a minimum quantum information in a regu-
larized potential to model ionization and collisional
recombination processes. The BinGo-TCP code is
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designed to deal with neutral mixtures composed of
ions of the same atom with different charge states
and electrons. Inside the simulation box the ion
charges can change from one to another according
to the density temperature conditions. For that
purpose, a regularized electron-ion potential, de-
pending on the ion charge Zi is defined as:

Vie(r) = −Zie2e−r/λ(1− e−r/δ(Zi))/r, (5)

where the regularization distance δ(Zi) is chosen to
reproduce the ionization energy Ei of the unper-
turbed ion of charge Zi in the ground state when
the electron is located at the ion (r = 0),

δ(Zi) = Zie
2/Ei. (6)

δ(Zi) also plays the role of radius of the ion of
charge Zi. The screening factor present in these
potentials e−r/λ where λ is half the simulation box
size, helps to smooth the small fluctuations of forces
arising with the periodic boundary conditions. It
could affect the mechanisms controlling the par-
ticle motion in the simulation box and thus, the
measure of some plasma properties such as non-
equilibrium properties. Concerning the examples
of applications hereafter, it has been checked that
the results do not depend on the choice of λ provid-
ing that the box size is large enough (a few times
the natural plasma screening length).

The choice of this potential associated to the
knowledge of the position and velocity of individ-
ual particles at each time step, allows us to de-
sign a collisional ionization - recombination pro-
cess. Ionization-recombination mechanisms rely on
an approximate analysis of collisional events be-
tween one ion and 1 or 2 electrons. In dense plas-
mas, the concept of collisions is not straightforward
as the interaction involves all particles within the
screening length. The main idea, in our model, is
to extract from the data provided by the MD simu-
lation (positions and velocities of particles) a local
characterization of the plasma around a given ion
”A” in order to infer if the conditions are favorable
to a ionization or recombination of this ion. For
that purpose, notions of hot shell and cold shell of
”A” have been introduced. The first mutual near-
est neighbor (MNN) and the next nearest neighbor
(NNN) electrons of ”A” are first identified. Accord-
ing to the location of the MNN electron - it must
be located in between δ(Zi) and

√
2.× δ(Zi) - and

the sign of the total energy of the MNN and NNN
electrons - calculated accounting for all the interac-
tions in the simulation box -, one then evaluates if

locally the plasma, at one step of its evolution, is
favorable to the ionization (positive energy) or the
recombination (negative energy) of ”A”. This test
results into a pre-ionization, i.e., an increase by 1 of
the ion charge and the addition of one electron lo-
cated at the ion, or a recombination, i.e., a decrease
by 1 of the ion charge while the MNN electron is re-
moved. This local discontinuity over one time step
is then accounted for by the whole system through
a normal evolution. The pre-ionized state, i.e., an
ion with a trapped electron can be converted into
an ionized state through multiple collisions. In this
approach the ionization will be considered as com-
pleted when a new hot shell surrounds the ion. In
the mean time the ion is considered as excited or
multi-excited if there are more than one trapped
electrons in the ion potential.

At start, ions of same charge and electrons are
put together in the simulation box and the ion-
electron interactions are switched on inducing a
state of the ion-electron plasma far from equilib-
rium.The ionization/recombination process allows
the evolution of the charge state population towards
a stationary state depending on temperature, den-
sity and composition of the plasma and it favors the
setting up of a population of electrons temporary
trapped in the ion wells. During this phase of equi-
libration, the electron temperature is constrained
by velocity rescaling while the ionization recom-
bination process broadens the charge distribution.
During this short phase, no significant change of
ion temperature and positions can occur. At the
end of the preparation phase, the system follows a
quasi stable evolution with stationary trapped and
free electron populations and is ready for extracting
data samplings dedicated to plasma investigations.

