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1. Introduction

1.1. Uniformization of complex compact manifolds by holomorphic geometric struc-
tures. The classification of compact complex manifolds, by means of geometric and topological
invariants, is still of interest. In dimension one, an historical answer is the Riemann’s uni-
formization theorem for complex compact smooth curves (i.e. compact Riemann surfaces). It
implies that any such a complex manifolds is the quotient of an open subset U of: either the
projective curve P1, the complex line C, or the Poincaré disk H, by a discrete subgroup Γ of
projective transformations preserving U with free left action.

This is a case of uniformizability, in the sense that any complex compact manifold of dimen-
sion one is the quotient Γ\U of an open set U ⊂ X of a fixed space X by a subgroup Γ of
automorphisms of X preserving a fixed holomorphic geometric structure and with a free action.
The notion of geometric structures will not be defined in this paper but may be thought as one of
these examples : a holomorphic affine connection (see Definition 2.4), a holomorphic projective
connection (see for example [9]) or a holomorphic reduction of a k-th order frame bundle of X.
Uniformized complex manifolds are endowed with a holomorphic geometric structure induced
by the one on the model X.

1.2. Meromorphic affine connections on surfaces. In the opposite way, there are sufficient
conditions on a holomorphic geometric structure on a complex compact manifold to obtain a
uniformized manifold. In [6], Inoue, Kobayashi and Ochiai classified holomorphic affine con-
nections on compact complex surfaces. It follows from their work that any complex compact
surfaces admitting such a geometric structure is also equipped with a flat one, that is a holo-
morphic affine structure. Many of them, namely Kähler ones, are quotients of an open subset
of C2 by affine transformations. This result brings two remarks: first, there are restrictions on
the topology and geometry of a compact complex manifold to be endowed with a holomorphic
geometric structure of a fixed type, and second, many known examples of complex compact
manifolds endowed with holomorphic geometric structures give rise to uniformized manifolds.
This result was completed by Kobayashi and Ochiai in [9], where it appears that any complex
compact surface endowed with a holomorphic projective structure is uniformizable by the unit
ball in C2.

It seems thus natural to ask whether any complex compact manifold admits a holomorphic
geometric structure. In [5], Biswas, Dumitrescu and McKay gave rather general classification
result, asserting that many holomorphic geometric structures (in particular holomorphic affine
connections) can’t be beared by simply connected compact complex manifolds with constant
meromorphic functions.

In view of such a negative answer, we propose to investigate whether allowing the geomet-
ric structure to admits some reasonable singularities (namely poles) could enable to get more
examples of compact complex manifolds, and investigate for a more general definition of the
uniformization in this context. Here is an example of a possible generalization. Though there
are few projective manifolds M endowed with holomorphic affine connections, since this implies
that all Chern classes are zero, any such manifold is endowed with a finite map f : M −→ PN
for some integer N ≥ 1. The canonical projective structure on PN then induces through f a
meromorphic (flat) projective connection on M (see [3]).

In this paper, we study the existence of meromorphic affine connections (Definition 2.4) on
complex compact surfaces of algebraic dimension a(M) = 1 (the algebraic dimension is defined
above (6)). Such pairs, that we call meromorphic affine complex compact surface of algebraic
dimension one. We classify compact complex surfaces of algebraic dimension one which can be
endowed with a such structure.
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The steps of this classification are as follow. By the well-known work of Kodaira ([10],[11],[12]),
complex compact surfaces of algebraic dimension one are known to be elliptic surfaces. Moreover,
we can restrict ourselves to minimal surfaces since a meromorphic affine connection on a minimal
surface with a(M) = 1 is the pullback (Definition 2.3) of a meromorphic affine connection on its
minimal model (Lemma 2.3). We first prove the following (Theorem 3.1):

Theorem 1.5. Any meromorphic affine complex compact surface of algebraic dimension one is
an isotrivial surface.

Up to finite cover, a minimal meromorphic affine complex compact surface is thus a principal
elliptic fiber bundle, and we have explicit descriptions of such surfaces in terms of their universal
covers (see Proposition 2.2.2). The problem is then split in two : first we have to classify
meromorphic affine principal elliptic fiber bundles, and then study the possible finite quotients
of such pairs. This is completely done when the base curve is the projective line P1 (Theorem 4.2
and Theorem 4.3) or an elliptic curve (Theorem 5.4,Theorem 5.5,Theorem 5.2 and Theorem 5.3).
In the remaining case (hyperelliptic curve), we describe a subset of codimension 3 in the space of
meromorphic affine connections (Theorem 6.1) extending the work by Klingler ([8]). However,
we prove that there is no non-trivial quotient of such meromorphic affine surface (Theorem 6.3).
So there a no new examples arising from these principal elliptic bundles. These results can be
compared to the result of [6] to obtain:

Theorem 1.1. Any meromorphic affine surface with a(M) = 1 endowed with a meromorphic
affine connection also admits a flat affine holomorphic connection.

As an example, no K3-surface with a(M) = 1 admits a meromorphic affine connection.

1.3. Organization of the paper. The paper is organized as follows. In section 2, we recall the
notion of meromorphic affine connections. In section 3, we collect classical facts from the work of
Kodaira on elliptic surfaces that will be used in the rest of the paper, and prove Theorem 3.1 and
Theorem 3.2, reducing the problem of classification to the one of meromorphic affine principal
elliptic bundles and their quotients, as explained above. Then, in section 4,section 5 we classify
meromorphic affine complex compact surfaces of algebraic dimension one arising as quotients
of principal elliptic fiber bundles over P1 or an elliptic curve. In section 6, we treat the case of
an hyperelliptic base curve. We give a description of a codimension three subset in the space
of meromorphic affine connections on the corresponding principal elliptic bundle, in terms of
meromorphic differential operators, and prove that no other examples arise from a quotient of
such meromorphic affine surfaces.

2. Meromorphic affine connections and minimality

2.1. Meromorphic connections and linearizations. We begin by notations and definitions.
Let M be a complex manifold and D =

∑
α∈I

nαDα an effective divisor of M , where nα is an integer

and Dα is an analytic hypersurface of M . In the rest of the paper, we will denote by TM the
sheaf of holomorphic vector fields, Ω1

M the sheaf of holomorphic one forms. For any α ∈ I and
kα ∈ Z, OM (kαDα) will stand for the sheaf of local meromorphic functions on open subsets
U ⊂ M such that, if z1 is an equation for U ∩Dα, then zkα

1 f ∈ OM (U).
We then define:

(1) OM (∗D) =
⋃

(kα)∈ZI

OM (
∑
α∈I

kαDα)
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as the sheaf of local meromorphic functions which are holomorphic when restricted to M \ D.
Given any morphism Ψ : M −→ M ′ of complex manifolds, Ψ∗ (resp. Ψ∗) stands for the pullback
functor for sheaves (resp. the pushforward).

Definition 2.1. Let M be a complex manifold and E be a OM -module. A meromorphic connection on
M with poles at D is a morphism of CM -sheaves:

∇ : E −→ Ω1
M ⊗ E(∗D)

satisfying the Leibniz identity:

∀f ∈ OM (U),∀s ∈ E(U), ∇(fs) = df ⊗ s+ f∇(s)

Definition 2.2. Let G be a group and M be a complex G-manifold with right (resp. left) action. Let
E be a OM -module. A right (resp. left) G-linearization of E is a family (ϕg)g∈G of isomorphisms:

ϕg : E ∼−→ g∗E

with the property:
∀g, g′ ∈ G, ϕgg′ = g′∗(ϕg) ◦ ϕg′

A G-linearized OM -module is a pair (E , (ϕg)g∈G).

In the case of a discrete group G, a OM -module with a G-linearization is a G-equivariant
OM -module as defined in [7]. In this case, if M = G\M is a complex manifold, then, denoting
by q : M −→ M the quotient map, G acts naturally on q∗E(U) for any U ⊂ M . Hence, there
is a functor from the category of G-linearized OM -modules to the one of OM -modules mapping
(E , (ϕg)g∈G) to the sheaf:

(2) E = (q∗E)G

of G-invariant sections. It is an equivalence of categories in the case where the action of G is
free ([7], Proposition 2.2.5).

Definition 2.3. (1) Let M and M ′ be two complex manifold, D′ an effective divisor of M ′ and ∇′

be a meromorphic connection on a OM ′-module E ′ with poles at D′. Let E be a OM -module,
f : M −→ M ′ a isomorphism of complex manifold and φ : E −→ OM ⊗ f∗E ′ an isomorphism of
OM -modules. The corresponding pullback (f, φ)⋆∇′ of ∇′ is the meromorphic connection ∇ on
E with poles at D = f∗D′ defined by the commutative diagram:

(3) E ∇ //

φ

��

Ω1
M ⊗ E(∗D)

OM ⊗ f∗E ′
f∗∇′

// f∗Ω1
M ′ ⊗ f∗E ′(∗D′)

df∗⊗φ−1

OO

where:
• df : TM(∗D) −→ OM ⊗ f∗TM ′(∗D′) is the sheaf-theoretic differential of f
• f∗∇′ is the extension of the sheaf-theoretic pullback f∗∇′ : f∗E ′ −→ f∗Ω1

M ′ ⊗ E ′(∗D′) by
the Leibniz rule to OM ⊗ f∗E ′.

(2) Let (E , (ϕg)g∈G) be a G-linearized OM -module. A meromorphic connection ∇ on E is invariant
by (ϕg)g∈G if (g, ϕg)⋆∇ = ∇ for any g ∈ G.

Since a holomorphic connection on a OM -module can be alternatively described as a global
section of Hom(E , J1E) splitting the jet-sequence of E (see [1]), the correspondance between
linearized sheaves and sheaves on the quotient immediately implies the following:
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Lemma 2.1. Let q : M −→ M ′ be a ramified cover between two complex manifolds, with Galois
group Γ ⊂ Aut(M). Let ΦΓ = (ϕγ)γ∈Γ be a Γ-linearization of a locally free OM -module E.
Consider the locally free OM ′-module E = (q∗E)ΦΓ and the natural inclusion:

Id : OM ⊗ q∗E ↪→ E
Suppose the existence of a holomorphic connection ∇ on E which is invariant through any ϕγ
(γ ∈ Γ). Then:

(1) If q is unramified, then there exists induces a (unique) holomorphic connection ∇′ on E
such that the pullback (q, Id)⋆∇′ (see Definition 2.3) coïncides with ∇ when restricted to
q∗E.

(2) If q is finite, then there exists a unique meromorphic connection ∇′ on E, with poles
supported on the ramification locus, such that the pullback (q, Id)⋆∇′ coïncides with the
restriction of ∇ to q∗E.

Proof. (1) Consider the restriction ∇′ of the morphism of CM ′-sheaves q∗∇ to the subsheaf
E . It satisfies the Leibniz identity, and by definition of (γ, ϕγ)⋆∇ = ∇ (Definition 2.3),
the invariance of ∇ by the linearization ΦΓ implies that ∇′ restricts as a morphism:

∇′ : E −→ (q∗Ω1
M ⊗ E)Γ

Now, we have a natural inclusion of sheaves:
(4) Ω1

M ′ ⊗ E = (q∗Ω1
M )Γ ⊗ (q∗E)Γ ⊂ (q∗Ω1

M ⊗ E)Γ

where the right handside is the subsheaf of invariant sections through the linearisation
obtained by tensorizing the isomorphisms (dγ∗)γ∈Γ and (ϕγ)γ∈Γ. Since q is unramified,
we have

OM ⊗
OM′

q∗OM ′ = OM

and since Γ acts freely, we also have (see [7], Proposition 2.2.5):
OM ⊗ q∗E ≃ E

Hence the pullbacks of the vector bundles corresponding to the left and right handside
of (4) coïncide. Hence Ω1

M ′ ⊗ E = (q∗Ω1
M ⊗ E)Γ, so that ∇′ is in fact a holomorphic

connection on E . Its pullback through (q, Id) coïncides with the restriction of ∇ to q∗E
by construction.

(2) The restriction of q to the complement of its ramification locus S ⊂ M is an unramified
cover q|M\S : M \S −→ M ′ \S′. By (1), we get a holomorphic connection ∇′ on E|M ′\S′

whose pullback through (q|M\S , Id) coïncides with the restriction of ∇|M\S to q∗E|M\S .
Denote by j the inclusion of complex manifold of M ′ \S′ in M ′. It remains to prove that
j∗∇′ restricts to the subsheaf E ⊂ j∗E|M ′\S′ = (j∗OM ′\S′)⊗E as a morphism with values
in the subsheaf Ω1

M ′ ⊗ E(∗S′). It is sufficient to prove this property for the restriction of
(E , j∗∇′) to any complex submanifold Σ ⊂ M of dimension one. Therefore, we assume
from now on that q is a finite cover between two complex curves M,M ′. Pick x ∈ S and
y = q(x). Since Γ is finite, there exists a generator γ ∈ Γ leaving a neigborhood U of x
invariant, and local coordinates z, z′ at neighborhoods of x and y such that:

q(z) = zm and γ · z = e
2iπ
m z

for some integer m ≥ 1. Moreover, ∇ is a flat connection on E , so there is a local
trivialization of E at a neighborhood U of x such that ∇ identifies with the de Rham
differential d on O⊕r

U (r stands for the rank of E). By the invariance of ∇ through ΦΓ,
the automorphism ϕγ maps the kernel C⊕r

U of d to its pullback γ∗C⊕r
U . It is therefore
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given by a constant linear transformation. Since γ is of finite order, up to applying a
constant linear change of trivialization, this linear transformation is diagonal with roots
of the unity as eigenvalues, that is ϕγ corresponds to the isomorphism:

ϕγ : O⊕r
U −→ γ∗O⊕r

M

(f1(z), . . . , fr(z)) 7→ (e
2k1iπ

m f1(e− 2iπ
m z), . . . , e

2kriπ
m fr(e− 2iπ

m z))

with kj ∈ {1, . . . ,m}. Hence, the restriction of q∗E to U is the subsheaf of r-uples of the
form:

s = (zm−k1g1(zm), . . . , zm−krgr(zm))
for some holomorphic functions g1, . . . , gr on zm(U). Then, through the trivialization of
E|U just defined:

∇(s) = dz ⊗ (m− k1
z

zm−k1−1g1(zm1 ), . . . , m− kr
z

zm−kr−1gr(zm)) + q⋆(dz′) ⊗ s′

for some s′ ∈ q∗E(U). We can rewrite this section as:

∇(s) = q⋆(dz′) ⊗ (z
m−k1

zm
h1(zm), . . . , z

m−kr

zm
hr(zm))

for some meromorphic functions h1, . . . , hr on zm(U) with poles along zm(x). Hence
∇(s) is a section of (Ω1

U )Γ ⊗ q∗E|U (∗x). This being true for any x ∈ S, and since
Ω1
M ′ = (q∗Ω1

M )Γ, we get:

j∗∇′(E) ⊂ Ω1
M ′ ⊗ E(∗S′)

as required. This exactly means that ∇′ defines a meromorphic connection on E , and
this connection satisfies the pullback property by construction.

