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1. INTRODUCTION

1.1. Uniformization of complex compact manifolds and meromorphic geometric struc-
tures. The question of classifying compact complex manifolds, by means of geometric and topo-
logical invariant, is an old and still active one. The first historical example of an answer is the
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Riemann’s uniformization theorem for complex compact manifolds of dimension one (i.e. Rie-
mann surfaces or compact complex smooth curves). In particular, it asserts that any such a
complex manifolds is the quotient of an open subset U of: either the projective curve P!, the
complex line C, or the Poincaré disk H, by a discrete subgroup I' of projective transformations
preserving U.

This is an example of uniformizability in the sense that any complex compact manifold of
dimension one is the quotient I'\U of an open set U C X of a fixed space X by a subgroup I' of
automorphisms of X preserving a fixed geometric structure. The former term may be thought
as one of these examples : a holomorphic affine connection (see , a holomorphic

projective connection (see for example [I0]) or a holomorphic reduction of a k-th order frame

bundle of X.

1.2. Meromorphic affine connections on surfaces. In [7], Inoue, Kobayashi and Ochiai
classified holomorphic affine connections on compact complex surfaces. It turns out that any
complex compact surfaces admitting such a geometric structure is also equipped with a flat one,
that is a holomorphic affine structure. Many of them are quotients of an open subset of C? by
affine transformations, in particular in the case of elliptic surfaces. This result was completed
by Kobayashi and Ochiai in [I0], were it appears that any complex compact surface endowed
with a holomorphic projective structure is uniformizable by the unit ball in C2.

It is thus natural to investigate which complex compact manifold can be endowed with a
particular type of holomorphic geometric structure. In a recent paper [6], Biswas, Dumitrescu
and McKay gave rather general classification result, asserting that many holomorphic geometric
structures (in particular holomorphic affine connections) can’t be beared by simply connected
compact complex manifolds with constant meromorphic functions (algebraic dimension zero).

We may also ask if allowing the geometric structure to admits some reasonable singularities
(namely poles) could enable more compact complex manifolds, and to investigate meromorphic
versions of the uniformization principle. For example, though there are few projective manifolds
M endowed with holomorphic affine connections, since this implies that all Chern classes are
zero, any such manifold is endowed with a finite map f : M — PV for some integer N > 1.
The pullback of the canonical projective structure on PV through f is a meromorphic (flat)
projective connection on M (see [4]).

In this paper, we study the existence of meromorphic affine connections on complex compact
surfaces of algebraic dimension one . We almost obtain a classification of such
pairs, that we call meromorphic affine complex compact surface of algebraic dimension one, in
the following sense. By the well-known work of Kodaira ([11],[12],[13]), complex compact surfaces
of algebraic dimension one are known to be elliptic surfaces. Moreover, we can restrict ourselves
to minimal surfaces since a meromorphic connection on a minimal surface with a(M) = 1 is the

pullback of a meromorphic affine connection on its minimal model (Lemma 2.3). We first prove
the following (Theorem 3.1|):

Theorem. Any meromorphic affine complexr compact surface of algebraic dimension one is an
isotrivial surface.

Up to finite cover, a minimal meromorphic affine complex compact surface is thus a principal
elliptic fiber bundle, and we have explicit descriptions of such surfaces in terms of their universal
covers. The problem is then split in two : first we have to classify meromorphic affine principal
elliptic fiber bundles, and then study the possible finite quotients of such pairs. This is completely
done when the base curve is the projective line P! (Corollary 4.1| and [Theorem 4.2) or an
elliptic curve (Theorem 5.4 Theorem 5.5Theorem 5.2 and [Theorem 5.3|). In the remaining case
(hyperelliptic curve), we describe a subset of codimension 3 in the space of meromorphic affine
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connections (Corollary 6.1)) extending the work by Klingler ([9]). However, we prove that there
is no non-trivial quotient of such meromorphic affine surface . So there a no new
examples arising from these principal elliptic bundles. These results can be compared to the
result of [7] to obtain:

Theorem 1.1. Any meromorphic affine surface with a(M) = 1 endowed with a meromorphic
affine connection also admits a flat affine holomorphic connection.

As an example, no K3-surface with a(M) = 1 admits a meromorphic affine connection.

1.3. Organization of the paper. The paper is organized as follows. In we recall
the notion of meromorphic affine connections. In we collect the facts from the work
of Kodaira that will be used in the rest of the paper, and prove [Theorem 3.I] and [Theorem 3.2]
reducing the problem of classification to the one of meromorphic affine principal elliptic bundles
and their quotients, as explained above. Then, in [section 4llsection 5| we classify meromorphic
affine complex compact surfaces of algebraic dimension one arising as quotients of principal el-
liptic fiber bundles over P! or an elliptic curve. In we treat the case of an hyperelliptic
base curve. We give a description of a codimension three subset in the space of meromor-
phic affine connections on the corresponding principal elliptic bundle, in terms of meromorphic
differential operators.

2. MEROMORPHIC AFFINE CONNECTIONS AND MINIMALITY

2.1. Meromorphic connections and linearizations. We begin by recalling the definitions of

two objects appearing recurrently in this paper. Let M be a complex manifold and D = > D,
a€el
an effective divisor. In the rest of the paper, we will denote by T'M the sheaf of holomorphic

vector fields, 2}, the sheaf of holomorphic one forms, and by:
(1) On(+D)
the sheaf of meromorphic functions on M with poles a combination of the irreductible compo-

nents D,. If U : M — M’ is a morphism of complex manifold U* (resp. V¥, stand for the
pullback functor for sheaves (resp. the pushforward).

Definition 2.1. Let M be a complex manifold and £ be a Oy/-module. A meromorphic connection on
M with poles at D is a morphism of C,,-sheaves:
V : & — O, ®E&kD)
satisfying the Leibniz identity:
VieOn(U),VseEWU), V(fs)=df @ s+ fV(s)
Definition 2.2. Let G be a group and M be a complex G-manifold with right (resp. left) action. Let
€ be a Op-module. A right (resp. left) G-linearization of € is a family (¢4)4ec of isomorphisms:
by  E — g€

with the property:
V9,9’ € G, Ggg = 9/*(%) 0 Py

A G-linearized Op-module is a pair (&, (¢4)geq)-

In the case of a discrete group G, a Op-module with a G-linearization is a G-equivariant
Opn-module as defined in [8]. In this case, if M = G\M is a complex manifold, then, denoting
by ¢ : M — M the quotient map, G acts naturally on ¢.E(U) for any U C M. Hence, there
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is a functor from the category of G-linearized Op/-modules to the one of O-modules mapping
(€, (¢g)geq) to the sheaf:

(2) €= (q:6)°

of G-invariant sections. It is an equivalence of categories in the case where the action of G is
free ([8], Proposition 2.2.5).

Definition 2.3. (1) Let M and M’ be two complex nmanifold, D’ an effective divisor of M’ and
V’ be a meromorphic connection on a Oy;-module £ with poles at D’. Let £ be a Oy;-module,
f+ M — M’ a isomorphism of complex manifold and ¢ : £ — Op; @ f * £’ an isomorphism of
Op-modules. The corresponding pullback (f, )*V’ of V' is the meromorphic connection V on
& with poles at D = f*D’ defined by the commutative diagram:

(3) £ v 0}, ® E(+D)

@l Tdf*@apl

where:
o df : TM(xD) — Opn® f*TM’'(xD’) is the sheaf-theoretic differential of f
e f*V’ is the extension of the sheaf-theoretic pullback f*V’: f*& — f*Q}, ® £'(xD’) by
the Leibniz rule to Oy ® f*£’.
(2) Let (&, (¢g)geq) be a G-linearized Op-module. A meromorphic connection V on £ is invariant

by (¢g)gec if (g,¢g)*V =V for any g € G.

Lemma 2.1. Let ¢ : M — M’ be a galoisian finite ramified cover between two complex man-
ifolds, with Galois group I' C Aut(M). Let ®r = (¢v) er be a I'-linearization of a locally free
Op-module €. Then any holomorphic connection V on £ wich is invariant through the ¢,
induces a holomorphic connection on &' = (¢.£)*r.

2.2. Meromorphic affine connections and pullback. We introduce the meromorphic geo-
metric structure considered in this paper:

Definition 2.4. Let M be a complex manifold and D an effective divisor of M. A meromorphic affine
connection on (M, D) is a meromorphic connection on T'M with poles at D.

The pullback defined in defines the category of meromorphic affine connections,
with arrows given by the pullbacks through (f,df) for f an isomorphism of complex manfiolds.

Lemma 2.2. Let g : M — M be a morphism of complex manifolds of the same dimension.
Let V be a meromorphic affine connection on M and V= V. Let W be an automorphism of
M and ¥ an automorphism ofM lifting W through q.

Then W*V =V if and only if vV = V.

Proof. Since U is the lift of ¥ through ¢, we have the following commutative diagram:

A~ dq " ~
(4) TN O, @ ¢*TM

d@i lﬁ/*@d\lf

q
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The equivalence asserted is then a direct consequence of the diagram defining a pullback (Defi-|
nition 2.3). 0

2.3. Algebraic dimension and general property of elliptic surfaces. Let M be a compact
complex manifold of complex dimension n > 1. Moishezon proved that the field of meromorphic
functions C(M) is a field of finite transcendancy degree over the field of constant functions
C. This degree is called the algebraic dimension of M and denoted by a(M). In particular
a(M) < n, and there exists a bimeromorphic map ¥ : M — M’ and a holomorphic map

(5) 7:M — N
onto a complex compact manifold of dimension a(M), with the property C(M) = 7*C(N).

In this paper, we will focus on complex compact surfaces with a(M) = 1.

