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The Riemann zeta function ζ(s) := ∞ n=1 1/n s can be interpreted as the energy per point of the lattice Z, interacting pairwisely via the Riesz potential 1/r s . Given a parameter ∆ ∈ (0, 1], this physical model is generalized by considering the energy per point E(s, ∆) of a periodic one-dimensional lattice alternating the distances between the nearest-neighbour particles as 2/(1 + ∆) and 2∆/(1 + ∆), keeping the lattice density equal to one independently of ∆. This energy trivially satisfies E(s, 1) = ζ(s) at ∆ = 1, it can be easily expressed as a combination of the Riemann and Hurwitz zeta functions, and extended analytically to the punctured s-plane C \ {1}. In this paper, we perform numerical investigations of the zeros of the energy {ρ = ρ x + iρ y }, which are defined by E(ρ, ∆) = 0. The numerical results reveal that in the Riemann limit ∆ → 1 -theses zeros include the anticipated critical zeros of the Riemann zeta function with ℜ(ρ x ) = 1 2 as well as an unexpected -comparing to the Riemann Hypothesis -infinite series of off-critical zeros. The analytic treatment of these off-critical zeros shows that their imaginary components are equidistant and their real components diverge logarithmically to -∞ as ∆ → 1 -, i.e., they become invisible at the Riemann's ∆ = 1.

Introduction and main results

Let two points at distance r interact via the Riesz potential 1/r s with real s [START_REF] Brauchart | Optimal discrete Riesz energy and discrepancy[END_REF]. If the points are located on the lattice Z and interact pairwisely by the Riesz potential where s > 1, the energy per point is given by the Riemann zeta function [START_REF] Riemann | Über die Anzahl der Primzahlen unter einer gegebenen Grösse[END_REF] ζ(s

) := 1 2 n∈Z * 1 |n| s = ∞ n=1 1 n s s > 1, (1) 
where the prefactor 1 2 is due to the fact that each interaction energy is shared by a pair of points. The function ζ can be analytically continued to the whole complex s-plane, with a simple pole at s = 1. The Riemann zeta function plays a fundamental role in the algebraic and analytic number theories [START_REF] Hadamard | Étude sur les propriétés des fonction entières et un particulier d'une fonction considéré par Riemann[END_REF][START_REF] Hardy | Sur les zeros de la fonction ζ(s)[END_REF][START_REF] Riesz | Sur l'hypothèse de Riemann[END_REF][START_REF] Hardy | The zeros of Riemann's zeta-function on the critical line[END_REF][START_REF] Hutchinson | On the Roots of the Riemann Zeta-Function[END_REF][START_REF] Titchmarsh | The Zeros of the Riemann Zeta-Function[END_REF][START_REF] Selberg | Contributions to the theory of the Riemann zeta-function[END_REF], see monographs [START_REF] Edwards | Riemann's Zeta function[END_REF][START_REF] Ivić | The Riemann Zeta Function[END_REF][START_REF] Titchmarsh | The Theory of The Riemann Zeta-function[END_REF]. The so-called Riemann Hypothesis about the location of its nontrivial zeros exclusively on the critical line ℜ(s) = 1 2 (the symbol ℜ means the real part) is one of the Hilbert and Clay Millennium Prize problems [START_REF] Jaffe | The Millenium Grand Challenge in Mathematics[END_REF]. Throughout the present paper we assume that the Riemann Hypothesis holds. The Riemann zeta function and its Epstein's [START_REF] Epstein | Zur Theorie allgemeiner Zetafunctionen[END_REF][START_REF] Epstein | Zur Theorie allgemeiner Zetafunctionen II[END_REF][START_REF] Chowla | On Epstein's zeta function[END_REF][START_REF] Travěnec | Generation of off-critical zeros hypercubic Epstein zeta functions[END_REF]], Hurwitz's [START_REF] Hurwitz | Einige Eigenschaften der Dirichletschen Fuctionen F (s) = D n • 1 n s die bei der Bestimmung der Klassenzahlen binärer quadratischer Formen auftreten[END_REF][START_REF] Spira | Zeros of Hurwitz zeta functions[END_REF][START_REF] Nakamura | Real zeros of Hurwitz-Lerch zeta and Hurwitz-Lerch type of Euler-Zagierdouble zeta functions[END_REF]], Barnes's [START_REF] Barnes | On the theory of the multiple gamma function[END_REF], etc. generalisations have numerous applications both in mathematics (prime numbers, applied statistics [START_REF] Borwein | Lattice sums then and now[END_REF]) and in physics [START_REF] Elizalde | Ten Physical Applications of Spectral Zeta Functions[END_REF].