□

2.2. Meromorphic affine connections and pullback. We introduce the meromorphic geo-
metric structure considered in this paper:

Definition 2.4. Let M be a complex manifold and D an effective divisor of M . A meromorphic affine
connection on (M,D) is a meromorphic connection on TM with poles at D.

The pullback defined in Definition 2.3 defines the category of meromorphic affine connections,
with arrows given by the pullbacks through (f, df) for f an isomorphism of complex manfiolds.

Lemma 2.2. Let q : M̂ −→ M be a morphism of complex manifolds of the same dimension.
Let ∇ be a meromorphic affine connection on M and ∇̂ = q⋆∇. Let Ψ be an automorphism of
M and Ψ̂ an automorphism of M̂ lifting Ψ through q.

Then Ψ⋆∇ = ∇ if and only if Ψ̂⋆∇̂ = ∇̂.

Proof. Since Ψ̂ is the lift of Ψ through q, we have the following commutative diagram:

(5) TM̂

dΨ̂
��

dq // OM̂ ⊗ q∗TM̂

Ψ̂∗⊗dΨ
��

Ψ̂∗TM̂
Ψ̂∗dq

// OM̂ ⊗ q∗TM̂

The equivalence asserted is then a direct consequence of the diagram defining a pullback (Defi-
nition 2.3). □
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2.3. Algebraic dimension and general property of elliptic surfaces. Let M be a compact
complex manifold of complex dimension n ≥ 1. Moishezon proved that the field of meromorphic
functions C(M) is a field of finite transcendancy degree over the field of constant functions
C. This degree is called the algebraic dimension of M and denoted by a(M). In particular
a(M) ≤ n, and there exists a bimeromorphic map Ψ : M −→ M ′ and a holomorphic map
(6) π : M ′ −→ N

onto a complex compact manifold of dimension a(M), with the property C(M) = π∗C(N). In
this paper, we will focus on complex compact surfaces with a(M) = 1.

A elliptic surface is a holomorphic fibration M
π−→ N of a complex compact surface over a

(compact) complex smooth curve, such that for a generic y ∈ N , the fiber My := π−1(y) is a
(smooth) complex torus.

We recall the following result from Kodaira ([10]):

Theorem 2.1. Any compact complex surface with a(M) = 1 is the total space of an elliptic
surface given by the algebraic reduction map (6).

Moreover:

Theorem 2.2. Let M π−→ N be an elliptic surface with a(M) = 1. Any divisor D of M is of
the form D = π∗C for some divisor C of N .

Proof. See [10], Theorem 4.3. □

Now, let M π−→ N be a general elliptic surface. Let (yβ)β∈J denote the set of points in N
such that the fiber Myβ

of π is not a smooth elliptic curve. For any local coordinate zβ on N
centered at yβ, there exists an integer mβ > 0 and an equation fβ for Myβ

with
(7) fβ = (zβ ◦ π)mβ

The corresponding yβ are the singular points and the above integer will be called the multiplicty
of yβ (resp. of the singular fiber Myβ

), according to the work of Kodaira ([10]).

Proposition 2.2.1. Let M π−→ N be an elliptic surface, (yβ)β∈J the singular points and N ′

their complement in N . Then:
(1) For any y ∈ N ′, there is a neighborhood U of y in N ′, and a holomorphic function

τ : U −→ H such that :
π−1(U) ≃ U × C/⟨ψ1, ψ2⟩

where z1, z2 are global coordinates adapted to the natural fibration and:
(8) ψ1(z1, z2) = (z1, z2 + 1) and ψ2(z1, z2) = (z1, z2 + τ)

(2) There exists a global holomorphic function τ̃ : Ñ ′ −→ H on the universal cover of
p̃ : Ñ ′ −→ N ′, such that for any y ∈ N ′, and any τ as in 1., τ = τ̃ ◦ s for some section
of p̃ near y.

Proof. (1) See [11], (10.9)
(2) See [11], Theorem 7.2

□

Recall tat for any τ, τ ′ ∈ H, the tori C/Z ⊕ τZ and C/Z ⊕ τ ′Z are isomorphic exactly when
τ, τ ′ lie in the same SL2(Z)-orbit in H, through the action:(

a b
c d

)
τ := aτ + b

cτ + d
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Since the action is free, there exists an associated representation ρ : π1(N ′, y) −→ SL2(Z) such
that:

(9) τ̃(γ · ỹ) = ρ(γ) · τ̃(ỹ)

for any ỹ ∈ p̃−1(y) and γ ∈ π1(N ′, y).
The associated local system over N ′ is called the homological invariant of π by Kodaira. The

following facts can be recovered from [11]:

Proposition 2.2.2. Let M π−→ N be an elliptic surface, and N ′ (resp. M ′) the complement of
its singular points (yβ)β∈J (resp. its singular fibers in M). Then:

(1) If J ̸= ∅ or the genus g(N) ≥ 1 then the universal cover Ñ ′ is an open subset of C and
H1(Ñ ′,OÑ ′) = {0}. By Proposition 2.2.1, this implies M̃ ′ = Ñ ′ × C ⊂ C2 and we let
(z1, z2) be the canonical coordinates on C2.

(2) Let y ∈ N ′. For any γ ∈ π1(N ′, y), the corresponding automorphism of Ñ ′ lifts canon-
ically to an automorphism φγ of M̃ ′, normalizing the subgroup spanned by ψ1 and ψ2
(see (8))

(3) In the case J ̸= ∅ or g(N) ≥ 1, let γ ∈ π1(N ′, y) and φγ the automorphism of the
universal cover of M ′ as in 2. There exists a constant µγ ∈ C∗ and a holomorphic
function fγ on Ñ ′ such that:

(10) φγ(z1, z2) = (γ · z1,
µγ

cγ τ̃(z1) + dγ
z2 + fγ(z1))

where ρ(γ) =
(
aγ bγ
cγ dγ

)
(see (9)).

(4) The pullback (see Definition 2.3) through the universal covering p̃ : M̃ ′ −→ M ′ induces
a bijection between the set of meromorphic affine connections on M ′ and the set of
meromorphic affine connections ∇̃ on M̃ ′ satisfying:

(11) ψ⋆1∇̃ = ψ⋆2∇̃ = φ⋆γ∇̃ = ∇̃

for any γ ∈ π1(N ′, y), where ψ1, ψ2 are defined as in Proposition 2.2.1.

Proof. (1) In either case, Ñ ′ is isomorphic to P1,C or H. If Ñ ′ = P1, then N ′ = Ñ ′ = P1

since N is compact, so that J = ∅. The converse is clearly true. Now if J ̸= ∅, necessarly
Ñ ′ is not P1, whence the assertion.

(2) Consider the complex manifold M ′ = Ñ ′ ×
N ′
M ′ fitting in the following diagram:

(12) M ′ p′
//

π
��

M ′

π
��

Ñ ′ p′
// N ′

where p′ is the projection on the second factor, π the projection on the first one. Then
M̃ ′ is clearly isomorphic to the universal cover of M ′. We denote by [ỹ, x] the class of
(ỹ, x) ∈ Ñ ′ ×M ′ in M ′.

For any γ ∈ π1(N ′, y) denote by φγ the corresponding automorphism of p′. Then:

(13) φγ([ỹ, x]) = [φγ(ỹ), x]

define an automorphism φγ of M ′ compaptible with p and π. Then φγ lifts to an unique
automorphism φγ of the total space of the universal cover M̃ ′.
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(3) Let (z1, z2) be coordinates on M̃ ′ = Ñ ′ × C, and τ̃ as in Proposition 2.2.1, 2. Consider
again the complex manifold M ′ as in the proof of 2. By the proof of Proposition 2.2.1,
1., we have a canonical isomorphism of elliptic fibrations

M ′ ∼−→ Ñ ′ × C/⟨ψ1, ψ2⟩
where ψ1, ψ2 are the automorphism defined by:

(14) ψ1(z1, z2) = (z1, z2 + 1) and ψ2(z1, z2) = (z1, z2 + τ̃(z1))

Let φγ be the lifting to M ′ of the automorphism of Ñ ′ corresponding to γ ∈ π1(N ′, y)
(recall that φγ is the lifting of φγ to the universal cover M̃ ′ of M ′). Let ỹ ∈ Ñ ′ with
p′(ỹ) = y, and z1 = z1(ỹ). Then, by (9) and the above biholomorphism, we get that the
multiplication by 1

cγ τ̃(z1)+dγ
∈ C× induces a biholomorphism between the fibers M ′

ỹ and
M ′

γ·ỹ.
Now, recall that the automorphisms A(M ′

ỹ) are described by the exact sequence:

0 // M ′
ỹ

// A(M ′
ỹ) // Z/nỹZ // 0

where Z/nỹZ corresponds to complex multiplications by a nỹ-th root of the unity induc-
ing an involution on the elliptic curve (nỹ ≤ 6) and M ′

ỹ is identified as the subgroup of
translations on itself.

Since φγ is an automorphism of the elliptic fibration π : M ′ −→ Ñ ′, the above remarks
imply the existence of a holomorphic function µγ on Ñ ′, and a holomorphic section fγ
of π such that:

∀z1 ∈ Ñ ′, ∀z2 ∈ C, φγ([z1, z2]) = [γ · z1,
µγ(z1)

cγ τ̃(z1) + dγ
z2] + fγ(z1)

In particular, µγ is a constant, and since Ȟ1(Ñ ′,OÑ ′) = {0}, fγ lifts to a section of
π̃ : M̃ ′ −→ Ñ ′, that is a holomorphic function fγ on Ñ ′. Then φγ is exactly the
automorphism described in the statement.

(4) If ∇̃ is a meromorphic affine connection on M̃ ′ satisfying (11), then in particular it is
invariant through the Galois group of the universal covering p̃ : M̃ ′ −→ M ′ as in (12).
Thus, using Lemma 2.1, we have ∇̃ = p̃

⋆∇ for some meromorphic affine connection on
M ′. Since the automorphisms φγ are the lifts of the elements φγ of the Galois group of
the covering p′, we also have ∇ = p′⋆∇ for some meromorphic affine connection on M ′,
that is ∇̃ = p̃⋆∇.

Reciprocally, suppose that ∇̃ = p̃⋆∇ for some meromorphic affine connection ∇ on
M ′. Then applying Lemma 2.2 to the lifts ψ1, ψ2 and φγ of the identity of M ′ gives (11).

□

We will therefore use these well-known following facts about elliptic surfaces, due to Kodaira
[11]. First, recall that given divisors D1, D2 on a complex compact surface M , there is a well
defined intersection number :

D1 ·D2 := c1(D1)c1(D2)
where c1(D) ∈ H1(M,Z) stands for the first Chern class of the line bundle OM (D). An excep-
tional curve is then a rational smooth curve C in M such that C · C = −1.

Theorem 2.3. Let N be a smooth complex curve, J : Ñ −→ SL2(Z)\H and G a sheaf of
subgroups of SL2(Z) as above. Then:

(1) There exists a unique (up to biholomorphisms of elliptic surfaces) elliptic surface B π0−→
N with invariants J ,G and a global holomorphic section, called the basic member.
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(2) Any minimal elliptic surface M ′ π′
−→ N with invariants J ,G and no multiple singular

fiber is locally isomorphic to B.

Proof. This immediately follows from Theorem 10.1 in [11].
□

2.4. Minimal model for meromorphic affine complex surface with algebraic dimen-
sion one. By a well-known result of Grauert (see [2], Theorem 7.1), if C is an exceptional curve,
then there exists a complex compact surface M1, and x1 ∈ M1 such that M is isomorphic to the
blow-up at x0 of M :

σ : M −→ M1

and σ(C) = {x1}. In this case a(M1) = a(M), the restriction of σ to M \ C is an isomorphism
onto M1 \ {x1} and σ maps any fiber of the algebraic reduction of M to a fiber of the algebraic
reduction of M1. Given a complex compact surface M , there is a finite number of exceptional
curve, and thus composing the maps σ obtained as above we get a map:

σ0 : M −→ M0

which restricts as an isomorphism between M \ C0, where C0 is the union of the exceptional
curves, and M0 \ {x1

0, . . . , x
n
0 } where the xi0 are points. Again a(M0) = a(M) and M0 will be

called the minimal model of M .
In particular:

Lemma 2.3. Let M be a complex compact surface endowed with a meromorphic affine connec-
tion ∇, with poles at D. Suppose that M contains an exceptional curve and let σ : M −→ M0
the minimal model of M . If a(M) = 1, then there exists a meromorphic affine connection ∇0
on M0 such that ∇ = σ⋆0∇0 (see Definition 2.3).

Proof. First, using the inverse of the restriction of σ0 to M \C0, we obtain a meromorphic affine
connection ∇0 on M0 \ {x1

0, . . . , x
n
0 } such that σ⋆0∇0 is the restriction of ∇ to M \ C0.

It remains to prove that ∇0 extends as a meromorphic connection in a neighborhood of
any xi0. For, let U0 be a neighborhood of xi0 such that TM0|U0 is trivializable. Then sections
of TM(∗D0)|U0 identify with vectors of meromorphic functions on open subsets of U0. Let
j : U0 \ {xi0} −→ U0 be the inclusion. The Hartogs’ extension theorem thus implies that the
restriction morphism:

ρ : TM(∗D0)|U0 −→ j∗(TM(∗D0)|U0\{xi
0})

is an isomorphism of OU0-modules. The same property holds for the restriction morphism:

ρ′ : Ω1
U0 ⊗ TM |U0 −→ j∗(Ω1

U0\{xi
0} ⊗ TM(∗D0)|U0\{xi

0})

Hence, there is a morphism of OU0-modules ∇0 such that the diagram:

TM(∗D0)|U0
∇0 //

ρ

��

Ω1
U0

⊗ TM(∗D0)|U0

ρ′

��
j∗(TM(∗D0)|U0\{xi

0})
j∗∇0

// j∗(Ω1
U0\{xi

0} ⊗ TM(∗D0)|U0\{xi
0})

commutes, where j∗∇0 is the sheaf-theoretic pushforward of the morphism ∇0. Since ∇0 satisfies
the Leibniz identity, the same holds for ∇0. Such an extension is clearly unique, and defines a
meromorphic affine connection on M0.

