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2 ALEXIS GARCIA

1. Introduction

1.1. Uniformization of complex compact manifolds and meromorphic geometric struc-
tures. The question of classifying compact complex manifolds, by means of geometric and topo-
logical invariant, is an old and still active one. The first historical example of an answer is the
Riemann’s uniformization theorem for complex compact manifolds of dimension one (i.e. Rie-
mann surfaces or compact complex smooth curves). In particular, it asserts that any such a
complex manifolds is the quotient of an open subset U of: either the projective curve P1, the
complex line C, or the Poincaré disk H, by a discrete subgroup Γ of projective transformations
preserving U with free left action.

This is an example of uniformizability in the sense that any complex compact manifold of
dimension one is the quotient Γ\U of an open set U ⊂ X of a fixed space X by a subgroup
Γ of automorphisms of X preserving a fixed geometric structure and with a free action. The
notion of geometric structures will not be defined in this paper but may be thought as one of
these examples : a holomorphic affine connection (see Definition 2.4), a holomorphic projective
connection (see for example [9]) or a holomorphic reduction of a k-th order frame bundle of X.

1.2. Meromorphic affine connections on surfaces. In [6], Inoue, Kobayashi and Ochiai
classified holomorphic affine connections on compact complex surfaces. It turns out that any
complex compact surfaces admitting such a geometric structure is also equipped with a flat one,
that is a holomorphic affine structure. Many of them are quotients of an open subset of C2

by affine transformations. This result was completed by Kobayashi and Ochiai in [9], where it
appears that any complex compact surface endowed with a holomorphic projective structure is
uniformizable by the unit ball in C2.

It is thus natural to investigate which complex compact manifold can be endowed with a
particular type of holomorphic geometric structure. In a recent paper [5], Biswas, Dumitrescu
and McKay gave rather general classification result, asserting that many holomorphic geometric
structures (in particular holomorphic affine connections) can’t be beared by simply connected
compact complex manifolds with constant meromorphic functions.

We may also ask whether allowing the geometric structure to admits some reasonable singular-
ities (namely poles) could enable to encompass more compact complex manifolds, and investigate
for a definition of meromorphic versions of the uniformization. As an example, though there
are few projective manifolds M endowed with holomorphic affine connections, since this implies
that all Chern classes are zero, any such manifold is endowed with a finite map f : M −→ PN
for some integer N ≥ 1. The canonical projective structure on PN then induces through f a
meromorphic (flat) projective connection on M (see [3]).

In this paper, we study the existence of meromorphic affine connections (Definition 2.4)
on complex compact surfaces of algebraic dimension a(M) = 1 (the algebraic dimension is
defined above (6)). We almost obtain a classification of such pairs, that we call meromorphic
affine complex compact surface of algebraic dimension one, in the following sense. By the
well-known work of Kodaira ([10],[11],[12]), complex compact surfaces of algebraic dimension
one are known to be elliptic surfaces. Moreover, we can restrict ourselves to minimal surfaces
since a meromorphic affine connection on a minimal surface with a(M) = 1 is the pullback
(Definition 2.3) of a meromorphic affine connection on its minimal model (Lemma 2.3). We first
prove the following (Theorem 3.1):

Theorem. Any meromorphic affine complex compact surface of algebraic dimension one is an
isotrivial surface.

Up to finite cover, a minimal meromorphic affine complex compact surface is thus a principal
elliptic fiber bundle, and we have explicit descriptions of such surfaces in terms of their universal
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covers. The problem is then split in two : first we have to classify meromorphic affine principal
elliptic fiber bundles, and then study the possible finite quotients of such pairs. This is completely
done when the base curve is the projective line P1 (Theorem 4.2 and Theorem 4.3) or an
elliptic curve (Theorem 5.4,Theorem 5.5,Theorem 5.2 and Theorem 5.3). In the remaining case
(hyperelliptic curve), we describe a subset of codimension 3 in the space of meromorphic affine
connections (Corollary 6.1) extending the work by Klingler ([8]). However, we prove that there
is no non-trivial quotient of such meromorphic affine surface (Theorem 6.1). So there a no new
examples arising from these principal elliptic bundles. These results can be compared to the
result of [6] to obtain:
Theorem 1.1. Any meromorphic affine surface with a(M) = 1 endowed with a meromorphic
affine connection also admits a flat affine holomorphic connection.

As an example, no K3-surface with a(M) = 1 admits a meromorphic affine connection.

1.3. Organization of the paper. The paper is organized as follows. In section 2, we recall the
notion of meromorphic affine connections. In section 3, we collect classical facts from the work of
Kodaira on elliptic surfaces that will be used in the rest of the paper, and prove Theorem 3.1 and
Theorem 3.2, reducing the problem of classification to the one of meromorphic affine principal
elliptic bundles and their quotients, as explained above. Then, in section 4,section 5 we classify
meromorphic affine complex compact surfaces of algebraic dimension one arising as quotients
of principal elliptic fiber bundles over P1 or an elliptic curve. In section 6, we treat the case of
an hyperelliptic base curve. We give a description of a codimension three subset in the space
of meromorphic affine connections on the corresponding principal elliptic bundle, in terms of
meromorphic differential operators, and prove that no other examples arise from a quotient of
such meromorphic affine surfaces.

2. Meromorphic affine connections and minimality

2.1. Meromorphic connections and linearizations. We begin by recalling the definitions of
two objects appearing recurrently in this paper. Let M be a complex manifold and D =

∑
α∈I

Dα

an effective divisor. In the rest of the paper, we will denote by TM the sheaf of holomorphic
vector fields, Ω1

M the sheaf of holomorphic one forms, and by:
(1) OM (∗D)
the sheaf of meromorphic functions on M with poles a combination of the irreductible compo-
nents Dα. If Ψ : M −→ M ′ is a morphism of complex manifold Ψ∗ (resp. Ψ∗ stand for the
pullback functor for sheaves (resp. the pushforward).

Definition 2.1. Let M be a complex manifold and E be a OM -module. A meromorphic connection on
M with poles at D is a morphism of CM -sheaves:

∇ : E −→ Ω1
M ⊗ E(∗D)

satisfying the Leibniz identity:
∀f ∈ OM (U),∀s ∈ E(U), ∇(fs) = df ⊗ s+ f∇(s)

Definition 2.2. Let G be a group and M be a complex G-manifold with right (resp. left) action. Let
E be a OM -module. A right (resp. left) G-linearization of E is a family (ϕg)g∈G of isomorphisms:

ϕg : E ∼−→ g∗E
with the property:

∀g, g′ ∈ G, ϕgg′ = g′∗(ϕg) ◦ ϕg′
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A G-linearized OM -module is a pair (E , (ϕg)g∈G).

In the case of a discrete group G, a OM -module with a G-linearization is a G-equivariant
OM -module as defined in [7]. In this case, if M = G\M is a complex manifold, then, denoting
by q : M −→ M the quotient map, G acts naturally on q∗E(U) for any U ⊂ M . Hence, there
is a functor from the category of G-linearized OM -modules to the one of OM -modules mapping
(E , (ϕg)g∈G) to the sheaf:

(2) E = (q∗E)G

of G-invariant sections. It is an equivalence of categories in the case where the action of G is
free ([7], Proposition 2.2.5).

Definition 2.3. (1) Let M and M ′ be two complex manifold, D′ an effective divisor of M ′ and ∇′

be a meromorphic connection on a OM ′-module E ′ with poles at D′. Let E be a OM -module,
f : M −→ M ′ a isomorphism of complex manifold and φ : E −→ OM ⊗ f∗E ′ an isomorphism of
OM -modules. The corresponding pullback (f, φ)⋆∇′ of ∇′ is the meromorphic connection ∇ on
E with poles at D = f∗D′ defined by the commutative diagram:

(3) E ∇ //

φ

��

Ω1
M ⊗ E(∗D)

OM ⊗ f∗E ′
f∗∇′

// f∗Ω1
M ′ ⊗ f∗E ′(∗D′)

df∗⊗φ−1

OO

where:
• df : TM(∗D) −→ OM ⊗ f∗TM ′(∗D′) is the sheaf-theoretic differential of f
• f∗∇′ is the extension of the sheaf-theoretic pullback f∗∇′ : f∗E ′ −→ f∗Ω1

M ′ ⊗ E ′(∗D′) by
the Leibniz rule to OM ⊗ f∗E ′.

(2) Let (E , (ϕg)g∈G) be a G-linearized OM -module. A meromorphic connection ∇ on E is invariant
by (ϕg)g∈G if (g, ϕg)⋆∇ = ∇ for any g ∈ G.

Since a holomorphic connection on a OM -module can be alternatively described as a global
section of Hom(E , J1E) splitting the jet-sequence of E (see [1]), the correspondance between
linearized sheaves and sheaves on the quotient immediately implies the following:

Lemma 2.1. Let q : M −→ M ′ be a ramified cover between two complex manifolds, with Galois
group Γ ⊂ Aut(M). Let ΦΓ = (ϕγ)γ∈Γ be a Γ-linearization of a locally free OM -module E.
Consider the locally free OM ′-module E = (q∗E)ΦΓ. Suppose the existence of a holomorphic
connection ∇ on E which is invariant through any ϕγ (γ ∈ Γ). Then:

(1) If q is unramified, then there exists induces a (unique) holomorphic connection ∇′ on E
such that the pullback (q, Id)⋆∇′ (see Definition 2.3) coïncides with ∇ when restricted to
q∗E.

(2) If q is finite, then there exists a unique meromorphic connection ∇′ on E, with poles
supported on the ramification locus, such that the pullback (q, Id)⋆∇′ coïncides with the
restriction of ∇ to q∗E.

Proof. (1) Consider the restriction ∇′ of the morphism of CM ′-sheaves q∗∇ to the subsheaf
E . It satisfies the Leibniz identity, and by definition of (γ, ϕγ)⋆∇ = ∇ (Definition 2.3),
the invariance of ∇ by the linearization ΦΓ implies that ∇′ restricts as a morphism:

∇′ : E −→ (q∗Ω1
M ⊗ E)Γ
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Now, we have a natural inclusion of sheaves:

(4) Ω1
M ′ ⊗ E = (q∗Ω1

M )Γ ⊗ (q∗E)Γ ⊂ (q∗Ω1
M ⊗ E)Γ

where the right handside is the subsheaf of invariant sections through the linearisation
obtained by tensorizing the isomorphisms (dγ∗)γ∈Γ and (ϕγ)γ∈Γ. Since q is unramified,
we have

OM ⊗
OM′

q∗OM ′ = OM

and since Γ acts freely, we also have (see [7], ):

OM ⊗ q∗E = E

Hence the pullbacks of the vector bundles corresponding to the left and right handside
of (4) coïncide. Hence Ω1

M ′ ⊗ E = (q∗Ω1
M ⊗ E)Γ, so that ∇′ is in fact a holomorphic

connection on E . Its pullback through (q, Id) coïncides with the restriction of ∇ to q∗E
by construction.

(2) The restriction of q to the complement of its ramification locus S ⊂ M is an unramified
cover q|M\S : M \S −→ M ′ \S′. By (1), we get a holomorphic connection ∇′ on E|M ′\S′

whose pullback through (q|M\S , Id) coïncides with the restriction of ∇|M\S to q∗E|M\S .
Denote by j the inclusion of complex manifold of M ′ \S′ in M ′. It remains to prove that
j∗∇′ restricts to the subsheaf E ⊂ j∗E|M ′\S′ = (j∗OM ′\S′)⊗E as a morphism with values
in the subsheaf Ω1

M ′ ⊗ E(∗S′). It is sufficient to prove this property for the restriction of
(E , j∗∇′) to any complex submanifold Σ ⊂ M of dimension one. Therefore, we assume
from now on that q is a finite cover between two complex curves M,M ′. Pick x ∈ S and
y = q(x). Since Γ is finite, there exists a generator γ ∈ Γ leaving a neigborhood U of x
invariant, and local coordinates z, z′ at neighborhoods of x and y such that:

q(z) = zm and γ · z = e
2iπ
m z

for some integer m ≥ 1. Moreover, ∇ is a flat connection on E , so there is a local
trivialization of E at a neighborhood U of x such that ∇ identifies with the de Rham
differential d on O⊕r

U (r stands for the rank of E). By the invariance of ∇ through ΦΓ,
the automorphism ϕγ maps the kernel C⊕r

U of d to its pullback γ∗C⊕r
U . It is therefore

given by a constant linear transformation. Since γ is of finite order, up to applying a
constant linear change of trivialization, this linear transformation is diagonal with roots
of the unity as eigenvalues, that is ϕγ corresponds to the isomorphism:

ϕγ : O⊕r
U −→ γ∗O⊕r

M

(f1(z), . . . , fr(z)) 7→ (e
2k1iπ

m f1(e− 2iπ
m z), . . . , e

2kriπ
m fr(e− 2iπ

m z))

with kj ∈ {1, . . . ,m}. Hence, the restriction of q∗E to U is the subsheaf of r-uples of the
form:

s = (zm−k1g1(zm), . . . , zm−krgr(zm))
for some holomorphic functions g1, . . . , gr on zm(U). Then, through the trivialization of
E|U just defined:

∇(s) = dz ⊗ (m− k1
z

zm−k1−1g1(zm1 ), . . . , m− kr
z

zm−kr−1gr(zm)) + q⋆(dz′) ⊗ s′

for some s′ ∈ q∗E(U). We can rewrite this section as:

∇(s) = q⋆(dz′) ⊗ (z
m−k1

zm
h1(z), . . . , z

m−kr

zm
hr(z))
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for some meromorphic functions h1, . . . , hr on zm(U) with poles along zm(x). Hence
∇(s) is a section of (Ω1

U )Γ ⊗ q∗E|U (∗x). This being true for any x ∈ S, and since
Ω1
M ′ = (q∗Ω1

M )Γ, we get:

j∗∇′(E) ⊂ Ω1
M ′ ⊗ E(∗S′)

as required. This exactly means that ∇′ defines a meromorphic connection on E , and
this connection satisfies the pullback property by construction.

□

2.2. Meromorphic affine connections and pullback. We introduce the meromorphic geo-
metric structure considered in this paper:

Definition 2.4. Let M be a complex manifold and D an effective divisor of M . A meromorphic affine
connection on (M,D) is a meromorphic connection on TM with poles at D.

The pullback defined in Definition 2.3 defines the category of meromorphic affine connections,
with arrows given by the pullbacks through (f, df) for f an isomorphism of complex manfiolds.