Let the Riemann zeta function be a member of a family of functions which exhibit nontrivial zeros off the critical line. Possible mechanisms of the disappearance of these off-critical zeros at the Riemann's point might of general interest. In this paper, we propose a natural extension of the Riemann zeta function as the energy of a unit density lattice L ∆ with alternating distances between the nearest neighbours, say 2/(1 + ∆) and 2∆/(1 + ∆); due to the ∆ → 1/∆ symmetry of the problem, it is sufficient to restrict oneself to ∆ from the interval (0, 1].

In analogy with the original model with constant unit spacing, each point interacts pairwisely with the other points via the Riesz interaction 1/r s , s > 1 and the lattice energy per point is therefore given (see Proposition 2.1) by

E(s, ∆) = 1 2 s ζ(s) + 1 2 s+1 ζ s, 1 1 + ∆ + ζ s, ∆ 1 + ∆ , s > 1, ∆ ∈ (0, 1],
where

ζ(s, a) = ∞ n=0 1 (n + a) s , s > 1, (2) 
is the Hurwitz zeta function with the real (positive) parameter a. Remark that this lattice energy, as a combination of Riemann and Hurwitz zeta functions, has an analytic continuation on C\{1} (see Proposition 2.3).

For given ∆ ∈ (0, 1], the set of zeros of the lattice energy is defined as

Z ∆ := {ρ = ρ x + iρ y ∈ C, (ρ x , ρ y ) ∈ R 2 : E(ρ, ∆) = 0}, noticing that Z 1
is the set of zeros of the Riemann zeta function composed by trivial zeros (i.e., ρ ∈ -2N) and critical zeros (i.e., ℜ(ρ) = 1 2 ) assuming that Riemann Hypothesis holds. Furthermore, for specific values of the parameter ∆ ∈ {1/5, 1/3, 1/2}, the energy can be factorized as

E(s, ∆) = f ∆ (s)ζ(s)
where f ∆ is a sum of p s with integers p. This automatically gives us critical zeros (i.e. solutions of ζ(ρ) = 0 assuming the Riemann Hypothesis) and possible off-critical zeros (i.e. solutions of f ∆ (ρ) = 0), as shown in Proposition 2.4.

The goal of this paper is to study, both numerically and analytically, the set of zeros Z ∆ when ∆ is in a neighborhood of 1, i.e. when E(•, ∆) is in the neighborhood of the Riemann zeta function. Numerical and analytic analysis shows that approaching ∆ → 1 -the zeros of E(ρ, ∆) involve the anticipated critical zeros of the Riemann zeta function with ℜ(ρ x ) = 1 2 as well as an infinite series of unexpected off-critical zeros with the following asymptotics for their components, as ∆ → 1 -(see Theorem 4.2):

ρ x (∆) = 2 ln 2 ln(1 -∆) + O(1 -∆) → -∞, ρ y (∆) = (2k + 1)π ln 2 + O (1 -∆) 2 ln 3 ln 2 , k ∈ Z.
This means that, asymptotically, there is a infinite sequence of equidistant zero components along the ρ y axis. Furthermore, the divergence of ρ x to -∞ as ∆ → 1 -is an example of the disappearance of off-critical zeros when approaching the Riemann's point. Moreover, the behavior of these zero components with respect to ∆ ∈ (0, 1] is numerically studied (see Figures 1 and2).