The equilibration of the charge states is illus-
trated in Figure 1, for a Carbon plasma at solid
density and 50 eV. The balancing of carbon charge
state populations is presented for two simulations
with different initial conditions. The solid lines
show the results obtained for a simulation with all
charges equal to z=6 at the initial time and the
dashed lines show the same results but for z=1 at
t=0. We can see that thanks to the ionisation-
recombination process, whatever the choice of ini-
tial state, after a few femto-seconds the concentra-
tions of charge states stabilise around average val-
ues. Once this state of equilibrium is reached, each
ion continues to undergo ionisation or recombina-
tion, but only infrequently, and the charge distribu-
tion no longer changes. It has been shown that, in
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Figure 1: Time evolution of the concentration of charge
states in a Carbon plasma at solid density and 50 eV dur-
ing and after the equilibration phase of the simulation. Full
lines: the initial ionic charges are set at z=6, Dashed lines:
the initial ionic charges are set at z=1.

general, these simulated charge distributions com-
pare well with those calculated using the FLYCHK
code [40] for the same plasma conditions.

Our aim in developing the BinGo-TCP code was
to avoid excess of complexity of models in order to
preserve a straightforward interpretation of physics
from simulation results. One gains the ability to
describe the ion-electron coupling accounting for
mixtures of ions undergoing changes of their charge
states. Note that, the coupling of electrons with
radiation is ignored, the notion of discrete energy
for the ionic excited states is here replaced by its
continuous equivalent and that, the lowest energy
of an electron depends on all the charges including
the closest ion.

3. Example of applications

3.1. One component Yukawa systems

3.1.1. Effects of particle correlations on spectral
line shapes.

The intrinsic spectral profile of a given line in
a plasma is determined predominantly by spon-
taneous emission rates, electron collisional rates,
Stark broadening and Doppler broadening [41] with
possible complications due to ion turbulence [42]
and additional ion-ion interactions [42, 43]. In
medium with gain, the observed profile is modified
by radiative transport effects in being narrowed ap-
proximatively as the square root of the gain-length
product in the small signal regime [44]. As the laser
saturates, if the intrinsic profile is dominated by in-
homogeneous rather than homogeneous broadening

mechanisms, the line can be re-broaden to its intrin-
sic width. This points out clearly the importance
to have a good representation of the intrinsic profile
together with a good understanding of the different
mechanisms responsible for broadening.
It is usual to consider that the inhomogeneous
broadening mechanisms are caused by the local
inhomogeneities of the medium such as Doppler
shifts, quasi-static electric micro fields or tur-
bulence and that homogeneous broadenings are
mainly due to electronic collision and/or sponta-
neous emission. Nevertheless, in the same manner
as the quasi-static electric field approximation can
be inappropriate in the Stark broadening theory
due to ion dynamics [45], the collision-free formal-
ism involved in the standard Doppler effect calcu-
lation could fail if velocities change over time scales
of the same order or shorter than the effective ra-
diative lifetime of the oscillator (i.e. the inverse of
homogeneous spectral linewidth). In other words, if
the velocities change before the light emission hap-
pens, it is no longer possible to consider ions on
straight trajectories and a calculation, taking into
account collisions, has to be done. In some circum-
stances, the breakdown of the collision-free approxi-
mation can result in the effective ”homogenization”
of the ordinarily inhomogeneous Doppler profile by
collisional redistribution when the mean velocity-
changing collision interval tc is less than the effec-
tive radiative lifetime or in the collisional narrowing
of the Doppler profile when tc is shorter than the
effective Doppler correlation time (Dicke narrowing
[46]).
A detailed analysis of the different broadening
mechanisms of the spectral profiles of the 4d − 4p
(J = 0 − 1) lasing line in Ni-like Ag (λ = 13.9
nm) has been performed by using the PPP line
shape code [47] and the BinGo code in its Yukawa
OCP version. The plasma temperatures and den-
sities that are consistent with the ones required
for collisional excitation pumping of Ni-like Ag in
laser-produced plasmas, give rise to strong coupling
plasma regime where correlations between particles
could no longer be ignored in the case of transient
XUV lasers. The electron temperature can vary be-
tween 200 and 700 eV depending on the parameters
of the pulse of the laser used to create the plasma
and the ionic temperature is in between 20 and 50
eV for transient XUV laser and of order of 200 eV
for QSS XUV lasers.