□
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3. Reduction to the classification of principal elliptic surfaces

By Lemma 2.3, we can restrict ourselves to the classification of minimal complex compact
surface of algebraic dimension one endowed with meromorphic affine connections.

We now prove that the functional invariant of such a minimal elliptic surface is constant, hence
this is a principal elliptic bundle up to a finite ramified covering. This reduces the problem of
the classification to the classification of meromorphic affine principal elliptic bundles and their
quotients.

3.1. Reduction to isotrivial elliptic surfaces. Let (M,D,∇) be a meromorphic affine com-
plex compact surface with algebraic dimension one, and M

π−→ N the corresponding elliptic
surface. Our aim is to prove that this is an isotrivial surface, meaning the functional invariant
τ is constant.

Let S (resp. S) be the union of the singular fibers (resp. the singular points) in M (resp. N).
In view of Proposition 2.2.2,(1), we can and do assume that J ̸= ∅ or N ̸= P1, otherwise M is a
Hopf surface, hence a principal elliptic fiber bundle over N . Let M ′ = M \S (resp. N ′ = N \S),
M̃ ′ = Ñ ′ × C π′=proj1−→ Ñ ′ with adapted global coordinates (z1, z2) as in Proposition 2.2.2, (1).
This is the total space of the universal covering p′ : M̃ ′ −→ M ′.

We let ∇̃′ = p′⋆∇, a meromorphic affine connection on M̃ ′ with poles D′ supported on fibers
of π′ by Theorem 2.2. Moreover, reemploying the notations from Proposition 2.2.2, it is both
invariant through the automorphisms:

(15) ψ1(z1, z2) = (z1, z2 + 1) and ψ2(z1, z2) = (z1, z2 + τ(z1))

and the automorphims (φγ)γ∈π1(N ′,y0) defined as in (10).
Now we observe:

Lemma 3.1. Let g be a global holomorphic function on C with g(z + 1) = g(z) for any z ∈ C.
Suppose that there exists ν ∈ H and µ ∈ C such that

(16) ∀z ∈ C, g(z + ν) = g(z) + µ

Then g is constant and µ = 0.

Proof. The 1-periodicity is equivalent to the existence of a holomorphic function on C\{0} such
that g(z) = g(e2iπz) for any z ∈ C.

Then the property (16) implies

(17) g(λu) = g(u) + µ

where λ = e2iν satisfies 0 < |λ| < 1. Derivating this relation in u implies g′(λu) = g′(u)
λ . But

g′ is a Laurent series at 0, with residue 0. Since |λ| < 1, λn−1 ̸= 1
λ except for n = 0, and the

identity (17) implies g′ = 0. Hence g is a constant, and the same holds for g. In particular
µ = 0. □

Corollary 3.1. Let (M,D,∇) be a meromorphic affine complex compact surface with algebraic
dimension one, and let (M̃ ′, D̃′, ∇̃′) be as above, with homological invariant τ . Let (z1, z2) be
adapted global coordinates as above and ( ∂

∂z1
, ∂
∂z2

) (resp. (dz1, dz2)) the corresponding trivialisa-
tion of TM ′ (resp. Ω1

M ′). Then either τ ′ = 0, or ∇̃′ has matrix:

(18) dz1 ⊗
(
b(z1) 0
d(z1) c(z1)

)
+ dz2 ⊗

(
0 0

a(z1) 0

)
for some holomorphic functions a, b, c, d on z1(Ñ ′) ⊂ C.
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Proof. We assume τ ′ ̸= 0. Let (fij , gij)i,j=1,2 be the meromorphic functions on M̃ ′ such that the
matrix of ∇̃′ in ( ∂

∂z1
, ∂
∂z2

) is:

(19) dz1 ⊗
(
f11 f12
f21 f22

)
+ dz2 ⊗

(
g11 g12
g21 g22

)
Recall that, given any automorphism ψ of M̃ ′, the pullback ψ⋆∇̃′ is described by a commuta-
tive diagram (Definition 2.3). The differential of the automorphism ψ1 from (15) corresponds,
through the trivialisation ( ∂

∂z1
, ∂
∂z2

), to the post-composition by ψ1 of functions. In particular,
by Theorem 2.2, the invariance of ∇̃′ through ψ1 implies that the restrictions of (fij , gij)i,j=1,2
on a generic fiber of π′ are 1-periodic holomorphic functions.

Now, by definition of the pullback, the identity ∂
∂z2

⌟ψ⋆2∇̃′ = ∂
∂z2

⌟∇̃′ rewrites as:

(20)



g12(z1, z2 + τ(z1)) = g12(z1, z2)
gii(z1, z2 + τ(z1)) + (−1)iτ ′(z1)g12(z1, z2 + τ(z1)) = gii(z1, z2)
g21(z1, z2 + τ(z1))(z1, z2 + τ(z1)) = g21(z1, z2)
+τ ′(z1)(g11 − g22)(z1, z2 + τ(z1)))
−(τ ′(z1))2g12(z1, z2 + τ(z1))

Since τ ′ ̸= 0,the first line implies that the restriction of g12 to a generic fiber is a holomor-
phic elliptic function, that is a constant, i.e g12(z1, z2) = g12(z1). Now, the second line and
the previous fact show that the restriction of gii to a generic fiber satisfies the conditions of
Lemma 3.1, hence g12 = 0 and gii(z1, z2) = gii(z1). This in turn implies, together with the third
line, that the restriction of g21 to a generic fiber satisfies the conditions in Lemma 3.1, so that
g11(z1) = g22(z1) and g21(z1, z2) = a(z1).

Now, we can rewrite similarly the system of functional equations corresponding to ∂
∂z1

⌟ψ⋆2∇′ =
∂
∂z1

⌟∇′, taking in account that

dψ∗
2(ψ∗

2
∂

∂z2
) = ∂

∂z2
+ τ ′(z1) ∂

∂z1

Since g12 = 0, the first line will be indentical to the one of (20), that is f12(z1, z2) = f12(z1).
Then the second line show that fii satisfy conditions of Lemma 3.1, so that fii(z1, z2) = fii(z1)
and f12−g11 = f12+g22 = 0, while g11 = g22 by the previous facts. Hence g11 = g22 = 0. Finally,
as before, the last line show that f21 satisfy conditions of Lemma 3.1, i.e. f21(z1, z2) = f21(z1).

□

Theorem 3.1. Any meromorphic affine complex compact surface of algebraic dimension one is
an isotrivial elliptic surface.

Proof. We reemploy the above notations, and will describe explicitely the identity
∂

∂z1
⌟φ⋆γ∇̃′ = ∂

∂z1
⌟∇̃′

for any generator γ of π1(N ′, y0).
First introduce the following notations. We let gγ be the function of z1 corresponding to the

matrix of the differential of the automorphism of Ñ ′ corresponding to γ. We also let:

(21) δγ(z1) = µγ
cγτ(z1) + dγ

where µγ , cγ , dγ are defined as in Proposition 2.2.2.
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We first prove that the above identity implies δ′
γ(z1) = 0. Indeed, the matrix of dφγ in the

basis ( ∂
∂z1

, ∂
∂z2

) and (φ∗
γ
∂
∂z1

, φ∗
γ
∂
∂z2

) is:

(22) C =
(

gγ(z1) 0
z2δ

′
γ(z1) + f ′

γ(z1) δγ(z1)

)
In particular:

(23) ∂

∂z1
⌟C−1dC =

 g′
γ(z1)
gγ(z1) 0

z2( δ
′′
γ (z1)
δ(z1) − δ′

γ(z1)
δ(z1)

g′
γ(z1)
gγ(z1)) + h(z1) δ′

γ(z1)
δ(z1)


for some meromorphic function h on z1(Ñ ′) ⊂ C. Recalling the definition of the pullback
(Definition 2.3), and focusing on the coefficient c(z1) of the matrix of ∇̃′ (see Corollary 3.1), the
invariance by φγ leads to:

(24) z2( δ
′
γ(z1)
δγ(z1) − δ′

γ(z1)
δγ(z1)b(γ · z1) + δ′

γ(z1)
δγ(z1)c(γ · z1)) − z2

2(g
′
γ(z1)
gγ(z1)δ

′′
γ(z1) δ

′
γ(z1)
δγ(z1)) + h(z1) = c(z1)

for some meromorphic function h on z1(Ñ ′). In particular:

(25) ∀γ ∈ π1(N ′, y0), g′
γ(z1)
gγ(z1)δ

′′
γ(z1) δ

′
γ(z1)
δγ(z1) = 0

Now we fix a set ((γα)α∈I , (γϵ,1, . . . , γϵ,2g)ϵ=1,2) of generators for π1(N ′, y0), where γα is ob-
tained from a loop containing the singular point yα in its bounded component, and γ1, . . . , γ2g
span π1(N) (g = g(N) is the genus). We prove that there are two possible cases:

a) τ is constant.
b) For any α ∈ I, cγα = 0.

Indeed, assume τ is not constant and pick α ∈ I. Clearly, cγα ̸= 0 implies that δ′′
γα
δ′
γα

̸=
0. Hence, in view of (25), either cγα = 0 or g′

γα
= 0. Now, considering a suitable Möbius

transformation ϕ in the connected component of PSL2(R), and replacing the coordinate z1 by
z′

1 = ϕ ◦ z1, the equation (25) remains true when replacing τ by τ = τ ◦ ϕ−1, g′
γα

by the matrix
of the differential of γα· in the basis ∂

∂z′
1

which can be picked out non-zero, and keeping the same
cγα (since τ have the same monodromy as τ). Hence necessarly cγα = 0.

Now we prove that case b) can’t happen in our situation. Indeed, it is known that there are
generators (γα)α∈I and (γϵ,j)j=1,...,g

ϵ=1,2
as above such that:

(26)
g∏
j=1

[γ1,j , γ2,j ] =
∏
α∈I

γα

But property b) means that the monodromy of τ is a representation ρ with values in the abelian
subgroup of translations in SL2(R). In particular, (26) implies that the composition of the im-
ages ρ(γα) is trivial. Moreover, following the proof of Theorem 7.3 in [11], these are translations
by bα ≥ 0. From the previous remark, the sum of these positive integers is zero, so that bα = 0,
that is Aγα is the identity for any α ∈ I.

By Theorem 7.3 in [11], this implies that the functional invariant J have no pole on N . It is
therefore a constant meromorphic function. As a consequence, τ is constant.

□
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3.2. Reduction to elliptic fiber bundles. We now prove that the classification reduces to the
one of meromorphic affine elliptic fiber bundles over complex curves, and their finite quotients.

From now, assume that M π−→ N is a minimal elliptic surface, of algebraic dimension one,
with singular fibers S = π−1(S), endowed with a meromorphic affine connection ∇ with poles
D. By Theorem 3.1, its invariants are constants. Since N is a smooth compact complex curve,
its is clear that there exists a finite cover N̂ q−→ N , ramified at S, such that the elliptic surface
M̂

π̂−→ N̂ obtained from the diagram:

(27) M̂ = M ×
N
N̂
q //

π̂
��

M

π

��
N̂

q
// N

where q is the restriction of the first projection, and π̂ is the restriction of the second projection,
is an elliptic surface without multiple singular fiber. Its invariants are respectively Ĵ = J ◦ q
and q∗G, that is respectively a constant and a constant sheaf.

We get:

Theorem 3.2. There is a surjective functor from the category of objects of the form (M̂ π̂−→
N̂ , ∇̂,Γ) where:

• M̂
π̂−→ N̂ is a principal elliptic bundle of algebraic dimension one through its algebraic

reduction.
• ∇̂ is a meromorphic affine connection on M̂ , with pole D̂,
• Γ is a finite group of automorphisms of the elliptic surface M̂ π̂−→ N̂ and of the mero-

morphic affine connection ∇̂, with smooth quotient.
to the category of minimal meromorphic affine surfaces (M π−→ N,∇) with a(M) = 1. This
functor maps (M̂ π̂−→ N̂ , ∇̂,Γ) to (M,∇) where:

• M = Γ\M̂ , N = Γ\N̂ and Γ is the subgroup of finite automorphisms of N̂ covered by
an element of Γ,

• ∇ is the meromorphic connection on TM = (q∗TM̂)Γ with poles at D = q(D̂), obtained
by applying Lemma 2.1 to the quotient map q : M̂ −→ M corresponding to the action of
Γ.

Moreover, given any (M̂, ∇̂,Γ) in the first category, any γ ∈ Γ lifts to the universal cover
p̃ : M̃ −→ M̂ as an automorphism:

(28) Ψ̃(z1, z2) = (δ · z1, µz2 + fδ(z1))

where δ is the lift of an automorphism δ ∈ Aut(N̂) to the universal covering Ñ , µ ∈ C∗ and fδ is
a holomorphic function on Ñ , and (z1, z2) are coordinates on M̃ ⊂ C2 as in Proposition 2.2.2.

Proof. We begin by proving the equivalence of categories. Suppose that (M̂ π̂−→ N̂ , ∇̂,Γ) is
an object and (M,∇) its image as in the statement. First, we prove that M is of algebraic
dimension one. Indeed, suppose that f is a meromorphic function on M . Then f̂ = f ◦ q is
an element of π̂#C(N̂). By definition of M π−→ N , f is thus an element of π#C(N). Also, M
is a minimal surface. Indeed, if C is an exceptional curve, then q∗C = Ĉ is a smooth rational
curve in M̂ , contained in a fiber of π̂, which can’t be a principal elliptic fiber bundle. Hence,
the functor is well-defined on objects and extends as a functor for the obvious choice of arrows
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(namely Γ-equivariant isomorphisms of meromorphic affine connections and isomorphisms of
meromorphic affine connections).