Plan of the paper. The generalized 1D model for Riesz points with alternating lattice spacings is presented in section 2. The energy per particle E(s, ∆) is expressed as a combination of Hurwitz zeta functions in section 2.1. The properties of the Hurwitz zeta function are discussed in section 2.2. Special values of the parameters ∆ when the energy E(s, ∆) factorizes itself onto the product of the Riemann zeta function and some simple function are given in section 2.3. Numerical results for zeros at any 0 < ∆ < 1, together with tests at the special values of ∆ = 1/5, 1/3, 1/2 are presented in section 3. The spectrum of critical and off-critical zeros in the Riemann's limit ∆ → 1 -is discussed in section 4.

The generalized one-dimensional model

Definition of the model

Given ∆ ∈ (0, 1], we consider the infinite set of points L ∆ ⊂ R given by

L ∆ := 2Z ∪ 2Z + 2∆ 1 + ∆ ,
which is the unit density periodic configuration with alternating distances 2/(1 + ∆) and 2∆/(1 + ∆), since 2 -2/(1 + ∆) = 2∆/(1 + ∆). Assuming that each pair of points in L ∆ interacts via the Riesz potential 1/r s , s > 1, the total energy per point of this system is therefore

E(s, ∆) := 1 4 k∈{0, 2∆ 1+∆ } p∈L ∆ p =k 1 |p -k| s .
The following proposition shows how to write this energy in terms of Riemann and Hurwitz zeta functions.

Proposition 2.1. For any s > 1 and any ∆ ∈ (0, 1], we have

E(s, ∆) = 1 2 s ζ(s) + 1 2 s+1 ζ s, 1 1 + ∆ + ζ s, ∆ 1 + ∆ . (3) 
Proof. We simply compute the above double sum as follows:

E(s, ∆) : = 1 4 k∈{0, 2∆ 1+∆ } p∈L ∆ p =k 1 |p -k| s = 1 4 k∈{0, 2∆ 1+∆ }     p∈2Z p =k 1 |p -k| s + p∈2Z+ 2∆ 1+∆ p =k 1 |p -k| s     = 1 4 n∈Z n =0 1 |2n| s + 1 4 n∈Z 2n = 2∆ 1+∆ 1 2n -2∆ 1+∆ s + 1 4 n∈Z 2n =-2∆ 1+∆ 1 2n + 2∆ 1+∆ s + 1 4 n∈Z n =0 1 |2n| s = 1 2 s+1 n∈Z * 1 |n| s + 1 2 s+2 n∈Z 1 n + ∆ 1+∆ s + 1 2 s+2 n∈Z 1 n -∆ 1+∆ s .
We now split the two last sums in order to get two Hurwitz zeta functions and two rests that we write again in terms of the same Hurwitz zeta functions:

E(s, ∆) : = 1 2 s ζ(s) + 1 2 s+2 ζ s, 1 1 + ∆ + ζ s, ∆ 1 + ∆ + 1 2 s+2 +∞ n=1 1 -n + ∆ 1+∆ s + +∞ n=1 1 -n + 1 1+∆ s = 1 2 s ζ(s) + 1 2 s+2 ζ s, 1 1 + ∆ + ζ s, ∆ 1 + ∆ + 1 2 s+2 +∞ n=1 1 n -∆ 1+∆ s + +∞ n=1 1 n -1 1+∆ s .

Since we have, by the change of variables

n = k + 1, +∞ n=1 1 n -∆ 1+∆ s = +∞ k=0 1 k + 1 1+∆ s and +∞ n=1 1 n -1 1+∆ s = +∞ k=0 1 k + ∆ 1+∆ s ,
we obtain

E(s, ∆) = 1 2 s ζ(s) + 2 2 s+2 ζ s, 1 1 + ∆ + ζ s, ∆ 1 + ∆ = 1 2 s ζ(s) + 1 2 s+1 ζ s, 1 1 + ∆ + ζ s, ∆ 1 + ∆
and the proof is complete.