Lemma 2.2. Let q : M̂ −→ M be a morphism of complex manifolds of the same dimension.
Let ∇ be a meromorphic affine connection on M and ∇̂ = q⋆∇. Let Ψ be an automorphism of
M and Ψ̂ an automorphism of M̂ lifting Ψ through q.

Then Ψ⋆∇ = ∇ if and only if Ψ̂⋆∇̂ = ∇̂.

Proof. Since Ψ̂ is the lift of Ψ through q, we have the following commutative diagram:

(5) TM̂

dΨ̂
��

dq // OM̂ ⊗ q∗TM̂

Ψ̂∗⊗dΨ
��

Ψ̂∗TM̂
Ψ̂∗dq

// OM̂ ⊗ q∗TM̂

The equivalence asserted is then a direct consequence of the diagram defining a pullback (Defi-
nition 2.3). □

2.3. Algebraic dimension and general property of elliptic surfaces. Let M be a compact
complex manifold of complex dimension n ≥ 1. Moishezon proved that the field of meromorphic
functions C(M) is a field of finite transcendancy degree over the field of constant functions
C. This degree is called the algebraic dimension of M and denoted by a(M). In particular
a(M) ≤ n, and there exists a bimeromorphic map Ψ : M −→ M ′ and a holomorphic map

(6) π : M ′ −→ N

onto a complex compact manifold of dimension a(M), with the property C(M) = π∗C(N).
In this paper, we will focus on complex compact surfaces with a(M) = 1.
A elliptic surface is a holomorphic fibration M

π−→ N of a complex compact surface over a
(compact) complex smooth curve, such that for a generic y ∈ N , the fiber My := π−1(y) is a
(smooth) complex torus.

We recall the following result from Kodaira ([10]):

Theorem 2.1. Any compact complex surface with a(M) = 1 is the total space of an elliptic
surface given by the algebraic reduction map (6).

Moreover:
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Theorem 2.2. Let M π−→ N be an elliptic surface with a(M) = 1. Any divisor D of M is of
the form D = π∗C for some divisor C of N .

Proof. See [10], Theorem 4.3. □

Now, let M π−→ N be a general elliptic surface. The fibers of π which are not smooth elliptic
curves are denoted by Myβ

(β ∈ J), and for any local coordinate zβ on N centered at yβ, there
exists an integer mβ > 1 and an equation fβ for Mβ with

(7) fβ = (zβ ◦ π)mβ

The corresponding yβ are the singular points and the above integer will be called the multiplicty
of yβ (resp. of the singular fiber Mβ), according to the work of Kodaira ([10]).

Proposition 2.2.1. Let M π−→ N be an elliptic surface, (yβ)β the singular points and N ′ their
complement in N . Then:

(1) For any y ∈ N ′, there is a neighborhood U of y in N ′, and a holomorphic function
τ : U −→ H such that :

π−1(U) ≃ U × C/⟨ψ1, ψ2⟩

where z1, z2 are global coordinates adapted to the natural fibration and:

(8) ψ1(z1, z2) = (z1, z2 + 1) and ψ2(z1, z2) = (z1, z2 + τ)

(2) There exists a global holomorphic function τ̃ : Ñ ′ −→ H on the universal cover of
p̃ : Ñ ′ −→ N ′, such that for any y ∈ N ′, and any τ as in 1., τ = τ̃ ◦ s for some section
of p̃ near y.

Proof. (1) Pick a simply connected neighborhood U of y in N ′. Then the fundamental
group of π−1(U) is spanned by the image of any pair of generators γ1, γ2 of π1(My, x)
(x ∈ π−1(y)). By the Ehresmanh theorem, and since all smooth elliptic curves are
diffeomorphic, shrinking U we can assume the existence of a diffeomorphism:

(9) ψ : π−1(U) −→ U × C/Z ⊕ iZ

such that π = proj1 ◦ ψ. In particular, the cycles in H1(U × C/Z ⊕ iZ,Z) corre-
sponding to 1 and i are mapped to cycles γ1, γ2 ∈ H1(π−1(U),Z), restricting as cycles
γ1,y, γ2,y on any fiber My = π−1(y). These cycles form a basis of the real vector space
H0(My,Ω1

My
)∗, canonically identified with the universal cover C and its is well known

that My ≃ H0(My,Ω1
My

)∗/Zγ1,y ⊕ Zγ2,y. We then let

(10) Ψ : π−1(U) ∼−→ U × C/⟨(z1, z2) 7→ (z1, z2 + k1τ(z1) + k2)⟩
ψ−1(z1, [z2]) 7→ [[(z1, z2)]]

where [[(z1, z2)]] is the class of (z1, z2) ∈ U × C in the target complex manifold. By
construction, Ψ lifts to the universal covers. The homology map induce by the lifting
maps (γ1,y, γ2,y) on (1, τ(y)), so is C-linear. By the remark preceding (10), Ψ restricts
on each fiber My as an isomorphism onto C/Z ⊕ τ(y)Z. Hence Ψ is a biholomorphism.

(2) This is equivalent to the assertion that the sheaf T whose local sections are the τ as in
1. contains a local system on N ′. This is immediate since for any y ∈ N ′, the set of
τ ∈ H such that My ≃ C/Z ⊕ τZ is a finite set.

□
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Recall tat for any τ, τ ′ ∈ H, the tori C/Z ⊕ τZ and C/Z ⊕ τ ′Z are isomorphic exactly when
τ, τ ′ lie in the same SL2(Z)-orbit in H, through the action:(

a b
c d

)
τ := aτ + b

cτ + d

Since the action is free, there exists an associated representation ρ : π1(N ′, y) −→ SL2(Z) such
that:

(11) τ̃(γ · ỹ) = ρ(γ) · τ̃(ỹ)

for any ỹ ∈ p̃−1(y) and γ ∈ π1(N ′, y).
The associated local system over N ′ is called the homological invariant of π by Kodaira. The

following facts can be found in [11]:

Proposition 2.2.2. Let M π−→ N be an elliptic surface, and N ′ (resp. M ′) the complement of
its singular points (yβ)β∈J (resp. its singular fibers in M). Then:

(1) If J ̸= ∅ then Ñ ′ is an open subset of C and H1(Ñ ′,OÑ ′) = {0}. By Proposition 2.2.1,
this implies M̃ ′ = Ñ ′ × C ⊂ C2 and we let (z1, z2) be the canonical coordinates on C2.

(2) Let y ∈ N ′. For any γ ∈ π1(N ′, y), the corresponding automorphism of Ñ ′ lifts canoni-
cally to an automorphism φγ of M̃ ′. Moreover, φγ commutes with ψ1 and ψ2 (see (8)),
and the corresponding map

π1(N ′, y) −→ ⟨ψ1, ψ2, (φγ)π1(N ′,y)⟩/⟨ψ1, ψ2⟩
γ 7→ φγ mod ⟨ψ1, ψ2⟩

is a homomorphism.
(3) In the case J ̸= ∅, let γ ∈ π1(N ′, y) and φγ the automorphism of the universal cover of

M ′ as in 2. There exists a constant µγ ∈ C∗ and a holomorphic function fγ on Ñ ′ such
that:

(12) φγ(z1, z2) = (γ · z1,
µγ

cγ τ̃(z1) + dγ
z2 + fγ(z1))

where ρ(γ) =
(
aγ bγ
cγ dγ

)
(see (11)).

(4) The pullback (see Definition 2.3) through the universal covering p̃ : M̃ ′ −→ M ′ induces
a bijection between the set of meromorphic affine connections on M ′ and the set of
meromorphic affine connections ∇̃ on M̃ ′ satisfying:

(13) ψ⋆1∇̃ = ψ⋆2∇̃ = φ⋆γ∇̃ = ∇̃

for any γ ∈ π1(N ′, y), where ψ1, ψ2 are defined as in Proposition 2.2.1.

Proof. (1) In either case, Ñ ′ is isomorphic to P1,C or H. If Ñ ′ = P1, then N ′ = Ñ ′ = P1

since N is compact, so that J = ∅. The converse is clearly true. Now if J ̸= ∅, necessarly
Ñ ′ is not P1, whence the assertion.

(2) Consider the complex manifold M ′ = Ñ ′ ×
N ′
M ′ fitting in the following diagram:

(14) M ′ p′
//

π
��

M ′

π
��

Ñ ′ p′
// N ′
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where p′ is the projection on the second factor, π the projection on the first one. Then
M̃ ′ is clearly isomorphic to the universal cover of M ′. We denote by [ỹ, x] the class of
(ỹ, x) ∈ Ñ ′ ×M ′ in M ′.

For any γ ∈ π1(N ′, y) denote by φγ the corresponding automorphism of p′. Then:
(15) φγ([ỹ, x]) = [φγ(ỹ), x]

define an automorphism φγ of M ′ compaptible with p and π. Then φγ lifts to an unique
automorphism φγ of the total space of the universal cover M̃ ′. The two remaining
assertions follow from the fact that M ′ is the quotient of M̃ ′ by the subgroup ⟨ψ1, ψ2⟩
of automorphisms, and the map γ 7→ φγ is clearly a homomorphism from the definition
of φγ .

(3) Let (z1, z2) be coordinates on M̃ ′ = Ñ ′ × C, and τ̃ as in Proposition 2.2.1, 2. Consider
again the complex manifold M ′ as in the proof of 2. By the proof of Proposition 2.2.1,
1., we have a canonical isomorphism of elliptic fibrations

M ′ ∼−→ Ñ ′ × C/⟨ψ1, ψ2⟩
where ψ1, ψ2 are the automorphism defined by:

(16) ψ1(z1, z2) = (z1, z2 + 1) and ψ2(z1, z2) = (z1, z2 + τ̃(z1))

Let φγ be the lifting to M ′ of the automorphism of Ñ ′ corresponding to γ ∈ π1(N ′, y)
(recall that φγ is the lifting of φγ to the universal cover M̃ ′ of M ′). Let ỹ ∈ Ñ ′ with
p′(ỹ) = y, and z1 = z1(ỹ). Then, by (11) and the above biholomorphism, we get that
the multiplication by 1

cγ τ̃(z1)+dγ
∈ C× induces a biholomorphism between the fibers M ′

ỹ

and M ′
γ·ỹ.

Now, recall that the automorphisms A(M ′
ỹ) are described by the exact sequence:

0 // M ′
ỹ

// A(M ′
ỹ) // Z/nỹZ // 0

where Z/nỹZ corresponds to complex multiplications by a nỹ-th root of the unity induc-
ing an involution on the elliptic curve (nỹ ≤ 6) and M ′

ỹ is identified as the subgroup of
translations on itself.

Since φγ is an automorphism of the elliptic fibration π : M ′ −→ Ñ ′, the above remarks
imply the existence of a holomorphic function µγ on Ñ ′, and a holomorphic section fγ
of π such that:

∀z1 ∈ Ñ ′, ∀z2 ∈ C, φγ([z1, z2]) = [γ · z1,
µγ(z1)

cγ τ̃(z1) + dγ
z2] + fγ(z1)

In particular, µγ is a constant, and since Ȟ1(Ñ ′,OÑ ′) = {0}, fγ lifts to a section of
π̃ : M̃ ′ −→ Ñ ′, that is a holomorphic function fγ on Ñ ′. Then φγ is exactly the
automorphism described in the statement.

(4) If ∇̃ is a meromorphic affine connection on M̃ ′ satisfying (13), then in particular it is
invariant through the Galois group of the universal covering p̃ : M̃ ′ −→ M ′ as in (14).
Thus, using Lemma 2.1, we have ∇̃ = p̃

⋆∇ for some meromorphic affine connection on
M ′. Since the automorphisms φγ are the lifts of the elements φγ of the Galois group of
the covering p′, we also have ∇ = p′⋆∇ for some meromorphic affine connection on M ′,
that is ∇̃ = p̃⋆∇.

Reciprocally, suppose that ∇̃ = p̃⋆∇ for some meromorphic affine connection ∇ on
M ′. Then applying Lemma 2.2 to the lifts ψ1, ψ2 and φγ of the identity of M ′ gives (13).

□
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We will therefore use these well-known following facts about elliptic surfaces, due to Kodaira
[10]. First, recall that given divisors D1, D2 on a complex compact surface M , there is a well
defined intersection number :

D1 ·D2 := c1(D1)c1(D2)
where c1(D) ∈ H1(M,Z) stands for the first Chern class of the line bundle OM (D). An excep-
tional curve is then a rational smooth curve C in M such that C · C = −1.

Theorem 2.3. Let N be a smooth complex curve, J : Ñ −→ SL2(Z)\H and G a sheaf of
subgroups of SL2(Z) as above. Then:

(1) There exists a unique (up to biholomorphisms of elliptic surfaces) elliptic surface B π0−→
N with invariants J ,G and a global holomorphic section, called the basic member.

(2) Any minimal elliptic surface M ′ π′
−→ N with invariants J ,G and no multiple singular

fiber is locally isomorphic to B.

Proof. This immediately follows from Theorem 10.1 in [11].
□

2.4. Minimal model for meromorphic affine complex surface with algebraic dimen-
sion one. By a well-known result of Grauert, if C is such a curve, then there exists a complex
compact surface M1, and x1 ∈ M1 such that M is isomorphic to the blow-up at x0 of M :

σ : M −→ M1

and σ(C) = {x1}. In this case a(M1) = a(M), the restriction of σ to M \ C is an isomorphism
onto M1 \ {x1} and σ maps any fiber of the algebraic reduction of M to a fiber of the algebraic
reduction of M1. Given a complex compact surface M , there is a finite number of exceptional
curve, and thus composing the maps σ obtained as above we get a map:

σ0 : M −→ M0

which restricts as an isomorphism between M \ C0, where C0 is the union of the exceptional
curves, and M0 \ {x1

0, . . . , x
n
0 } where the xi0 are points. Again a(M0) = a(M) and M0 will be

called the minimal model of M .
In particular:

Lemma 2.3. Let M be a complex compact surface endowed with a meromorphic affine connec-
tion ∇. Suppose that M contains an exceptional curve and let σ : M −→ M0 the minimal model
of M . If a(M) = 1, then there exists a meromorphic affine connection ∇0 on M0 such that
∇ = σ⋆0σ0.

Proof. First, using the inverse of the restriction of σ0 to M \C0, we obtain a meromorphic affine
connection ∇0 on M0 \ {x1

0, . . . , x
n
0 } such that σ⋆0∇0 is the restriction of ∇ to M \ C0.

It remains to prove that ∇0 extend across the codimension two subset {x1
0, . . . , x

n
0 }. For, pick

i ∈ {1, . . . , n}. Let (u1, u2) be coordinates on a neighborhood U0 of xi0 such that the intersection
of any fiber of the algebraic reduction π0 with U0 is a fiber of u1. Using these coordinates, the
matrix of ∇0 in ( ∂

∂u1
, ∂
∂u2

) has the form

du1 ⊗ Γk1j + du2 ⊗ Γk2j
where Γkij are meromorphic functions on U0 \ {xi0}.