A study of the accuracy of the free-particle
Doppler approximation, versus densities and tem-
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peratures has been done by using CMD simula-
tions, for the Ni-like Ag laser line and for conditions
relevant to transient and quasi-steady-state (QSS)
XUV lasers. Significant differences in the behav-
ior of intrinsic line profiles between these two laser
regimes have been demonstrated [3].

If one accounts for the emitter motion, the gen-
eral expression of the line profile reads [45]:

I(ω) = <e 1

π

∫ ∞
0

dteiωt×

< ei(
−→
k ·−→r (t)−

−→
k ·−→r (0))−→d (t) ·

−→
d (0) >

(7)

where <> denotes an ensemble average over the

emitter plus plasma system,
−→
d is the radiator

dipole operator and k = 2π/λ with λ the wave-

length of the considered line. The factors e±i
−→
k ·−→r

account for the radiator’s center-of-mass motion.
Broadenings due to the interaction of the emitting
ion with surrounding particles and to emitter mo-
tion are statistically dependent in the general case.
Broadening due to interactions results from a modi-
fication of the internal state of the atomic oscillator.
Both this internal state and the velocity of transla-
tional motion of the emitter can be altered in the
same collision.

In this study, interactions with the electronic
component of the plasma dominate, giving rise to
a phase shift of the atomic oscillator. This is due
to electronic collisions which change substantially
the phase without altering the velocity of the emit-
ter owing to the great difference of masses. So, it
is quite accurate to ignore correlations between the

ion translation −→r (t) and the dipole moment
−→
d (t):

I(ω) = <e 1

π

∫ ∞
0

dteiωt×

< ei(
−→
k ·−→r (t)−

−→
k ·−→r (0)) ><

−→
d (t) ·

−→
d (0) > .

(8)

The line shape appears as the Fourier-transformed
of a product of two correlation functions, the radia-
tor dipole operator correlation function, C(t) =<
−→
d (t) ·

−→
d (0) >, and the self-structure factor,

Ss(k, t) =< ei(
−→
k ·−→r (t)−

−→
k ·−→r (0)) > which can be cal-

culated independently. The line shape is then the
convolution of the profile due to emitter interac-
tions with the plasma, Iint(ω) and the profile due
to emitter motion, ID(ω).
In [3], the PPP line shape code, a multi-electron
radiator line broadening code developed to calcu-

late theoretical spectral line profiles for a general
emitter in a plasma, is used to calculate Iint(ω).

The self-structure factor, Ss(k, t) is well known in
the free-particle limit resulting from the hypothesis
that each radiating ion moves at constant velocity
−→r (t) = −→v t with a Maxwellian distribution of ve-
locities, and is given by:

Ss(k, t) = e−k
2t2/2βm, (9)

with β = 1/kBT and m the ion mass. A straight-
forward way to take into account interactions be-
tween ions in the calculation of the line shape, is
to use a classical molecular dynamics simulation
techniques (MD) to compute Ss(k, t). The plasma
model consists of classical point ions interacting
together through a coulombic potential screened
by electrons and localized in a cubic box of side
L with periodic boundary conditions. Newton’s
equations of particle motion are integrated by us-
ing a velocity-Verlet algorithm using a time-step
consistent with energy conservation. Due to pe-
riodic boundary conditions, k = 2π/λ must satisfy
kx,y,z = nx,y,z2π/L, nx,y,z being an integer number.
The number of particules, N (thus L), is chosen to
find k as close as possible to that of the considered
laser line.
Integrating the Newton’s equation gives access to
the positions and velocities of the ions as a func-
tion of time and thus to the associated static and
dynamic statistical properties such as structure fac-
tors, velocity correlation functions, diffusion coeffi-
cients, ion-ion collision rates etc.

Calculations of spectral 4d−4p line Doppler pro-
files accounting for ion correlations for different
electronic densities, in cases of transient and QSS
XUV lasers with (Ti = 20eV, Te = 200eV ) and
(Ti = Te = 200eV ), respectively, have been per-
formed.