Now, if (M,∇) is an object of the target category, then we define M̂
π̂−→ N̂ as in (27)

and ∇̂ = q⋆∇. We prove that M̂ π̂−→ N̂ is a principal elliptic bundle. First, recall that the
invariants are respectively a constant for the functional invariant and a constant sheaf for the
homological invariant. The basic member B̂ associated to these invariants (see Theorem 2.3)
is B̂ = N̂ × C/Λ for some lattice Λ. Moreover, M̂ is a minimal surface. Indeed, suppose the
existence of an exceptional curve Ĉ in M̂ . Since the algebraic dimension of M̂ is one, the proof
of Theorem 4.2 in [10] implies that Ĉ is a singular fiber of π̂. But then its image C through
q would also be an exceptional curve. Indeed, the restriction of q to the support of Ĉ is a
biholomorphism, so C is a smooth rational curve. It is also a singular fiber of the minimal
elliptic surface M . By the proof of Theorem 6.2 in [11], we must have C ·C ≤ −1. In one other
hand, since q is a finite cover, we also have

−1 = Ĉ · Ĉ = deg(NĈ) = kC · C
for some positive integer k, hence C · C = −1 contradicting the minimality of M . From the
point 2. of the Theorem 2.3, M̂ is locally isomorphic, as an elliptic fibration, to B̂. Hence, M̂
has no singular fiber. Up to considering a finite cover, M̂ π̂−→ N̂ is therefore a principal elliptic
fiber bundle. Finally, setting Γ as the (finite) group of automorphisms of q, we get an object
mapping to (M,∇).

Now let’s prove the formula (28). Let Ψ be an automorphism of π̂. It covers an automorphism
δ ∈ Aut(N̂) and we define δ ∈ Aut(Ñ) as its lift to the universal covering p̃ : Ñ −→ N̂ . By
construction, any lift Ψ̃ of Ψ to the universal covering M̃ is an automorphism of C-principal
bundle covering δ.

Consider the covering q : M −→ M , where M = M̂ ×
N̂

Ñ , obtained as in the proof of

Proposition 2.2.2. Any element of M is of the form [ŷ, x] for some x ∈ M̂ and ŷ in N̂ . Recall
that M̃ is also the universal covering of M . Moreover, Ψ lifts canonically to an automorphism
Ψ of M defined by:
(29) Ψ([ŷ, x]) = [δ(ŷ),Ψ(x)]
Then the formula (28) follows as in the proof of point 3. of Proposition 2.2.2.

□

4. Principal elliptic surfaces over projective line

We begin to apply the strategy proposed in the last section, with the case N̂ = P1. We
first describe the compact complex surfaces which are principal elliptic bundles of algebraic
dimension one on N̂ , namely the Hopf surfaces with a(M̂) = 1. This description is in terms
of the universal cover M̃ = C2 \ {0}. Then we classify meromorphic affine connections on M̂
(Theorem 4.2). Finally we prove that a non trivial finite group of Aut(π̂) has no fixed curve
(Theorem 4.3), any minimal meromorphic affine surface M with a(M) = 1 arising from a Hopf
surface through the construction (27) is again a Hopf surface.

4.1. Hopf surfaces of algebraic dimension one. Recall the following characterization of
Hopf surfaces among elliptic surfaces (see for example [2]):

Theorem 4.1. Let M̂ be a complex compact surface. Then the following assertions are equiv-
alent:

(1) M is a Hopf surface with algebraic dimension one
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(2) The universal cover of M̂ is C2 \ {0} and M is of algebraic dimension one
(3) There exists λ ∈ C∗ with |λ|k → 0, an integer d ≥ 1 such that the following diagram

commutes:

(30) C2 \ {0}

p1
��

ρd // M̂

π
��

P1 P1

where ρd is the quotient map corresponding to the action of Γd = ⟨(z1, z2) 7→ (λz1, λ
1
d z2)⟩

on C2 \ {0} and p1 is the bundle map for the tautological bundle of P1.
The Hopf surface corresponding to some fixed λ and d ≥ 1 will be denoted by Md.

As an example, the original Hopf surface is M1 for λ = 1
2 .

4.2. Meromorphic affine elliptic bundles over the projective line. Let M̂ be a principal
elliptic bundle over N̂ = P1, with algebraic dimension one. By Theorem 4.1, there exists
λ ∈ C× d ≥ 1 such that M̂ = Md using the previous notation. In particular, the universal cover
p : M̃ −→ M̂ identifies the field of meromorphic functions on M̂ with C( z1

zd
2
), where (z1, z2) are

the canonical coordinates of C2 restricted to M̃ = C2 \ {0}. From now on we identify C(M̂)
with C(X) through this isomorphism.

Theorem 4.2. Let M̂ , λ ∈ C∗ and d ≥ 1 be as above. Denote by A the affine space A of
meromorphic affine connections on M̂ . Then:

(1) There is an isomorphism of affine spaces:

(31) C(X)4 × C(X)4 ∼−→ A
(Pij(X), Qij(X))i,j=1,2 7→ ρ(∇̃Pij ,Qij )

where ρ is the map sending any meromorphic affine connection on M̃ invariant by the
Galois group of p to the meromorphic affine connection on M̂ constructed in Lemma 2.1,
and: ∇̃Pij ,Qij is the meromorphic affine connection on M̃ whose matrix in ( ∂

∂z1
, ∂
∂z2

) is:

(32) dz1 ⊗

P11( z1
zd

2
) z

d
2
z2

1
P12( z1

zd
2
) z

d−1
2
z1

P21( z1
zd

2
) z2
z2

1
P22( z1

zd
2
) z

d
2
z2

1

+ dz2 ⊗

Q11( z1
zd

2
) z

d−1
2
z1

Q12( z1
zd

2
) z

d
2
z1

Q21( z1
zd

2
) z

d
2
z2

1
Q22( z1

zd
2
) z

d−1
2
z1


(2) In particular, there exists non-flat meromorphic affine connections on any Hopf surface

of algebraic dimension one, and exactly one holomorphic affine connection on any such
manifold, that is the standard affine structure.

Proof. Pick a meromorphic affine connection ∇ on M̂ let ∇̃ be its pullback on C2 \ {0} through
p̃ (see Definition 2.3). Then ∇̃ is by construction a meromorphic affine connection on C2 \ {0},
which is Γd-invariant, and there are meromorphic functions (fij , gij)i,j=1,2 on C2 \ {0} such that
the matrix of ∇̃ in ( ∂

∂z1
, ∂
∂z2

)is:

(33) dz1 ⊗
(
f11 f12
f21 f22

)
+ dz2 ⊗

(
g11 g12
g21 g22

)
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The invariance of ∇̃ by the Galois group of p̃ is equivalent to the system of functional equations:

(34)



λ fii(λz1, λ
1
d z2) = fii(z1, z2)

λ
1
d f12(λz1, λ

1
d z2) = f12(z1, z2)

λ2− 1
d f21(λz1, λ

1
d z2) = f21(z1, z2)

λ
1
d gii(λz1, λ

1
d z2) = gii(z1, z2)

λ
2
d

−1 g12(λz1, λ
1
d z2) = g12(z1, z2)

λ g21(λz1, λ
1
d z2) = g21(z1, z2)

Now, it is straightforward that the functions (f0
ij , g

0
ij)i,j=1,2 given by setting Pij = Qij = 1

in (32) define a solution of the above system. Given any other solution (fij , gij)i,j=1,2), the
quotients hij = fij

f0
ij

and kij = gij

g0
ij

are clearly elements of q#C(M̂). Hence ∇ = ρ(∇̃Pij ,Qij ) for
some Pij , Qij ∈ C(X). Reciprocally, given any elements Pij , Qij ∈ C(X), the meromorphic
connection ∇̃Pij ,Qij on C2 \ {0} is invariant through the action of the Galois group of p̃, so by
Lemma 2.1 there exists a unique ∇ on M̂ with p̃⋆∇ = ∇̃Pij ,Qij .

The curvature of the connection ∇̃ = ∇̃Pij ,Qij can be computed explicitely. As an example,
for Qij = 0, Pij = δ21

ij the matrix of the curvature R∇̃ in the basis ∂
∂z1

, ∂
∂z2

is

dA+A ∧A = dz1 ∧ dz2 ⊗
(

0 0
1
z2

1
0

)
̸= 0

whence the assertion.
However, when ∇̃1 is holomorphic, then Pij = Qij = 0 that is ∇̃ is the standard affine

structure on C2. □

4.3. Quotients of meromorphic affine Hopf surfaces.

Theorem 4.3. Let (M,∇) be a minimal meromorphic affine surface with a(M) = 1 and suppose
that the finite covering M̂ from (27) is a principal elliptic surface over P1. Then M̂ = M and
(M,∇) is classified in Theorem 4.2.

Proof. Let Γ be the Galois group of q : M̂ −→ M and Γ the Galois group of q : N̂ −→ N .
Suppose that q (and so q) admits a ramification point yβ ∈ N . By definition of q, this means
that there exists on M a multiple fiber Sβ = π−1(yβ) and a non-trivial element ϵ ∈ Γ fixing
Ŝβ = q−1(Sβ). Then Ŝβ is the curve obtained as the quotient of {z1 = 0} or {z2 = 0} in the
univeral cover C2 \ {0} of the Hopf surface M̂ = Md (see Theorem 4.1). These are precisely
the inverse images of 0 and ∞ through π̂ : M̂ −→ N̂ = P1. Without loss of generality (up to
exchanging z1 and z2), we suppose that Ŝβ is the quotient of {z1 = 0}. This implies that the
automorphism ϵ of N̂ covered by ϵ is an element of Aut(C) ⊂ Aut(P1). In particular, ϵ lifts to
the universal cover C2 \ {0} as an automorphism ϵ̃ of the form:

ϵ̃(z1, z2) = (µ(az1 + bz2), µz2)

for some a, µ ∈ C∗ and b ∈ C. But then ϵ̃m is an element of the Galois group of the universal cover
ρd : C2\{0} −→ M̂ for some m ≥ 1. Since this Galois group is spanned by (z1, z2) 7→ (λz1, λ

dz2),
this implies:

µm = λrd and b
m∑
k=1

µk = 0 and aµm = λr
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Since |λ| > 1 we get b = 0, so that ϵ̃(z1, z2) = (λ
1
r z1, λ

d
r z2) for some integer r. Now, by definition

of q and the remarks above, ϵ fixes the quotient of {z1 = 0}. Hence λ
d
r = λld for some integer l,

so that ϵ̃ is in fact an element of the Galois group of ρd, i.e ϵ is the identity on M̂ .
We have thus proved that q is an unramified finite cover. Hence M has no multiple fiber, so

it is a Hopf surface, in particular a principal elliptic bundle. This implies M̂ = M . □

5. Principal elliptic surfaces over an elliptic curve and quotients

In this section, following Theorem 3.2, we classify meromorphic affine connections on (holo-
morphic) principal elliptic surfaces over a one torus N̂ = C/Λ′, as well as their quotients.

Let M̂ be a complex compact surface which is a holomorphic principal elliptic bundle over
a torus. We first recall a result of Kodaira asserting that M̂ corresponds to one of the two
following examples:

Definition 5.1. A primary Kodaira surface over a torus N̂ = C/Λ′ is an elliptic surface M̂ π̂−→ N̂ , where
M̂ = G\C2, with π̂(z1, z2) = [z1] ([z1] stands for the class of z1 in C/Λ′) and the group G ⊂ Aut(C2)
spanned by ψ1, ψ2 as in Proposition 2.2.1 (for some τ ∈ H) and the automorphisms (φλ′)λ′∈Λ′ defined
by:

(35) φλ′(z1, z2) = (z1 + λ′, z2 + λ′z1 + βλ′)

for some βλ′ ∈ C.

Definition 5.2. A two torus is an elliptic surface M̂ π̂−→ N̂ where M̂ is a quotient G\C2, with π̂(z1, z2) =
[z1] and G a subgroup of translations in C2.

Theorem 5.1. Let M̂ be a complex compact surface which is a holomorphic principal elliptic
bundle over a torus. Then KM̂ ≃ OM̂ and either:

a) The first Betti number of M̂ is odd if and only if M̂ is a primary Kodaira surface.
b) The first Betti number of M̂ is even if and only if M̂ is a two torus.

Proof. Let (z1, z2) be coordinates on the universal cover M̃ of M̂ as in Proposition 2.2.2. Then
the holomorphic volume form dz1 ∧ dz2 is clearly invariant through the automorphisms ψ1, ψ2
and (φγ)γ∈π1(N̂,y). Thus, it is the pullback of a global holomorphic volume form η̂ on the covering
M defined as in (12), which is invariant through the Galois group of this covering. Hence, η̂ is
the pullback of a global holomorphic volume form on M , proving KM ≃ OM .

The second assertion is a part of the Kodaira’s classification ([12], 6.), where we eliminated
the K3 surfaces since these are elliptic surfaces over the projective line.

□

We are thus led to classify meromorphic affine primary Kodaira surfaces, meromorphic affine
two tori, and their quotients.

5.1. Meromorphic affine primary Kodaira surfaces. Let M̂ π−→ N̂ = C/Λ′ be a primary
Kodaira surface (Definition 5.1) and G the group such that M̂ = G\C2. Suppose the existence
of a meromorphic affine connection ∇ on (M,D) for some divisor D. Since π is a principal
elliptic bundle, Theorem 2.2 implies D = π∗C for some divisor on the one torus N .

Define E0 as the subspace of Λ′-elliptic functions, that is:

(36) E0 = {h ∈ M(C) | ∀λ′ ∈ Λ′, δλ′(h)(z1) = 0} where δλ′(h)(z1) = h(z1 + λ′) − h(z1)
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Recall that E0 is the subfield of meromorphic functions obtained as the extension of C by two
elements ℘(z1), ℘′(z1), where:

(37) ℘(z1) = 1
z2

1
+

∑
λ′∈Λ′\{0}

1
(z1 − λ′)2 − 1

λ′2

is Weirestrass elliptic function. Then define:

(38) E1 = {h ∈ M(C) | ∃χh ∈ HomZ(Λ′,C), ∀λ′ ∈ Λ′, δλ′(h)(z1) = χh(λ′)}

equipped with the natural linear map:

(39) χ : E1 −→ HomZ(Λ′,C)
h 7→ δ(h)

Clearly h ∈ E1 if and only if h′ ∈ E0. In particular, z1 ∈ E1, and the Weirestrass zeta function
(a primitive of ℘) :

(40) ζ ∈ E1

This implies:

Lemma 5.1. There is an exact sequence:

(41) 0 // E0 // E1
χ // HomZ(Λ′,C) // 0

which splits through the linear map:

(42) χ−1(αχζ + βχz1) = αζ(z1) + βz1

Proof. The fact ker(χ) = E0 is immediate by definition of χ. By (37), Res0(ζ) = −1, while
Res0(z1) = Res0(f) = 0 for any f ∈ E0. As a consequence, χζ = χ(ζ) and χz1 = χ(z1) are
independant. Since HomZ(Λ′,C) has dimension two, the above sequence is right-exact.