Let x′
0 ∈ σ−1

0 (x0) and let U be an open neighborhood of π(x′
0) constructed as in point 1.

of Proposition 2.2.2. We let (z1, z2) be the corresponding coordinates obtained using a local
trivialisation of the covering U × C −→ π−1(U) on a neighborhood U ′

0 of x′
0. From the fact

that σ0 preserves the fibers of the algebraic reductions, it is clear that for any meromorphic f
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function on an open subset of U0, we have ∂f
∂u2

= 0 if and only if ∂f◦σ0
∂z2

= 0. Now, the pullback
∇̃ of ∇ to the universal cover U × C of π−1(U) has matrix

dz1 ⊗ (Γ′)k1j + dz2 ⊗ (Γ′)k2j

for some meromorphic functions (Γ′)kij . Moreover, by Theorem 2.2, the poles of these functions
are fibers of z1. The invariance of ∇̃ through ψ1, ψ2 thus implies that the restriction of the
(Γ′)kij to a generic fiber of z1 is an elliptic holomorphic function on C, that is a constant. By the

previous remark we get ∂Γk
ij

∂u2
= 0. In particular, each Γkij extends across xi0 as a meromorphic

function on U0. Therefore, for any i ∈ {1, . . . , n}, ∇0 extends as a meromorphic affine connection
on a neighborhood U0 of xi0, as required.

□

3. Reduction to the classification of principal elliptic surfaces

By Lemma 2.3, we can restrict ourselves to the classification of minimal complex compact
surface of algebraic dimension one endowed with meromorphic affine connections.

We now prove that the functional invariant of such a minimal elliptic surface is constant, hence
this is a principal elliptic bundle up to a finite ramified covering. This reduces the problem of
the classification to the classification of meromorphic affine principal elliptic bundles and their
quotients.

3.1. Reduction to isotrivial elliptic surfaces. Let (M,D,∇) be a meromorphic affine com-
plex compact surface with algebraic dimension one, and M

π−→ N the corresponding elliptic
surface. Our aim is to prove that this is an isotrivial surface, meaning the functional invariant
τ is constant.

Let S (resp. S) be the union of the singular fibers (resp. the singular points) in M (resp. N).
In view of Proposition 2.2.2,(1), we can and do assume that J ̸= ∅ or N ̸= P1, otherwise M is a
Hopf surface, hence a principal elliptic fiber bundle over N . Let M ′ = M \S (resp. N ′ = N \S),
M̃ ′ = Ñ ′ × C π′=proj1−→ Ñ ′ with adapted global coordinates (z1, z2) as in Proposition 2.2.2, (1).
This is the total space of the universal covering p′ : M̃ ′ −→ M ′.

We let ∇̃′ = p′⋆∇, a meromorphic affine connection on M̃ ′ with poles D′ supported on fibers
of π′ by Theorem 2.2. Moreover, reemploying the notations from Proposition 2.2.2, it is both
invariant through the automorphisms:

(17) ψ1(z1, z2) = (z1, z2 + 1) and ψ2(z1, z2) = (z1, z2 + τ(z1))

and the automorphims (φγ)γ∈π1(N ′,y0) defined as in (12).
Now we observe:

Lemma 3.1. Let g be a global holomorphic function on C with g(z + 1) = g(z) for any z ∈ C.
Suppose that there exists ν ∈ H and µ ∈ C such that

(18) ∀z ∈ C, g(z + ν) = g(z) + µ

Then g is constant and µ = 0.

Proof. The 1-periodicity is equivalent to the existence of a holomorphic function on C\{0} such
that g(z) = g(e2iπz) for any z ∈ C.

Then the property (18) implies

(19) g(λu) = g(u) + µ
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where λ = e2iν satisfies 0 < |λ| < 1. Derivating this relation in u implies g′(λu) = g′(u)
λ . But

g′ is a Laurent series at 0, with residue 0. Since |λ| < 1, λn−1 ̸= 1
λ except for n = 0, and the

identity (19) implies g′ = 0. Hence g is a constant, and the same holds for g. In particular
µ = 0. □

Corollary 3.1. Let (M,D,∇) be a meromorphic affine complex compact surface with algebraic
dimension one, and let (M̃ ′, D̃′, ∇̃′) be as above, with homological invariant τ . Let (z1, z2) be
adapted global coordinates as above and ( ∂

∂z1
, ∂
∂z2

) (resp. (dz1, dz2)) the corresponding trivialisa-
tion of TM ′ (resp. Ω1

M ′). Then either τ ′ = 0, or ∇̃′ has matrix:

(20) dz1 ⊗
(
b(z1) 0
d(z1) c(z1)

)
+ dz2 ⊗

(
0 0

a(z1) 0

)
for some holomorphic functions a, b, c, d on z1(Ñ ′) ⊂ C.

Proof. We assume τ ′ ̸= 0. Let (fij , gij)i,j=1,2 be the meromorphic functions on M̃ ′ such that the
matrix of ∇̃′ in ( ∂

∂z1
, ∂
∂z2

) is:

(21) dz1 ⊗
(
f11 f12
f21 f22

)
+ dz2 ⊗

(
g11 g12
g21 g22

)
Recall that, given any automorphism ψ of M̃ ′, the pullback ψ⋆∇̃′ is described by the following
diagram:

(22) TM̃ ′ ψ⋆∇̃′
//

dψ

��

Ω1
M̃ ′(⋆D̃) ⊗ TM̃ ′

ψ∗TM̃ ′
ψ∗∇̃′
// ψ∗Ω1

M̃ ′(⋆D̃) ⊗ ψ∗TM̃ ′

dψ∗⊗dψ−1

OO

The differential of the automorphism ψ1 from (17) corresponds, through the trivialisation
( ∂
∂z1

, ∂
∂z2

), to the post-composition by ψ1 of functions. In particular, by Theorem 2.2, the
invariance of ∇̃′ through ψ1 implies that the restrictions of (fij , gij)i,j=1,2 on a generic fiber of
π′ are 1-periodic holomorphic functions.

Now, using the diagram (22), the identity ∂
∂z2

⌟ψ⋆2∇̃′ = ∂
∂z2

⌟∇̃′ rewrites as:

(23)



g12(z1, z2 + τ(z1)) = g12(z1, z2)
gii(z1, z2 + τ(z1)) + (−1)iτ ′(z1)g12(z1, z2 + τ(z1)) = gii(z1, z2)
g21(z1, z2 + τ(z1))(z1, z2 + τ(z1)) = g21(z1, z2)
+τ ′(z1)(g11 − g22)(z1, z2 + τ(z1)))
−(τ ′(z1))2g12(z1, z2 + τ(z1))

Since τ ′ ̸= 0,the first line implies that the restriction of g12 to a generic fiber is a holomor-
phic elliptic function, that is a constant, i.e g12(z1, z2) = g12(z1). Now, the second line and
the previous fact show that the restriction of gii to a generic fiber satisfies the conditions of
Lemma 3.1, hence g12 = 0 and gii(z1, z2) = gii(z1). This in turn implies, together with the third
line, that the restriction of g21 to a generic fiber satisfies the conditions in Lemma 3.1, so that
g11(z1) = g22(z1) and g21(z1, z2) = a(z1).

Now, we can rewrite similarly the system of functional equations corresponding to ∂
∂z1

⌟ψ⋆2∇′ =
∂
∂z1

⌟∇′, taking in account that

dψ∗
2(ψ∗

2
∂

∂z2
) = ∂

∂z2
+ τ ′(z1) ∂

∂z1
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Since g12 = 0, the first line will be indentical to the one of (23), that is f12(z1, z2) = f12(z1).
Then the second line show that fii satisfy conditions of Lemma 3.1, so that fii(z1, z2) = fii(z1)
and f12−g11 = f12+g22 = 0, while g11 = g22 by the previous facts. Hence g11 = g22 = 0. Finally,
as before, the last line show that f21 satisfy conditions of Lemma 3.1, i.e. f21(z1, z2) = f21(z1).

□

Theorem 3.1. Any meromorphic affine complex compact surface of algebraic dimension one is
an isotrivial elliptic surface.

Proof. We reemploy the above notations, and will describe explicitely the identity
∂

∂z1
⌟φ⋆γ∇̃′ = ∂

∂z1
⌟∇̃′

for any generator γ of π1(N ′, y0).
First introduce the following notations. We let gγ be the function of z1 corresponding to the

matrix of the differential of the automorphism of Ñ ′ corresponding to γ. We also let:

(24) δγ(z1) = µγ
cγτ(z1) + dγ

where µγ , cγ , dγ are defined as in Proposition 2.2.2.
We first prove that the above identity implies δ′

γ(z1) = 0. Indeed, the matrix of dφγ in the
basis ( ∂

∂z1
, ∂
∂z2

) and (φ∗
γ
∂
∂z1

, φ∗
γ
∂
∂z2

) is:

(25) C =
(

gγ(z1) 0
z2δ

′
γ(z1) + f ′

γ(z1) δγ(z1)

)
In particular:

(26) ∂

∂z1
⌟C−1dC =

 g′
γ(z1)
gγ(z1) 0

z2( δ
′′
γ (z1)
δ(z1) − δ′

γ(z1)
δ(z1)

g′
γ(z1)
gγ(z1)) + h(z1) δ′

γ(z1)
δ(z1)


for some meromorphic function h on z1(Ñ ′) ⊂ C. Recalling the definition of the pullback
(Definition 2.3), and focusing on the coefficient c(z1) of the matrix of ∇̃′ (see Corollary 3.1), the
invariance by φγ leads to:

(27) z2( δ
′
γ(z1)
δγ(z1) − δ′

γ(z1)
δγ(z1)b(γ · z1) + δ′

γ(z1)
δγ(z1)c(γ · z1)) − z2

2(g
′
γ(z1)
gγ(z1)δ

′′
γ(z1) δ

′
γ(z1)
δγ(z1)) + h(z1) = c(z1)

for some meromorphic function h on z1(Ñ ′). In particular:

(28) ∀γ ∈ π1(N ′, y0), g′
γ(z1)
gγ(z1)δ

′′
γ(z1) δ

′
γ(z1)
δγ(z1) = 0

Now we fix a set ((γα)α∈I , (γϵ,1, . . . , γϵ,2g)ϵ=1,2) of generators for π1(N ′, y0), where γα is ob-
tained from a loop containing the singular point yα in its bounded component, and γ1, . . . , γ2g
span π1(N) (g = g(N) is the genus). We prove that there are two possible cases:

a) τ is constant.
b) For any α ∈ I, cγα = 0.

Indeed, assume τ is not constant and pick α ∈ I. Clearly, cγα ̸= 0 implies that δ′′
γα
δ′
γα

̸= 0.
Hence, in view of (28), either cγα = 0 or g′

γα
= 0. Now, considering a suitable Möbius transfor-

mation ϕ in the connected component of PSL2(R), and replacing the coordinate z1 by z′
1 = ϕ◦z1,

the equation (28) remains true when replacing τ by τ = τ ◦ϕ−1, g′
γα

by the matrix of the differ-
ential of γα· in the basis ∂

∂z′
1

which can be picked out non-zero, and keeping the same cγα (since
τ have the same monodromy as τ). Hence necessarly cγα = 0.
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Now we prove that case b) can’t happen in our situation. Indeed, it is known that there are
generators (γα)α∈I and (γϵ,j)j=1,...,g

ϵ=1,2
as above such that:

(29)
g∏
j=1

[γ1,j , γ2,j ] =
∏
α∈I

γα

But property b) means that the monodromy of τ is a representation ρ with values in the abelian
subgroup of translations in SL2(R). In particular, (29) implies that the composition of the im-
ages ρ(γα) is trivial. Moreover, following the proof of Theorem 7.3 in [11], these are translations
by bα ≥ 0. From the previous remark, the sum of these positive integers is zero, so that bα = 0,
that is Aγα is the identity for any α ∈ I.

By Theorem 7.3 in [11], this implies that the functional invariant J have no pole on N . It is
therefore a constant meromorphic function. As a consequence, τ is constant.

□

3.2. Reduction to elliptic fiber bundles. We now prove that the classification reduces to the
one of meromorphic affine elliptic fiber bundles over complex curves, and their finite quotients.

From now, assume that M π−→ N is a minimal elliptic surface, of algebraic dimension one,
with singular fibers S = π−1(S), endowed with a meromorphic affine connection ∇ with poles
D. By Theorem 3.1, its invariants are constants. Since N is a smooth compact complex curve,
its is clear that there exists a finite cover N̂ q−→ N , ramified at S, such that the elliptic surface
M̂

π̂−→ N̂ obtained from the diagram:

(30) M̂ = M ×
N
N̂
q //

π̂
��

M

π

��
N̂

q
// N

where q is the restriction of the first projection, and π̂ is the restriction of the second projection,
is an elliptic surface without multiple singular fiber. Its invariants are respectively Ĵ = J ◦ q
and q∗G, that is respectively a constant and a constant sheaf.

We get:

Theorem 3.2. There is a surjective functor from the category of objects of the form (M̂ π̂−→
N̂ , ∇̂,Γ) where:

• M̂
π̂−→ N̂ is a principal elliptic bundle of algebraic dimension one through its algebraic

reduction.
• ∇̂ is a meromorphic affine connection on M̂ , with pole D̂,
• Γ is a finite group of automorphisms of the elliptic surface M̂ π̂−→ N̂ and of the mero-

morphic affine connection ∇̂, with smooth quotient.
to the category of minimal meromorphic affine surfaces (M π−→ N,∇) with a(M) = 1. This
functor maps (M̂ π̂−→ N̂ , ∇̂,Γ) to (M,∇) where:

• M = Γ\M̂ , N = Γ\N̂ and Γ is the subgroup of finite automorphisms of N̂ covered by
an element of Γ,

• ∇ is the meromorphic connection on TM = (q∗TM̂)Γ with poles at D = q(D̂), obtained
by applying Lemma 2.1 to the quotient map q : M̂ −→ M corresponding to the action of
Γ.
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Moreover, given any (M̂, ∇̂,Γ) in the first category, any γ ∈ Γ lifts to the universal cover
p̃ : M̃ −→ M̂ as an automorphism:

(31) Ψ̃(z1, z2) = (δ · z1, µz2 + fδ(z1))

where δ is the lift of an automorphism δ ∈ Aut(N̂) to the universal covering Ñ , µ ∈ C∗ and fδ is
a holomorphic function on Ñ , and (z1, z2) are coordinates on M̃ ⊂ C2 as in Proposition 2.2.2.