A elliptic surface is a holomorphic fibration M — N of a complex compact surface over a
(compact) complex smooth curve, such that for a generic y € N, the fiber M, := 7 1(y) is a

(smooth) complex torus.
We recall the following result from Kodaira ([11]):

Theorem 2.1. Any compact complex surface with a(M) = 1 is the total space of an elliptic
surface.

Moreover:

Theorem 2.2. Let M "+ N be an elliptic surface with a(M) = 1. Any divisor D of M is of
the form D = n*C' for some divisor C of N.

Proof. See [11], Theorem 4.3. O

Now, let M -+ N be a general elliptic surface. The fibers of 7 which are not smooth elliptic
curves are denoted by M, (B € J), and for any local coordinate zg on N centered at yg, there
exists an integer mg > 1 and an equation fg for Mg with

(6) fo = (zg 0 m)™

The corresponding yg are the singular points and the above integer will be called the multiplicty
of yg (resp. of the singular fiber Mg), according to the work of Kodaira ([11]).

Proposition 2.2.1. Let M — N be an elliptic surface, (yp)p the singular points and N’ their
complement in N. Then:

(1) For any y € N', there is a neighborhood U of y in N', and a holomorphic function
7:U — H such that :

7N U) =~ UxC/{yr,12)

where z1, z2 are global coordinates adapted to the natural fibration and:

(7) Y1(21,22) = (21,22 + 1) and Pa(21,22) = (21,22 + 7)

(2) There exists a global holomorphic function 7 : N’ — H on the universal cover of

p: N' — N’, such that for any y € N’, and any T as in 1., T = 7 o s for some section
of p near y.

Proof. (1) Pick a _simply connected neighborhood U of y in N’. Then the fundamental
group of 7~ }(U) is spanned by the image of any pair of generators 1, y2 of w1 (My,z)

(x € 7 Y(y)). By the Ehresmanh theorem, and since all smooth elliptic curves are
diffeomorphic, shrinking U we can assume the existence of a diffeomorphism:

(8) v - oY U) — UxC/Z@iZ
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such that m = proj; o ¢. In particular, the cycles in Hy(U x C/Z @ iZ,Z) corre-
sponding to 1 and i are mapped to cycles 71,72 € H' (=1 (U),Z), restricting as cycles
V1,45 Y2,y o0 any fiber M, = 7~ 1(y). These cycles form a basis of the real vector space
HO(M,, Q}wu)*, canonically identified with the universal cover C and its is well known

that M, ~ HO(M,, Q}My)*/Z%y ® Zrya,y. We then let

(9> U Wﬁl(U) ;> U X C/<(Zl, 22) — (Zl, Z9 + le(zl) + k’2)>
e [2]) - [[(21, 22)]]

where [[(21,22)]] is the class of (21,22) € U x C in the target complex manifold. By
construction, W lifts to the universal covers. The homology map induce by the lifting
maps (71,y,72,y) on (1,7(y)), so is C-linear. By the remark preceding @, U restricts on
each fiber M, as an isomorphism onto C/Z & 7(y)Z. Hence V¥ is a biholomorphism.
(2) This is equivalent to the assertion that the sheaf T'" whose local sections are the 7 as in
1. contains a local system on N’. This is immediate since for any y € N’, the set of
7 € H such that M, ~ C/Z & 7Z is a finite set.
O

Recall tat for any 7,7" € H, the tori C/Z & 7Z and C/Z & 7'Z are isomorphic exactly when
7,7’ lie in the same SLs(Z)-orbit in H, through the action:

(a b) ar +0b
Ti=——
c d ct +d
Since the action is free, there exists an associated representation p : w1 (N, y) — SL2(Z) such
that:

(10) T(y-9) = p(y) - 7(9)
for any § € p~(y) and v € w1 (N, ).

The associated local system over N’ is called the homological invariant of = by Kodaira. The
following facts can be found in [12]:

Proposition 2.2.2. Let M — N be an elliptic surface, and N’ (resp. M') the complement of
its singular points (yg)ges (resp. its singular fibers in M ). Then:
(1) If J # 0 then N’ is an open subset of C and H(N',O,) = {0}. By|Proposition 2.2.1)
this implies M' = N’ x C C C? and we let (21, 22) be the canonical coordinates on C2.
(2) Let y € N'. For any v € m(N',y), the corresponding automorphism of N’ lifts canoni-
cally to an automorphism @~ of M'. Moreover, p~ commutes with 11 and 1y (see ),
and the corresponding map

7r1(N’,y) — <71Z)13¢27(@“{)Wl(N’,y)>/<¢17d}2>
0% — ¢ mod (11,12)

is a homomorphism.

(3) In the case J # 0, let v € m(N',y) and ¢, the automorphism of the universal cover of
M’ as in 2. There exists a constant ji, € C* and a holomorphic function f, on N’ such
that:

(11) Py (21,22) = (v 21, 22+ fr(21))

Hy
cyT(21) +dy

where p(y) = (% Z:) (see (L0)).

Cy
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(4) The pullback through the universal covering p : M' —s M’ induces a bijection between
the set of meromorphic affine connections on M’ and the set of meromorphic affine
connections V on M’ satisfying:

(12) WV =V = gV = ¥

for any v € i (N',y), where 11,19 are defined as in |Proposition 2.2.1}

Proof. (1) In either case, N’ is isomorphic to P*,C or H. If N/ = P!, then N’ = N’ = P!
since IV is compact, so that J = (). The converse is clearly true. Now if J # (), necessarly
N is not P!, whence the assertion.
(2) Consider the complex manifold M’ = N X M’ fitting in the following diagram:

(13) YA Y

4

N’ LI> N’
where p/ is the projection on the second factor, 7 the projection on the first one. Then
M’ is clearly isomorphic to the universal cover of M’. We denote by [7, z] the class of
(g,z) € N' x M' in M.
For any v € m1(N’,y) denote by ©., the corresponding automorphism of p’. Then:

(14) ?,([7,2]) = [p,(9), 7]

define an automorphism @, of M’ compaptible with p and 7. Then ©- lifts to an unique
automorphism ¢, of the total space of the universal cover M'. The two remaining
assertions follow from the fact that M’ is the quotient of M’ by the subgroup (11, 12)
of automorphisms, and the map v + @, is clearly a homomorphism from the definition
of @.,.

(3) Let (21, 22) be coordinates on M’ = N’ x C, and 7 as in [Proposition 2.2.1 2. Consider
again the complex manifold M’ as in the proof of 2. By the proof of [Proposition 2.2.1}
1., we have a canonical isomorphism of elliptic fibrations

Wi)]\?/ X (C/(’(/)l,¢2>

where 11,19 are the automorphism defined by:
(15) YP1(21,22) = (21,22 + 1) and  wa(z1, 22) = (21,22 + T(21))

Let %, be the lifting to M’ of the automorphism of N’ corresponding to v € 7 (N, y)
(recall that ¢, is the lifting of ., to the universal cover M’ of M'). Let § € N’ with
P (J) =y, and z1 = 21(7). Then, by and the above biholomorphism, we get that
the multiplication by m € C* induces a biholomorphism between the fibers M’;
and M',.g.

Now, recall that the automorphisms A(M';) are described by the exact sequence:

where Z/ngZ corresponds to complex multiplications by a ng-th root of the unity induc-
ing an involution on the elliptic curve (ng < 6) and M’y is identified as the subgroup of
translations on itself.
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Since @, is an automorphism of the elliptic fibration 7 : M’ —s N, the above remarks
imply the existence of a holomorphic function 1, on N, and a holomorphic section 77
of 7 such that:

a4 T ()

Vo1 € N, V2o € C, 3, ([21,22]) = [v- 21

In particular, p, is a constant, and since H (N ,Ox:) = {0}, ?7 lifts to a section of

7 : M' —s N, that is a holomorphic function fy on N’. Then ¢~ is exactly the
automorphism described in the statement.

If V is a meromorphic affine connection on M’ satisfying , then in particular it is invariant

through the Galois group of the universal covering p : M’/ —s M’ as in . Thus V = 5'V

for some meromorphic affine connection on M’. Since the automorphisms @~ are the lifts of the

elements @, of the Galois group of the covering 7', we also have V = p/"V for some meromorphic

affine connection on M’, that is V = p*V.
Reciprocally, suppose that V = p*V for some meromorphic affine connection V on M’. Then

applying to the lifts 1,12 and ¢, of the identity of M’ gives (12). O

We will therefore use these well-known following facts about elliptic surfaces, due to Kodaira
[11]. First, recall that given divisors Dj, Dy on a complex compact surface M, there is a well
defined intersection number:

Dl . D2 =C (Dl)cl(Dg)

where ¢1(D) € H'(M,Z) stands for the first Chern class of the line bundle Oy(D). An excep-
tional curve is then a rational smooth curve C' in M such that C - C = —1.

Theorem 2.3. Let N be a smooth complex curve, J : N — SLy(Z)\H and G a sheaf of
subgroups of SLa(Z) as above. Then:

(1) There exists a unique (up to biholomorphisms of elliptic surfaces) elliptic surface B —2
N with invariants J,G and a global holomorphic section, called the basic member.

(2) Any minimal elliptic surface M’ ™y N with invariants J,G and no multiple singular
fiber is locally isomorphic to B.

Proof. This immediately follows from Theorem 10.1 in [12].
U

2.4. Minimal model for meromorphic affine complex surface with algebraic dimen-
sion one. By a well-known result of Grauert, if C' is such a curve, then there exists a complex
compact surface My, and z; € M; such that M is isomorphic to the blow-up at xy of M:

o: M — M

and o(C) = {z1}. In this case a(M;) = a(M), the restriction of o to M \ C' is an isomorphism
onto M \ {z1} and o maps any fiber of the algebraic reduction of M to a fiber of the algebraic
reduction of M;. Given a complex compact surface M, there is a finite number of exceptional
curve, and thus composing the maps o obtained as above we get a map:

Uo:M—>M0

which restricts as an isomorphism between M \ Cp, where Cj is the union of the exceptional
curves, and My \ {z{,...,20} where the z} are points. Again a(My) = a(M) and My will be
called the minimal model of M.