In the cases of transient XUV lasers, where the
ionic temperature is relatively low and the elec-
tronic densities are in between Ne = 5 × 1019 and
Ne = 7 × 1020 cm−3, the plasma coupling param-
eter Γ = Z2e2/(r0kTi), r0 being the ion sphere ra-
dius, r0 = (3/(4πNi))

1/3, takes values from ∼ 6 to
∼ 14. The corresponding plasmas are strongly cou-
pled making the concept of binary collision between
ions compromised because the ions are always in
interaction. Collective effects (multiple collisions)
are expected on the profiles. When accounting for
ionic correlations, the line profiles are not only nar-
rowed but a structure appears in the wings more or
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less far from the center depending on the density.
The profile is described in [43, 46, 48] as a narrow
Lorentzian central peak superimposed on a broader
Gaussian plateau. We will see in the following that
it is not so simple. The frequencies, ∆ωosc, delim-
iting the two behaviors correspond to the frequen-
cies of oscillations of the velocity autocorrelation
functions, Cv(t) =< −→v (t).−→v (0) > obtained by MD
simulations.

The spectral line shapes carry the mark of the
plasma oscillations together with the multiple col-
lisions which change velocities. To some extend, it
is possible to say that for frequencies greater than
∆ωosc (for times shorter than the time necessary for
the velocity to change sign), the velocity is constant
and the profile is given by the Doppler free particle
limit while for frequencies smaller than ∆ωosc, the
time of interest is large enough for having a notice-
able changing in the velocity direction resulting in
a strong narrowing of the profile. The description
of the narrow central peak is rather complicated in
the cases of interest here because the concept of col-
lision fails in those strongly coupled plasmas. It has
been shown that even though the two limits, free-
particle and diffusion limit, seem to be applicable
for low and high densities respectively, the profiles
are never completely Gaussian nor Lorentzian and
can be well fitted by a Voigt profile.

In the case of QSS XUV laser study, the plasma
coupling parameter falls in between 0.7 and 1.4
due to a higher ionic temperature. One can ex-
pect that the notion of collision is meaningful and
that collisional models are an alternative to simu-
lation. A first noticeable difference comes from the
Cv(t) function which, in all the cases here, does not
oscillate and can be described by an exponential
decay function. The effects of narrowing are less
important than for the transient laser nevertheless
the shape of the line profiles is modified. Due to the
fact that Doppler effect leads to much more broader
lines, the plasma frequency ωpi, which is a marker
of collective effects is always inferior to the Doppler
width (∆ωD ∼ 9.37 × 10−3), so no structure ap-
pears on the line profile, but here again the central
part of the profile is neither lorentzian nor gaussian.

Supposing that the concept of collisions makes
sense here, we have deduced from the diffusion con-
stant obtained by MD simulations through the rela-
tion D = 1

3

∫∞
0
Cv(t)dt, an effective mean free path,

l = 3Γ1/2D∗r0 with D∗ = D/ωpir
2
0. This permits

to define a collision frequency with 1/τcoll = v/l
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Figure 2: Comparisons of the 4d − 4p laser line profiles ob-
tained by MD simulation (red circles) and the strong collision
model (blue line), for Ne = 7×1020cm−3 and Ti = Te = 200
eV. The black dash line represents the free particle limit.

where v =
√

2kTi/m. These rates have been used
in a strong collision model according to [43]. In this
model, it is assumed that the modifications of the
profiles are due to collisions such as the velocity v of
a particle after collision is independent of its veloc-
ity v′ before collision. According to this, the effect
of velocity changing collisions is modeled by a sta-
tionary Markov process giving rise to the following
expression for the line profile:

I(ω) =
1

π
<e

∫ W (v)dv

νcoll+i(ω−
−→
k ·−→v )

1− νcoll
∫ W (v)dv

νcoll+i(ω−
−→
k ·−→v )

, (10)

with W (v) the Maxwellian distribution function of
velocities and νcoll the velocity changing rate. Note
that the profile is just a function of the profile given
by the Doppler free-particle limit and a unique col-
lision rate. Figure 2 is the comparison of the profile
obtained by MD simulation with the result of eq.10
for Ne = 7× 1020cm−3 and Ti = Te = 200 eV.