Proof. We begin by proving the equivalence of categories. Suppose that (M̂ π̂−→ N̂ , ∇̂,Γ) is
an object and (M,∇) its image as in the statement. First, we prove that M is of algebraic
dimension one. Indeed, suppose that f is a meromorphic function on M . Then f̂ = f ◦ q is
an element of π̂#C(N̂). By definition of M π−→ N , f is thus an element of π#C(N). Also, M
is a minimal surface. Indeed, if C is an exceptional curve, then q∗C = Ĉ is a smooth rational
curve in M̂ , contained in a fiber of π̂, which can’t be a principal elliptic fiber bundle. Hence,
the functor is well-defined on objects and extends as a functor for the obvious choice of arrows
(namely Γ-equivariant isomorphisms of meromorphic affine connections and isomorphisms of
meromorphic affine connections).

Now, if (M,∇) is an object of the target category, then we define M̂
π̂−→ N̂ as in (30)

and ∇̂ = q⋆∇. We prove that M̂ π̂−→ N̂ is a principal elliptic bundle. First, recall that the
invariants are respectively a constant for the functional invariant and a constant sheaf for the
homological invariant. The basic member B̂ associated to these invariants (see Theorem 2.3)
is B̂ = N̂ × C/Λ for some lattice Λ. Moreover, M̂ is a minimal surface. Indeed, suppose the
existence of an exceptional curve Ĉ in M̂ . Since the algebraic dimension of M̂ is one, the proof
of Theorem 4.2 in [10] implies that Ĉ is a singular fiber of π̂. But then its image C through
q would also be an exceptional curve. Indeed, the restriction of q to the support of Ĉ is a
biholomorphism, so C is a smooth rational curve. It is also a singular fiber of the minimal
elliptic surface M . By the proof of Theorem 6.2 in [11], we must have C ·C ≤ −1. In one other
hand, since q is a finite cover, we also have

−1 = Ĉ · Ĉ = deg(NĈ) = kC · C

for some positive integer k, hence C · C = −1 contradicting the minimality of M . From the
point 2. of the Theorem 2.3, M̂ is locally isomorphic, as an elliptic fibration, to B̂. Hence, M̂
has no singular fiber. Up to considering a finite cover, M̂ π̂−→ N̂ is therefore a principal elliptic
fiber bundle. Finally, setting Γ as the (finite) group of automorphisms of q, we get an object
mapping to (M,∇).

Now let’s prove the formula (31). Let Ψ be an automorphism of π̂. It covers an automorphism
δ ∈ Aut(N̂) and we define δ ∈ Aut(Ñ) as its lift to the universal covering p̃ : Ñ −→ N̂ . By
construction, any lift Ψ̃ of Ψ to the universal covering M̃ is an automorphism of C-principal
bundle covering δ.

Consider the covering q : M −→ M , where M = M̂ ×
N̂

Ñ , obtained as in the proof of

Proposition 2.2.2. Any element of M is of the form [ŷ, x] for some x ∈ M̂ and ŷ in N̂ . Recall
that M̃ is also the universal covering of M . Moreover, Ψ lifts canonically to an automorphism
Ψ of M defined by:

(32) Ψ([ŷ, x]) = [δ(ŷ),Ψ(x)]

Then the formula (31) follows as in the proof of point 3. of Proposition 2.2.2.
□
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4. Principal elliptic surfaces over projective line

We begin to apply the strategy proposed in the last section, with the case N̂ = P1. We
first describe the compact complex surfaces which are principal elliptic bundles of algebraic
dimension one on N̂ , namely the Hopf surfaces with a(M̂) = 1. This description is in terms
of the universal cover M̃ = C2 \ {0}. Then we classify meromorphic affine connections on M̂
(Theorem 4.2). Finally we prove that a non trivial finite group of Aut(π̂) has no fixed curve
(Theorem 4.3), any minimal meromorphic affine surface M with a(M) = 1 arising from a Hopf
surface through the construction (30) is again a Hopf surface.

4.1. Hopf surfaces of algebraic dimension one. Recall the following characterization of
Hopf surfaces among elliptic surfaces (see for example [2]):

Theorem 4.1. Let M be a complex compact surface. Then the following assertions are equiv-
alent:

(1) M is a Hopf surface with algebraic dimension one
(2) The universal cover of M is C2 \ {0} and M is of algebraic dimension one
(3) There exists λ ∈ C∗ with |λ|k → 0, an integer d ≥ 1 such that the following diagram

commutes:

(33) C2 \ {0}

p1
��

ρd // M

π
��

P1 P1

where ρd is the quotient map corresponding to the action of Γd = ⟨(z1, z2) 7→ (λz1, λ
1
d z2)⟩

on C2 \ {0} and p1 is the bundle map for the tautological bundle of P1.
The Hopf surface corresponding to some fixed λ and d ≥ 1 will be denoted by Md.

As an example, the original Hopf surface is M1 for λ = 1
2 .

4.2. Meromorphic affine elliptic bundles over the projective line. Let M̂ be a principal
elliptic bundle over N̂ = P1, with algebraic dimension one. By Theorem 4.1, there exists d ≥ 1
such that M̂ = Md using the previous notation. In particular, the field of meromorphic functions
on M̂ is

(34) p̃#C(M̂) = C(z1
zd2

)

where p̃ : M̃ −→ M̂ is the universal cover and (z1, z2) are the canonical coordinates of C2

restricted to M̃ = C2 \ {0}. From now on we identify C(M̂) with C(X) through the above
identification.

Theorem 4.2. Let λ ∈ C∗ and (Md)d≥1 be the corresponding Hopf surfaces of algebraic dimen-
sion one (see Theorem 4.1). Denote by A the affine space A of meromorphic affine connections
on M̂ . Then:

(1) There is an isomorphism of affine spaces:

(35) C(X)4 × C(X)4 ∼−→ A
(Pij(X), Qij(X))i,j=1,2 7→ ρ(∇̃Pij ,Qij )

where ρ is the map sending any meromorphic affine connection on M̃ invariant by the
Galois group of p̃ to the meromorphic affine connection on M̂ constructed in Lemma 2.1,
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and: ∇̃Pij ,Qij is the meromorphic affine connection on M̃ whose matrix in ( ∂
∂z1

, ∂
∂z2

) is:

(36) dz1 ⊗

P11( z1
zd

2
) z

d
2
z2

1
P12( z1

zd
2
) z

d−1
2
z1

P21( z1
zd

2
) z2
z2

1
P22( z1

zd
2
) z

d
2
z2

1

+ dz2 ⊗

Q11( z1
zd

2
) z

d−1
2
z1

Q12( z1
zd

2
) z

d
2
z1

Q21( z1
zd

2
) z

d
2
z2

1
Q22( z1

zd
2
) z

d−1
2
z1


(2) In particular, there exists non-flat meromorphic affine connections on any Hopf surface

of algebraic dimension one, and exactly one holomorphic affine connection on any such
manifold, that is the standard affine structure.

Proof. Pick a meromorphic affine connection ∇ on M̂ let ∇̃ be its pullback on C2 \ {0} through
p̃ (see Definition 2.3). Then ∇̃ is by construction a meromorphic affine connection on C2 \ {0},
which is Γd-invariant, and there are meromorphic functions (fij , gij)i,j=1,2 on C2 \ {0} such that
the matrix of ∇̃ in ( ∂

∂z1
, ∂
∂z2

)is:

(37) dz1 ⊗
(
f11 f12
f21 f22

)
+ dz2 ⊗

(
g11 g12
g21 g22

)
The invariance of ∇̃ by the Galois group of p̃ is equivalent to the system of functional equations:

(38)



λ fii(λz1, λ
1
d z2) = fii(z1, z2)

λ
1
d f12(λz1, λ

1
d z2) = f12(z1, z2)

λ2− 1
d f21(λz1, λ

1
d z2) = f21(z1, z2)

λ
1
d gii(λz1, λ

1
d z2) = gii(z1, z2)

λ
2
d

−1 g12(λz1, λ
1
d z2) = g12(z1, z2)

λ g21(λz1, λ
1
d z2) = g21(z1, z2)

Now, it is straightforward that the functions (f0
ij , g

0
ij)i,j=1,2 given by setting Pij = Qij = 1

in (36) define a solution of the above system. Given any other solution (fij , gij)i,j=1,2), the
quotients hij = fij

f0
ij

and kij = gij

g0
ij

are clearly elements of q#C(M̂). Hence ∇ = ρ(∇̃Pij ,Qij ) for
some Pij , Qij ∈ C(X). Reciprocally, given any elements Pij , Qij ∈ C(X), the meromorphic
connection ∇̃Pij ,Qij on C2 \ {0} is invariant through the action of the Galois group of p̃, so by
Lemma 2.1 there exists a unique ∇ on M̂ with p̃⋆∇ = ∇̃Pij ,Qij .

The curvature of the connection ∇̃ = ∇̃Pij ,Qij can be computed explicitely. As an example,
for Qij = 0, Pij = δ21

ij the matrix of the curvature R∇̃ in the basis ∂
∂z1

, ∂
∂z2

is

dA+A ∧A = dz1 ∧ dz2 ⊗
(

0 0
1
z2

1
0

)
̸= 0

whence the assertion.
However, when ∇̃1 is holomorphic, then Pij = Qij = 0 that is ∇̃ is the standard affine

structure on C2.
□

4.3. Quotients of meromorphic affine Hopf surfaces.

Theorem 4.3. Let (M,∇) be a minimal meromorphic affine surface with a(M) = 1 and suppose
that the finite covering M̂ from (30) is a principal elliptic surface over P1. Then M̂ = M and
(M,∇) is classified in Theorem 4.2.

Proof. Let Γ be the Galois group of q : M̂ −→ M and Γ the Galois group of q : N̂ −→ N .
Suppose that q (and so q) admits a ramification point yβ ∈ N . By definition, this means that
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there exists on M a multiple fiber Sβ = π−1(yβ). Let Ŝβ = q−1(Sβ). Then Ŝβ is the curve
obtained as the quotient of {z1 = 0} or {z2 = 0} in the univeral cover C2 \ {0} of the Hopf
surface M̂ = Md (see Theorem 4.1). These are precisely the inverse images of 0 and ∞ through
π̂ : M̂ −→ N̂ = P1. Without loss of generality (up to exchanging z1 and z2), we suppose that
Ŝβ is the quotient of {z1 = 0}. This implies that Γ is a subgroup of Aut(C). In particular, the
action of any ϵ ∈ Γ lifts to the universal cover C2 \ {0} as an automorphism ϵ̃ defined by:

ϵ̃(z1, z2) = (µ(az1 + bz2), µz2)

for some a, µ ∈ C∗ and b ∈ C. But then ϵ̃m is an element of the Galois group of the universal cover
ρd : C2\{0} −→ M̂ for some m ≥ 1. Since this Galois group is spanned by (z1, z2) 7→ (λz1, λ

dz2),
this implies: 

µm = λrd

b
m∑
k=1

µk = 0

aµm = λr

Since |λ| > 1 we get b = 0, so that ϵ̃(z1, z2) = (λ
1
r z1, λ

d
r z2) for some integer r. Now, by definition

of q and the remarks above, ϵ fixes the quotient of {z1 = 0}. Hence λ
d
r = λld for some integer l,

so that ϵ̃ is in fact an element of the Galois group of ρd, i.e ϵ is the identity on M̂ .
We have proved that either that q is an unramified finite cover. Hence M has no multiple

fiber, so it is a Hopf surface, in particular a principal elliptic bundle. This implies M̂ = M . □

5. Principal elliptic surfaces over an elliptic curve and quotients

In this section, following Theorem 3.2, we classify meromorphic affine connections on (holo-
morphic) principal elliptic surfaces over a one torus N̂ = C/Λ′, as well as their quotients.

Let M̂ be a complex compact surface which is a holomorphic principal elliptic bundle over
a torus. We first recall a result of Kodaira asserting that M̂ corresponds to one of the two
following examples:

Definition 5.1. A primary Kodaira surface over a torus N̂ = C/Λ′ is an elliptic surface M̂ π̂−→ N̂ , where
M̂ = G\C2, with π̂(z1, z2) = [z1] ([z1] stands for the class of z1 in C/Λ′) and the group G ⊂ Aut(C2)
spanned by ψ1, ψ2 as in Proposition 2.2.1 (for some τ ∈ H) and the automorphisms (φλ′)λ′∈Λ′ defined
by:

(39) φλ′(z1, z2) = (z1 + λ′, z2 + λ′z1 + βλ′)

for some βλ′ ∈ C.

Definition 5.2. A two torus is an elliptic surface M̂ π̂−→ N̂ where M̂ is a quotient G\C2, with π̂(z1, z2) =
[z1] and G a subgroup of translations in C2.

Theorem 5.1. Let M̂ be a complex compact surface which is a holomorphic principal elliptic
bundle over a torus. Then KM̂ ≃ OM̂ and either:

a) The first Betti number of M̂ is odd if and only if M̂ is a primary Kodaira surface.
b) The first Betti number of M̂ is even if and only if M̂ is a two torus.

Proof. Let (z1, z2) be coordinates on the universal cover M̃ of M̂ as in Proposition 2.2.2. Then
the holomorphic volume form dz1 ∧ dz2 is clearly invariant through the automorphisms ψ1, ψ2
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and (φγ)γ∈π1(N̂,y). Thus, it is the pullback of a global holomorphic volume form η̂ on the covering
M defined as in (14), which is invariant through the Galois group of this covering. Hence, η̂ is
the pullback of a global holomorphic volume form on M , proving KM ≃ OM .

The second assertion is a part of a result of Kodaira ([12], Chapter 6.), where we eliminated
the K3 surfaces since these are elliptic surfaces over the projective line.

□

We are thus led to classify meromorphic affine primary Kodaira surfaces, meromorphic affine
two tori, and their quotients.

5.1. Meromorphic affine primary Kodaira surfaces. Let M̂ π−→ N̂ = C/Λ′ be a primary
Kodaira surface (Definition 5.1) and G the group such that M̂ = G\C2. Suppose the existence
of a meromorphic affine connection ∇ on (M,D) for some divisor D. Since π is a principal
elliptic bundle, Theorem 2.2 implies D = π∗C for some divisor on the one torus N .