In particular:
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Lemma 2.3. Let M be a complex compact surface endowed with a meromorphic affine connec-
tion V. Suppose that M contains an exceptional curve and let o : M — My the minimal model
of M. If a(M) = 1, then there exists a meromorphic affine connection Vo on My such that
V = oj00.

Proof. First, using the inverse of the restriction of oy to M \ Cp, we obtain a meromorphic affine
connection Vo on My \ {}, ..., 28} such that o5V is the restriction of V to M \ Cy.

It remains to prove that Vo extend across the codimension two subset {z{,...,z8}. For, pick
i € {1,...,n}. Let (ur, u2) be coordinates on a neighborhood Uy of z, such that the intersection
of any fiber of the algebraic reduction my with Uy is a fiber of u;. Using these coordinates, the
matrix of Vj in (6%1’ 8%2) has the form

duy ® T + dug ® T,

where Ffj are meromorphic functions on Uy \ {z}}.

Let ) € 0y (20) and let U be an open neighborhood of m(x}) constructed as in point 1.
of [Proposition 2.2.2, We let (21, 22) be the corresponding coordinates obtained using a local
trivialisation of the covering U x C — 7~ 1(U) on a neighborhood U} of x{. From the fact
that o( preserves the fibers of the algebraical}eductions, it is clear that for any meromorphic f

function on an open subset of Uy, we have Ju; =0 if and only if ag% = 0. Now, the pullback

V of V to the universal cover U x C of 71 (U) has matrix
dzy @ (I')}; + dze @ (I')5;

for some meromorphic functions (F’)f] Moreover, by [Theorem 2.2} the poles of these functions
are fibers of z;. The invariance of V through 1,1, thus implies that the restriction of the

(rr )f] to a generic fiber of z; is an elliptic holomorphic function on C, that is a constant. By the
k

. ark. . . )
previous remark we get Juy = 0. In particular, each Ffj extends across z( as a meromorphic
function on Uy. Therefore, for any i € {1,...,n}, Vo extends as a meromorphic affine connection

on a neighborhood Uy of x}), as required.

O

3. REDUCTION TO THE CLASSIFICATION OF PRINCIPAL ELLIPTIC SURFACES

By we can restrict ourselves to the classification of minimal complex compact
surface of algebraic dimension one endowed with meromorphic affine connections.

We now prove that the functional invariant of such a minimal elliptic surface is constant, hence
this is a principal elliptic bundle up to a finite ramified covering. This reduces the problem of
the classification to the classification of meromorphic affine principal elliptic bundles and their
quotients.

3.1. Reduction to isotrivial elliptic surfaces. Let (M, D, V) be a meromorphic affine com-
plex compact surface with algebraic dimension one, and M — N the corresponding elliptic
surface. Our aim is to prove that this is an isotrivial surface, meaning the functional invariant
T is constant.

Let S (resp. S) be the union of the singular fibers (resp. the singular points) in M (resp. N).
In view of [Proposition 2.2.2}(1), we can and do assume that J # () or N # P!, otherwise M is a
Hopf surface, hence a principal elliptic fiber bundle over N. Let M’ = M\ S (resp. N’ = N\ S),

M = N'x C " 29" N7 with adapted global coordinates (z1,22) as in [Proposition 2.2.2} (1).
This is the total space of the universal covering p’ : M’ — M’.
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We let V/ = p/*V, a meromorphic affine connection on M’ with poles D’ supported on fibers
of ' by [Theorem 2.2, Moreover, reemploying the notations from [Proposition 2.2.2} it is both
invariant through the automorphisms:

(16) wl(zl, Z2) = (Zl, 22 + 1) and wQ(Zl, Z2) = (Zl, z9 + T(Zl))

and the automorphims (¢-),er, (v7,y,) defined as in (L1).
Now we observe:

Lemma 3.1. Let g be a global holomorphic function on C with g(z + 1) = g(z) for any z € C.
Suppose that there exists v € H and p € C such that

(17) VzeC,g(z4+v)=g()+p
Then g is constant and p = 0.

Proof. The 1-periodicity is equivalent to the existence of a holomorphic function on C\ {0} such
that g(z) = g(e?™*) for any 2 € C.
Then the property implies

(18) g(Au) =g(u) + p

where A\ = €2 satisfies 0 < |A\| < 1. Derivating this relation in u implies §'(\u) = glg\"). But

7 is a Laurent series at 0, with residue 0. Since [A| < 1, A*~1 # % except for n = 0, and the
identity implies ¢ = 0. Hence g is a constant, and the same holds for g. In particular
w=0. U

Corollary 3.1. Let (M, D, V) be a meromorphic affine complex compact surface with algebraic
dimension one, and let (M', D', V') be as above, with homological invariant 7. Let (z1,22) be

adapted global coordinates as above and (8%1, 8%2) (resp. (dz1,dz2)) the corresponding trivialisa-

tion of TM' (resp. QL. ). Then either 7' =0, or V' has matriz:

19 1248 (2] o) * 22y o)

for some holomorphic functions a,b,c,d on 21(1\7’) c C.

Proof. We assume 7" # 0. Let (fij, gij)i j=1,2 be the meromorphic functions on M’ such that the

: v 9 0\ iq-
matrix of V' in (5, 57-) is:

fi f12) (911 912>
2
(20) a1 ® <f21 f22 +odne 921 922

Recall that, given any automorphism v of M’, the pullback ¢*V’ is described by the following
diagram:

(21) TN Y QL («D) @ T
dwl Td?,/)*@d’d)l
*T M’ *OL (xD *T M
¥ oV (D) @

In particular, the invariance of ¥V’ through ¢ from , whose differential di; corresponds

to the post-composition by 1 in the trivialisation (8%1, 872)’ and |Theorem 2.2 imply that the

restrictions of (fij, gij)i j=1,2 on a generic fiber of 7’ are 1-periodic holomorphic functions.
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Now, using again the identity 8%2_11,&5@' = 8%2_1@' rewrites as:

g12(21, 22 + 7(21)) ' = g12(21,22)
gii(z1, 22 + 7(21)) + (=1)'7'(z1) g12(21, 22 + 7(21)) = gii(21)
(22) 921(21, 22 + 7(21)) (21, 22 + 7(21)) = g21(21,22)

+7'(21)(911 — 922) (21, 22 + 7(21)))
—(7'(21))g12(21, 22 + 7(21))
Since 7/ # 0,the first line implies that the restriction of g1 to a generic fiber is a holomor-

phic elliptic function, that is a constant, i.e g12(z1,22) = gi2(21). Now, the second line and
the previous fact show that the restriction of g;; to a generic fiber satisfies the conditions of

hence g12 = 0 and g¢;;(21, 22) = gii(21). This in turn implies, together with the third
line, that the restriction of g21 to a generic fiber satisfies the conditions in so that

g11(21) = g22(21) and g21(21, 22) = a(21).
Now, we can rewrite similarly the system of functional equations corresponding to 6%1_11/15 V' =

G%I_IV’, taking in account that

0 0
A5 ) =g, T T ()5

Since g12 = 0, the first line will be indentical to the one of (22)), that is fi2(z1, 22) = fi2(21).
Then the second line show that f;; satisfy conditions of so that fii(z1,22) = fii(21)
and fio—g11 = fia+g22 = 0, while g11 = goo by the previous facts. Hence g11 = goo = 0. Finally,

as before, the last line show that fo; satisfy conditions of ie. fo1(z1,22) = fo1(z1).
O

Theorem 3.1. Any meromorphic affine complex compact surface of algebraic dimension one is
an isotrivial elliptic surface.

Proof. We reemploy the above notations, and will describe explicitely the identity
0 L= Jd =
— otV = — V'
82’1 _ICP,Y 821 -
for any generator  of w1 (N, yo).
First introduce the following notations. We let g, be the function of z; corresponding to the
matrix of the differential of the automorphism of N’ corresponding to v. We also let:
Hy
23 O0n(21) = ———r
(23) 2(21) cyT(21) +dy
where (i, ¢y, dy are defined as in [Proposition 2.2.2]
We first prove that the above identity implies (5;(21) = 0. Indeed, the matrix of dy, in the

basis (8%1, 8%2) and (cpi;a%l,goi;%) is:

(24) g’Y(zl) 0 )

B (225%(21) + f(z1) 0y(21)

In particular:

: - :
(25) 7JC_1dC - 5//(Z ) 6/9('; §1g/ (Z ) 5/ (z )
921 2(3m ~ e een) THE) Fay

for some meromorphic function h on z;(N’) € C. Recalling the definition of the pullback

(Definition 2.3, and focusing on the coefficient ¢(21) of the matrix of V' (see|Corollary 3.1, the
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invariance by ¢, leads to:

6 (2 & (2 6 (2 ' (z & (2
(260) 2§12 — §¥b(y - 2) + Feely - 21)) — B8 (21) §429) + h(z1) = c(z1)

for some meromorphic function h on z;(N'). In particular:

/ g4 (21) 1 ol (21) .
(27) Vy € m(N', 90), 91(21)57(31)51(,31) =0
Now we fix a set ((Va)ael, (Ye,1s---1Ye,29)e=1,2) of generators for mi(N', yo), where 7, is ob-
tained from a loop containing the singular point y, in its bounded component, and 71, ...,724

span 71 (V) (g = g(N) is the genus). We prove that there are two possible cases:

a) 7 is constant.
b) For any o € I, ¢, = 0.
Indeed, assume 7 is not constant and pick a € I. Clearly, c,, # 0 implies that 7 d” # 0.
Hence, in view of , either ¢,, = 0 or gfm = 0. Now, considering a suitable Mobius transfor-

mation ¢ in the connected component of PSLy(R), and replacing the coordinate 21 by 2] = ¢oz,
the equation remains true when replacing 7 by 7 = 70 ¢!, g’% by the matrix of the differ-

ential of v, in the basis % which can be picked out non-zero, and keeping the same ¢, (since
1

7 have the same monodromy as 7). Hence necessarly c,, = 0.