The same excellent agreement have been ob-
tained for all the considered densities.

3.2. Electron and ion plasmas

3.2.1. Microfield statistical properties.

In plasmas, the Stark broadening of spectral lines
results from the interaction of the emitter’s inter-
nal degrees of freedom with the ionic and elec-
tronic micro-fields created by the plasma. Model-
ing this broadening is a complex problem involving
a complex combination of atomic physics, statisti-
cal physics and plasma physics, the most difficult
problem being to identify the emitter environment
completely and correctly. In particular, taking into
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account fluctuations in the electric fields produced
on the emitter by moving ions and electrons has
been the subject of constant interest since the 1960s
[45]. With the exception of a few well-known cases,
the calculation of line profiles in plasmas requires
the use of numerical codes. There are several codes
of this type, of varying degrees of complexity, which
necessarily differ in terms of scope and accuracy
[49]. Among these codes, numerical simulation is
playing an increasingly important and unique role.
In numerical simulations, the Schrödinger equation
describing the time evolution of the emitter wave
functions in the presence of a time-dependent elec-
tric field is solved and then averaged over a statis-
tically representative set of electric fields to obtain
the line profile.

Today, thanks to advances in computer technol-
ogy, the electrical microfields derived from force cal-
culations on individual charges can be simulated us-
ing classical molecular dynamics (CMD) techniques
applied to plasmas with two components, ions and
electrons, where all the interactions between the
charges are taken into account in the motion of the
particles [7, 50–53].

CMD provides the stochastic functions of the mi-
crofields needed to solve the emitter evolution equa-
tion. As an example, Figure 3 shows the electric
micro field components, Ex,y,z(t) measured at a
neutral Hydrogen in a electron-proton plasma at
ne = 1018 cm−3 and Te = Ti = 1 eV, simulated by
TCP CMD. The time history in second of the three

components of the total field,
−→
E (t) =

−→
E i(t)+

−→
E e(t)

have been plotted together with the components of

the ionic,
−→
E i(t), and the electronic,

−→
E e(t), fields.

The differences in the dynamics of ions and elec-
trons due to their mass differences, are clearly seen.

The spectral line shapes obtained by using sim-
ulated electric fields to solve the emitter evolution
equation are used as ideal experimental data. Un-
fortunately, this technique is very time-consuming
and is therefore limited to simple atomic systems.
To overcome this problem, approximate models
have been developed that can reproduce the simu-
lated profiles, taking into account correlations and
charge movements, and that can also be used to
study complex emitters.

In line-shape models, the plasma environment of
an emitter is taken into account by means of certain
statistical properties such as the distribution or cor-
relation functions of electric micro fields, positions,
velocities, and so on.

-100

100
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-50

50

Electronic field
             Ionic field
             Total field

36.00 37.0036.20 36.40 36.60 36.80
x10-12

Figure 3: Time history (in second) of micro field components
in a Hydrogen plasma at ne = 1018 cm−3 and Te = Ti = 1
eV. Ex: full; Ey : dot; Ez : dash.

With TCP simulations involving ions and elec-
trons one get static field distributions of the total
field at ionic emitters, i.e., the electron field plus the
ion field. Studies of the total field distribution func-
tions have been carried out using HNC and APEX
techniques [51]. However, these functions have no
practical interest for line shape modeling as in the
quasi-static approximation, only the slow varying
component of the electric field contributes to the
quasi-static Stark splitting of atomic states. The
study of the electron dynamics shows that the low
frequency does not only concern the ions but also
a set of electrons which follow the movement of the
ions. This is illustrated in Figure 4, which shows
the correlations between directionalities of micro-
field components,

Ca,b(τ) =

∫
dt
−→
Φ a(t) ·

−→
Φ b(t+ τ), (11)

where,

−→
Φ a(t) =

−→
E a(t)

Ea(t)
, (12)

and the indices a and b represent either electrons e
or ions i.