Define E0 as the subspace of Λ′-elliptic functions, that is:

(40) E0 = {h ∈ M(C) | ∀λ′ ∈ Λ′, δλ′(h)(z1) = 0} where δλ′(h)(z1) = h(z1 + λ′) − h(z1)

Recall that E0 is the subfield of meromorphic functions obtained as the extension of C by two
elements ℘(z1), ℘′(z1), where:

(41) ℘(z1) = 1
z2

1
+

∑
λ′∈Λ′\{0}

1
(z1 − λ′)2 − 1

λ′2

is Weirestrass elliptic function. Then define:

(42) E1 = {h ∈ M(C) | ∃χh ∈ HomZ(Λ′,C), ∀λ′ ∈ Λ′, δλ′(h)(z1) = χh(λ′)}

equipped with the natural linear map:

(43) χ : E1 −→ HomZ(Λ′,C)
h 7→ δ(h)

Clearly h ∈ E1 if and only if h′ ∈ E0. In particular, z1 ∈ E1, and the Weirestrass zeta function
(a primitive of ℘) :

(44) ζ ∈ E1

This implies:

Lemma 5.1. There is an exact sequence:

(45) 0 // E0 // E1
χ// HomZ(Λ′,C) // 0

which splits through the linear map:

(46) χ−1(αχζ + βχz1) = αζ(z1) + βz1

Proof. The fact ker(χ) = E0 is immediate by definition of χ. By (41), Res0(ζ) = −1, while
Res0(z1) = Res0(f) = 0 for any f ∈ E0. As a consequence, χζ = χ(ζ) and χz1 = χ(z1) are
independant. Since HomZ(Λ′,C) has dimension two, the above sequence is right-exact.

□

Consider the pullback ∇̃ = ρ̃⋆∇, which is a meromorphic G-invariant affine connection on
C2. By Theorem 2.2, either ∇ is flat or the pole D̃ of ∇̃ is supported on a Λ′-invariant union of
subvarieties {z1 = yα + λ′}. Suppose ∇̃ is not flat.
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There are meromorphic function fij , gij on C2, with poles supported at D̃, such that :

(47) Mat ∂
∂z1

, ∂
∂z2

(∇̃) = dz1 ⊗
(
f11 f12
f21 f22

)
+ dz2 ⊗

(
g11 g12
g21 g22

)
By the Λ-invariance of ∇̃, the restriction of fij and gij to any fiber of z1 is constant. That is
fij , gij are elements of (π ◦ ρ̃)#C(N), and we will omit the second variable z2 in the sequel.

Now, given any λ′ ∈ Λ′, we have :

(48) φ⋆λ′(dz1) = dz1 and φ⋆λ′(dz2) = dz2 + bλ′dz1

where φλ′ are the elements of G as in Definition 5.1. Hence, the invariance of ∇̃ by G rewrites
as (see [?] p.238-239):

(49) ∀λ′ ∈ Λ′,



δλ′(g12)(z1) = 0

δλ′(gii)(z1) = (−1)i+1λ′g12(z1)

δλ′(g21)(z1) = λ′(g22 − g11)(z1) − λ′2g12(z1)

δλ′(f12)(z1) = −λ′g12(z1)

δλ′(fii)(z1) = (−1)i+1λ′f12(z1) − λ′gii(z1)
+(−1)iλ′2g12(z1)

δλ′(f21)(z1) = λ′(f22 − f11 − g21)(z1)
+λ′2(g22(z1) − g11(z1) − f12(z1)) + λ′3g12(z1)

Reciprocally, any family (fij , gij)i,j=1,2 of meromorphic functions on C satisfying (49) define a
meromorphic affine connection on M .

Now, we study the simultaneous solutions (fij , gij) of the system of functional equations (49).

Proposition 5.1.1. Let ∇̂ be a meromorphic connection on a primary Kodaira surface M̂ as
above. Let αζ + βz1 the meromorphic function from Lemma 5.1. Then, using the notation
Z(z1) = αζ(z1) + βz1, the matrix of the meromorphic affine connection ∇̃ = p⋆∇̂ in the basis
( ∂
∂z1

, ∂
∂z2

) is either:

form I:

(50)

dz1 ⊗


−(Z2 + γ11)g12 Zg12

−(Z3

+ c(Z + k)2

+ dZ + γ12)g12

((Z + δ22 + γ12)2

+ γ22)g12



+ dz2 ⊗
(

−(Z + δ11)g12 g12
−((Z + (δ22 − δ11))2 + δ21)g12 (Z + δ22)g12

)
with g12 a non trivial Λ′-elliptic function, γij , δij ∈ E0, and h = −2

3δ11, c = δ11 +δ22 +γ12
and d, k satisfying (53), or:
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form II:

(51)

dz1 ⊗


−(g11 − f12)Z

+ γ11
f12

(g11 − g22 + f12)Z2

+ (γ11 − γ22 + δ21)Z
+ γ21

−(g22 + f12)Z
+ γ22


+ dz2 ⊗

(
g11 0

−(g22 − g11)Z + δ21 g22

)
where g11, g22, f12, γij , δ21 are arbitrary Λ′-elliptic functions.

Reciprocally, any matrix as above is the matrix of the pullback ∇̃ of some meromorphic affine
connection ∇̂ on M̂ through its universal covering p̃ : M̃ −→ M̂ .

Proof. Recall that the pullback of a meromorphic affine connection on M̂ to its universal covering
M̃ defines a bijection between meromorphic affine connections on M̂ and meromorphic functions
(fij , gij)i,j=1,2 on C solutions of (49).

• First suppose g12 ̸= 0. In this case, the first line of (49) is equivalent to g12 ∈ E0 \ {0},
and applying Lemma 5.1 to gii

g12
shows that the second and fourth one is equivalent to

gii = (−1)i(αζ + βz1 + δii)g12 and f12 = (αζ + βz1 + γ12)g12 for some elliptic functions
δ11, δ22, γ12. Rewriting the system (49) in this case, we see that the third line is equivalent
to:

(52) ∀λ′ ∈ Λ′, δλ′(g21)(z1) = δλ′(−(αζ + βz1 + (δ22 − δ11))2g12)(z1)

so that this line becomes equivalent to

g21 = −((αζ + βz1 + (δ22 − δ11))2 + δ21)g12

for an arbitrary elliptic function δ21. By the same principle, the fifth and sixth lines
are now equivalent to fii = (−1)i((αζ + βz1 + δii + γ12)2 + γii)g12 and f21 = −(1

3(αζ +
βz1 + h)3 + c(αζ + βz1 + k)2 + γ21)g12 for an arbitrary elliptic functions γ21 and with
h, c, k ∈ E0 solutions of the system:

(53)



3h2 + 2ck = (δ22 − δ11)2 + (δ22 + γ12)2 + (δ11 + γ12)2 + δ21 + γ11 − γ22

2c+ 3h = 4(δ22 + γ12)

3h+ c = δ22 − δ11 + γ12

We get the matrix form I.
• Now suppose g12 = 0. Then using the Lemma 5.1 as before we get that the five first lines

of (49) are equivalent to g12 = 0,g11, g22, f12 ∈ E0 and g21 = (αζ + βz1)(g11 − g22) + δ21
and fii = −(αζ + βz1)(gii + (−1)if12) + γii for some arbitrary elliptic function γii, δ21.

Now, the last line is equivalent to:

δλ′(f21)(z1) = δλ′((αζ + βz1 + γ21)2(g11 − g22 + f12) + (αζ + z1)(γ11 − γ22 + δ21))

We get the form II.
□

We obtained:
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Theorem 5.2. Let π : M −→ C/Λ′ be a primary Kodaira surface, ζ, α, β as above and ρ̃ :
C2 −→ M its universal cover. Then:

(1) The pullback of meromorphic connections through ρ′ gives a bijection between the set of
meromorphic affine connections on M and the set of meromorphic affine connections on
C2 with matrix as in Proposition 5.1.1.

(2) The only holomorpic affine connections on M are the ∇ corresponding to ∇̃ with matrix
(51) with constant entries and g21 = f22 − 11 (this was first proved by A. Vitter, see [?],
5.b). In particular their curvature identically vanishes, and there are flat holomorphic
affine structures on M .

(3) There exists non flat meromorphic affine connections on M .
Proof. (1) By the remark below (49), the set of meromorphic affine connections on M is in

bijection with the set of ∇̃ with matrix form as in Proposition 5.1.1.
(2) Among the matrix forms in (5.1.1), the only possible form with holomorphic one forms

as entries is (51), with fij ∈ C. In particular the curvature is identically zero, and picking
f11 = f22 = f21 = 0, we get that the standard holomorphic affine structure of C2 induces
a holomorphic affine structure on M , thus recovering the result of Inoue,Kobayashi and
Ochiai.

(3) In (51), pick f11 = ℘, f22 = f21 = 0. Then the curvature of ∇̃ is

R∇̃ = −℘(z1)dz1 ∧ dz2 ⊗ dz1 ⊗ ∂

∂z2
̸= 0

We thus get a non flat meromorphic affine connection on M .
□

5.2. Quotients: Meromorphic affine secondary Kodaira surfaces. We now classify the
quotients of meromorphic affine primary Kodaira surfaces.

The following fact, which comes from the proof of Theorem 39 in [13], describe the possible
quotients of a primary Kodaira surface M̂ :
Lemma 5.2. Let M π−→ N be a minimal elliptic surface with a(M) = 1, endowed with a
meromorphic affine connection, and M̂

π̂−→ N̂ its finite ramified covering as in Theorem 3.2.
Suppose M̂ has canonical trivial bundle. Then either M̂ = M or K⊗k

M = OM for some k ≥ 2.
Moreover:

(1) M = Γ\M̂ where Γ is a cyclic group acting freely and spanned by an automorphism Ψ̃
of the form

(54) Ψ̃(z1, z2) = (νz1 + θ, µz2 + az1 + b)
where ν is a k-th root of the unity (k ≤ 6), µ is a power of ν and a, b ∈ C.

(2) Moreover, if M̂ is a two torus and Γ is not trivial, µ ̸= ν in (54).
Proof. (1) If M is a principal elliptic bundle then M̂ = M by construction of M̂ . We

then suppose that M is not a principal elliptic bundle and Γ is not trivial. Moreover
kod(M) ≤ kod(M̂) = 0. Since M is minimal, by the Enriques-Kodaira classification (see
[2], Table 10 p.189), if kod(M) = 0, then K⊗k

M = OM for some integer k ≥ 2. Since KM̂ is
trivial, q : M̂ −→ M is isomorphic to the unramified covering associated with KM , and
the formula (54) follows from the proof of Theorem 38 in [13]. If kod(M) = −∞, then
M is a Hopf surface with a(M) = 1, and therefore a principal elliptic bundle through
its algebraic reduction. In particular, it has no singular fiber so that M̂ = M . This
contradicts KM̂ = 0 so necessarly kod(M) = 0. In particular K⊗k

M is trivial for some
k ≥ 1 and the formula (54) can be recovered from Theorem 39 and Theorem 40 in [13].
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(2) Suppose µ = ν. By ??, Ψ̃k belongs to the subgroup spanned by the automorphisms
Ψ1,Ψ2 and (φλ′)λ′∈Λ′ , where k is the order of Γ. Suppose k > 1. The matrix of dΨ̃ in
the basis ( ∂

∂z1
, ∂
∂z2

) and (Ψ̃∗ ∂
∂z1

, Ψ̃∗ ∂
∂z2

) is:(
ν 0
a ν

)
, while the matrix of any element φ in the subgroup spanned by Ψ1,Ψ2 and the φλ′ in
( ∂
∂z1

, ∂
∂z2

) and (φ∗ ∂
∂z1

, φ∗ ∂
∂z2

) is the identity.
We get immediately a = 0. Hence, Ψ̃ is the product of the automorphisms z1 7→ νz1+θ

and z2 7→ νz2 + b, with ν ̸= 1. Hence, there exists on M̃ = C2 an isolated fixed point
x̃0 = (z0

1 , z
0
2). The coordinates u1 = z1 − z0

1 and u2 = z2 − z0
2 identify a neighborhood

Ũ of x̃0, invariant by Ψ̃, with D(0, 1) × D(0, 1). It conjugates the action of Ψ̃ and the
action of the automorphism Ψ1 of D(0, 1) ×D(0, 1) defined by:

Ψ1(u1, u2) = (νu1, νu2)

For a suitably small Ũ , p̃ restricts as a biholomorphism between Ũ and an open neigh-
borhood Û of x̂0 = p̃(x̃0). Then q(Û) is an open neighborhood of some point x0 ∈ M ,
which is isomorphic to the analytic space obtained as the quotient of D(0, 1) × D(0, 1)
by the subgroup spanned by Ψ1 as above. It is clear since ν ̸= 1, that this space is not
smooth, contradicting (i) in ??. Hence µ = ν implies k = 1 that is Γ is the trivial group.

□

Definition 5.3. A secondary Kodaira surface is an elliptic surface M π−→ N which admits a primary
Kodaira surface M̂ π̂−→ N̂ as a finite unramified cover.

Hence, the classification of (non-trivial) quotients of meromorphic affine primary Kodaira
surfaces is reduced to the classification of meromorphic affine secondary Kodaira surfaces.

The two following lemmas will be useful to simplify the invariance equations corrsponding to
Ψ̃⋆∇̃ = ∇̃:

Lemma 5.3. Let ν ∈ C× \ {1} and θ ∈ C such that z1 7→ νz1 + θ is an automorphism of the
elliptic curve C/Λ′, r : C/Λ′ −→ P1 the quotient by the subgroup spanned by this automorphism,
and ℘0 = Z1 ◦ r where Z1 is any primitive element in the field of meromorphic functions on P1.
Then, for any integer k ≥ 0 the set of Λ′-elliptic functions satisfying:

(55) f(νz1 + θ) = 1
νk
f(z1)

is C (℘0)℘(k)
0 .

Proof. Since C(P1) = C(Z1), we obviously have:

r#C(P1) = C (℘0)

In one other hand, by definition of r, r#C(P1) is the subset of Λ′-elliptic functions invariant
through the automorphism from the statement.

In particular, derivating the invariance equation for ℘0 fives :

(56) ℘
(k)
0 (νz1 + θ) = 1

ν
℘

(k)
0 (z1)

that is ℘(k)
0 is a Λ′-elliptic function satisfying (55).
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Now let f be any function as in the statement. Then g = f

℘
(k)
0

is an Λ-elliptic function
which is invariant through the automorphism from the statement. Hence, g ∈ C (℘0) and finally
f ∈ C (℘0)℘(k)

0 .
□

Lemma 5.4. Let ν be a non trivial root of the unity and θ ∈ C such that δ : z1 7→ νz1 + θ is a
finite automorphism of C/Λ′. Suppose k ≥ 1 and (hi,1, hi,0)i=0,...,k are elements of E0 such that:

(57)
k∑
i=0
hi,1(z1)(αζ + βz1)i(δ · z1) + hi,0(z1)(αζ + βz1)i(z1) = 0

Then h0,0 = 0 and hi,0 = −νihi,1 for i = 1, . . . , k. Moreover, if there exists i ∈ {1, . . . , k} with
hi,0 ̸= 0 then θ = 0.