Now we prove that case b) can’t happen in our situation. Indeed, it is known that there are

generators (Ya)acr and (Ve j)j=1,..g s above such that:
e=1,2

(28) 111725 = [T
j=1

acl

But property b) means that the monodromy of 7 is a representation p with values in the abelian
subgroup of translations in SLg9(R). In particular, (28]) implies that the composition of the im-
ages p(7q) is trivial. Moreover, following the proof of Theorem 7.3 in [12], these are translations
by b, > 0. From the previous remark, the sum of these positive integers is zero, so that b, = 0,
that is A, is the identity for any o € I.

By Theorem 7.3 in [12], this implies that the functional invariant J have no pole on N. It is
therefore a constant meromorphic function. As a consequence, 7 is constant.

O

3.2. Reduction to elliptic fiber bundles. We now prove that the classification reduces to the
one of meromorphic affine elliptic fiber bundles over complex curves, and their finite quotients.

From now, assume that M —— N is a minimal elliptic surface, of algebraic dimension one,
with singular fibers S = 771(S), endowed with a meromorphic affine connection V with poles
D. By its invariants are constants. Since IV is a smooth compact complex curve,

its is clear that there exists a finite cover N —2s N , ramified at S, such that the elliptic surface
M = N obtained from the diagram:

M

Lﬂ

N

A~

(29) N E

X N ——
N

=M
N

q
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where ¢ is the restriction of the first projection, and 7 is the restriction of the second projection,
is an elliptic surface without multiple singular fiber. Its invariants are respectively J=1Jo q
and ¢*G, that is respectively a constant and a constant sheaf.

We get:

Theorem 3.2. There is a surjective functor from the category of objects of the form (M =
N,V,T') where:

o M 5 Nisa principal elliptic bundle of algebraic dimension one through its algebraic
reduction. A .

e V is a meromorphic affine connection on M, with pole D,

e [ is a finite group of automorphisms of the elliptic surface M =5 N and of the mero-
morphic affine connection V, with smooth quotient.

to the category of minimal meromorphic affine surfaces (M — N,V) with a(M) = 1. This
functor maps (M N, V,T) to (M,V) where M = T\M and N =T\N (T is the subgroup of
finite automorphisms ofN covered by an element of T'), and V is the meromorphic connection
on TM\ D = (¢.TM\ D)'' (q: M — M is the quotient by T' and D = q(D)) corresponding to
the I'-equivariant morphism V.

Proof. First, suppose that (M — N,V,T) is an object and (M, V) its image as in the state-
ment. Since I is finite, V extends as a meromorphic connection on TM (xD) = (¢ T M (*D))',
i.e a meromorphic affine connection on M. Moreover, M is of algebraic dimension one. Indeed,
suppose that f is a meromorphic function on M. Then f = f oq is an element of ﬁ#C(N ). By
definition of M -+ N, f is thus an element of 7% C(N). Also, M is a minimal surface. Indeed, if
C'is an exceptional curve, then ¢*C = C is a smooth rational curve in M, contained in a fiber of
7, which can’t be a principal elliptic fiber bundle. Hence, the functor is well-defined on objects
and extends as a functor for the obvious choice of arrows (namely I'-equivariant isomorphisms
of meromorphic affine connections and isomorphisms of meromorphic affine connections).

Now, if (M,V) is an object of the target category, then we define M - N asin

and V = q*V. We prove that M- Nis a principal elliptic bundle. First, recall that the
invariants are respectively a constant for the functional invariant and a constant sheaf for the
homological invariant. The basic member B associated to these invariants (see
is B=N x C/A for some lattice A. Moreover, M is a minimal surface. Indeed, suppose the
existence of an exceptional curve C' in M. Since the algebraic dimension of M is one, the proof
of Theorem 4.2 in [II] implies that C is a singular fiber of #. But then its image C' through
q would also be an exceptional curve. Indeed, the restriction of ¢ to the support of Cis a
biholomorphism, so C' is a smooth rational curve. It is also a singular fiber of the minimal
elliptic surface M. By the proof of Theorem 6.2 in [12], we must have C'- C' < —1. In one other
hand, since ¢ is a finite cover, we also have

~1=C-C=deg(Ny) =kC-C

for some positive integer k, hence C - C' = —1 contradicting the minimality of M. From the
point 2. of the M is locally isomorphic, as an elliptic fibration, to B. Hence, M
has no singular fiber. Up to considering a finite cover, M =5 N is therefore a principal elliptic
fiber bundle. Finally, setting I" as the (finite) group of automorphisms of ¢, we get an object
mapping to (M, V).

O
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The following lemma will help us to compute the possible groups I' appearing in

Lemma 3.2. Let (M,V) be minimal a meromorphic affine elliptic surface with a(M) =1 and
G: M — M as in [@9). Let M be the universal covering of M and (z1,22) coordinates on
M as in |Pr0position 224 Let Wi, ¥y and (¢,) be the automorphisms defined as in
[Proposition 2.2.2,.
Let U be an automorphism of elliptic fiber bundle on M N. Suppose that ¥ is an
automorphism of 4. Then:
(1) U lifts to an automorphism ¥ of M of the form:

(30) \I/(zl, ZQ) = ((5 C 21, U222 + f5(2’1))
where & is the lift of an automorphism & € Aut(N) to the universal covering N, p € C*
and f5 is a holomorphzc function on N.

(2) The map from Aut(M) to Aut(M) defined by U — ¥ defines a bijection between the
set of groups I' as m and the set of groups T C Aut(M ) with the following
properties. Any W € T is of the form and we have:

i) The quotient of N (resp. M) by the subgroup of Aut(N) (resp. Aut(M)) spanned
by the automorphisms & (resp. \I/) as in is a complex compact smooth curve N
(resp. a complex smooth manifold M ).

it) There exists an integer k > 1 such that Uk belongs to the subgroup spanned by the
automorphisms U1, Wy and ¢, (v € 71 (N,y)).

iii) U normalizes the subgmup spanned by the subgroup spanned by the automorphisms

Uy, Uy and ¢y (v € 1 (N,y)).
w) U*V =V where V = 5*V.

YETL (N7y)

Proof. Let ¥ be an automorphism of #. It covers an automorphism 5 € Aut(N) and we define
§ € Aut(N) as its lift to the universal covering p : N — N. By construction, any lift U of ¥
to the universal covering M is an automorphism of (C—prlnmpal bundle covering 9.

Consider the covering g : M — M, where M = M x N, obtained as in the proof of
N

IProposition 2.2.2L Any element of M is of the form [0, z] for some x € M and § in N. Recall
that M is also the universal covering of M. Moreover, ¥ lifts canonically to an automorphism

W of M defined by:
(31) U([g,2]) = [0(3), ¥(2)]
Fix § € N, let v € 7r1(]\7,gj) as well as the automorphism ¥, of M defined as in the proof

of |Pr0position 2.2.2l Since U is the lift of ¥ to t~he Galoisian covering M —s M with G%lois
group spanned by the automorphisms ©,. Since ¥ is the lift of ¥ to the Galoisian cover M of

M, with Galois group (¥, ¥s) (see proof of [Proposition 2.2.2)), we get (ii4).

Let k£ > 1 the order of ¥. Then T* covers the identity, so it belongs to the subgroup spanned
by the automorphisms %,. Now the lift of T* to M belongs to (¥, Uy, (@7)7€7r1(1\7 y)>. Since
this coincides with U* modulo (¥, ¥5), we get (i7).

The formula is proved exactly as in the proof of point 3. of [Proposition 2.2.2) proving 1.
The bijection stated at point 2. follows from the above and [Lemma 2.2] O

4. PRINCIPAL ELLIPTIC SURFACES OVER PROJECTIVE LINE

We begin to apply the strategy proposed in the last section, with the case N = P! We
first describe the compact complex surfaces which are principal elliptic bundles of algebraic
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dimension one on N , namely the Hopf surfaces with a(M ) = 1. This description is in terms
of the universal cover M = C?\ {0}. Then we classify meromorphic affine connections on M
Corollary 4.1). Finally we prove that a non trivial finite group of Aut(#) has no fixed curve
Theorem 4.2)), any minimal meromorphic affine surface M with a(M) = 1 arising from a Hopf
surface through the construction is again a Hopf surface.

4.1. Hopf surfaces of algebraic dimension one. Recall the following characterization of
Hopf surfaces among elliptic surfaces (see for example [3]):

Theorem 4.1. Let M be a complex compact surface. Then the following assertions are equiv-
alent:

(1) M is a Hopf surface with algebraic dimension one
(2) The universal cover of M is C2\ {0} and M is of algebraic dimension one
(3) There exists A € C* with |A\|* — 0, an integer d > 1 such that the following diagram

commutes:
(32) C2\ {0} “— M
p1 \L J/W
Pl Pl

where pq is the quotient map corresponding to the action of T'q = ((z1, 22) — (A\z1, )\522»
on C?\ {0} and py is the bundle map for the tautological bundle of P'.

The Hopf surface corresponding to some fized A and d > 1 will be denoted by M,.