It can be seen that the correlation function of the
electron electric field has two characteristic times,
one very short and the other longer, of the same
order as the correlation time of the ion electric
field. Comparisons between correlation functions
obtained accounting for all the interactions be-
tween charges, accounting for interactions between
charges of same sign only and without interactions
(ideal case) show that the low-frequency plateau in
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Figure 4: Correlation functions of the micro field direction-
alities in the same conditions as Figure 3. Full line: All in-
teractions between charges; Dash line: Interactions between
charges of same sign only; Dot line: Ideal case.

the electron field is due to interactions between ions
and electrons (see Figure 4).

To extract its low-frequency component from the
total electric field, in ref. [7], the following defini-
tion has been proposed:

−→
E (t) =

−→
E i(t) +

−→
E e(t)

=
−→
E Slow(∆t; t) +

−→
E Fast(∆t; t),

(13)

with

−→
E Slow(∆t; t) =

1

∆t

∫ ∆t
2

−∆t
2

−→
E (t− t′)dt′. (14)

The choice of ∆t must be a compromise between
the plasma and atomic time scale constraints. In
the case of an Hydrogen plasma, in [7], it has been
shown that the choice of ∆t lower than the time cor-
responding to the end of the temporal plateau of the
field correlation function did not make it possible
to recover the well-known low-frequency distribu-
tion [54], in which it is assumed that ions inter-
act with each other through an effective potential
which includes electron-ion shielding. An increase
in ∆t beyond this time led to an average of the
low-frequency field component and this, due to the
ion (proton) dynamics. The same simulations have
then been performed with frozen ions for removing
ion dynamics and as it is shown in Figure 5, an
increase of ∆t leads correctly to the Hooper’s low
frequency distribution.

In [52], the question of how best to extract the
quasistatic (low-frequency) microfield from a clas-
sical molecular dynamics simulation is explored in

Figure 5: Slow field distribution components at neutrals.

some detail, in the case of a dense carbon plasma. It
was shown in this article that, for a given time inter-
val, the time-averaged microfield does not change
significantly, suggesting that the separation of the
slow and fast components of the microfield has been
completed. After defining a ”slow gradient of the
distribution” to measure changes in the distribu-
tions as a function of ∆t, it appears that the mini-
mum gradient is obtained for a ∆t that corresponds
to the end of the temporal plateau of the field corre-
lation function. According to the fact that atomic
processes in plasmas depend on the time average
of the microfields, atomic time scale characteristics
have to be taken into account too.

3.2.2. Ionization potential depression.

The radiative properties of an atom or an ion sur-
rounded by a plasma are modified through various
mechanisms. Depending on plasma conditions, the
electrons supposedly occupying the upper quantum
levels of radiators no longer exist. All the charges of
the plasma contribute to the lowering of the energy
required to free a bound electron. This mechanism
is known as ionization potential depression (IPD).
The evaluation of the IPD has important implica-
tions for dense plasma physics and in particular for
the detailed prediction of the dense plasma equation
of state and radiative opacity in stellar interiors,
inertial confinement fusion research, or planetary
interiors.

This evaluation deals with highly complex N-
body coupled systems, involving particles with dif-
ferent dynamics and attractive ion-electron forces.
There are several theoretical IPD models that apply
to various conditions. Two of them, the Stewart-
Pyatt (SP) [55] and the Ecker-Kröll (EK) [56] mod-
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els which apply across a wide range of densities,
allow a general discussion of experiments.