Notice that the energy satisfies the required symmetry relation

E(s, ∆) = E(s, 1/∆).
Remark 2.2 (Crystallization result). It is known (see e.g. [START_REF] Ventevogel | On the configuration of systems of interacting particles with minimum potential energy per particle[END_REF]), by a convexity argument (or by the so-called one-dimensional "Universal Optimality" of Z, see [START_REF] Cohn | Universally optimal distribution of points on spheres[END_REF]) that, for all s > 0, min

∆∈(0,1] E(s, ∆) = E(s, 1) = ζ(s),
with equality if and only if ∆ = 1. From our results (see Theorem 4.2), the Riemann zeta function is therefore at the same time the minimal value of our energy and the only one in its ∆-neighborhood for which the nontrivial zeros are strictly located on the critical line ℜ(s) = 1 2 . It might be interesting to investigate other lattice energies to understand how universal this phenomenon is.

The Hurwitz zeta function and the analytic continuation of E(•, ∆)

The Hurwitz zeta function ( 2) is a generalization of the Riemann zetafunction (1) via a shift a > 0. In particular,

ζ(s, 1) = ζ(s). (4) 
In the symbolic computer language Mathematica, the Riemann and Hurwitz zeta functions are tabulated under the symbols Zeta[s] and Zeta[s, a], respectively. The Hurwitz zeta function satisfies two easily verifiable important equalities,

∀x ∈ 0, 1 2 , ∀s > 1, ζ(s, x) + ζ(s, 1/2 + x) = 2 s ζ(s, 2x), (5) 
and the multiplication theorem

k ∈ N, ∀s > 1, k s ζ(s) = k n=1 ζ s, n k . (6) 
The second relation easily implies that

ζ(s, 1/3) + ζ(s, 2/3) = (3 s -1)ζ(s) (7) 
as well as

ζ(s, 1/2) = (2 s -1)ζ(s). (8) 
From ( 5) with x = 1/4 and ( 8), we therefore obtain

ζ(s, 1/4) + ζ(s, 3/4) = (4 s -2 s )ζ(s). (9) 
From ( 3) and ( 8), it is also straightforward to check that E(s, 1) = ζ(s).

Furthermore, it is clear that (3) holds for all s ∈ C such that ℜ(s) > 1 and we get the following result by directly applying the classical one (see e.g. [START_REF] Fine | Note on the Hurwitz zeta-function[END_REF][START_REF] Hurwitz | Einige Eigenschaften der Dirichletschen Fuctionen F (s) = D n • 1 n s die bei der Bestimmung der Klassenzahlen binärer quadratischer Formen auftreten[END_REF][START_REF] Travěnec | Generation of off-critical zeros hypercubic Epstein zeta functions[END_REF]) on the analytic continuation of the Riemann and Hurwitz zeta functions.

Proposition 2.3. For all ∆ ∈ (0, 1], the function s → E(s, ∆) has an analytic continuation on C\{1}. Furthermore, we have, for all s such that ℜ(s) < 1 and all ∆ ∈ (0, 1],

π -s 2 Γ s 2 E(s, ∆) = 1 2 s+1 ∞ 0 ϑ 1 1 + ∆ , it -1 t -1-s 2 dt + f (s) ,
where ϑ(z, it) = n∈Z e -πn 2 t e 2iπnz is the Jacobi theta function defined for t > 0 and z ∈ C, and

f (s) = ∞ 0 ϑ(0, it) -1 - 1 √ t t s 2 -1 dt for 0 < ℜ(s) < 1, = ∞ 0 ϑ(0, it) - 1 √ t t s 2 -1 dt for ℜ(s) < 0.
Proof. Recall that, for ∆ ∈ (0, 1] and ℜ(s) > 1, we have

E(s, ∆) = 1 2 s ζ(s) + 1 2 s+1 ζ s, 1 1 + ∆ + ζ s, ∆ 1 + ∆ .
It has been shown in [START_REF] Fine | Note on the Hurwitz zeta-function[END_REF][START_REF] Hurwitz | Einige Eigenschaften der Dirichletschen Fuctionen F (s) = D n • 1 n s die bei der Bestimmung der Klassenzahlen binärer quadratischer Formen auftreten[END_REF][START_REF] Travěnec | Generation of off-critical zeros hypercubic Epstein zeta functions[END_REF] that s → ζ(s) and s → ζ(s, a), a > 0, admit an analytic continuation to C\{1}, which implies the same for s → E(s, ∆). Furthermore, writing z = 1 1+∆ , we have