Proof. We proceed by induction on k ∈ N≥1.
Suppose the relation (57) holds for k = 1. If h1,1 = 0, then clearly h1,1 = h1,0 = h0,0 = 0

since (αζ + βz1) is not an element of E0. Thus, we can assume, without loss of generality, that
h1,1 = 1. Then derivating (57) gives :

ν(α℘+ β)(νz1 + θ) + ∂h1,0
∂z1

(αζ + βz1)(z1) + h1,0(α℘+ β) + h0,0 = 0

As before this implies h1,0 = c ∈ C. But then, (57) becomes:

(αζ + βz1)(νz1 + θ) + c(αζ + βz1)(z1) = −h0,0

If θ ̸∈ Λ′, then the left handside has residues summing to a nonzero value. This is impossible by
the second Liouville’s theorem. Hence θ ̸∈ Λ′ implies h1,1 = h1,0 = h0,0 = 0.

If θ ∈ Λ′, then (αζ + βz1)(δz1) = ν(αζ + βz1)(z1). Again, since (αζ + βz1) is not an element
of E0, we get that (57) implies h0,0 = 0 and h1,0 = −νh1,1.

Suppose the lemma is true for k ∈ N≥1, and suppose (57) holds for k + 1 in place of k.
Applying the operator δλ′ (see (40)) to this relation gives:

∀λ′ ∈ Λ′, λ′k+1(νk+1hk+1,1 + hk+1,0) + λ′kfk + . . .+ λ′f1 + f0 = 0

where f0, . . . , fk are C-linear combinations of hj,0, hj,1 and (αζ + βz1)i(z1) with i, j ≤ k. In
particular we get νk+1hk+1,1 + hk+1,0 = 0 and:

(58)
k∑
i=0
hi,1(z1)(αζ + βz1)i(δ · z1) + hi,0(z1)(αζ + βz1)i(z1) = 0

By induction hypothesis, we get that hi,0 = νihi,1 for i = 1, . . . , k.
Finally, if there exists i ∈ {1, . . . , k} such that hi,0 ̸= 0, then the induction hypothesis implies

θ ∈ Λ′. Also, by (58), if hk+1,0 ̸= 0 and θ ̸∈ Λ′, then by the second Livouille’s theorem
hk+1,1(αζ + βz1)k+1(νz1 + θ) + hk+1,0(αζ + βz1)k+1(z1) have non trivial poles at the classes of
0 and θ in C/Λ′.

□

Theorem 5.3. Let M π−→ N be a minimal meromorphic affine elliptic surface with a(M) = 1,
and suppose that the elliptic surface M̂ π̂−→ N̂ from (30) is a primary Kodaira surface. Denote
by p : M̃ −→ M̂ the universal covering of M̂ and (z1, z2) coordinates as in Proposition 2.2.2.
Then:



ON THE CLASSIFICATION OF MEROMORPHIC AFFINE CONNECTIONS ON COMPLEX COMPACT SURFACES25

(1) M is the quotient of M̂ by a cyclic group Γ, spanned by an element Ψ, which lifts to an
automorphism Ψ̃ of M̃ of the form:

(59) Ψ̃(z1, z2) = (νz1 + θ, µz2 + bz1 + c)

where z1 7→ νz1 + θ is an automorphism of the elliptic curve N̂ = C/Λ′, µ is a power of
ν, and b, c ∈ C. Moreover ν = 1 if and only if M̂ = M .

(2) Suppose that ν ̸= 1 as in item 1 (i.e. M is a secondary Kodaira surface). Let ℘0 defined
as in Lemma 5.3. Then the map ∇ 7→ ∇̃ = p̃⋆q⋆∇ is a bijection between the set of
meromorphic affine connections on M and the set of meromorphic affine connections on
M̃ with one of the following matrix forms in ( ∂

∂z1
, ∂
∂z2

):

a) if µ = ν2 = 1 and θ = 0:

dz1 ⊗
(

γ11 0
(αζ + βz1)(γ11 − γ22 + δ21) + a

1−ν δ21 + γ21 γ22

)
+ dz2 ⊗

(
0 0
δ21 0

)
with γii, δ21 ∈ C (℘0)℘′

0 and γ21 ∈ C (℘0)℘′′
0.

b) if µ ̸= 1 or ν2 ̸= 1 or θ ̸= 0:

dz1 ⊗
(
γ11 0
γ21 γ11

)
with γ11 ∈ C (℘0)℘′

0 and γ21 ∈ C (℘0)℘′′
0,

In particular, there always exists meromorphic affine flat connections on any secondary Ko-
daira surfaces.

Proof. (1) It is a consequence of Lemma 5.2 and the definition of M̂ in Theorem 3.2. Indeed,
ν = 1 implies that q : N̂ −→ N is an unramified covering, that is M have no multiple
singular fiber. By definition this implies M̂ = M .

(2) Let ∇ be a meromorphic affine connection on a secondary Kodaira surface M π−→ N ,
and ∇̃ the corresponding pullback to the universal covering M̃ of the primary Kodaira
surface M̂ . Recall that the matrix of ∇̃ in ( ∂

∂z1
, ∂
∂z2

) was described in Proposition 5.1.1.
Suppose that ∇̃ has form I in Proposition 5.1.1 and let Ψ̃ be as in 1, so that ν ̸= 1.

Then by Lemma 5.4, the equations corresponding to Ψ̃⋆∇̃ = ∇̃ imply:

ν(αζ + βz1)2(νz1 + θ)g12(νz1 + θ) = (αζ + βz1)2(z1)g12(z1)

(αζ + βz1)(νz1 + θ)g12(νz1 + θ) = (αζ + βz1)(z1)g12(z1)

µ
ν g12(νz1 + θ) = g12(z1)

Since g12 ̸= 0, using again Lemma 5.4 we get:
ν3

µ = 1

ν2

µ = 1

so that ν = 1, that is M is a primary Kodaira surface by 1. This contradicts our
assumption on M .



26 ALEXIS GARCIA

Hence ∇̃ has form II in Proposition 5.1.1. In this case, using the notation Z(z1) =
αζ + βz1, the equations corresponding to Ψ̃⋆∇̃ = ∇̃ are:

(60)



µgii(νz1 + θ) = gii(z1)

f12(νz1 + θ) = f12(z1)

−ν(g22 − g11)(z1)(Z)(νz1 + θ) = (g22 − g11)(z1)Z(z1)
+µνδ21(νz1 + θ) +δ21(z1)

−(gii + (−1)iνf12)(z1)Z(νz1 + θ) = −(gii + (−1)if12)(z1)Z(z1)
+νγii(νz1 + θ) + a

µgii(z1) +γii(z1)

ν(g11 − g22 + νf12)(z1)Z2(νz1 + θ) = (g11 − g22 + f12)(z1)Z2(z1)
+ − aZ(g11 − g22)(νz1 + θ)
+ν2(γ11 − γ22 + δ21)(νz1 + θ)Z(νz1 + θ) +(γ11 − γ22 + δ21)(z1)Z(z1)
+ν2γ21(νz1 + θ)) + aδ21(νζ + θ) +γ21(z1)

Using Lemma 5.4 we get the following restrictions. The third line of (60) implies:

(61) δ21(νz1 + θ) = 1
µν
δ21(z1)

The fourth line implies:

(ν − 1)gii = (−1)i(1 − ν2)f12

In the same way, the fifth line implies:

(ν2 − 1)(g11 − g22) = (1 − ν3)f12

Since ν ̸= 1, we get:

(62) gii = f12 = 0

The fourth line also implies:

(63) γii(νz1 + θ) = 1
ν
γii(z1) − a

µν
gii(z1) = 1

ν
γii(z1)

Finally the fifth line of (60) implies:

(64) γ21(νz1 + θ) = 1
ν2γ21(z1) − a

µν2 δ21(z1)

We distinguish between two cases:
• If µ ̸= ν, then γ = − a

ν2−µν δ21(z1) is a solution of (64). Hence, in view of Lemma 5.3,
(64) is equivalent to:

(65) γ21 ∈ − a

ν2 − µν
δ21(z1) + C(℘0)℘′′

0

• If µ = ν, then either δ21 = 0 and Lemma 5.3 shows that (64) is equivalent to
γ21 ∈ C(℘0)℘′

0, or:
γ21
δ21

(νz1 + θ) = (ν − 1
ν2 )γ21

δ21
(z1) − a

ν
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In the second subcase, since z1 7→ νz1 + θ has finite order k with νk = 1, we get
(ν− 1

v2 )k−1+. . .+(ν− 1
ν2 )+1 = 0. Since moreover k = 2 or 3, we get a contradiction.

Hence if µ = ν then:
(66) δ21 = 0 and γ21 ∈ C(℘0)℘′

0

Moreover, the fifth line and Lemma 5.4 imply:

ν(γ11 − γ22 + 1
µ
δ21)(z1) = 1

ν
(γ11 − γ22 + 1

µ
δ21)(z1)

and θ ∈ Λ′ whenever δ21 ̸= 0 or γ11 ̸= γ22. Comparing with (61) and (63), the above
equality implies:

(67) (ν2 = 1 and µ = 1 and θ = 0) or γ11 − γ22 = δ21 = 0

We have proved that ∇̃ has matrix form as described in the statement.
Reciprocally, suppose that Ψ̃ is the lift of the generator of Γ as in 1. Suppose also tat

∇̃ is a meromorphic affine connection with matrix form as in the statement. Then (60)
is clearly satisfied, i.e. ∇̃ is Ψ̃-invariant, and M = Γ\M̂ is a secondary Kodaira surface.
This achieves the proof since the matrix form in case b) also appears in case a), and the
torsion and curvature both vanish when γ11 = γ22 = 0 in this case.

□

5.3. Two tori. In view of Theorem 5.1, to achieve the case N̂ = C/Λ′ (see Theorem 3.2), it
remains to classify meromorphic affine two tori with a(M̂) = 1 and their quotients.

Let M̂ π̂−→ C/Λ′ be a two torus with a(M̂) = 1, and E0 the subfield of Λ′-elliptic mero-
morphic functions. Let p̃ : M̃ −→ M̂ be the universal covering, with coordinates (z1, z2) as in
Proposition 2.2.2. Then the automorphisms (φλ′)λ′∈Λ′ are translations in these coordinates.

Hence, for any meromorphic affine connection ∇̃ on M̃ , with matrix:
dz1 ⊗ (fij)i,j=1,2 + dz2 ⊗ (gij)i,j=1,2

the condition φ⋆λ′∇̃ = ∇̃ is equivalent to fij , gij ∈ E0.
We immediately get:

Theorem 5.4. Let M̂ be a two torus with a(M̂) = 1 and p̃ : M̃ −→ M̂ its universal covering with
global coordinates (z1, z2) as in Proposition 2.2.2. Then the map from the set of meromorphic
affine connections on M̂ to E8

0 obtained by mapping ∇̂ to the coefficients (fij , gij) of the matrix
of ∇̃ = p̃⋆∇̂ in ( ∂

∂z1
, ∂
∂z2

) is a bijection.

5.4. Quotients of meromorphic affine two tori.

Theorem 5.5. Let (M,∇) be a minimal meromorphic affine complex compact surface of alge-
braic dimension one, and suppose that the finite ramified covering (M̂, ∇̂) from Equation 30 is
a meromorphic affine two torus (of algebraic dimension one). Then either M is a two torus,
or (M,∇) is a meromorphic affine secondary Kodaira surface, and such pairs were classified in
Theorem 5.3.

Proof. If M is not a two torus, then the finite covering q : M̂ −→ M and therefore KM is not
trivial. The proof of point 1. in Lemma 5.2 only relies on the fact that KM̂ is trivial, which
is still satisfied in our situation. As a consequence, we get that the canonical global section
(dz1 ∧ dz2)⊗k of K⊗k

M̃
, where k is the order of ν and M̃ is the universal cover of M̂ , is invariant

by the lift Ψ̃ of any automorphism of q : M̂ −→ M . Hence K⊗k
M is trivial. By Theorem 38 of

[13], this implies that a finite unramified cover of M is either a two torus or a primary Kodaira
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surface. In the second case, since KM is not trivial, we immediately get that M is a secondary
Kodaira surface. In the first case, we have kod(M) = 0 and a(M) = 1. By the Enriques-Kodaira
classification (see [2], Table 10 p.189), M is either a secondary Kodaira surface, a two torus,
or a K3 surface. Again, since KM is not trivial, the only possiblity is a secondary Kodaira
surface. □

6. Principal elliptic surface over an hyperbolic compact Riemann surface and
quotients

6.1. Non-existence on principal elliptic surfaces with b1(M̂) even. Let M̂ −→ N̂ be a
principal elliptic surface over a Riemann surface N̂ of genus g ≥ 2, with a(M̂)) = 1. Denote
by p : H × C −→ M̂ its universal cover. From Proposition 2.2.2, p is the quotient by the
automorphisms Ψ1,Ψ2 corresponding to a lattice associated with the fibers of M̂ , and by the
automorphisms φγ (γ ∈ π1(N̂ , y)) lifting the desk transformations of the universal cover p :
H −→ N̂ . The later are of the form:

φγ(z1, z2) = (aγz1 + bγ
cγz1 + dγ

, z2 + fγ(z1))

in suitable global coordinates z1 on H and z2 on C, with fγ a holomorphic function on H.

Proposition 6.0.1. Let M̂ −→ N̂ be a principal elliptic surface as above. If M̂ admits a
meromorphic affine connection ∇̂, then b1(M̂) is odd.

Proof. By [11], Theorem 4.17 applied to the basic member

B := H × C/Λ

in the same family as M̂ , we get that either b1(M̂) is odd or M̂ is a deformation of B.
Suppose that b1(M̂) is even. In particular, there exists a diffeomorphism between the under-

lying smooth manifolds:

(68) M̂R φ //

��

BR

��
N̂R N̂R

In particular φ induces an isomorphism of π1(N̂ , y)-manifolds between the universal covers of
M̂ and B.