In experiments performed at LCLS (Stanford) on
Aluminum [57] the observation of the K-α fluores-
cence and the measurement of the position of the
K-edge of ions show that the formula of Ecker and
Kröll is more adequate than the formula of Stewart
and Pyatt. Nevertheless, the agreement is not sat-
isfactory for the highest ion charges. On the other
hand, in an experiment performed at the Orion
laser facility (UK) [58], with a plasma at higher
temperatures, [500-700] eV, and densities in the
range [1-10] g.cm−3, the Aluminum K-shell spec-
trum shows a better agreement with calculations
performed with the Stewart–Pyatt IPD rather than
the Ecker–Kröll one. These two main experiments
have renewed interest for this issue and have stimu-
lated many theoretical investigations of IPD (see for
instance references [59–62] and references therein).

Here, the study of IPD is illustrated and dis-
cussed for aluminum and magnesium plasmas in the
conditions of both Ciricosta’s and Hoarty’s experi-
ments.

To get closer of the conditions of Ciricosta’s ex-
periments, one can use CMD to simulate a two com-
ponent plasma of ions at room temperature and
solid density, and electrons in pseudo equilibrium
with the cold ion population. The argument here is
that the electron adjustment to the ions can occur
in a time that does not allow the ion population to
be heated by the electrons.
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Aluminum plasma at 2.7 g/cm3
 and Te=50eV, Ti=300K

Figure 6: Ionization energy probability density function for
various ion charges in an Aluminum plasma in the Ciricosta’s
experiment conditions.

The BinGo-TCP code has then been used to sim-
ulate an Aluminum plasma with typically the ion

temperature, Ti = 300 K, the electron temperature,
Te = 50 eV and a ionic density ρ = 2.7 g.cm−3.

By taking advantage of the characteristics of the
ionization protocol, it is possible, when the ion is
in a pre-ionization state, to measure the energy re-
quired to ionize an electron from the ground state of
an ion, accounting for all interactions with the sur-
rounding charges. Due to the fluctuating local en-
vironment of the ions, this ionization energy is rep-
resented by a probability density function (PDF).
Figure 6 shows these PDFs for the various ion
charges present in the plasma.

By defining the ionisation potential depression
as the difference between the ionisation energy of
the isolated ion (see [63], for example) and the ion-
isation energy obtained by simulation, we obtain
an IPD distribution function that can be approxi-
mated by a Gaussian. In Figure 7, we have plot-
ted the average values calculated over the simulated
IPD distributions (red stars) and compared them
with the SP and EK models (dash-dotted and full
lines, respectively) and experimental values (blue
stars). The pink shaded area shows the dispersion
of the IPD values linked to the widths of the distri-
butions.
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Figure 7: Ionization potential depression for an Aluminum
plasma at solid density and Ti = 300 K and Te = 50 eV.
Comparisons of simulation results - red stars -, models - SP
dash-dotted line, EK full line - and experimental data - blue
stars -. The pink shaded region represents the dispersion due
to the PDF.

The simulation results fall in between the two
models and are in qualitative agreement with the
experimental data.

Still using the experiments of Ciricosta and col-
leagues as support, we have simulated a Magnesium
plasma at solid density (ρ = 1.74 g.cm−3). The re-
sults are shown in Figure 8.
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Figure 8: Same as Figure 7, for a Magnesium plasma at solid
density and Ti = 300 K and Te = 50 eV.

In Figure 9 (a) and (b), the Magnesium results
are shown with those for Aluminium to highlight
the effects of density. As expected, the decrease in
density leads to a decrease in IPD. Here again, the
simulation results are in good qualitative agreement
with the experiments, although the density effects
appear to be greater in the simulations than in the
experiments. It should be noted that radiation is
not taken into account in our simulations, and al-
though the conditions chosen are close to those used
in experiments, we are not trying to reproduce the
experimental results exactly.
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Figure 9: Ionization potential depression for Magnesium and
Aluminum plasmas at solid density. Density effects (a)- Ciri-
costa’s experimental data, (b)- simulation results.