E(s, ∆) = 1 2 s ζ(s) + 1 2 s+1 [ζ (s, z) + ζ (s, 1 -z)] .
Considering the analytic continuation of ζ(1 -α, a), a > 0, the following formula is well-known [START_REF] Fine | Note on the Hurwitz zeta-function[END_REF][START_REF] Hurwitz | Einige Eigenschaften der Dirichletschen Fuctionen F (s) = D n • 1 n s die bei der Bestimmung der Klassenzahlen binärer quadratischer Formen auftreten[END_REF] for all α such that ℜ(α) > 0:

π -1-α 2 Γ 1 -α 2 [ζ (1 -α, z) + ζ (1 -α, 1 -z)] = ∞ 0 [ϑ(z, it) -1]t α 2 dt t (10) 
holding for z / ∈ Z (see the remark in Theorem 12.6 on page 257 of [START_REF] Apostol | Introduction to analytic number theory[END_REF]). Replacing α by s = 1 -α (so that ℜ(s) < 1 for ℜ(α) > 0), we write

π -s 2 Γ s 2 E(s, ∆) = π -s 2 2 s Γ s 2 ζ(s) + π -s 2 2 s+1 Γ s 2 [ζ (s, z) + ζ (s, 1 -z)] = 2π -s 2 2 s+1 Γ s 2 ζ(s) + π -s 2 2 s+1 Γ s 2 [ζ (s, z) + ζ (s, 1 -z)] . Next we replace π -s 2 Γ s 2 [ζ (s, z) + ζ (s, 1 -z)
] by the integral given in (10) and 2π -s 2 Γ s 2 ζ(s) by the d = 1 integral in Eq. ( 21) of [START_REF] Travěnec | Generation of off-critical zeros hypercubic Epstein zeta functions[END_REF] for 0 < ℜ(s) < 1 and by the d = 1 integral in Eq. ( 22) of [START_REF] Travěnec | Generation of off-critical zeros hypercubic Epstein zeta functions[END_REF] for ℜ(s) < 0 to complete the proof.

Therefore, we can consider the zeros of s → E(s, ∆) in C\{1} defined as

Z ∆ := {ρ = ρ x + iρ y ∈ C, (ρ x , ρ y ) ∈ R 2 : E(ρ, ∆) = 0},
noticing that Z 1 is the set of zeros of the Riemann zeta function. We recall that, according to the Riemann Hypothesis,

Z 1 = -2N ∪ Z C , Z C ⊂ {ℜ(z) = 1/2},
where Z C is called the set of critical zeros of ζ and -2N are the trivial zeros of ζ. We are going to see in the next sections that Z ∆ can have other nontrivial off-critical zeros.

Factorization and zeros of the energy for special values of ∆

There exist special values of ∆ for which the energy E(s, ∆) factorizes itself into a product of the Riemann zeta function ζ(s) and some simple functions of s, by using the previously presented relations ( 5) and [START_REF] Edwards | Riemann's Zeta function[END_REF]. For these cases, both critical and off-critical zeros can be found easily. The most obvious choice of ∆ is ∆ = 1 for which we have

E(s, 1) = ζ(s). (11) 
In the cases ∆ ∈ 1 2 , 1 3

we have the following result giving the zeros of E(s, ∆) as well as the factorization of the energy.

Proposition 2.4. For all s ∈ C\{1}, we have

E(s, 1/2) = 1 2 s+1 (1 + 3 s )ζ(s) and E(s, 1/3) = 1 2 s+1 (2 -2 s + 4 s )ζ(s). (12)
Furthermore, the zeros of E(s, 1/2) and E(s, 1/3) are

Z 1 2 = Z 1 ∪ (2k + 1)iπ ln 3 k∈Z , Z 1 3 = Z 1 ∪ 1 ln 2 ln 1 ± i √ 7 2 + 2πik k∈Z . Proof. For ∆ = 1 2 , one has 1 1 + ∆ = 2 3 and ∆ 1 + ∆ = 1 3
and therefore, using [START_REF] Edwards | Riemann's Zeta function[END_REF], it holds that