As an example, the original Hopf surface is My for A = %

Now, fix A as in and d > 1. Then we have a map Hy : My; — M defined by

the following commutative diagram:

(33) c? \l {0} > 2 1{0}
My My

where H(z1,20) = (21, 2$) is a finite map. By construction, Hy is a finite ramified covering, and
is equivariant for the following actions of Z : the one on My obtained by quotienting the action

given by (z1,22) — (21, e’ z9) (which commutes with the action of I'y, and the trivial action
on Ml.

4.2. Meromorphic affine elliptic bundles over the projective line. Pick a meromorphic
affine connection V on a Hopf surface with divisor (Mg, D) (see , and let V be its
pullback on C2\ {0} through pg. Then V is by construction a meromorphic affine connection on
C?\ {0}, which is T'y-invariant, and there are meromorphic functions (fij, gi;)i j=1,2 on C*\ {0}

(34) Mat (V) = dz1®<f11 f12> n d22®<911 912)

for fo 921 922

0 o
0z1’0z9
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The I'g-invariance of V reads as:

>\1 fii(Az1, Ndz) = fulz1, 22)

)\31 fr2(Az1,Mdz0) = fia(21, 22)

(35) >\2_13 Ja1(Az1, Adzg) fa1(21, 22)
a  gi(Az, Ndzg) = gii(z1, 22)

Aa7h o gia(Aa, )\522) = g12(21,22)

A ga(Az, Adz) = gor(z1, 22)

In particular, such meromorphic functions are meromorphic functions on C2\ {0} by the
Hartog’s principle, and V is a ['g-invariant meromorphic affine connection on C2 with pole D.

Reciprocally, any family (f;j,gi;) of meromorphic functions on C? satisfying . ) define a
I g-invariant meromorphic affine connection on C?\ {0}, hence a meromorphic affine connection
on Md.

Lemma 4.1. In the situation above, given any p € C* and any d-th root /ﬁ, V is invariant

through the automorphism (21, 22) — (pz1, ,uézz)
In particular, V is the pullback of some homothethies-invariant meromorphic connection Vi

on C2\ {0} through the map Hy defined by (33).

Proof. Pick any (z1,29) € C?\ D such that fij (21, 22) is non-zero, and consider the holomorphic
functions :

fij(t921, t20)
t44i5 fi(21, 22)
where ¢;; is the exponent appearing with A in . Then this last equation implies that hij()\k)
is always zero, and since \* accumulates to 0, the isolated zeroes principle implies that hij is

(36) hi;(t) = -1

the zero function. We thus recover the same equations as by replacing A, A with any pair
b u% as in the statement, that is the invariance of V as announced.

Hence, picking u = 1, we get that V = H dV1 for some meromorphic affine connection V;
on C2\ {0}. By construction, this connection is invariant through the homotethies, since Hy is

equivariant for this action.
O

In particular, we recover the results of

Proposition 4.1.1. Let V be a meromorphic affine connection on a Hopf surface mg : Mg — P!

(see|Theorem 4.1)), with poles at D. Then:
(1) D is supported at 7, " ({0,00})
(2) V is invariant through any fundamental vector field of the principal elliptic bundle my.

Proof. (1) Let D = p5D where pg is as in [Theorem 4.1, Then by D is invariant

through the action of (21, 22) — (z1,ed 23). Moreover, it is contained in the union of
the poles for the meromorphic functions f;;, g;; introduced in . Such meromorphic
functions are homogeneous Laurent series, so the former poles are lines in C? with multi-
plicities. If d # 1, the only lines which are invariant through the previous automorphism
are {z; = 0} = p;'({0}) and {22 = 0} = p;*({oc0}), whence the result. If d = 1, it
suffices to consider the pullback of V through a Hopf map Hy (d > 1) as in to
conclude the same.
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(2) By and the commutative diagram (33), V = HjV; for a meromorphic affine
—

connection on Ml Since V; := piVyis I'y- 1nvar1ant mma 4.1|implies that V1 is also
homotethies-invariant. The infinitesimal generators for the homotethies commute with
I'; and descend to M as the fundamental vector fields for 7; : My — P!, This gives

the announced result.
O

Moreover, we have the following classification of meromorphic affine Hopf surfaces of algebraic
dimension one:

Corollary 4.1. Let A € C* and (Mg)q>1 be the corresponding Hopf surfaces of algebraic dimen-
sion one (see[Theorem 4.1)). Then
(1) There is a bijection between the meromorpic affine connections V on My and the mero-
morphic affine connections Vi on My given by V = H;V1, where Hg : M — M is the
Hopf map defined by .

(2) There is a bijection describing the meromorphic affine connections on M :

(C® x N8)2 - {V1 on M}
k pk k k
(agj, bij, majniy)ije=1,2 p1x Y dzp®
J J J J
k=1,2
k k k k
M1 11 M2 12
k _%1 2 % 2 % 2 %
(37) af1 g PO iy e i
s L1 2 12 2112
k k nk
9 Z;”21 ;‘21 9 Z;”22 222
a21 m +1 +b n +1 a22 m +1 +b n +1
2y 22 ) 2?2

where p1, V1 is the unique meromorphic affine connection whose pullback through py is
V1. This in fact describes all holomorphic affine connections on a Zariski open-dense
subset of M.

(3) In particular, there exists non-flat meromorphic affine connections on any Hopf surface
of algebraic dimension one, and exactly one holomorphic affine connection on any such
manifold, that is the standard affine structure.

Proof. (1) By the proof of (2) in
(2) This corresponds to the remark below the equation , implying that f;;, g;; are ho-
mogeneous Laurent-series of degree —1 when d = 1.
(3) The curvature of the connection Vi appearing on the right handside of . can be
computed expllcltely As an example we may choose al =0 if ¢ = j and 0 otherwise,

as well as a = bk =0 and m = 0. In this case, the matrlx of the curvature Rg o, in
the basis 821, 822 is

1
dA—I—A/\A:dzl/\dZQ(—fzId) #0
)

whence the assertion.
If V; is holomorphic however, then a = bk = 0 that is Vq = Vj is the standard

affine structure on C2.

O

4.3. Quotients of meromorphic affine Hopf surfaces.

Theorem 4.2. Let (M, V) be a minimal meromorphic affine surface with a(M) =1 and suppose

that the finite covering M from 29) is a principal elliptic surface over P'. Then M =M and
(M, V) is classified in|Corollary 4.1|
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Proof. Let I' be the Galois group of ¢ : M —s M and T the Galois group of G : N — N.
Suppose that g (and so ¢) admits a ramification point yz € N. By definition, this means that

there exists on M a multiple fiber Sg = 7 '(ys). Let Sg = ¢~'(Ss). Then Sz is the curve
obtained as the quotient of {z; = 0} or {22 = 0} in the univeral cover C?\ {0} of the Hopf
surface M = My (see . These are precisely the inverse images of 0 and co through
#: M — N = PL. Without loss of generality (up to exchanging z; and z3), we suppose that

Sp is the quotient of {z; = 0}. This implies that T is a subgroup of Aut(C). In particular, the
action of any e € I lifts to the universal cover C? \ {0} as an automorphism ¢ defined by:

€(z1,22) = (p(az1 + bze), pza)

for some a, u € C* and b € C. But then € is an element of the Galois group of the universal cover
pa : C2\{0} — M for some m > 1. Since this Galois group is spanned by (21, 22) = (Az1, \%22),
this implies:

u™ = Nd
b pF = 0
k=1
ap™ = A\

Since || > 1 we get b = 0, so that é(z1, z2) = ()\%21, )\%Zg) for some integer . Now, by definition
of ¢ and the remarks above, € fixes the quotient of {z; = 0}. Hence A7 = A for some integer I,
so that € is in fact an element of the Galois group of pg, i.e € is the identity on M.

We have proved that either that § is an unramified finite cover. Hence M has no multiple
fiber, so it is a Hopf surface, in particular a principal elliptic bundle. This implies M=M. O

5. PRINCIPAL ELLIPTIC SURFACES OVER AN ELLIPTIC CURVE AND QUOTIENTS

In this section, following we classify meromorphic affine connections on (holo-
morphic) principal elliptic surfaces over a one torus N=cC /A, as well as their quotients.

Let M be a complex compact surface which is a holomorphic principal elliptic bundle over
a torus. We first recall a result of Kodaira asserting that M corresponds to one of the two
following examples:

Definition 5.1. A primary Kodaira surface over a torus N=cC /A’ is an elliptic surface M-S N , where
M = G\C?, with #(21,22) = [21] ([21] stands for the class of z; in C/A’) and the group G C Aut(C?)
spanned by 11,19 as in [Proposition 2.2.1| (for some 7 € H) and the automorphisms (¢x/)xeas defined
by:

(38) o (21,22) = (21 + Ny 20+ N2 + By)

for some By € C.

Definition 5.2. A two torus is an elliptic surface N 2 N where M isa quotient G\C?, with #(z1, 29) =
[21] and G a subgroup of translations in C?.

Theorem 5.1. Let M be a complex compact surface which is a holomorphic principal elliptic
bundle over a torus. Then Ky ~ Oy, and either:

a) The first Betti number ofM s odd if and only z'fM is a primary Kodaira surface.

b) The first Betti number of M is even if and only if M is a two torus.
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Proof. Let (21, 2z3) be coordinates on the universal cover M of M as in [Proposition 2.2.2l Then
the holomorphic volume form dz; A dzs is clearly invariant through the automorphisms 1, ¥
and (cpw)W em (N )" Thus, it is the pullback of a global holomorphic volume form 7 on the covering

M defined as in , which is invariant through the Galois group of this covering. Hence, 7 is
the pullback of a global holomorphic volume form on M, proving Kps ~ Oyy.
The second assertion is a part of a result of Kodaira ([I3], Chapter 6.), where we eliminated

the K3 surfaces since these are elliptic surfaces over the projective line.
O

We are thus led to classify meromorphic affine primary Kodaira surfaces, meromorphic affine
two tori, and their quotients.