Pick U ⊂ N̂ such that there exists a section of p over π̂−1(U), and thus a section of the
universal cover of B over the corresponding open subset U × V in B. Then, in the induced
coordinates (z1, z2) on π̂−1(U) and (z1, u2) on U × V , φ has the expression:

(69) φ(z1, z2) = (z1, z2 + fU (z2))

for some C∞ function fU on U . We fix U and omit the subscript U in the sequel.
Now, on B, we can consider a meromorphic affine connection ∇0 induced by the canonical

holomorphic affine connection on C/Λ and any meromorphic affine connection on N̂ . Then
we can consider the smooth connection ∇0 := φ⋆∇0 on the sheaf of complexified differentiable
vector fields

(70) TC(M̂ \ S) := TM̂ |M̂\S ⊗ C∞
M̂\S,C
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In the basis ∂
∂z1

, ∂
∂z1

, ∂
∂z2

, ∂
∂z2

induced by coordinates as above, the matrix of the pullback ∇̃0 :=
p⋆∇0 is:

(71) dz1 ⊗
(

a(z1) 0
df · a(z1) + ∂

∂z1
df(z1) 0

)
+ dz1 ⊗

(
0 0

∂
∂z1

df(z1) 0

)

where a is a meromorphic function on H, identified with a C∞ function a : H −→ gl2(R) and:

df(z1) = 1
2

 ∂f
∂z1

∂f
∂z1

∂f
∂z1

∂f
∂z1


Suppose that ∇̂ is a meromorphic affine connection on M̂ , with poles at D, and let S′ = S+D.
Denote by ∇̂C (resp. ∇̃C) the unique extension of ∇̂ to a smooth connection on the sheaf (70)
(resp. its pullback to the universal cover H × C). Then the matrix A of ∇̃C in ∂

∂z1
, ∂
∂z1

, ∂
∂z2

, ∂
∂z2

satisfies:

(72) ∂

∂z1
⌟A = ∂

∂z2
⌟A = 0

In one other hand, the difference ∇̃C − ∇̃0 = p⋆(∇̂C − ∇0) is a Γ-equivariant section of the
C∞
M̂\S′,C-sheaf TC(M̂ \ S′)∗ ⊗End(TCM̂ \ S). Let’s decompose its matrix in the above basis as:

(73) dz1 ⊗ (f (1,0)
i,j )i,j=1,2 + dz2 ⊗ (g(1,0)

i,j )i,j=1,2

dz1 ⊗ (f (0,1)
i,j )i,j=1,2 + dz2 ⊗ (g(0,1)

i,j )i,j=1,2)

where f (p,q)
i,j and g

(p,q)
i,j are matrices with global sections of C∞

M̂\S′,C as entries. Using (71) and
(72), we get:

(74) f
(0,1)
21 = − ∂

∂z1
df(z1)

But f is a Γ-invariant function on H, so that, for any γ ∈ Γ:

df(γz1) =

 1
(cγz1+dγ)2 0

0 1
(cγz1+dγ)

2

 · df(z1)

In particular:

∂

∂z1
df(γz1) =

(
0 0
0 − 2cγ

(cγz1+dγ)3

)
· df(z1) +

 1
(cγz1+dγ)2 0

0 1
(cγz1+dγ)

2

 · ∂

∂z1
df(z1)

Comparing with (74) and recalling the Γ-invariance of (73), we get that for any γ ∈ Γ:

− 2
(cγz1 + dγ)3

∂f

∂z1
= 0

Hence f is a holomorphic function on H, which precisely means that φ is a biholomorphism.
This contradicts the hypothesis a(M̂) = 1.

Hence M̂ does not admit any meromorphic affine connection. □
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6.2. Principal elliptic surfaces with b1(M̂) odd. Let M̂ −→ N̂ be a principal elliptic surface
over a Riemann surface N̂ of genus g ≥ 2, with a(M̂)) = 1 and odd first Betti number. Denote
by p : M̃ −→ M̂ and p : H −→ N̂ the respective universal covers, and (z1, z2) global coordinates
on M̃ as in Proposition 2.2.2. We will also use the notation Γ = π1(N̂ , y0) for the fundamental
group of N̂ at a fixed point.

Then, up to finite unramified cover of the elliptic surface M̂ , for any γ ∈ π1(N̂ , y0), the
automorphism φγ from Equation 12 is of the form:

(75) φγ(z1, z2) = (aγz1 + bγ
cγz1 + dγ

, z2 + logγ(cγz1 + dγ))

for some
(
aγ bγ
cγ dγ

)
∈ SL2(R) and some determination logγ of the logarithm on cγH + dγ (see

[8]).
By [8], there exists a holomorphic affine connection ∇̂0 on M̂ . As in the previous sections,

taking the matrix of the pullback p⋆∇̂ − p⋆∇̂0 in ( ∂
∂z1

, ∂
∂z2

) gives a bijection between the set
of meromorphic affine ∇̂ connections on M̂ and the set of solutions (fij , gij) of the following
system of functional equations, for any γ ∈ π1(N̂ , y0):

(76)



g12(z1) = (cγz1 + dγ)2g12(γz1)

gii(z1) = gii(γz1) + (−1)icγ(cγz1 + dγ)g12(γ · z1)

g21(z1) = 1
(cγz1+dγ)2 g21(γz1) + cγ

cγz1+dγ
(g22 − g11)(γz1) − c2

γg12(γz1)

and:

(77)



f12(z1) = f12(γ · z1) + cγ

cγz1+dγ g12(γz1)

fii(z1) = 1
(cγz1+dγ)2 fii(γz1) + (−1)i cγ

cγz1+dγ
f12(γz1) + cγ

cγz1+dγ
gii(γz1)

f21(z1) = 1
(cγz1+dγ)4 f21(γz1) + cγ

(cγz1+dγ)3 (f22 − f11)(γz1)

− c2
γ

(cγz1+dγ)2 f12(γz1) + cγ

cγz1+dγ
g21(γz1)

We will describe, in terms of certain differential operators on a line bundle, a codimension
three subset of this solutions, namely the one satisfying:
(78) g12 = g21 = f12 + g11 − g22 = 0
We define A+

M̂
as the (codimension three) affine subspace of meromorphic affine connections on

M̂ satisfying the above condition.
We begin by preliminaries facts on differential operators on line bundles. These facts will be

applied on a fixed line bundle on N̂ constructed as follow. Consider the Γ-linearization (αγ)γ∈Γ
on the trivial module OH (see Definition 2.2) given by:

(79) αγ : OH −→ γ∗OH
f 7→ (cγz1 + dγ)f ◦ γ−1

and define L to be the corresponding line bundle on N̂ through the equivalence between linearized
modules and modules on the quotient:
(80) L = (p∗OH)α
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Given a locally fre sheaf E of OM -modules on a manifold, we can consider the sheaf JrE (we
refer to [1] and [14] Definition 2.21 for a definition). These sheaves fit in exact sequences for
r ≥ 1:

(81) 0 // (Ω1)⊗r ⊗ E // JrE πr−1
// Jr−1E // 0

where πr−1 stands for the truncation map. These maps generalize by compositions to maps:

(82) πsr : JrE −→ JsE

for s ≤ r. Each JrE contains the subsheaf spanned by the equivalence classes of sections of E
with the same r-jets, and so there are morphisms of CM -sheaves:

(83) jr : E −→ JrE

Then the linearization α induces isomorphisms j2(αγ) : j2(OH) −→ γ∗j2(OH), and the action
of γ gives a natural linearization by differentials on Ωk

H so there is a natural linearization J2(α)
on J2OH. By construction J2L is the sheaf (p∗J

2OH)J2α corresponding to the linearization (see
Definition 2.2) J2α induced by α on J2OH. Consider the natural trivialization

Ψ : J2OH
∼−→ O⊕3

H

given by the global basis (1 ⊗ dz⊗2
1 , j1(1 ⊗ dz1), j2(1)). Then for any γ ∈ Γ, J2αγ is the

isomorphism given by the commutative diagram:

(84) J2OH
∼
Ψ

//

J2αγ

��

O⊕3
H

��

ζ
_

��
γ∗J2OH ∼

γ∗Ψ // γ∗O⊕3
H (ζ ◦ γ−1) tA2(z1)

where:

A2(z1) :=


1

(cγz1+dγ)5 − 3cγ

(cγz1+dγ)4
2c2

γ

(cγz1+dγ)3

0 1
(cγz1+dγ)3 − cγ

(cγz1+dγ)2

0 0 1
cγz1+dγ


Similarly, J1L can be described by the linearization corresponding to the lower right minor
A1(z1) of A2(z1) as above.

Finally, the equivalence between linearized sheaves and sheaves on the base gives a bijection
between morphisms of locally free modules δ : J1L(∗C) −→ J2L(∗C) (where C is the quo-
tient of some Γ-invariant divisor C on H) and Γ-equivariant morphisms of locally free modules
δ̃ : J1OH(∗C) −→ J2OH(∗C). The former morphisms δ are called meromorphic differential
operators of order two on L. The set PL of such objects is a ON̂ (∗C)-affine space in the sense
that it is the sum of an element and a ON̂ (∗C)-vector space, where ON̂ (∗C) stands for the field
of meromorphic functions with poles supported at C.

Definition 6.1. Let L and PL as above.
(1) PL,+ is the subspace consisting of the δ ∈ PL with the property:

(85) δ(ker π0
1) ⊂ ker π0

2(∗C)

where πs
r is the truncation map (82). Explicitely, the subspace PL,+ is the subset of the operators

δ ∈ PL with the property that the matrix of δ̃ = p∗δ in the canonical basis of J1OH and J2OH
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is of the form:

(86) ∆(z1) =

b(z1) c(z1)
ν(z1) a(z1)

0 µ(z1)


(2) PL,++ is the subspace of the elements δ of PL,+ such that µ = ν in (86).
(3) We also define the subspace PL,0 ⊂ PL,++ of the elements δ such that the induced morphisms

J2L −→ J2L/ker π0
2(∗C) and ker π0

1 −→ (ker π0
2/ker π

1
2)(∗C) are zero. Equivalently µ = ν = 0

in (86).

Proposition 6.0.2. Consider the subsapce A+
N̂,C

of meromorphic affine connections on N̂ , with
poles at C, satisfying (78) and PL,++ as in (6.1). Identify elements of A+

N̂,C
with the matrices

(fij , gij)i,j=1,2 of their pullbacks to M̃ and elements of PL,++ with the matrices of their pullbacks
to M̃ as in (86). Then the map:

Ψ : A+
N̂,C

−→ ON̂ (∗C) × PL,++

∇̂ 7→ (g11 ,

 f22 f21
g22 − g11 −1

3f11
0 g22 − g11

)

is an isomorphism of ON̂ (∗C)-affine spaces.

Proof. By the equivalence of categories between equivariant sheaves and sheaves on the base,
there is a bijection between the elements of PL,++ and the matrices ∆ of the form (86) satisfying

A2(z1)∆(γz1)A−1
1 (z1) = ∆(z1)

A computation shows that in this case a, b, c, ν satisfy the same functional equations as the ones
satisfied by −1

3f11, f22, f21, g22 − g11 where fij , gij are any solutions of (76) and (77). Moreover,
the subset of solutions (fij , gij)i,j=1,2 of the later system satisfying (78) is in bijection with pairs
consisting of any meromorphic function g11, and functions −1

3f11, f22, f21, g22 −g11 as before. □

Lemma 6.1. Let PL,++ be the ON̂ (∗C)-vector space as in Definition 6.1. It contains an element
δ1 ∈ PL,++ \ PL,0. In particular, it is a direct sum:

(87) Φ : PL,++
∼−→ PL,0 ⊕ ON̂ (∗C)δ1

where the isomorphism Φ is the projection on PL,0 = ker(ν) parallel to δ1.

Proof. PL,++ \ PL,0 contains the hyperplane PL,1 = {ν = 1}, which is the subset of elements δ
satisfying:

π0
1 ◦ δ ◦ j1 = IdL

These are exactly the splitting of the meromorphic one jet sequence of J1L, i.e. meromorphic
connections on J1L with poles at C. This in particular includes the meromorphic SL2-opers on
J1L, namely meromorphic connections ∇ inducing the canonical connection of det(J1L) = ON̂ ,
and inducing an isomorphism between ker π0

1(∗C) and J1L/ker π0
1(∗C). This subset is in turn

known to be in bijection with the nonempty set of meromorphic projective structures on N̂ with
poles at C (see [4], Theorem 4.7). We thus define δ1 as any operator corresponding to such an
element. □

We obtain:

Corollary 6.1. Let M̂ be a principal elliptic bundle with odd first Betti number over a complex
compact curve N̂ with genus g(N̂) ≥ 2. Let C be an effective divisor of N̂ such that O the
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ON̂ (∗C). Then there exists a ON̂ (∗C)-affine subspace of codimension 3 in the space of mero-
morphic affine connection on M̂ with poles at C, which is isomorphic to the ON̂ (∗C)-affine
space:

ON̂ (∗C)2 × PN̂,C
where PN̂,C is the affine space of meromorphic projective structures on N̂ with poles at C.

Proof. The assertion follows from the successive application of Proposition 6.0.2 and Lemma 6.1,
and the fact that PL,0 is isomorphic to the ON̂ (∗C)-vector space directing the space of meromor-
phic projective structures on N̂ with poles at C as pointed out in the proof of Lemma 6.1. □

6.3. Quotients of principal elliptic bundles over higher genus curves. We now classify
the minimal meromorphical affine surfaces with a(M) = 1 such that the associated finite cover
M̂ is a principal elliptic bundle with odd first Betti number over a compact curve with genus
g(N̂) ≥ 2.

For, we first recall the geometric description of M̂ given in [8]. Let P1 seen as the homogeneous
complex manifold G/P , where G = SL2(C) and P the subgroup stabilizing the line Ce1 ⊂ C2

through the standard representation ((e1, e2 is the canonical basis of C2). Let Γ′ ⊂ SL2(R) be
the image of the holonomy representation of a uniform (G,G/P ) structure on N̂ , that is :

p : H −→ N̂ = Γ′\H

is the universal cover.
Let us introduce a notation. If p : E −→ M is a holomorphic P -principal bundle and

ρ : P −→ GL(V) a P -representation, we let:

(88) E(V) = (p∗OE ⊗ V)P

where the action of P on p∗OE ⊗ V is given by

b · p∗(f ⊗A) = p∗(f ◦ b−1 ⊗ ρ(b)(A))

Then we have a natural isomorphism (see for example [15]):

(89) OP1(1) ≃ G(Ce1)

where G is seen as the total space of the holomorphic P -principal bundle pG/P : G −→ G/P .
In the rest of the paper we will identify these two modules. In particular there is a natural left
G-linearization (see Definition 2.2) of this module defined for any g ∈ G, by:

(90) ϕg : G(Ce1) −→ g∗G(Ce1)
pG/P∗ s̃ 7→ pG/P∗ s̃ ◦ g−1

Now we can restrict this line bundle to H ⊂ G/P , and we get a Γ′-linearisation by considering
the isomorphisms (ϕγ)γ∈Γ′ as above. Then:

Lemma 6.2. The line bundle L defined as in Equation 80 is naturally isomorphic to L1 =
(p∗G(Ce1)|H)(ϕγ)γ∈Γ′ .