□

Consider the pullback ∇̃ = ρ̃⋆∇, which is a meromorphic G-invariant affine connection on
C2. By Theorem 2.2, the pole D̃ of ∇̃ is supported on a Λ′-invariant union of subvarieties
{z1 = yα +λ′}. There are meromorphic function fij , gij on C2, with poles supported at D̃, such
that :

(43) Mat ∂
∂z1

, ∂
∂z2

(∇̃) = dz1 ⊗
(
f11 f12
f21 f22

)
+ dz2 ⊗

(
g11 g12
g21 g22

)

By the Λ-invariance of ∇̃, the restriction of fij and gij to any fiber of z1 is constant, that is
fij , gij are functions of z1, and we will omit the second variable z2 in the sequel. Now, given any
λ′ ∈ Λ′, we have :

(44) φ⋆λ′(dz1) = dz1 and φ⋆λ′(dz2) = dz2 + bλ′dz1
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where φλ′ are the elements of G as in Definition 5.1. Hence, the invariance of ∇̃ by G rewrites
as (see [16] p.238-239):

(45) ∀λ′ ∈ Λ′,



δλ′(g12)(z1) = 0

δλ′(gii)(z1) = (−1)i+1λ′g12(z1)

δλ′(g21)(z1) = λ′(g22 − g11)(z1) − λ′2g12(z1)

δλ′(f12)(z1) = −λ′g12(z1)

δλ′(fii)(z1) = (−1)i+1λ′f12(z1) − λ′gii(z1)
+(−1)iλ′2g12(z1)

δλ′(f21)(z1) = λ′(f22 − f11 − g21)(z1)
+λ′2(g22(z1) − g11(z1) − f12(z1)) + λ′3g12(z1)

Reciprocally, any family (fij , gij)i,j=1,2 of meromorphic functions on C satisfying (45) is the
family of the Christoffel symbols for a G-invariant meromorphic affine connection on C2 , and
thus defines a meromorphic affine connection on M̂ .

Now, we compute the solutions (fij , gij) of the system of functional equations (45).

Proposition 5.1.1. Let ∇̂ be a meromorphic connection on a primary Kodaira surface M̂ as
above. Let Z = αζ + βz1 the meromorphic function from Lemma 5.1. Then the matrix of the
meromorphic affine connection ∇̃ = p⋆∇̂ in the basis ( ∂

∂z1
, ∂
∂z2

) is either:

a)

(46)

dz1 ⊗

 −(Z2 + γ11)g12 Zg12
−(Z3 + c(Z + k)2

+dZ + γ12)g12

((Z + δ22 + γ12)2

+γ22)g12



+ dz2 ⊗

 −(Z + δ11)g12 g12
−((Z + (δ22 − δ11))2

+δ21)g12
(Z + δ22)g12


with g12 a non trivial Λ′-elliptic function, γij , δij ∈ E0, and h = −2

3δ11, c = δ11 +δ22 +γ12
and d, k satisfying (49), or:

b)

(47)

dz1 ⊗


−(g11 − f12)Z

+ γ11
f12

(g11 − g22 + f12)Z2

+ (γ11 − γ22 + δ21)Z
+ γ21

−(g22 + f12)Z
+ γ22



+ dz2 ⊗

 g11 0
−(g22 − g11)Z

+δ21
g22


where g11, g22, f12, γij , δ21 are arbitrary Λ′-elliptic functions.
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Reciprocally, any matrix as above is the matrix of the pullback ∇̃ of some meromorphic affine
connection ∇̂ on M̂ through its universal covering p̃ : M̃ −→ M̂ .

Proof. Recall that the pullback of a meromorphic affine connection on M̂ to its universal covering
M̃ defines a bijection between meromorphic affine connections on M̂ and meromorphic functions
(fij , gij)i,j=1,2 on C solutions of (45). We distinguish the cases g12 = 0 and g12 ̸= 0:

a) First suppose g12 ̸= 0. In this case, the first line of (45) is equivalent to g12 ∈ E0 \ {0},
and applying Lemma 5.1 to gii

g12
shows that the second and fourth one is equivalent to

gii = (−1)i(Z + δii)g12 and f12 = (Z + γ12)g12 for some elliptic functions δ11, δ22, γ12.
Rewriting the system (45) in this case, we see that the third line is equivalent to:

(48) ∀λ′ ∈ Λ′, δλ′(g21)(z1) = δλ′(−(Z + (δ22 − δ11))2g12)(z1)

so that this line becomes equivalent to

g21 = −((Z + (δ22 − δ11))2 + δ21)g12

for an arbitrary elliptic function δ21. By the same principle, the fifth and sixth lines are
now equivalent to fii = (−1)i((Z + δii + γ12)2 + γii)g12 and f21 = −(1

3(Z + h)3 + c(Z +
k)2 + γ21)g12 for an arbitrary elliptic functions γ21 and with h, c, k ∈ E0 solutions of the
system:

(49)



3h2 + 2ck = (δ22 − δ11)2 + (δ22 + γ12)2 + (δ11 + γ12)2 + δ21 + γ11 − γ22

2c+ 3h = 4(δ22 + γ12)

3h+ c = δ22 − δ11 + γ12

We get the matrix form (46).
b) Now suppose g12 = 0. Then using the Lemma 5.1 as before we get that the five first

lines of (45) are equivalent to g12 = 0,g11, g22, f12 ∈ E0 and g21 = (g11 − g22)Z + δ21 and
fii = −(gii + (−1)if12)Z + γii for some arbitrary elliptic function γii, δ21.

Now, the last line is equivalent to:

δλ′(f21)(z1) = δλ′((g11 − g22 + f12)(Z + γ21)2 + (γ11 − γ22 + δ21)Z)

We get the matrix form (47).
□

We obtained:

Theorem 5.2. Let π : M −→ C/Λ′ be a primary Kodaira surface and p : C2 −→ M its universal
cover. Then:

(1) The pullback of meromorphic connections through p gives a bijection between the set of
meromorphic affine connections on M and the set of meromorphic affine connections on
C2 with matrix as in Proposition 5.1.1.

(2) The only holomorphic affine connections on M are the ∇ corresponding to ∇̃ with ma-
trix (47) with g22 − g11 = f12 and γ11 = γ22 constants (we recover the result by A.
Vitter, see [16], 5.b). In particular their curvature identically vanishes, and there are
flat holomorphic affine structures on M .

(3) There exists non flat meromorphic affine connections on M .

Proof. (1) By the remark below (45), the set of meromorphic affine connections on M is in
bijection with the set of ∇̃ with matrix form as in Proposition 5.1.1.
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(2) Among the matrix forms in (5.1.1), the only possible form with holomorphic one forms
as entries is (47) with holomorphic functions as coefficients for each matrix. This is
equivalent to the identities from the statement. In particular the curvature is identically
zero, and picking f11 = f22 = f21 = 0, we get that the standard holomorphic affine
structure of C2 induces a holomorphic affine structure on M , thus recovering the result
of Inoue,Kobayashi and Ochiai.

(3) In (47), pick f11 = ℘, f22 = f21 = 0. Then the curvature of ∇̃ is

R∇̃ = −℘(z1)dz1 ∧ dz2 ⊗ dz1 ⊗ ∂

∂z2
̸= 0

We thus get a non flat meromorphic affine connection on M .
□

5.2. Quotients: Meromorphic affine secondary Kodaira surfaces. We now classify the
quotients of the meromorphic affine primary Kodaira surface (M̂, ∇̂) from the previous section.
Using the description of the quotients of primary Kodaira surfaces ([13], Theorem 39), we get
the following:

Lemma 5.2. Let M π−→ N be a minimal elliptic surface with a(M) = 1, endowed with a
meromorphic affine connection, and M̂

π̂−→ N̂ its finite ramified covering as in Theorem 3.2.
Suppose M̂ has canonical trivial bundle. Then either M̂ = M or K⊗k

M = OM for some k ≥ 2.
Moreover:

(1) M = Γ\M̂ where Γ is a cyclic group acting freely and spanned by an automorphism Ψ̃
of the form

(50) Ψ̃(z1, z2) = (νz1 + θ, µz2 + az1 + b)
where ν is a k-th root of the unity (k ≤ 6), µ is a power of ν and a, b ∈ C.

(2) Moreover, if M̂ is a two torus and Γ is not trivial, µ ̸= ν in (50).

Proof. (1) If M is a principal elliptic bundle then M̂ = M by construction of M̂ . We
then suppose that M is not a principal elliptic bundle and Γ is not trivial. Moreover
kod(M) ≤ kod(M̂) = 0. Since M is minimal, by the Enriques-Kodaira classification (see
[2], Table 10 p.189), if kod(M) = 0, then K⊗k

M = OM for some integer k ≥ 2. Since KM̂ is
trivial, q : M̂ −→ M is isomorphic to the unramified covering associated with KM , and
the formula (50) follows from the proof of Theorem 38 in [13]. If kod(M) = −∞, then
M is a Hopf surface with a(M) = 1, and therefore a principal elliptic bundle through
its algebraic reduction. In particular, it has no singular fiber so that M̂ = M . This
contradicts KM̂ = 0 so necessarly kod(M) = 0. In particular K⊗k

M is trivial for some
k ≥ 1 and the formula (50) can be recovered from Theorem 39 and Theorem 40 in [13].

(2) Suppose µ = ν. Since Ψ is of order k, Ψ̃k belongs to the subgroup spanned by the
automorphisms Ψ1,Ψ2 and (φλ′)λ′∈Λ′ , where k is the order of Γ. Suppose k > 1. The
matrix of dΨ̃ in the basis ( ∂

∂z1
, ∂
∂z2

) and (Ψ̃∗ ∂
∂z1

, Ψ̃∗ ∂
∂z2

) is:(
ν 0
a ν

)
, while the matrix of any element φ in the subgroup spanned by Ψ1,Ψ2 and the φλ′ in
( ∂
∂z1

, ∂
∂z2

) and (φ∗ ∂
∂z1

, φ∗ ∂
∂z2

) is the identity.
We get immediately a = 0. Hence, Ψ̃ is the product of the automorphisms z1 7→ νz1+θ

and z2 7→ νz2 + b, with ν ̸= 1. Hence, there exists on M̃ = C2 an isolated fixed point
x̃0 = (z0

1 , z
0
2). The coordinates u1 = z1 − z0

1 and u2 = z2 − z0
2 identify a neighborhood
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Ũ of x̃0, invariant by Ψ̃, with D(0, 1) × D(0, 1). It conjugates the action of Ψ̃ and the
action of the automorphism Ψ1 of D(0, 1) ×D(0, 1) defined by:

Ψ1(u1, u2) = (νu1, νu2)

For a suitably small Ũ , p̃ restricts as a biholomorphism between Ũ and an open neigh-
borhood Û of x̂0 = p̃(x̃0). Then q(Û) is an open neighborhood of some point x0 ∈ M ,
which is isomorphic to the analytic space obtained as the quotient of D(0, 1) × D(0, 1)
by the subgroup spanned by Ψ1 as above. It is clear since ν ̸= 1, that this space is not
a smooth complex manifold. Hence µ = ν implies k = 1 that is Γ is the trivial group.

□

Definition 5.3. A secondary Kodaira surface is an elliptic surface M π−→ N which admits a primary
Kodaira surface M̂ π̂−→ N̂ as a finite unramified cover.

Hence, the classification of (non-trivial) quotients of meromorphic affine primary Kodaira
surfaces is reduced to the classification of meromorphic affine secondary Kodaira surfaces. The
two following lemmas will be useful to simplify the invariance equations corrsponding to Ψ̃⋆∇̃ =
∇̃:

Lemma 5.3. Let ν ∈ C× \ {1} and θ ∈ C such that z1 7→ νz1 + θ is an automorphism of the
elliptic curve C/Λ′, r : C/Λ′ −→ P1 the quotient by the subgroup spanned by this automorphism,
and ℘0 = Z1 ◦ r where Z1 is any primitive element in the field of meromorphic functions on P1.
Then, for any integer k ≥ 0 the set of Λ′-elliptic functions satisfying:

(51) f(νz1 + θ) = 1
νk
f(z1)

is C (℘0)℘(k)
0 .

Proof. Since C(P1) = C(Z1), the subfield C(℘0) coïncides with the set of functions of the form
f(Z1) ◦ r where P ∈ C(X). In one other hand, by definition of r, the last set is the subset
of Λ′-elliptic functions invariant through the automorphism from the statement. In particular,
taking the derivatives of the invariance equation for ℘0 gives :

(52) ℘
(k)
0 (νz1 + θ) = 1

νk
℘

(k)
0 (z1)

that is ℘(k)
0 is a Λ′-elliptic function satisfying (51). Now let f be any function as in the statement.

Then g = f

℘
(k)
0

is an Λ-elliptic function which is invariant through the automorphism from the

statement. Hence, g ∈ C (℘0) and finally f ∈ C (℘0)℘(k)
0 .

□

Lemma 5.4. Let ν be a non trivial root of the unity and θ ∈ C such that δ : z1 7→ νz1 + θ is
a finite automorphism of C/Λ′. Let Z as in Lemma 5.1, and k ≥ 1. Suppose that there are
elements (hi,1, hi,0)i=0,...,k of E0 such that:

(53)
k∑
i=0
hi,1(z1)Z i(δ · z1) + hi,0(z1)Z i(z1) = 0

Then h0,0 = 0 and hi,0 = −νihi,1 for i = 1, . . . , k. Moreover, if there exists i ∈ {1, . . . , k} with
hi,0 ̸= 0 then θ = 0.