5.1. Meromorphic affine primary Kodaira surfaces. Let M-I N = C/A be a primary

Kodaira surface (Definition 5.1) and G the group such that M = G\C2. Suppose the existence

of a meromorphic affine connection V on (M, D) for some divisor D. Since 7 is a principal
elliptic bundle, implies D = n*C for some divisor on the one torus V.
Define &y as the subspace of A’-elliptic functions, that is:

(39) & ={he M(C)|VN € A, 5y (h)(21) =0} where &y (h)(21) = h(z1 + N) — h(z1)

Recall that & is the subfield of meromorphic functions obtained as the extension of C by two
elements ©(21), 9’ (21), where:

1 1
(40) plz1) = 5+ > X BBV
21 /\’EA’\{O} )
is Weirestrass elliptic function. Then define:
(41) & = {heM(C)|3Ix, € Homg(N,C), VN € N, 5y(h)(21) = xn(N)}

equipped with the natural linear map:

& — Homg(N,C)

(42) AR 5(h)

Clearly h € & if and only if A’ € &. In particular, z; € &, and the Weirestrass zeta function
(a primitive of p) :

(43) (€&

This implies:

Lemma 5.1. There is an exact sequence:

(44) 0 & & —"Homgz(\',C) —= 0
which splits through the linear map:

(45) Xﬁl(aXC + ﬁX?&) = aC(Zl) + Bz

Proof. The fact ker(x) = & is immediate by definition of x. By (40), Reso(¢) = —1, while
Reso(z1) = Reso(f) = 0 for any f € &. As a consequence, x¢ = x(¢) and x,, = x(z1) are
independant. Since Homgy(A’,C) has dimension two, the above sequence is right-exact.

U
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Consider the pullback V = 5*V, which is a meromorphic G-invariant affine connection on
C2. By [Theorem 2.2} either V is flat or the pole D of V is supported on a A’-invariant union of
subvarieties {21 = yo + A’'}. Suppose V is not flat.

There are meromorphic function f;;, g;; on C2, with poles supported at D, such that :
y Jn f12> <911 912)
46 Mat V) =dz ®( 4+ dzo ®
(46) 821 ’822( ) ! Ja1 fa2 2 g21 G922

By the A-invariance of V, the restriction of fij and g;; to any fiber of 2; is constant. That is

fij» gij are elements of (m o 5)#C(N), and we will omit the second variable 23 in the sequel.
Now, given any \' € A/, we have :

(47) oy (dz1) =dz and @}, (dze) = dzo + bydz

where @)y are the elements of G as in |[Definition 5.1} Hence, the invariance of V by G rewrites
as (see [2] p.238-239):

ov(g12)(z1) = 0

on(gi)(z1) = (=) Ngia(z1)

Sx(ga)(z1) = Nlga2 — gn)(z1) — Vgia(1)
(48)  WN e, { dv(fia)(z1) = —Ngia(21)

ov(fi)(z1) = (=1 N fia(z1) — Ngai(21)

(=1 W g1a(21)

o (far)(z1) = W(f222 — f11 = g21)(21) ,
+XN(g22(21) — g11(21) — f12(21)) + N g12(21)
Reciprocally, any family (fi;, gij)i j=1,2 of meromorphic functions on C satisfying define a
meromorphic affine connection on M.
Now, we study the simultaneous solutions ( f;j, g;;) of the system of functional equations .

Proposition 5.1.1. Let V be a meromorphic connection on a primary Kodaira surface M as
above. Let a¢ + [Bz1 the meromorphic function from [Lemma 5.1 Then, using the notation
Z(z1) = al(z1) + Bz1, the matriz of the meromorphic affine connection V= p*@ in the basis
(8%1, 3%2) is either:

form I:
[ —(Z*+ )92 | Zg12 \
—(Z3
e L L ez ((Z + 022+ 12)” )
(49) + dZ+v12)912 o)

—(Z +611)912 912 >
d
Toane (—((Z + (022 — 611))? + d21)g12 (2 + 692) 912

with g12 a non trivial N'-elliptic function, v;j,0;; € &, and h = —%511, ¢ = 011+ 022 +712
and d, k satisfying , or:
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form II:
{ _(911 - f12)Z fio \l
+ T !
dz1 @ (911 — 922 + f12) 2
- Z
(50) + (71— 22 +021)Z N 72(2922 + f12)
+ 721
gi1 0

d

! = @ <_(922 - 911)Z + 521 g22>

where gi11, g22, f12,7ij, 021 are arbitrary N -elliptic functions.

Reciprocally, any matriz as above is the matriz of the pullback ¥V of some meromorphic affine
connection V on M through its universal covering p: M — M.

P~7’00f. Recall that the pullback of a meromorphic affine connection on M to its universal covering
M defines a bijection between meromorphic affine connections on M and meromorphic functions
(fij,gij)iyjzljg on C solutions of .
e First suppose g12 # 0. In this case, the first line of is equivalent to g12 € & \ {0},
; i . .
and applyllng W to o1 shows that the second and fourth one is equivalent to
gii = (=1)"(aC + Bz1 + dii)g12 and fi12 = (a + Bz1 + Y12)g12 for some elliptic functions
011, 022, v12. Rewriting the system in this case, we see that the third line is equivalent
to:

(51) VA € N, 0x(ga1)(z1) = Sx(—(aC + Bz + (622 — 611))*g12) (21)
so that this line becomes equivalent to
921 = —((aC + Bz1 + (922 — 011))% + 621)g12

for an arbitrary elliptic function do;. By the same principle, the fifth and sixth lines
are now equivalent to fi; = (—1)*((a¢ + Bz1 + 6 + Y12)% + Vii)g12 and fo; = —(%(a( +
Bz1 + h)3 + c(al + Bz1 + k)? + v21)g12 for an arbitrary elliptic functions 2; and with
h,c, k € & solutions of the system:

3h2 +2ck = (022 — 611)% + (622 + 712)® + (611 + 712)? + F21 + Y11 — 22
(52) 2c + 3h = 4((522 + ’712)
3h+c = da2— 011+ 712

We get the matrix form I.
e Now suppose gi2 = 0. Then using the as before we get that the five first lines

of are equivalent to gia = 0,911, g22, f12 € & and ga1 = (a¢ + B21)(g911 — g22) + 021
and fi; = —(aC + Bz1)(gii + (—1)" fi2) + i for some arbitrary elliptic function ~;;, d2;.
Now, the last line is equivalent to:

Sx(fa1)(z1) = dx (@€ + Bz1 + 21)% (911 — ga2 + fr2) + (@l + 21) (711 — Y2 + 021))
We get the form II.

We obtained:



22 ALEXIS GARCIA

Theorem 5.2. Let m : M — C/A’ be a primary Kodaira surface, ¢, , 3 as above and p :
C? — M its universal cover. Then:

(1) The pullback of meromorphic connections through p' gives a bijection between the set of
meromorphic affine connections on M and the set of meromorphic affine connections on
C? with matriz as in |Proposition 5.1.1)

(2) The only holomorpic affine connections on M are the V corresponding to V with matriz
with constant entries and ga1 = foo — 11 (this was first proved by A. Vitter, see [2],
5.0). In particular their curvature identically vanishes, and there are flat holomorphic
affine structures on M.

(3) There exists non flat meromorphic affine connections on M.

Proof. (1) By the remark below , the set of meromorphic affine connections on M is in
bijection with the set of V with matrix form as in [Proposition 5.1.1]

(2) Among the matrix forms in , the only possible form with holomorphic one forms
as entries is , with f;; € C. In particular the curvature is identically zero, and picking
f11 = fao = fo1 = 0, we get that the standard holomorphic affine structure of C2 induces
a holomorphic affine structure on M, thus recovering the result of Inoue,Kobayashi and
Ochiai.

(3) In , pick f11 = @, foo = fo1 = 0. Then the curvature of V is

0
Rg = —p(z1)dzy Ndzy @ dzg @ =— #0
82’2

We thus get a non flat meromorphic affine connection on M.
O

5.2. Quotients: Meromorphic affine secondary Kodaira surfaces. We now classify the
quotients of meromorphic affine primary Kodaira surfaces.

The following fact, which comes from the proof of Theorem 39 in [I4], describe the possible
quotients of a primary Kodaira surface M:

Lemma 5.2. Let M "+ N be a minimal elliptic surface with a(M) = 1, endowed with a

meromorphic affine connection, and M — N its finite ramified covering as in .
Suppose M has canonical trivial bundle. Then either M = M or IC%%C = Oyp for some k > 2.
Moreover:
(1) M = F\M where T is a cyclic group acting freely and spanned by an automorphism ¥
of the form
(53) U(z1,20) = (vz1 + 0, pza + az; +b)

where v is a k-th root of the unity (k <6), u is a power of v and a,b € C.
(2) Moreover, if M is a two torus and ' is not trivial, p # v in .