Proof. It is sufficient to find a trivialization of L1 such that the isomorphisms ϕγ identifies
with the isomorphisms αγ as in (79). For, recall that there exists a global holomorphic section
σ0 : H −→ G given by:

σ0(z) =
(

1 0
z 0

)
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Such a section defines a trivialization of any module obtained as a representation of G, in
particular:

(91) ψσ0 : G(Ce1)|H −→ OH
[(σ0, fe1)] 7→ f

Now we have:
σ0(γz) = γ · σ0(z) ·

(
cγz + dγ 0

0 1
cγz+dγ

)
This implies the following commutative diagram for any γ ∈ Γ′:

G(Ce1)|H
ψσ0
��

ϕγ // γ∗G(Ce1)|H
γ∗ψσ0
��

OH αγ

// γ∗OH

□

We denote by R(L) the C∗-principal bundle whose fiber over ŷ ∈ N̂ is the set of non-zero
vectors of the fiber L(ŷ). Then it is immediate that R(L) is the quotient of R(G(Ce1)|H) by
the action of Γ′ corresponding to the isomorphisms ϕγ from (90). Moreover, we have a natural
isomorphism:

R(G(Ce1)|H) = G|H/P+ ⊂ G/P+

where P+ is the kernel of the representation of P on Ce1 (i.e. the unipotent radical of P ).
Through this identification, the action of Γ′ is the natural left action of Γ′ ⊂ G on G/P+ (note
that G/P+ is biholomorphic to an open subset of C2 \ {0} invariant through Γ′ for the standard
action).

Let Z ≃ ∆ ⊂ C∗ be a lattice, identified with a subgroup of the standard torus of G (namely
the diagonal elements). Since the right action of ∆ on G and the left action of Γ′ on G commute,
there is an induced right action of ∆ on R(L) covering the identity on N̂ , and the quotient map
is a unramified cover of the complex manifold M̂ :

(92) R(L)

p∆}}
pR

��

M̂

π̂ ""
N̂

where p∆ is the quotient map for the action of ∆.
As a remark, note that this description also gives rise to a geometric description for a holomor-

phic flat affine connection ∇̂0 on M̂ . Indeed, G/P+ identifies equivariantly as an open subset of
C2 \{0}, and the action of G preserves the canonical flat affine connection of the affine space C2.
In particular the restriction of this connection to G/P+ is both Γ′-invariant and ∆-invariant,
so applying Lemma 2.1 we get a holomorphic connection ∇̂0 on M̂ . In particular, we get the
following:
Lemma 6.3. Let M̂ −→ N̂ be a principal elliptic surface with g(N̂) ≥ 2 and b1(M̂) odd. Let
qR : (G/P+)|H −→ R(L) be the map of the quotient by the left action of Γ′ ⊂ G. Then any
automorphism φ of M̂ lifts through p∆ ◦ qR as the automorphism of G/P+ corresponding to the
left action of an element A ∈ SL2(C).
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In particular, the holomorphic affine connection ∇̂0 constructed above is invariant through
any automorphism of M̂ .

Proof. The composition p∆ ◦ qR is an unramified cover of M̂ , and any automorphism φ of
π̂ : M̂ −→ N̂ admits a lift to the total space of this cover φ̃. In particular, φ̃ normalizes the
Galois group of qR, that is Γ′, that is :

(93) ∀γ ∈ Γ′, ∃γ′ ∈ Γ′, φ̃ ◦ γ = γ′ ◦ φ̃

Such an automorphism covers an automorphism of H, that is the action of some A1 ∈ SL2(R).
Hence, through the trivialization G/P+ ≃ H × C∗ induced by the section σ0 from the proof of
Lemma 6.2, we have:

φ̃(z, b) = (A1 · z, λ(z)b)
for some holomorphic function λ : H −→ C∗. Then (93) rewrites as:

(A1 · γ · z , λ(γ · z)(cA1γ · z + dA1)−1(cγz + dγ)−1b)

= (γ′ ·A1 · z , λ(z)(cγ′A1 · z + dγ′)−1(cA1z + dA1)−1b)

In particular γ′ = A1γA
−1
1 so that, using that γ 7→ αγ is an automorphy factor, λ is a Γ′-

invariant holomorphic function, that is a constant. This implies the first assertion. The second
one is obtained by applying Lemma 2.1. □

The final ingredient is the description of holomorphic projective structures in terms of ana-
lytical objects called holomorphic SL2(C)-opers (see for example [4]). On the model P1 = G/P ,
the sheaf of one-jets J1(L∗

G/P ), where LG/P = G(Ce1), is naturally isomorphic to G(C2) (it can
be seen by considering trivialisations of G −→ G/P as in the proof of Lemma 6.2). In particular,
it contains LG/P as a locally free submodule. Since G(C2) is by definition the sheaf of sections
of a homogeneous bundle on G/P ,there is a natural linearization for the left action of G (see
Definition 2.2) on this sheaf of OG/P -modules, denoted by (ϕJg )g∈G. Moreover, it admits a global
trivialization induced by the two P -equivariant maps s̃i : G −→ C2 defined by:

s̃i(
(
a b
c d

)
) =

(
a b
c d

)−1
ei

for i = 1, 2. The corresponding flat connection of trivial module ∇J
G/P on G(C2) is invariant

through the isomorphisms (ϕJg )g∈G since the above functions are invariant through these iso-
morphisms. Moreover, since G is a SL2(C)-reduction of the bundle of basis of G(C2), there is a

natural isomorphism
2∧
G(C2) ≃ OP1 and the canonical connection coïncides with the connection

induce by ∇J
G/P . The key property of ∇J

G/P is that the induced morphism of line bundles:

(94) [∇J
G/P ] : LG/P −→ KP1 ⊗G(C2)/LG/P

is an isomorphism. This indeed enables to recover that

(95) L⊗2
G/P = LG/P ⊗ (G(C2)/LG/P ) ⊗ KP1 = KP1

that is LG/P = OP1(1). The restriction of ∇J
G/P over H is Γ′-invariant, so it induces a connection

∇̂J
0 on:

(96) E := (q∗G(C2)|H)Γ′
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Since the SL2(C)-reduction of G(C2) is also Γ′-invariant, we get
2∧

E = ON̂ . By construction,
we have the same isomorphism as in (94), so we get:

(97) E = J1(L∗)

and recover that

(98) L⊗2 = KN̂

The pair (E , ∇̂J
0 ) is called the holomorphic SL2(C)-oper corresponding to the projective structure

N̂ = Γ′\H.
Using these facts, we can prove:

Proposition 6.0.3. Let M̂ π̂−→ N̂ be a principal elliptic bundle over a compact curve of genus
g(N̂) ≥ 2. Let q : N̂ −→ N be a Galoisian finite cover such that M̂ is the pullback of a an
elliptic surface π : M −→ N . Suppose that the sum of the multiplicities (mα)α∈I of q at the
ramification points is a multiple of the degree k = deg(q), and that the Galois group Γ of q fixes
the ramification points. Then q is an unramified cover.

Proof. Let Γ be the Galois group of q. We identify Γ with a subgroup of SL2(R) normalizing
the holonomy Γ′ of the uniform projective structure on N̂ as described before. By Lemma 6.3,
the action of the Galois group Γ of q on N̂ lifts to a left action of Γ on the cover R(L) q∆−→ M̂
(see (92)), obtained from the natural left action of Γ on G. In particular, there is an induced Γ-
linearization (see Definition 2.2) (ϕJϵ )ϵ∈Γ on J1(L∗). By construction, the holomorphic SL2(C)-
oper (E , ∇̂J

0 ) = (J1(L∗), ∇̂J
0 ) (see above) is invariant by this Γ-linearization.

Consider the line bundle

(99) L′ = (q∗L)Γ

on N . It is a submodule of the locally free ON -module

(100) E ′ = (q∗E)Γ

We prove the existence of a holomorphic connection ∇J
0 on E ′ with the same properties as

in (94). For, we first prove that the universal cover of N factorizes by q : N̂ −→ N . Pick a
system of generators γ1, . . . , γr for Γ. By Lemma 6.3, these generators lifts through p∆ ◦ qR
to the left actions of elements A1, . . . , Ar ∈ SL2(R) on G/P+|H. By definition of Γ, N is the
quotient of H by the subgroup Γ′′ ⊂ SL2(R) spanned by the Aj and Γ′. Suppose that there
exists j ∈ {1, . . . , r} such that the Möbius transformation corresponding to Aj fixes some z ∈ H.
Recall that γj fixes the fibers of p(z) ∈ N̂ in M̂ = R(L)/∆. Since γj have finite order and ∆ ≃ Z,
the induced action on R(L) fixes the fiber of p(z). Hence Aj fixes the fiber of z in G/P+|H. Thus
Aj = Id, that is Γ′′ acts freely and properly discontinusly, in other words H −→ Γ′′\H = N is
the universal cover. Since the Aj normalizes Γ′, we have a factorization:

(101) H
q′′

//

p

��

N

N̂

q
??

where q′′ is the quotient by Γ′′. In particular, E ′ = (q′′
∗G(C2)|H)Γ′′ and the quotient of G|H by

Γ′′ is a holomorphic P -reduction of its bundle of basis.
Moreover, the holomorphic connection ∇J

G/P is invariant by the action of Γ′′, and since q′′

is an unramified cover, Lemma 2.1 implies the existence of an induced holomorphic connection
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∇′J on E ′. By construction, the induced morphism:

[∇′J ] : L′ −→ Ω1
N ⊗ E ′/L′

is a non-trivial morphism. We denote by S the effective divisor corresponding to the line bundle
End(L′,KN ⊗ E/L′).

In the sequel, we employ the notation deg(L) =
∫
N c1(L) for any line bundle L on a compact

complex curve N . Using deg(E ′) = 0 (by the existence of a SL2(C)-holomorphic reduction of
its bundle of basis), we get:

(102) deg(S) = deg(KN ) − 2deg(L′)

In one other hand, consider the sheaf of sections of the pullback line bundle, that is ON̂ ⊗ q∗L′.
Since q∗L′ is by definition the subsheaf of L spanned by the sections invariant by the action of
Γ, we have a well-defined non-trivial morphism of modules:

(103) ι : ON̂ ⊗ q∗L′ −→ L
f ⊗ s 7→ fs

Recall that the action of Γ on M̂ = ∆\R(L) fixes the fibers of the ramification locus of q. Hence,
in a neighborhood Uα of any component Dα of the ramification locus of q in N̂ , we can find a
coordinate z and a trivialization of L, such the action of the automorphism ϵ ∈ Γ corresponding
to a generator of π1(Uα \Dα, ŷ), on a section s ∈ L(Uα), is given by:

ϵ · s(z) = νϵs ◦ ϵ−1(z)

for some νϵ ∈ ∆. But ϵ has finite order mα and ∆ contains no non-trivial cyclic element, so
ν = 1. As a consequence, the section corresponding to 1 in the choosen trivialisation of L is a
local invariant section of L on Uα. This in turn implies that Equation 103 is an isomorphism.
Hence, since q is a finite cover of degree k, we get:

(104) deg(L) = deg(ON̂ ⊗ q∗L′) = kdeg(L′)

Now, by the Riemann-Hurwitz formula, we also have:

(105) −deg(KN̂ ) = −kdeg(KN ) + |I| −
∑
α∈I

mα

By (104), and (102), we also have:
−deg(KN̂ ) = −2deg(L)

= −2k deg(L′)

= −k deg(KN ) + k deg(S)

Combining the above equality with (105) we get:

k deg(S) +
∑
α∈I

mα = |I|

By the assumption on the degree k of q the above equality rewrites as:

|I| = k′∑
α∈I

mα

with k′ ≥ 0 and mα ≥ 2 for any α ∈ I. This is possible only if k′ = 0, i.e I = ∅ and q is
unramified.

□
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Theorem 6.1. Let (M,∇) be a minimal meromorphic affine surface with a(M) = 1 and (M̂ π̂−→
N̂ , ∇̂) the meromorphic affine principal elliptic bundle obtained as in Equation 30. If the genus
g(N̂) ≥ 2, then M̂ = M .

Proof. By Proposition 6.0.3, M̂ has an odd first Betti number, so it corresponds to a quotient
of R(L) by a lattice Z ≃ ∆ ⊂ C∗ as in (92). By construction, the Galois cover q : N̂ −→ N

(resp. q : M̂ −→ M) in (30) is a composition:
q = q′ ◦ q1 (resp.q = q′ ◦ q1)

where q′ : N̂1 −→ N is a composition of cyclic covers and q1 is an unramified finite cover (the
maps q′ and q1 are the corresponding pullbacks of elliptic bundles).

Denote by Γ1 ⊂ Γ the Galois group of q1, identified with the Galois group of q1. Then by
construction M̂1 = Γ1\M̂ is the quotient of R(L1) by ∆ where

L1 = (q1∗L)Γ1

and by Lemma 6.3, the action of Γ1 lifts to the natural action of a subgroup Γ̃1 ⊂ SL2(C) on
G(Ce1)|H. Hence Γ′′ = ⟨Γ′,Γ1⟩ is the holonomy group of a uniform (G,G/P )-structure

p1 : H −→ N̂1 = Γ′′\H
and

L1 = (p1∗G(Ce1)|H)Γ′′

so M̂1 is obtained as in (92). In particular, it is a principal elliptic bundle over g(N̂1) ≥ 2 with
odd first Betti number. Without loss of generality we can and will further assume that N̂1 = N̂
and M̂1 = M̂ .

In this situation, by construction, the Galois group of q fixes its ramification locus, and
k = deg(q) is a multiple of

∑
α∈I

mα. Then Theorem 6.1 proves that q : N̂ −→ N is unramified.

Since moreover q = q′, we get M̂ = M by definition of q′. □

7. Conclusion

Comparing with [6], the Theorem 3.2 together with Theorem 4.3, Theorem 5.3, Theorem 5.5,
and Proposition 6.0.3 prove Theorem 1.1. From the point of view of the uniformization, this
suggests that we have to consider other meromorphic geometric structures to encompass more
complex compact surfaces. It could be interesting to extend the technics of this paper to
meromorphic projective connections (see [9]) by adopting the Cartan point of view.
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