Proof. We proceed by induction on k ∈ N≥1.
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Suppose the relation (53) holds for k = 1. If h1,1 = 0, then clearly h1,1 = h1,0 = h0,0 = 0
since Z is not an element of E0. Thus, we can assume, without loss of generality, that h1,1 = 1.
Then recalling Z(z1) = αζ(z1) + βz1 with ζ ′(z1) = ℘(z1) and taking the derivative of (53) gives
:

ν(α℘+ β)(νz1 + θ) + ∂h1,0
∂z1

Z(z1) + (α℘+ β)h1,0 + ∂h0,0
∂z1

= 0

As before this implies h1,0 = c ∈ C. But then, (53) becomes:

Z(νz1 + θ) + cZ(z1) = h0,0(z1)

If θ ̸∈ Λ′, then the left handside has residues summing to a nonzero value. This is impossible
by the second Liouville’s theorem. Hence θ ̸∈ Λ′ implies h1,1 = h1,0 = h0,0 = 0. If θ ∈ Λ′, then
Z(δz1) = νZ(z1). Again, since Z is not an element of E0, we get that (53) implies h0,0 = 0 and
h1,0 = −νh1,1.

Suppose the lemma is true for k ∈ N≥1, and suppose (53) holds for k + 1 in place of k.
Applying the operator δλ′ (see (36)) to this relation gives:

∀λ′ ∈ Λ′, λ′k+1(νk+1hk+1,1 + hk+1,0) + λ′kfk + . . .+ λ′f1 + f0 = 0

where f0, . . . , fk are C-linear combinations of hj,0, hj,1 and Z i(z1) with i, j ≤ k. In particular
we get νk+1hk+1,1 + hk+1,0 = 0 and:

(54)
k∑
i=0
hi,1(z1)Z i(δ · z1) + hi,0(z1)Z i(z1) = 0

By induction hypothesis, we get that hi,0 = νihi,1 for i = 1, . . . , k.
Finally, if there exists i ∈ {1, . . . , k} such that hi,0 ̸= 0, then the induction hypothesis implies

θ ∈ Λ′. Also, by (54), if hk+1,0 ̸= 0 and θ ̸∈ Λ′, then by the second Livouille’s theorem
hk+1,1Zk+1(νz1 +θ)+hk+1,0Zk+1(z1) have non trivial poles at the classes of 0 and θ in C/Λ′. □

Theorem 5.3. Let M π−→ N be a minimal meromorphic affine elliptic surface with a(M) = 1,
and suppose that the elliptic surface M̂ π̂−→ N̂ from (27) is a primary Kodaira surface. Denote
by p : M̃ −→ M̂ the universal covering of M̂ and (z1, z2) coordinates as in Proposition 2.2.2.
Then:

(1) M is the quotient of M̂ by a cyclic group Γ, spanned by an element Ψ, which lifts to an
automorphism Ψ̃ of M̃ of the form:

(55) Ψ̃(z1, z2) = (νz1 + θ, µz2 + bz1 + c)

where z1 7→ νz1 + θ is an automorphism of the elliptic curve N̂ = C/Λ′, µ is a power of
ν, and b, c ∈ C. Moreover ν = 1 if and only if M̂ = M .

(2) Suppose that ν ̸= 1 (i.e. M is a secondary Kodaira surface). Let ℘0 defined as in
Lemma 5.3. Then the map ∇ 7→ ∇̃ = p̃⋆q⋆∇ is a bijection between the set of meromorphic
affine connections on M and the set of meromorphic affine connections on M̃ with one
of the following matrix forms in ( ∂

∂z1
, ∂
∂z2

):
a) if µ = ν2 = 1 and θ = 0:

dz1 ⊗

 γ11 0
(γ11 − γ22 + δ21)Z

+ a
1−ν δ21 + γ21

γ22

+ dz2 ⊗
( 0 0
δ21 0

)
with Z as in Lemma 5.1, γii, δ21 ∈ C (℘0)℘′

0 and γ21 ∈ C (℘0)℘′′
0.
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b) if µ ̸= 1 or ν2 ̸= 1 or θ ̸= 0:

dz1 ⊗
(
γ11 0
γ21 γ11

)
with γ11 ∈ C (℘0)℘′

0 and γ21 ∈ C (℘0)℘′′
0,

In particular, there always exists meromorphic affine flat connections on any secondary Kodaira
surfaces.

Proof. (1) It is a consequence of Lemma 5.2 and the definition of M̂ in Theorem 3.2. Indeed,
ν = 1 implies that q : N̂ −→ N is an unramified covering, that is M have no multiple
singular fiber. By definition this implies M̂ = M .

(2) Let ∇ be a meromorphic affine connection on a secondary Kodaira surface M π−→ N ,
and ∇̃ the corresponding pullback to the universal covering M̃ of the primary Kodaira
surface M̂ . Recall that the matrix of ∇̃ in ( ∂

∂z1
, ∂
∂z2

) was described in Proposition 5.1.1.
Suppose that ∇̃ has matrix form (46) in Proposition 5.1.1 and let Ψ̃ be as in 1, so

that ν ̸= 1. Then by Lemma 5.4, the equations corresponding to Ψ̃⋆∇̃ = ∇̃ imply:

νZ2(νz1 + θ)g12(νz1 + θ) = Z2(z1)g12(z1)

Z(νz1 + θ)g12(νz1 + θ) = Z(z1)g12(z1)

µ
ν g12(νz1 + θ) = g12(z1)

Since g12 ̸= 0, using again Lemma 5.4 we get:
ν3

µ = 1 and ν2

µ = 1

so that ν = 1, that is M is a primary Kodaira surface by 1. This contradicts our
assumption on M .

Hence ∇̃ has matrix form (47) in Proposition 5.1.1. In this case, the equations corre-
sponding to Ψ̃⋆∇̃ = ∇̃ are:

(56)



µgii(νz1 + θ) = gii(z1)

f12(νz1 + θ) = f12(z1)

−ν(g22 − g11)(z1)(Z)(νz1 + θ) = (g22 − g11)(z1)Z(z1)
+µνδ21(νz1 + θ) +δ21(z1)

−(gii + (−1)iνf12)(z1)Z(νz1 + θ) = −(gii + (−1)if12)(z1)Z(z1)
+νγii(νz1 + θ) + a

µgii(z1) +γii(z1)

ν(g11 − g22 + νf12)(z1)Z2(νz1 + θ) = (g11 − g22 + f12)(z1)Z2(z1)
+ − aZ(g11 − g22)(νz1 + θ)
+ν2(γ11 − γ22 + δ21)(νz1 + θ)Z(νz1 + θ) +(γ11 − γ22 + δ21)(z1)Z(z1)
+ν2γ21(νz1 + θ)) + aδ21(νζ + θ) +γ21(z1)

Using Lemma 5.4 we get the following restrictions. The third line of (56) implies:

(57) δ21(νz1 + θ) = 1
µν
δ21(z1)
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The fourth line implies:

(ν − 1)gii = (−1)i(1 − ν2)f12

In the same way, the fifth line implies:

(ν2 − 1)(g11 − g22) = (1 − ν3)f12

Since ν ̸= 1, we get:

(58) gii = f12 = 0

The fourth line also implies:

(59) γii(νz1 + θ) = 1
ν
γii(z1) − a

µν
gii(z1) = 1

ν
γii(z1)

Finally the fifth line of (56) implies:

(60) γ21(νz1 + θ) = 1
ν2γ21(z1) − a

µν2 δ21(z1)

We distinguish between two cases:
• If µ ̸= ν, then γ = − a

ν2−µν δ21(z1) is a solution of (60). Hence, in view of Lemma 5.3,
(60) is equivalent to:

(61) γ21 ∈ − a

ν2 − µν
δ21(z1) + C(℘0)℘′′

0

• If µ = ν, then either δ21 = 0 and Lemma 5.3 shows that (60) is equivalent to
γ21 ∈ C(℘0)℘′

0, or:
γ21
δ21

(νz1 + θ) = (ν − 1
ν2 )γ21

δ21
(z1) − a

ν

In the second subcase, since z1 7→ νz1 + θ has finite order k with νk = 1, we get
(ν− 1

v2 )k−1+. . .+(ν− 1
ν2 )+1 = 0. Since moreover k = 2 or 3, we get a contradiction.

Hence if µ = ν then:

(62) δ21 = 0 and γ21 ∈ C(℘0)℘′
0

Moreover, the fifth line and Lemma 5.4 imply:

ν(γ11 − γ22 + 1
µ
δ21)(z1) = 1

ν
(γ11 − γ22 + 1

µ
δ21)(z1)

and θ ∈ Λ′ whenever δ21 ̸= 0 or γ11 ̸= γ22. Comparing with (57) and (59), the above
equality implies:

(63) (ν2 = 1 and µ = 1 and θ = 0) or γ11 − γ22 = δ21 = 0

We have proved that ∇̃ has matrix form as described in the statement.
Reciprocally, suppose that Ψ̃ is the lift of the generator of Γ as in 1. Suppose also tat

∇̃ is a meromorphic affine connection with matrix form as in the statement. Then (56)
is clearly satisfied, i.e. ∇̃ is Ψ̃-invariant, and M = Γ\M̂ is a secondary Kodaira surface.
This achieves the proof since the matrix form in case b) also appears in case a), and the
torsion and curvature both vanish when γ11 = γ22 = 0 in this case.

□
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5.3. Two tori. In view of Theorem 5.1, to achieve the case N̂ = C/Λ′ (see Theorem 3.2), it
remains to classify meromorphic affine two tori with a(M̂) = 1 and their quotients.

Let M̂ π̂−→ C/Λ′ be a two torus with a(M̂) = 1, and E0 the subfield of Λ′-elliptic mero-
morphic functions. Let p̃ : M̃ −→ M̂ be the universal covering, with coordinates (z1, z2) as in
Proposition 2.2.2. Then the automorphisms (φλ′)λ′∈Λ′ are translations in these coordinates.

Hence, for any meromorphic affine connection ∇̃ on M̃ , with matrix:
dz1 ⊗ (fij)i,j=1,2 + dz2 ⊗ (gij)i,j=1,2

the condition φ⋆λ′∇̃ = ∇̃ is equivalent to fij , gij ∈ E0.
We immediately get:

Theorem 5.4. Let M̂ be a two torus with a(M̂) = 1 and p̃ : M̃ −→ M̂ its universal covering with
global coordinates (z1, z2) as in Proposition 2.2.2. Then the map from the set of meromorphic
affine connections on M̂ to E8

0 obtained by mapping ∇̂ to the coefficients (fij , gij) of the matrix
of ∇̃ = p̃⋆∇̂ in ( ∂

∂z1
, ∂
∂z2

) is a bijection.

5.4. Quotients of meromorphic affine two tori.

Theorem 5.5. Let (M,∇) be a minimal meromorphic affine complex compact surface of alge-
braic dimension one, and suppose that the finite ramified covering (M̂, ∇̂) from Equation 27 is
a meromorphic affine two torus (of algebraic dimension one). Then either M is a two torus,
or (M,∇) is a meromorphic affine secondary Kodaira surface, and such pairs were classified in
Theorem 5.3.

Proof. If M is not a two torus, then the finite covering q : M̂ −→ M and therefore KM is not
trivial. The proof of point 1. in Lemma 5.2 only relies on the fact that KM̂ is trivial, which
is still satisfied in our situation. As a consequence, we get that the canonical global section
(dz1 ∧ dz2)⊗k of K⊗k

M̃
, where k is the order of ν and M̃ is the universal cover of M̂ , is invariant

by the lift Ψ̃ of any automorphism of q : M̂ −→ M . Hence K⊗k
M is trivial. By Theorem 38 of

[13], this implies that a finite unramified cover of M is either a two torus or a primary Kodaira
surface. In the second case, since KM is not trivial, we immediately get that M is a secondary
Kodaira surface. In the first case, we have kod(M) = 0 and a(M) = 1. By the Enriques-Kodaira
classification (see [2], Table 10 p.189), M is either a secondary Kodaira surface, a two torus,
or a K3 surface. Again, since KM is not trivial, the only possiblity is a secondary Kodaira
surface. □

6. Principal elliptic surface over an hyperelliptic compact Riemann surface
and quotients

We finally classify meromorphic affine principal ellitpic surfaces over an hyperelliptic compact
Riemann surface and their quotients.

6.1. Non-existence on principal elliptic surfaces with b1(M̂) even. Let M̂ −→ N̂ be a
principal elliptic surface over a Riemann surface N̂ of genus g ≥ 2, with a(M̂) = 1. Denote by p :
H×C −→ M̂ its universal cover. From Proposition 2.2.2, p is the quotient by the automorphisms
Ψ1,Ψ2 corresponding to a lattice associated with the fibers of M̂ , and by the automorphisms
φγ (γ ∈ π1(N̂ , y)) lifting the desk transformations of the universal cover p : H −→ N̂ . The later
are of the form:

φγ(z1, z2) = (aγz1 + bγ
cγz1 + dγ

, z2 + fγ(z1))

in suitable global coordinates z1 on H and z2 on C, with fγ a holomorphic function on H.
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Proposition 6.0.1. Let M̂ −→ N̂ be a principal elliptic surface as above. If M̂ admits a
meromorphic affine connection ∇̂, then b1(M̂) is odd.

Proof. By [11], Theorem 4.17 applied to the basic member

B := H × C/Λ

in the same family as M̂ , we get that either b1(M̂) is odd or M̂ is a deformation of B. Suppose
that b1(M̂) is even. In particular, there exists a diffeomorphism between the underlying smooth
manifolds:

(64) M̂R φ //

��

BR

��
N̂R N̂R

In particular φ induces an isomorphism of π1(N̂ , y)-manifolds between the universal covers of
M̂ and B. Pick U ⊂ N̂ such that there exists a section of p over π̂−1(U), and thus a section of
the universal cover of B over the corresponding open subset U × V in B. Then, in the induced
coordinates (z1, z2) on π̂−1(U) and (z1, u2) on U × V , φ has the expression:

(65) φ(z1, z2) = (z1, z2 + fU (z2))

for some C∞ function fU on U . We fix U and omit the subscript U in the sequel.
Now, on B, we can consider a meromorphic affine connection ∇0 induced by the canonical

holomorphic affine connection on C/Λ and any meromorphic affine connection on N̂ , and denote
by S0 the pole. Then ∇0 extends canonically as a connection on the sheaf TC(B \ S0) =
TB|B\S0 ⊗C∞

M\S,C, where C∞
B\S0,C stands for the sheaf of complex-valued differentiable functions.