Proof. (1) If M is a principal elliptic bundle then M = M by construction of M. We
then suppose that M is not a principal elliptic bundle and I'" is not trivial. Moreover
kod(M) < kod(M) = 0. Since M is minimal, by the Enriques-Kodaira classification (see
[3], Table 10 p.189), if kod(M) = 0, then IC%C = Oy for some integer k > 2. Since ICy; is
trivial, g : M — M is isomorphic to the unramified covering associated with KCps, and
the formula follows from the proof of Theorem 38 in [14]. If kod(M) = —oo, then
M is a Hopf surface with a(M) = 1, and therefore a principal elliptic bundle through
its algebraic reduction. In particular, it has no singular fiber so that M = M. This
contradicts ICy; = 0 so necessarly kod(M) = 0. In particular IC%?[]C is trivial for some
k > 1 and the formula can be recovered from Theorem 39 and Theorem 40 in [I4].
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(2) Suppose u = v. By " belongs to the subgroup spanned by the automor-
phisms Uy, ¥5 and (gpA/),\/eA/ where k is the order of I'. Suppose k£ > 1. The matrix of

d¥ in the basis (%, W) and (\If*a‘z ,\Il* 0 =) is

v 0
a v
, while the matrix of any element ¢ in the subgroup spanned by ¥, ¥y and the ¢y in
0 o] 0 0\ ; : :
(7570 955) and (¢" g2, " 55;) is the identity.
We get immediately a = 0. Hence, W is the product of the automorphisms z; — vz, +0
and z9 — vzo + b, with v £ 1. Hence, there exists on M = C2 an isolated fixed point
Zo = (29, 29). The coordinates u; = z; — 29 and ug = 29 — 2 identify a neighborhood

U of &g, invariant by ¥, with D(0,1) x D(0,1). It conjugates the action of ¥ and the
action of the automorphism ¥; of D(0,1) x D(0, 1) defined by:

U (ur,u2) = (vui, vug)

For a suitably small U, j restricts as a biholomorphism between U and an open neigh-
borhood U of 2y = p(Zo). Then q(U) is an open neighborhood of some point xg € M,
which is isomorphic to the analytic space obtained as the quotient of D(0,1) x D(0,1)
by the subgroup spanned by Wi as above. It is clear since v # 1, that this space is not

smooth, contradicting (i) in Hence g = v implies & = 1 that is I" is the
trivial group.

O

Definition 5.3. A secondary Kodaira surface is an elliptic surface M — N which admits a primary

Kodaira surface M -~ N as a finite unramified cover.

Hence, the classification of (non-trivial) quotients of meromorphic affine primary Kodaira
surfaces is reduced to the classification of meromorphic affine secondary Kodaira surfaces.

The two following lemmas will be useful to simplify the invariance equations corrsponding to
UV = V:

Lemma 5.3. Let v € C* \ {1} and 6 € C such that z; — vz + 6 is an automorphism of the
elliptic curve C/A', r : C/N — P! the quotient by the subgroup spanned by this automorphism,
and po = Z1 or where Zy is any primitive element in the field of meromorphic functions on P'.
Then, for any integer k > 0 the set of N'-elliptic functions satisfying:

1
(54) flvzr +0) = 2 f(a1)

is C (o) o3

Proof. Since C(P') = C(Z;), we obviously have:
r#*C(P') = C (po)

In one other hand, by definition of 7, 7#C(P') is the subset of A’-elliptic functions invariant
through the automorphism from the statement.
In particular, derivating the invariance equation for g fives :

1
(55) oy (v +0) =~ (1)

that is pgk) is a A’-elliptic function satisfying (54).
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Now let f be any function as in the statement. Then g = % is an A-elliptic function
©

0
which is invariant through the automorphism from the statement. Hence, g € C (g() and finally

feC(po) gy
0

Lemma 5.4. Let v be a non trivial root of the unity and 6 € C such that § : z1 — vz1 + 0 is a
finite automorphism of C/A’'. Suppose k > 1 and (hi 1, hip)i=o,..  are elements of & such that:

k
(56) th(zl)(ac + 521)2(5 . Zl) + hi,o(zl)(ac + ,321)1(21) =0
=0
Then hoo =0 and h;g = —I/ihi71 fori=1,... k. Moreover, if there exists i € {1,...,k} with
hio # 0 then 6 = 0.

Proof. We proceed by induction on k € N>1.

Suppose the relation holds for k = 1. If h1; = 0, then clearly hi1 = h1o = hoo = 0
since (a¢ + fz1) is not an element of &. Thus, we can assume, without loss of generality, that
hi,1 = 1. Then derivating gives :
ahLo
82:1

As before this implies hy 9 = c € C. But then, becomes:

v(iap + B)(vzr +0) + (@€ + B21)(21) + hiolap + B) + hoo =0

(a€ + B21)(vz1 + 0) + c(ag + Bz1)(21) = —hoo

If 6 ¢ A, then the left handside has residues summing to a nonzero value. This is impossible by
the second Liouville’s theorem. Hence 6 ¢ A’ implies hy 1 = h1 9 = hoo = 0.

If 6 € A, then (al + B21)(021) = v(al + B21)(21). Again, since (a( + B2z1) is not an element
of &, we get that implies hoo = 0 and h1 o = —vhy 1.

Suppose the lemma is true for £ € N1, and suppose holds for k + 1 in place of k.
Applying the operator dy (see ) to this relation gives:

VX e N, Wkﬂ(’/kﬂhmm + hgy1,0) + Nt N4 fo=0

where fo,..., fr are C-linear combinations of hjg, hj1 and (ol + fz1)"(21) with 4,5 < k. In
particular we get v ¥ 1hy 11 + hgy10 = 0 and:
k
(57) > hin(z1)(a + Bz1) (8 - 21) + hio(21) (o€ + Bz1)"(21) =0
i=0

By induction hypothesis, we get that h; o = z/ihm fori=1,...,k.
Finally, if there exists ¢ € {1, ..., k} such that h; o # 0, then the induction hypothesis implies
6 € A. Also, by (57), if hy+10 # 0 and 6§ ¢ A, then by the second Livouille’s theorem
hgr11(aC + Bz1)f L (vzy + 0) + hgy10(al + B21)5T1(21) have non trivial poles at the classes of
0 and 6 in C/A".
O

Theorem 5.3. Let M — N be a minimal meromorphic affine elliptic surface with a(M) =1,

and suppose that the elliptic surface M N from is a primary Kodaira surface. Denote

by p : M — M the universal covering of M and (z1,22) coordinates as in |Pr0positz'0n 223
Then:
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(1) M is the quotient ofM by a cyclic group I', spanned by an element W, which lifts to an

automorphism W of M of the form:
(58) U(21,22) = (V21 + 0, pzo + b2y +¢)

where z1 — vz1 + 0 is an automorphism of the elliptic curve N = C/N, p is a power of
v, and b,c € C. Moreover v =1 if and only if M = M.

(2) Suppose that v # 1 as z'n (i.e. M is a secondary Kodaira surface). Let o defined
as in . Then the map V +— V = p*¢*V is a bijection between the set of
meromorphic affine connections on M and the set of meromorphic affine connections on

M with one of the following matriz forms in (6%1, 3%2):

a) ifu=v:=1and 0 =0:

Y11 0 0 0)
d a d
e ((aC + B21) (711 — Y22 + 21) + 15,021 + Y21 722) tan® (621 0

with 74,021 € C(po) py and 21 € C(po) 95 -

b) if p#1orv?#1 orf#0:

le ® (’yll 0 )
Y21 Y11

with y11 € C(po) oy and v21 € C (po) 90,

In particular, there always exists meromorphic affine flat connections on any secondary Ko-
daira surfaces.

Proof. (1) It is a consequence of and the definition of M in[Theorem 3.2, Indeed,

v = 1 implies that g : N —» N is an unramified covering, that is M have no multiple
singular fiber. By definition this implies N = M.

(2) Let V be a meromorphic affine connection on a secondary Kodaira surface M —+ N,
and V the corresponding pullback to the universal covering M of the primary Kodaira
surface M. Recall that the matrix of V in (8%1, 8%2) was described in |Pr0position 5.1.1l

Suppose that V has form I in [Proposition 5.1.1| and let \il~be as in 1, so that v # 1.
Then by the equations corresponding to V*V = V imply:

v(al + Bz1)%(ver + 0)gra(vzr +0) = (ol + Bz1)%(21)g12(21)

(al + Bz1)(vz1 + 0)gi2(vzr +0) = (af+ Bz1)(z1)g912(21)

Lo12(va1 +6) = 912(21)
Since g12 # 0, using again we get:
V3
v
m
2

vV
I

so that v = 1, that is M is a primary Kodaira surface by 1. This contradicts our
assumption on M.
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Hence V has form II in [Proposition 5.1.1L~ In this case, using the notation Z(z1) =
al + [z, the equations corresponding to U*V =V are:

wgii(vz1 +60) = gi(z1)
fia(vz1 +0) = fia2(z1)
—v(g22 — 911)(21)(Z)(vz1 + 0) = (922 — 911)(21)Z(#1)
+uvder(vzy + 0) +d21(21)

B —(gui + (~) v fi) (21) 2021 + ) = —(gu + (~1) fia)(21) 2 (21)
+vyi(vzr + 0) + %gii(zl) +7ii(21)
v(g11 — ga2 + v f12)(21) 23 (vz1 +6) = (g11 — g22 + f12)(21) Z%(21)
+—aZ(gi1 — g22)(vz1 + 6)
+2 (11 — y22 + 021) (21 + 0)Z(v2g + 0) +(v11 — Y22 + 021)(21) Z(21)
+12y91(v21 + 0)) + ador (V¢ + 0) +721(21)

Using we get the following restrictions. The third line of implies:
1
(60) do1(vz1 +0) = E521(Z1)

The fourth line implies:
(v = 1)gii = (=1)'(1 = v*) fi2
In the same way, the fifth line implies:
(* = 1911 — g22) = (1 = v°) fuz
Since v # 1, we get:
(61) gii = fi2=0

The fourth line also implies:
(62) i _,_9)_1 (21) 2 gl )_1 (21)
Yii(VZ1 = I/%Z 21 /wg” 21) = I/%Z 21
Finally the fifth line of implies:

1 a
(63) Yor(vzr +6) = ﬁ’YZl(Zl) — W521(21)

We distinguish between two cases:

o If y # v, theny = — Vwaégl(zl) is a solution of . Hence, in view of

is equivalent to:

(64) Y21 € ——

vé — pv

o If 44 = v, then either dy; = 0 and shows that is equivalent to
721 € C(go)p, or:

121 o Ly @
Plva+60) = (v = ) a) -

L 5a1(21) + Clpo) el
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In the second subcase, since z; — vz, + 6 has finite order k with ¥ = 1, we get
(v— U%)kfl +...+(v— 712)—1—1 = 0. Since moreover k = 2 or 3, we get a contradiction.
Hence if p = v then:

(65) 001 =0 and Y21 € C(PO)@E)
Moreover, the fifth line and imply:

1 1 1
V(11 — ye2 + —021)(21) = — (11 — Yoz + —d21)(21
( . )(21) = . )(21)
and 6 € A’ whenever d3; # 0 or 711 # v22. Comparing with and , the above

equality implies:
(66) (*=1landp=1and § =0) or 7 — Y22 =02 =0

We have proved that V has matrix form as described in the statement.