E(s, 1/2) = 1 2 s+1 (1 + 3 s )ζ(s). ( 13 
)
where the function 1 + 3 s yields an infinite sequence of (purely imaginary) off-critical zeros

ρ k = (2k + 1)iπ ln 3 , k ∈ Z. (14) 
Furthermore, for ∆ = 1 3 , we have

1 1 + ∆ = 3 4 and ∆ 1 + ∆ = 1 4
and therefore, applying [START_REF] Epstein | Zur Theorie allgemeiner Zetafunctionen[END_REF], it holds that

E(s, 1/3) = 1 2 s+1 (2 -2 s + 4 s )ζ(s). ( 15 
)
The function 2 -2 s + 4 s yields the following zeros

ρ k = 1 ln 2 ln 1 ± i √ 7 2 + 2πik , k ∈ Z. ( 16 
)
Remark 2.5. In the ∆ = 1/3 case, since all these zeros have the real part equal to 1 2 , the energy for ∆ = 1/3 exhibits only critical zeros. The last factorization we are considering in our paper corresponds to ∆ = 1/5:

E(s, 1/5) = 1 2 s+1 (3 -2 s -3 s + 6 s )ζ(s). ( 17 
)
The function 3 -2 s -3 s + 6 s exhibits only off-critical zeros which can be found only numerically, e.g., s ≈ 0.635084 ± 1.07885i.

Numerical results

The starting point of our numerical determination of zeros of the energy E(s, ∆) was the case ∆ = 1/2, with the factorization form [START_REF] Hadamard | Étude sur les propriétés des fonction entières et un particulier d'une fonction considéré par Riemann[END_REF], whose spectrum of zeros involves both the critical zeros of the Riemann zeta function as well as an infinite set of off-critical zeros [START_REF] Hardy | The zeros of Riemann's zeta-function on the critical line[END_REF]. It was checked that the accuracy of determination of complex zeros by using the symbolic language Mathematica is 34-35 decimal digits for both real and imaginary components.

Then we proceeded to the left and right from this point ∆ = 1/2 by changing successively ∆ by a small amount to avoid an uncontrolled skip between neighbouring branches of zeros. Our numerical experience indicates that changing ∆ by 0.01 is certainly safe from this point of view. We observe the following:

• The zeros of E(s, ∆) form continuous non-crossing curves in the complete (ρ x , ρ y , ∆) space.

• Nevertheless, the curves may intersect in the reduced spaces (ρ y , ∆) and (ρ x , ∆), see Figures 1 and2, respectively.

Notice that the values of ∆ ∈ {1/5, 1/3, 1/2} serve as test points of our numerical calculations. The dependence of the imaginary component of zeros ρ y , in the range of its values [0, 25], on the parameter ∆ ∈ (0, 1] is pictured in Figure 1. The special cases ∆ ∈ {1/5, 1/3, 1/2}, when the energy factorizes itself onto a product of the Riemann zeta function and a simple function, are visualized by vertical dashed lines. These cases yield us precise values of the corresponding zeros and also make us sure not to miss any curve of zeros. The critical zeros with ρ x = 1 2 are denoted by red colour, all other zeros are off-critical; the off-critical zeros for the special values of ∆ ∈ {1/5, 1/2} are denoted by blue colour. We observe two types of zero curves:

• The first three "standard" zero curves ρ y (∆), which end up at the Riemann critical zeros at ∆ = 1, are represented by full symbols.

• The first three "non-standard" curves ρ y (∆) are represented by open symbols. Since in the limit ∆ → 1 -these curves tend to off-critical zeros with the divergent real component ρ x → -∞, the curves end up with crosses indicating the absence of off-critical zeros at the Riemann's ∆ = 1.

The dependence of the real part ρ x of the first three "non-standard" energy zeros on ∆ ∈ (0, 1] is presented in Figure 2 by open symbols, in close analogy with Figure 1. As before, the critical zeros with ρ x = 1 2 are denoted by red colour. We observe the following:

• For ∆ 0.75, the three curves coincide on the considered scale and go to -∞ as ∆ → 1 -.