We can thus consider the smooth connection

∇0 := φ⋆∇0

on the sheaf TC(M̂ \S) := TM̂ |M̂\S ⊗ C∞
M̂\S,C where S = φ−1(S0). In the basis ∂

∂z1
, ∂
∂z1

, ∂
∂z2

, ∂
∂z2

induced by coordinates as above, the matrix of the pullback ∇̃0 := p⋆∇0 is:

(66) dz1 ⊗
(

a(z1) 0
df · a(z1) + ∂

∂z1
df(z1) 0

)
+ dz1 ⊗

(
0 0

∂
∂z1

df(z1) 0

)
where a is a meromorphic function on H, identified with a C∞ function a : H −→ gl2(R) and:

df(z1) = 1
2

 ∂f
∂z1

∂f
∂z1

∂f
∂z1

∂f
∂z1


Suppose that ∇̂ is a meromorphic affine connection on M̂ , with poles at D, and let S′ = S+D.
Denote by ∇̂C (resp. ∇̃C) the unique extension of ∇̂ to a smooth connection on the sheaf
TC(M \ S) (resp. its pullback to the universal cover H × C). Then the matrix A of ∇̃C in
∂
∂z1

, ∂
∂z1

, ∂
∂z2

, ∂
∂z2

satisfies:

(67) ∂

∂z1
⌟A = ∂

∂z2
⌟A = 0

In one other hand, the difference ∇̃C − ∇̃0 = p⋆(∇̂C − ∇0) is a Γ-equivariant section of the
C∞
M̂\S′,C-sheaf TC(M̂ \ S′)∗ ⊗ End(TCM̂ \ S). The matrix of this endormorphism in the above
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basis as:

(68) dz1 ⊗ (f (1,0)
i,j )i,j=1,2 + dz2 ⊗ (g(1,0)

i,j )i,j=1,2

dz1 ⊗ (f (0,1)
i,j )i,j=1,2 + dz2 ⊗ (g(0,1)

i,j )i,j=1,2)

where f (p,q)
i,j and g

(p,q)
i,j are matrices with global sections of C∞

M̂\S′,C as entries. Using (66) and
(67), we get:

(69) f
(0,1)
21 = − ∂

∂z1
df(z1)

But f is a Γ-invariant function on H, so that, for any γ ∈ Γ:

df(γz1) =

 1
(cγz1+dγ)2 0

0 1
(cγz1+dγ)

2

 · df(z1)

In particular:

∂

∂z1
df(γz1) =

(
0 0
0 − 2cγ

(cγz1+dγ)3

)
· df(z1) +

 1
(cγz1+dγ)2 0

0 1
(cγz1+dγ)

2

 · ∂

∂z1
df(z1)

Comparing with (69) and recalling the Γ-invariance of (68), we get that for any γ ∈ Γ:

− 2
(cγz1 + dγ)3

∂f

∂z1
= 0

Hence f is a holomorphic function on H, which precisely means that φ is a biholomorphism.
This contradicts the hypothesis a(M̂) = 1.

Hence M̂ does not admit any meromorphic affine connection. □

6.2. Meromorphic differential operators on a root of the canonical bundle and pro-
jective structures. We will see in the next subsection that a family of meromorphic affine
connections on a principal elliptic bundle M̂ π̂−→ N̂ , with g(N̂) ≥ 2 and b1(N̂) odd, can be
parametrized by meromorphic projective structures on N̂ . Therefore, we introduce in this sub-
section notations and basic facts that will be used.

Let N̂ be a complex manifold, and L be a line bundle on N̂ , identified with its sheaf of sections.
We can consider, for any r ≥ 0, its sheaf of r-jets JrL (we refer to [1] and [14] Definition 2.21 for
a definition). These sheaves are locally free ON̂ -modules and fit in exact sequences for r ≥ 1:

(70) 0 // (Ω1
N̂

)⊗r ⊗ L // JrL πr−1
// Jr−1L // 0

where πr−1 stands for the truncation map. These maps generalize by compositions to maps:
(71) πsr : JrL −→ JsL
for s ≤ r. Each JrL contains the subsheaf spanned by the equivalence classes of local sections
of L with the same r-jets, and so there are morphisms of CN̂ -sheaves:

(72) jr : L −→ JrL

Given a divisor C of N̂ , A meromorphic differential operator of order two and pole at C on L is
a morphism of ON̂ -modules δ : J1L(∗C) −→ J2L(∗C) such that π2

0 ◦ δ = π0
1.

Suppose now that N̂ is a compact Riemann surface, and Γ′ is a subgroup of PSL2(R) such
that N̂ = Γ′\H and p : H −→ Γ′\H is the universal cover of N̂ . Suppose that there exists
a Γ′-linearization α = (αγ)γ∈Γ′ of OH such that L = (p∗OH)α (see Definition 2.2). Then the
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linearization α induces isomorphisms j2(αγ) : j2(OH) −→ γ∗j2(OH), and the action of γ gives a
natural linearization by differentials on Ωk

H. We obtain isomorphisms:

(73) J2αγ : J2OH −→ γ∗J2OH

defininig a natural linearization J2(α) on J2OH. Since p is a unramified covering, J2L coïncides
with the sheaf (p∗J

2OH)J2α.
Now, fix Γ′ as before, identified with a subgroup of SL2(R), and let α = (αγ)γ∈Γ′ be defined

by:

(74) αγ : OH −→ γ∗OH
f 7→ (cγz1 + dγ)f ◦ γ−1

and define L to be the corresponding line bundle on N̂ through the equivalence between linearized
modules and modules on the quotient:
(75) L = (p∗OH)α

Consider the natural trivialization
Ψ : J2OH

∼−→ O⊕3
H

given by the global basis (1 ⊗ dz⊗2
1 , j1(1 ⊗ dz1), j2(1)). Then for any γ ∈ Γ, J2αγ is the

isomorphism given by the commutative diagram:

(76) J2OH
∼
Ψ

//

J2αγ

��

O⊕3
H

ζ 7→(ζ◦γ−1) tA2(z1)
��

γ∗J2OH ∼
γ∗Ψ // γ∗O⊕3

H

where:

A2(z1) :=


1

(cγz1+dγ)5 − 3cγ

(cγz1+dγ)4
2c2

γ

(cγz1+dγ)3

0 1
(cγz1+dγ)3 − cγ

(cγz1+dγ)2

0 0 1
cγz1+dγ


Similarly, J1L can be described by the linearization corresponding to the lower right minor
A1(z1) of A2(z1) as above.

Then the equivalence between linearized sheaves and sheaves on the base gives a bijection be-
tween order-two meromorphic differential operators δ : J1L(∗C) −→ J2L(∗C) and meromorphic
differential operators δ̃ : J1OH(∗C̃) −→ J2OH(∗C̃) which are Γ′-equivariant as morphisms of
linearized sheaves. We will denote by PL the set of meromorphic differential operators of order
two on L, endowed with the natural structure of an ON̂ (∗C)-vector space (here ON̂ (∗C) stands
for the field of global meromorphic functions which are holomorphic outside from C). Thus, any
δ ∈ PL can be identified with the matrix of the corresponding meromorphic differential operator
δ̃ = p∗δ on OH, in the basis (1 ⊗ dz1, j

1(1)) of J1OH and (1 ⊗ dz⊗2
1 , j1(1 ⊗ dz1), j2(1) of J2OH:

(77) ∆(z1) =

b(z1) c(z1)
ν(z1) a(z1)
λ(z1) µ(z1)


satisfying:
(78) A2(z1)∆(γz1)A−1

1 (z1) = ∆(z1)
The meromorphic affine connections we will study will be first shown to be in bijection with the
following operators:
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Definition 6.1. Let L as in (75) and PL as above. Then PL,++ is the subspace of the elements δ ∈ PL
satisfying:

(i) δ(ker π0
1) ⊂ ker π0

2(∗C) (equivalently the matrix (77) satisfies λ = 0)
(ii) The matrix (77) satisfies µ = ν

The interest lies in the following geometric description of PL,++:
Proposition 6.0.2. The subspace PL,++ is isomorphic, as a ON̂ (∗C)-affine space, to the prod-
uct:

ON̂ (∗C) × SN̂,C
where SN̂,C is the ON̂ (∗C)-affine space of meromorphic projective structures on L with poles at
C.
Proof. Consider the hyperplane PL,1 ⊂ PL,++ of elements such that the matrix (77) satifies
µ = ν = 1. It is the subset of elements δ ∈ PL,++ with the property:

π0
1 ◦ δ ◦ j1 = IdL

These are exactly the splittings of the meromorphic one jet sequence associated with the vector
bundle J1L, i.e. meromorphic connections on J1L with pole at C. This in particular includes
the meromorphic connections inducing the canonical connection on det(J1L) = ON̂ , and induc-
ing an isomorphism between ker π0

1(∗C) and J1L/ker π0
1(∗C). By [4], Theorem 4.7, the these

meromorphic connections are in bijection with the nonempty set of SN̂,C meromorphic projec-
tive structures on N̂ with poles at C. We then pick δ1 ∈ PL,1 and use the projection of PL,++
on PL,0 = ker(ν) with respect to δ1, to obtain an isomorphism:

PL,++ ≃ ON̂ (∗C)δ1 ⊕ PL,0

Finally, PL,0 is the space of translations of PL,1, so it is isomorphic, as an affine space, to
SN̂,C . □

In order to study the quotients of meromorphic affine principal elliptic bundles, we will also
need to interpret the line bundle (75) geometrically. This can be made using the theory of
meromorphic opers (see [4], Theorem 4.7) that we recall now.

Let P1 be the complex projective line seen as the homogeneous complex manifold G/P ,
where G = SL2(C) and P the subgroup stabilizing the line Ce1 ⊂ C2 through the standard
representation ((e1, e2 is the canonical basis of C2). Let us introduce a notation. If p : E −→ M
is a holomorphic P -principal bundle and ρ : P −→ GL(V) a P -representation, we let:
(79) E(V) = (p∗OE ⊗ V)P

where the action of P on p∗OE ⊗ V is given by
b · p∗(f ⊗A) = p∗(f ◦ b−1 ⊗ ρ(b)(A))

Then we have a natural isomorphism (see for example [15]):
(80) OP1(1) ≃ G(Ce1)
where G is seen as the total space of the holomorphic P -principal bundle pG/P : G −→ G/P .
In the rest of the paper we will identify these two modules. In particular there is a natural left
G-linearization (see Definition 2.2) of this module defined for any g ∈ G, by:

(81) ϕg : G(Ce1) −→ g∗G(Ce1)
pG/P∗ s̃ 7→ pG/P∗ s̃ ◦ g−1

Now we can restrict this line bundle to H ⊂ G/P , and we get a Γ′-linearisation by considering
the isomorphisms (ϕγ)γ∈Γ′ as above. Then:
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Lemma 6.1. The line bundle L defined as in (75) is naturally isomorphic to L1 = (p∗G(Ce1)|H)(ϕγ)γ∈Γ′ .

Proof. It is sufficient to find a trivialization of L1 such that the isomorphisms ϕγ identifies
with the isomorphisms αγ as in (74). For, recall that there exists a global holomorphic section
σ0 : H −→ G given by:

σ0(z) =
(

1 0
z 0

)
Such a section defines a trivialization of any module obtained as a representation of G, in
particular:

(82) ψσ0 : G(Ce1)|H −→ OH
[(σ0, fe1)] 7→ f

Now we have:

σ0(γz) = γ · σ0(z) ·
(
cγz + dγ 0

0 1
cγz+dγ

)
This implies the following commutative diagram for any γ ∈ Γ′:

G(Ce1)|H
ψσ0
��

ϕγ // γ∗G(Ce1)|H
γ∗ψσ0
��

OH αγ

// γ∗OH

□

On the model P1 = G/P , the sheaf of one-jets J1(L∗
G/P ), where LG/P = G(Ce1), is naturally

isomorphic to G(C2) (it can be seen by considering trivialisations of G −→ G/P as in the proof
of Lemma 6.1). In particular, it contains LG/P as a locally free submodule. Since G(C2) is by
definition the sheaf of sections of a homogeneous bundle on G/P ,there is a natural linearization
for the left action of G (see Definition 2.2) on this sheaf of OG/P -modules, denoted by (ϕJg )g∈G.
Moreover, it admits a global trivialization induced by the two P -equivariant maps s̃i : G −→ C2

defined by:

s̃i(
(
a b
c d

)
) =

(
a b
c d

)−1
ei

for i = 1, 2. The corresponding flat connection of trivial module ∇J
G/P on G(C2) is invariant

through the isomorphisms (ϕJg )g∈G since the above functions are invariant through these iso-
morphisms. Moreover, since G is a SL2(C)-reduction of the bundle of basis of G(C2), there is a

natural isomorphism
2∧
G(C2) ≃ OP1 and the canonical connection coïncides with the connection

induce by ∇J
G/P . The key property of ∇J

G/P is that the induced morphism of line bundles:

(83) [∇J
G/P ] : LG/P −→ KP1 ⊗G(C2)/LG/P

is an isomorphism. This indeed enables to recover that

(84) L⊗2
G/P = LG/P ⊗ (G(C2)/LG/P ) ⊗ KP1 = KP1

that is LG/P = OP1(1). The restriction of ∇J
G/P over H is Γ′-invariant, so it induces a connection

∇̂J
0 on:

(85) E := (q∗G(C2)|H)Γ′
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Since the SL2(C)-reduction of G(C2) is also Γ′-invariant, we get
2∧

E = ON̂ . By construction,
we have the same isomorphism as in (83), so we get:

(86) E = J1(L∗)

and recover that

(87) L⊗2 = KN̂

Definition 6.2. The pair (E , ∇̂J
0 ) is called the holomorphic SL2(C)-oper corresponding to the projective

structure N̂ = Γ′\H.

6.3. Principal elliptic surfaces with b1(M̂) odd. Let M̂ −→ N̂ be a principal elliptic surface
over a Riemann surface N̂ of genus g ≥ 2, with a(M̂) = 1 and odd first Betti number. Denote
by p : M̃ −→ M̂ and p : H −→ N̂ the respective universal covers, and (z1, z2) global coordinates
on M̃ as in Proposition 2.2.2. We will also use the notation Γ = π1(N̂ , y0) for the fundamental
group of N̂ at a fixed point.