The results of simulations carried out under con-
ditions close to those of Hoarty’s experiment are
shown in Figure 10. Here ionic and electronic tem-
peratures are equal. Aluminum Plasmas such that
ρ = 6 g.cm−3 have been simulated for two temper-
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Figure 10: Ionization potential depression in an Aluminum
plasmas at ρ = 6 g.cm−3 and Ti = Te = 550 eV (dark blue)
and Ti = Te = 200 eV (light blue). In red are plotted the
ionization energies for isolated ions (stars) and surrounded
ions (points).

atures, Ti = Te = 550 eV and Ti = Te = 200 eV.
Figure 10 shows the simulation results compared to
SP and EK models. The IPD are plotted in blue
whereas, in red, the ionisation energies for isolated
Aluminum ions and for Aluminum ions immersed
in a plasma at 550 eV are compared, in order to vi-
sualise the effects of local fluctuations with as little
confusion as possible in the graph.

According to the simulations, a decrease in tem-
perature leads to an increase in the IPD. In our
model, changes in temperature lead to a change in
the average ionic charge and therefore a change in
the electron density. Here, we have measured, Z =
10.82 and Z2 = 117.4 for the case Ti = Te = 550
eV and Z = 10.2 and Z2 = 104.18 for the case
Ti = Te = 200 eV, giving ne = 1.45 × 1024 cm−3

and ne = 1.37× 1024 cm−3 and Γ ' 5.3 and Γ ' 6,
respectively (Γ being the plasma coupling parame-
ters). The correlation effects between particles are
therefore stronger when the temperature is lower,
which may partly explain the trend observed in the
simulated results. The calculations performed with
the EK and SP models do not show the same trend.
The results obtained with the SP model show no
significant difference with the change in tempera-
ture. Only the results at Ti = Te = 550 eV are
shown so as not to overload the graph. The EK
model shows a slight increase in the IPD with tem-
perature.

The strength of our simulations lies in their abil-
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ity to take into account all the interactions between
particles as well as the dynamics of charged parti-
cles, ions and electrons. These effects are neglected
in most models in the literature. The role and im-
portance of charge fluctuations in IPD have already
been the subject of research. In [64], it is suggested
that fluctuations, which are neglected in models but
are essential to describe the absorption of energy by
a system, are important enough to have an impact
on the interpretation of experimental results. More
recently, the effects of ionisation potential depres-
sion and fluctuations on electron impact ionisation
have been studied [65].

These investigations will be continued in order to
gain a better understanding of the influence of par-
ticle correlation and fluctuation effects on atomic
properties in plasmas.

4. Conclusion

We have presented the BinGo series of codes
based on classical molecular dynamics techniques
and designed primarily for the study of dense plas-
mas. CMD simulations appear to be a very versa-
tile and powerful tool for studying these plasmas. A
few years ago we developed the BinGo-TCP code,
which has the ability to simulate neutral plasmas
containing electrons and ions of different charges
that interact with each other. Our aim in devel-
oping the BinGo-TCP code was to avoid excess of
complexity of models in order to preserve a straight-
forward interpretation of physics from simulation
results. The results obtained with our TCP-MD
simulation code are very encouraging. They com-
pare well with results obtained by other models or
simulations and experimental results when they ex-
ist. Our simulations provide data for further dis-
cussion on IPD models and more generally on the
charge correlation effects on the plasma properties.
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M. A. González, High Energy Density Physics 7 (2011)
197-202.

[8] A. Calisti, S. Ferri, M. Marciante, B. Talin, High Energy
Density Physics 13 (2014) 1-8.

[9] A. Calisti, S. Ferri and B. Talin, Contrib. Plasma Phys.
55, Issue 5 (2015) 360-365.

[10] D. C. Rapaport, The Art of Molecular Dynamics Sim-
ulation, Cambridge University Press, 2004.

[11] N. Metropolis et al., J. Chem. Phys. 21 (1953) 1087.
[12] L. Verlet, Phys. Rev. 159 (1967) 98-103.
[13] D. V. Fisher and Y. Maron, Eur. Phys. J. D 14 (2001)

349-359.
[14] M. Marciante, C. Champenois, A. Calisti, M. Knoop,

Appl. Phys. B 107 (2012) 1117-1123.
[15] T. Raitza, H. Reinholz, G. Röpke and I. Morozov, J.
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