4. Analytic results in the limit ∆ → 1 - Approaching ∆ → 1 -, with regard to Eq. ( 11) one anticipates the presence of critical zeros of the Riemann zeta function for E(s, ∆). Surprisingly, as was already indicated, there are also additional curves of off-critical zeros.

To derive coordinates of these off-critical zeros, we set ∆ = 1 -ε in (3) and expand the energy in Taylor series in the small positive ε → 0 + up to the order ε 5 .

Proposition 4.1. Let s ∈ C\{1}, then, as ε → 0 + , E(s, 1 -ε) = ζ(s) + 2 2+s -1 2 5+s s(1 + s)ζ(2 + s) ε 2 + ε 3 + 3 4 ε 4 + 1 2 ε 5 + 1 3 2 4+s -1 2 11+s s(1 + s)(2 + s)(3 + s)ζ(4 + s) ε 4 + 2ε 5 + O(ε 6 ).
Proof. It directly follows from the Taylor expansion of the Hurwitz zeta function (see e.g. [START_REF] Vepštas | An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions[END_REF]): for |a| < 1,

ζ(s, a) = 1 a s + ∞ n=0 (-a) n s + n -1 n ζ(s + n), (18) 
where the binomial coefficient for a complex s has to be understood as

s + n -1 n = s(s + 1)(s + 2) • • • (s + n -1) n! , (19) 
as well as the analytic continuation of s → E(s, ∆).

It is clear that in the limit ε → 0 + the zeros of E(s, 1-ε) coincide trivially with the critical ones of the Riemann zeta function ζ(s). Let us compute the ε → 0 + asymptotics of the other nontrivial zeros.

Theorem 4.2. The nontrivial off-critical zeros of E(s, 1 -ε) are given, as 

ε → 0 + , by {ρ(k) = ρ x (k) + iρ y (k)}
+ o ε 2 ln 3 ln 2 . ( (21) 
) 22 
In particular, 1. Vanishing of off-critical zeros: we have lim ε→0 + ρ x (k) = -∞; 2. Asymptotic crystallization of their imaginary parts: at first order, as ε → 0 + , the imaginary parts of off-critical zeros are equidistributed on the lattice (2Z + 1)π ln 2 .

Proof. The other nontrivial zeros {ρ}, besides the one of the Riemann zeta function, correspond to solutions of the equation

2 ρ = 1 -2 2+ρ 2 5 ρ(1 + ρ)ζ(ρ + 2) ζ(ρ) ε 2 + ε 3 + 3 4 ε 4 + 1 2 ε 5 + 1 3 1 -2 4+ρ 2 11 ρ(1 + ρ)(2 + ρ)(3 + ρ)(4 + ρ)ζ(4 + ρ) ζ(ρ) ε 4 + 2ε 5 +O(ε 6 ). ( 23 
)
As will be showed later, the component ρ x of ρ = ρ x + iρ y goes to -∞ as ε → 0 + . To simplify our computations, one applies the well known duality transformation

π -s/2 Γ s 2 ζ(s) = π (s-1)/2 Γ 1 -s 2 ζ(1 -s) (24) 
to each Riemann zeta function in [START_REF] Spira | Zeros of Hurwitz zeta functions[END_REF]. Using then the formula Γ(x + 1) = xΓ(x), one ends up with the result

2 ρ = - 1 -2 2+ρ 2 3 π 2 ζ(-1 -ρ) ζ(1 -ρ) ε 2 + ε 3 + 3 4 ε 4 + 1 2 ε 5 + 1 3 1 -2 4+ρ 2 7 π 4 ζ(-3 -ρ) ζ(1 -ρ) ε 4 + 2ε 5 + O(ε 6 ). (25) 
In the limit ε → 0 + , the r.h.s. of this equation vanishes and, consequently, the component ρ x of ρ = ρ x + iρ y must go to -∞ as indicated before. In the limit ρ x → -∞, the ratios of Riemann zeta functions in (25) can be expanded as follows