By [8], Proposition 5.2, up to finite unramified cover of the elliptic surface M̂ , for any γ ∈
π1(N̂ , y0), the automorphism φγ from Equation 10 is of the form:

(88) φγ(z1, z2) = (aγz1 + bγ
cγz1 + dγ

, z2 + logγ(cγz1 + dγ))

for some
(
aγ bγ
cγ dγ

)
∈ SL2(R) and some determination logγ of the logarithm on cγH + dγ .

Moreover, there exists a holomorphic affine connection ∇̂0 on M̂ . As in the previous sections,
taking the matrix of the pullback p⋆∇̂ − p⋆∇̂0 in ( ∂

∂z1
, ∂
∂z2

) gives a bijection between the set
of meromorphic affine ∇̂ connections on M̂ and the set of solutions (fij , gij) of the following
system of functional equations, for any γ ∈ π1(N̂ , y0):

(89)



g12(z1) = (cγz1 + dγ)2g12(γz1)

gii(z1) = gii(γz1) + (−1)icγ(cγz1 + dγ)g12(γ · z1)

g21(z1) = 1
(cγz1+dγ)2 g21(γz1) + cγ

cγz1+dγ
(g22 − g11)(γz1) − c2

γg12(γz1)

and:

(90)



f12(z1) = f12(γ · z1) + cγ

cγz1+dγ g12(γz1)

fii(z1) = 1
(cγz1+dγ)2 fii(γz1) + (−1)i cγ

cγz1+dγ
f12(γz1) + cγ

cγz1+dγ
gii(γz1)

f21(z1) = 1
(cγz1+dγ)4 f21(γz1) + cγ

(cγz1+dγ)3 (f22 − f11)(γz1)

− c2
γ

(cγz1+dγ)2 f12(γz1) + cγ

cγz1+dγ
g21(γz1)

We now describe, in terms of meromorphic projective structures on N̂ , the affine subspace
AM̂,+ of meromorphic affine connections on M̂ whose associated solutions (fij , gij) of the above
system satisfy:

(91) g12 = g21 = f12 + g11 − g22 = 0
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Then:

Theorem 6.1. Let M̂ be a principal elliptic bundle with odd first Betti number over a complex
compact curve N̂ with genus g(N̂) ≥ 2. Let C be an effective divisor of N̂ and ON̂ (∗C) the field
of global meromorphic functions with poles in C. Then there exists a non-empty ON̂ (∗C)-affine
subspace AM̂,+ in the space of meromorphic affine connection on M̂ with poles at C, which is
isomorphic to the ON̂ (∗C)-affine space:

ON̂ (∗C)2 × SN̂,C

where SN̂,C is the affine space of meromorphic projective structures on N̂ with poles at C.

Proof. Let PL,++ be the subspace of meromorphic differential operators from Definition 6.1.
Then the property (78) implies that the following map is well-defined:

Ψ : A+
N̂,C

−→ ON̂ (∗C) × PL,++

∇̂ 7→ (g11 ,

 f22 f21
g22 − g11 −1

3f11
0 g22 − g11

)

It is clearly ON̂ (∗C)-linear and bijective. The statement then follows from Proposition 6.0.2. □

6.4. Quotients of principal elliptic bundles over higher genus curves. We now classify
the minimal meromorphical affine surfaces with a(M) = 1 such that the associated finite cover
M̂ is a principal elliptic bundle with odd first Betti number over a compact curve with genus
g(N̂) ≥ 2.

Let L the line bundle as in (75). We reemploy notations from subsection 6.2 and denote
by R(L) the C∗-principal bundle whose fiber over ŷ ∈ N̂ is the set of non-zero vectors of the
fiber L(ŷ). Then it is immediate that R(L) is the quotient of R(G(Ce1)|H) by the action of Γ′

corresponding to the isomorphisms ϕγ from (81). Moreover, we have a natural isomorphism:

R(G(Ce1)|H) = G|H/P+ ⊂ G/P+

where P+ is the kernel of the representation of P on Ce1 (i.e. the unipotent radical of P ).
Through this identification, the action of Γ′ is the natural left action of Γ′ ⊂ G on G/P+ (note
that G/P+ is biholomorphic to an open subset of C2 \ {0} invariant through Γ′ for the standard
action).

Let Z ≃ ∆ ⊂ C∗ be a lattice, identified with a subgroup of the standard torus of G (namely
the diagonal elements). Since the right action of ∆ on G and the left action of Γ′ on G commute,
there is an induced right action of ∆ on R(L) covering the identity on N̂ , and the quotient map
is a unramified cover of the complex manifold M̂ :

(92) R(L)

p∆}}
pR

��

M̂

π̂ ""
N̂

where p∆ is the quotient map for the action of ∆.
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Theorem 6.2 ([8], Proposition 5.2). Let M̂ π̂−→ N̂ be a principal elliptic fiber bundle over a
compact Riemann surface with g(N̂) ≥ 2. Then, up to a finite Galois cover, there exists a lattice
Z ≃ ∆ ⊂ C∗ such that M̂ is the complex surface obtained as in (92).

In particular, we get the following:

Lemma 6.2. Let M̂ −→ N̂ be a principal elliptic surface as in (92). Let qR : (G/P+)|H −→
R(L) be the map of the quotient by the left action of Γ′ ⊂ G. Then any automorphism φ of
M̂ lifts through p∆ ◦ qR as the automorphism of G/P+ corresponding to the left action of an
element A ∈ SL2(C).

Proof. The composition p∆ ◦ qR is an unramified cover of M̂ , and any automorphism φ of
π̂ : M̂ −→ N̂ admits a lift to the total space of this cover φ̃. In particular, φ̃ normalizes the
Galois group of qR, that is Γ′, that is :
(93) ∀γ ∈ Γ′, ∃γ′ ∈ Γ′, φ̃ ◦ γ = γ′ ◦ φ̃
Such an automorphism covers an automorphism of H, that is the action of some A1 ∈ SL2(R).
Hence, through the trivialization G/P+ ≃ H × C∗ induced by the section σ0 from the proof of
Lemma 6.1, we have:

φ̃(z, b) = (A1 · z, λ(z)b)
for some holomorphic function λ : H −→ C∗. Then (93) rewrites as:

(A1 · γ · z , λ(γ · z)(cA1γ · z + dA1)−1(cγz + dγ)−1b)

= (γ′ ·A1 · z , λ(z)(cγ′A1 · z + dγ′)−1(cA1z + dA1)−1b)

In particular γ′ = A1γA
−1
1 so that, using that γ 7→ αγ is an automorphy factor, λ is a Γ′-

invariant holomorphic function, that is a constant. This implies the first assertion. The second
one is obtained by applying Lemma 2.1. □

Using these facts, we can prove:

Proposition 6.2.1. Let M̂ π̂−→ N̂ be a principal elliptic bundle as in (92). Let q : N̂ −→ N

be a Galoisian finite cover such that M̂ is the pullback of a an elliptic surface π : M −→ N .
Suppose that the sum of the multiplicities (mα)α∈I of q at the ramification points is a multiple
of the degree k = deg(q), and that the Galois group Γ of q fixes the ramification points. Then q
is an unramified cover.
Proof. Let Γ be the Galois group of q. We identify Γ with a subgroup of SL2(R) normalizing
the holonomy Γ′ of the uniform projective structure on N̂ as described before. By Lemma 6.2,
the action of the Galois group Γ of q on N̂ lifts to a left action of Γ on the cover R(L) q∆−→
M̂ (see (92)), obtained from the natural left action of Γ on G. In particular, there is an
induced Γ-linearization (see Definition 2.2) (ϕJϵ )ϵ∈Γ on J1(L∗). By construction, the holomorphic
SL2(C)-oper (E , ∇̂J

0 ) = (J1(L∗), ∇̂J
0 ) associated with the projective structure N̂ = Γ′\H (see

Definition 6.2) is invariant by this Γ-linearization.
Consider the line bundle

(94) L′ = (q∗L)Γ

on N . It is a submodule of the locally free ON -module
(95) E ′ = (q∗E)Γ

We prove the existence of a holomorphic connection ∇J
0 on E ′ with the same properties as

in (83). For, we first prove that the universal cover of N factorizes by q : N̂ −→ N . Pick a



36 ALEXIS GARCIA

system of generators γ1, . . . , γr for Γ. By Lemma 6.2, these generators lifts through p∆ ◦ qR
to the left actions of elements A1, . . . , Ar ∈ SL2(R) on G/P+|H. By definition of Γ, N is the
quotient of H by the subgroup Γ′′ ⊂ SL2(R) spanned by the Aj and Γ′. Suppose that there
exists j ∈ {1, . . . , r} such that the Möbius transformation corresponding to Aj fixes some z ∈ H.
Recall that γj fixes the fibers of p(z) ∈ N̂ in M̂ = R(L)/∆. Since γj have finite order and ∆ ≃ Z,
the induced action on R(L) fixes the fiber of p(z). Hence Aj fixes the fiber of z in G/P+|H. Thus
Aj = Id, that is Γ′′ acts freely and properly discontinusly, in other words H −→ Γ′′\H = N is
the universal cover. Since the Aj normalizes Γ′, we have a factorization:

(96) H
q′′

//

p

��

N

N̂

q
??

where q′′ is the quotient by Γ′′. In particular, E ′ = (q′′
∗G(C2)|H)Γ′′ and the quotient of G|H by

Γ′′ is a holomorphic P -reduction of its bundle of basis.
Moreover, the holomorphic connection ∇J

G/P is invariant by the action of Γ′′, and since q′′

is an unramified cover, Lemma 2.1 implies the existence of an induced holomorphic connection
∇′J on E ′. By construction, the induced morphism:

[∇′J ] : L′ −→ Ω1
N ⊗ E ′/L′

is a non-trivial morphism. We denote by S the effective divisor corresponding to the line bundle
End(L′,KN ⊗ E/L′).

In the sequel, we employ the notation deg(L) =
∫
N c1(L) for any line bundle L on a compact

complex curve N . Using deg(E ′) = 0 (by the existence of a SL2(C)-holomorphic reduction of
its bundle of basis), we get:

(97) deg(S) = deg(KN ) − 2deg(L′)

In one other hand, consider the sheaf of sections of the pullback line bundle, that is ON̂ ⊗ q∗L′.
Since q∗L′ is by definition the subsheaf of L spanned by the sections invariant by the action of
Γ, we have a well-defined non-trivial morphism of modules:

(98) ι : ON̂ ⊗ q∗L′ −→ L
f ⊗ s 7→ fs

Recall that the action of Γ on M̂ = ∆\R(L) fixes the fibers of the ramification locus of q. Hence,
in a neighborhood Uα of any component Dα of the ramification locus of q in N̂ , we can find a
coordinate z and a trivialization of L, such the action of the automorphism ϵ ∈ Γ corresponding
to a generator of π1(Uα \Dα, ŷ), on a section s ∈ L(Uα), is given by:

ϵ · s(z) = νϵs ◦ ϵ−1(z)

for some νϵ ∈ ∆. But ϵ has finite order mα and ∆ contains no non-trivial cyclic element, so
ν = 1. As a consequence, the section corresponding to 1 in the choosen trivialisation of L is a
local invariant section of L on Uα. This in turn implies that Equation 98 is an isomorphism.
Hence, since q is a finite cover of degree k, we get:

(99) deg(L) = deg(ON̂ ⊗ q∗L′) = kdeg(L′)

Now, by the Riemann-Hurwitz formula, we also have:

(100) −deg(KN̂ ) = −kdeg(KN ) + |I| −
∑
α∈I

mα
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By (99), and (97), we also have:

−deg(KN̂ ) = −2deg(L)

= −2k deg(L′)

= −k deg(KN ) + k deg(S)

Combining the above equality with (100) we get:

k deg(S) +
∑
α∈I

mα = |I|

By the assumption on the degree k of q the above equality rewrites as:

|I| = k′∑
α∈I

mα

with k′ ≥ 0 and mα ≥ 2 for any α ∈ I. This is possible only if k′ = 0, i.e I = ∅ and q is
unramified.

□

Theorem 6.3. Let (M,∇) be a minimal meromorphic affine surface with a(M) = 1 and (M̂ π̂−→
N̂ , ∇̂) the meromorphic affine principal elliptic bundle obtained as in (27). If the genus g(N̂) ≥
2, then M̂ = M .

Proof. By Proposition 6.2.1, M̂ has an odd first Betti number. Hence, by Theorem 6.2, up to
finite Galois cover, it is a quotient of R(L) by a lattice Z ≃ ∆ ⊂ C∗ as in (92). We can assume
from now on that M̂ coïncides with this Galois cover.

By construction, the Galois cover q : N̂ −→ N (resp. q : M̂ −→ M) in (27) is a composition:

q = q′ ◦ q1 (resp.q = q′ ◦ q1)

where q′ : N̂1 −→ N is a composition of cyclic covers and q1 is an unramified finite cover (the
maps q′ and q1 are the corresponding pullbacks of elliptic bundles).

Denote by Γ1 ⊂ Γ the Galois group of q1, identified with the Galois group of q1. Then by
construction M̂1 = Γ1\M̂ is the quotient of R(L1) by ∆ where

L1 = (q1∗L)Γ1

and by Lemma 6.2, the action of Γ1 lifts to the natural action of a subgroup Γ̃1 ⊂ SL2(C) on
G(Ce1)|H. Hence Γ′′ = ⟨Γ′,Γ1⟩ is the holonomy group of a uniform (G,G/P )-structure

p1 : H −→ N̂1 = Γ′′\H

and
L1 = (p1∗G(Ce1)|H)Γ′′

so M̂1 is obtained as in (92). In particular, it is a principal elliptic bundle over g(N̂1) ≥ 2 with
odd first Betti number. Without loss of generality we can and will further assume that N̂1 = N̂
and M̂1 = M̂ .

In this situation, by construction, the Galois group of q fixes its ramification locus, and
k = deg(q) is a multiple of

∑
α∈I

mα. Then Theorem 6.3 proves that q : N̂ −→ N is unramified.

Since moreover q = q′, we get M̂ = M by definition of q′. □
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7. Conclusion

Comparing with [6], the Theorem 3.2 together with Theorem 4.3, Theorem 5.3, Theorem 5.5,
and Proposition 6.2.1 prove Theorem 1.1. From the point of view of the uniformization, this
suggests that we have to consider other meromorphic geometric structures to encompass more
complex compact surfaces. It could be interesting to extend the technics of this paper to
meromorphic projective connections (see [9]) by adopting the Cartan point of view.
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