ζ(-1 -ρ) ζ(1 -ρ) = 1 + 2 ρ+1 + 3 ρ+1 + k≥4 k ρ+1 1 + 2 ρ-1 + 3 ρ-1 + k≥4 k ρ-1 = 1 + 3 2 2 ρ + 8 3 3 ρ + O(4 ρ ) (26)
and

ζ(-3 -ρ) ζ(1 -ρ) = 1 + 2 ρ+3 + 3 ρ+3 + k≥4 k ρ+3 1 + 2 ρ-1 + 3 ρ-1 + k≥4 k ρ-1 = 1 + 15 2 2 ρ + O(3 ρ ). (27) 
In the leading order of the smallness parameter ε, it holds that

2 ρx+iρx = - π 2 8 ε 2 + o(ε 2 ), (28) 
Since the right-hand side of this equation is real and negative, the leading order of the ρ y -component is given by 2 iρy = -1 + o(1), or, equivalently,

ρ y (k) = 1 ln 2 (2k + 1)π + o(1), k ∈ Z. (29) 
This means that in the limit ε → 0 + there exists an infinite sequence of equidistant zero components along the ρ y axis. As follows from (28), the x-component of these zeros diverges logarithmically as ε → 0 + :

ρ x (k) = 2 ln 2 ln ε + -3 + 2 ln 2 ln π + O(ε). (30) 
Note that the leading terms are the same for any value of k. This behavior can be seen in Figure 2. Higher orders of the expansion of ρ y (k) and ρ x (k) in ε can be obtained by inserting the leading order expressions (29) and (30) directly into the basic relation [START_REF] Titchmarsh | The Theory of The Riemann Zeta-function[END_REF]. Performing the expansion procedure in ε it is important to realize that

3 s = π 2 8 ε 2 ln 3 ln 2 exp i ln 3 ln 2 (2k + 1)π + o ε 2 ln 3 ln 2 (31) 
is of order 2 ln 3/ ln 2 ≈ 3.17 > 3. After simple algebra one obtains the desired asymptotics for ρ x (k) and ρ y (k).

Comparison with our numerics. To check numerically our expansion in ε for the imaginary parts of the first three (k = 0, 1, 2) off-critical zeros, let us define the deviations from their ε = 0 values as follows

δρ y (k) := ρ y (k) - 1 ln 2 (2k + 1)π. ( 32 
)
We know from ( 22) that the deviations are expected to behave in the region of the small anisotropy parameter ε → 0 + as δρ y (k) = 8 3 ln 2 

Figure 1 :

 1 Figure 1: Imaginary parts ρ y of the energy zeros E(ρ, ∆) = 0. The special cases ∆ ∈ {1/5, 1/3, 1/2, 1} are visualized by vertical dashed lines. The points which correspond to critical zeros with ρ x = 1 2 are denoted by red colour.

Figure 2 :

 2 Figure 2: The dependence of the real part ρ x of zeros E(ρ, ∆) = 0, corresponding to the three "nonstandard" curves denoted by open symbols in Figure 1, on the parameter ∆ ∈ [0, 1]. The critical zeros with ρ x = 1 2 are denoted by red colour.

Figure 3 :

 3 Figure 3: Imaginary parts of the first three (k = 0, 1, 2) off-critical zeros E(ρ, ∆) = 0. The deviation δρ y (k) is defined by (32). The numerical results are depicted by open circles (k = 0), squares (k = 1) and triangles (k = 2). The plots of δρ y (k) in the region of the small anisotropy parameter ε = 1 -∆, anticipated to behave according to the asymptotic formula (33), are represented by the corresponding dashed curves.

Figure 4 :

 4 Figure 4: Real parts of the first three (k = 0, 1, 2) off-critical zeros E(ρ, ∆) = 0. The deviation δρ x (k) is defined by (34). The numerical results are depicted by open circles (k = 0), squares (k = 1) and triangles (k = 2). The plots of δρ x (k) in the region of the small anisotropy parameter ε = 1 -∆, anticipated to behave according to the asymptotic formula (35), are represented by the corresponding dashed curves.
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