Reciprocally, suppose that U is the lift of the generator of T as in 1. Suppose also tat
V is a meromorphic affine connection with matrix form as in the statement. Then
is clearly satisfied, i.e. V is U-invariant, and M = F\M is a secondary Kodaira surface
This achieves the proof since the matrix form in case b) also appears in case a), and the
torsion and curvature both vanish when ;7 = 22 = 0 in this case.

O

5.3. Two tori. In view of [Theorem 5.1} to achieve the case N = C/A’ (see [Theorem 3.2)), it

remains to classify meromorphic affine two tori with a(M) = 1 and their quotients.

Let M — C/A be a two torus with a(M) = 1, and & the subfield of A’-elliptic mero-
morphic functions. Let §: M —> M be the universal covering, with coordinates (z1,22) as in
[Proposition 2.2.2, Then the automorphisms (@) eas are translations in these coordinates.

Hence, for any meromorphic affine connection V on M, with matrix:

dz1 @ (fij)ij=1,2 + dz2 ® (gij)ij=1,2

the condition goj,ﬁ = V is equivalent to fijs 9ij € Eo-
We immediately get:

Theorem 5.4. Let M be a two torus with a(M) =1 andp: M —> M its universal covering with
global coordinates (z1,z2) as in|Proposition 2.2.2. Then the map from the set of meromorphic
affine connections on M to E§ obtained by mapping V to the coefficients (fij» 9ij) of the matriz
of V.= p*V in (8z  Dag 9. is a bijection.

5.4. Quotients of meromorphic affine two tori.

Theorem 5.5. Let (M,V) be a minimal meromorphic affine complex compact surface of alge-
braic dimension one, and suppose that the finite ramified covering (M, @) from is
a meromorphic affine two torus (of algebraic dimension one). Then either M is a two torus,
or (M,V) is a meromorphic affine secondary Kodaira surface, and such pairs were classified in

[Theorem 5.3.

Proof. If M is not a two torus, then the finite covering q : M — M and therefore Ky is not
trivial. The proof of point 1. in only relies on the fact that K, is trivial, which
is still satisfied in our situation. As a consequence, we get that the canonical global section
(dz1 A dze)®F of leéIk, where k is the order of v and M is the universal cover of M, is invariant

by the lift ¥ of any automorphism of ¢ : M —s M. Hence Kj\ej[k is trivial. By Theorem 38 of
[14], this implies that a finite unramified cover of M is either a two torus or a primary Kodaira
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surface. In the second case, since Ky is not trivial, we immediately get that M is a secondary
Kodaira surface. In the first case, we have kod(M) = 0 and a(M) = 1. By the Enriques-Kodaira
classification (see [3], Table 10 p.189), M is either a secondary Kodaira surface, a two torus,
or a K3 surface. Again, since Kjs is not trivial, the only possiblity is a secondary Kodaira
surface. O

6. PRINCIPAL ELLIPTIC SURFACE OVER AN HYPERBOLIC COMPACT RIEMANN SURFACE AND
QUOTIENTS

6.1. Non-existence on principal elliptic surfaces with b; (M ) even. Let M —s N be a
principal elliptic surface over a Riemann surface N of genus g > 2, with a(M )) = 1. Denote
by p: Hx C — M its universal cover. From |Pr0position 2.2.2L p is the quotient by the
automorphisms Wi, Wy corresponding to a lattice associated with the fibers of M , and by the
automorphisms ¢, (v € 7T1(N ,y)) lifting the desk transformations of the universal cover p :
H —» N. The later are of the form:

ayz1 + b,

21 + d»y722 + f'Y(Zl))

SO'Y (Zla 22) — (
in suitable global coordinates z; on H and 22 on C, with f, a holomorphic function on H.

Proposition 6.0.1. Let M — N be a principal elliptic surface as above. If M admits a
meromorphic affine connection V, then by (M) is odd.

Proof. By [12], Theorem 4.17 applied to the basic member
B:=HxC/A

in the same family as M , we get that either b; (M ) is odd or M is a deformation of B.
Suppose that by (M) is even. In particular, there exists a diffeomorphism between the under-
lying smooth manifolds:

(67) MR pR
NR —— NR

In particular ¢ induces an isomorphism of 7r1(]\7 , y)-manifolds between the universal covers of
M and B.

Pick U C N such that there exists a section of p over #71(U), and thus a section of the
universal cover of B over the corresponding open subset U x V in B. Then, in the induced
coordinates (21, 2z2) on #~H(U) and (21,uz) on U x V, ¢ has the expression:

(68) ¢(21,22) = (21,22 + fu(22))

for some C* function fy on U. We fix U and omit the subscript U in the sequel.

Now, on B, we can consider a meromorphic affine connection Vg induced by the canonical
holomorphic affine connection on C/A and any meromorphic affine connection on N. Then
we can consider the smooth connection Vj := ©*Vq on the sheaf of complexified differentiable
vector fields

(69) TEM\ S) i= TM| 4 ® C\sc
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In ihe basis 6%1, 8%1, %, 8%2 induced by coordinates as above, the matrix of the pullback Vo =
p*Vy is:

(1) 0\, 00
(70) dz; ® (df a() —|—la%ldf(z1) O) +dz; ® (atzldf(zl) O)

where a is a meromorphic function on H, identified with a C* function a : H — gl2(R) and:

Lok oL
V=55 of

0z1 0z1

Suppose that V is a meromorphic affine connection on M, with poles at D, and let S’ = S+ D.
Denote by VC (resp. V) the unique extension of V to a smooth connection on the sheaf (69))
(resp. its pullback to the universal cover H x C). Then the matrix A of VC in 8%1’ %, 8%27

satisfies:
0 0
(7 ) 77, _| 5%, _| 0

In one other hand, the difference V€ — V = p*(@(C — V) is a I-equivariant section of the

CX’;\S, (C—sheaf TC(M \9)*® End(TCM \ 5). Let’s decompose its matrix in the above basis as:
dz1 ® (fﬁl"o))i =12 + dz2® (g-(l~’0))z‘ i=1,2
(72) 1, J=4 1,7 s$J=4

dz1 ® (fig’l))i,jzl,z + dzZa ® (952’1))1‘,]':1,2)

where fi(g’q) and g(I;’Q) are matrices with global sections of C% as entries. Using and

i, M\S',C
, we get:
0,1 0
(73) I = =g df ()
But f is a I-invariant function on H, so that, for any v € I':
% 0
df(rar) = (WJ k 12) df (1)
(cyz1+dy)

In particular:

1
0 o 0 0 (cyz1+dy)? 0 9
5, (0=) = (0 )3) -df(zl>+( 0 —L ] 7%=

- et (eyertdy)
Comparing with and recalling the I'-invariance of , we get that for any v € I':

2 9 _,
(cyz1 +dy)3 071 -

Hence f is a holomorphic function on H, which precisely means that ¢ is a biholomorphism.

A

This contradicts the hypothesis a(M) = 1.
Hence M does not admit any meromorphic affine connection. U
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6.2. Principal elliptic surfaces with bl(M ) odd Let M —s N be a principal elliptic surface
over a Riemann surface N of genus g > 2, with a(M)) =1 and odd first Betti number. Denote
by p: M — M and p:-H— N the respective universal covers, and (zl, z9) global coordinates
on M as in [Proposition 2.2.2l We will also use the notation I = 7r1(N ,yo) for the fundamental
group of N at a fixed point.

Then, up to finite unramified cover of the elliptic surface M, for any vy € 7r1(]\7 ,Yo), the

automorphism ¢, from is of the form:

ayzi +b
(74) y(21,22) = (W, 29 + logy(cyz1 + dy))
for some (ZV bV) € SLy(R) and some determination log, of the logarithm on ¢yH + d (see
v Gy

[90).

By [9], there exists a holomorphic affine connection @0 on M. As in the previous sections,
taking the matrix of the pullback p*V — p*V in (8‘21, D2s ) gives a bijection between the set
of meromorphic affine V connections on M and the set of solutions ( fij, gij) of the following
system of functional equations, for any v € 7r1(N ,Y0):

gi2(21) = (cyz1+dy)2g12(721)
(75) gii(21) = gu(yz1) + (=1)'cy(cy21 + dy)gra(y - 21)
g21(z1) = mfm(’ﬂl) + (;7,;71517(922 —g11)(v21) — Egi2(v21)
and:
fi2(z1) = fia(y-21) + Cvzfildvgn(vzl)
(76) fii(z1) = mfii(’yzl) + (—1)"%;71%!}012(721) + CVZfiﬁrdvgii(vzl)
fai(z1) = Wf?l(%l) + m(fm J11)(y21)
me('ﬂl) + mgm(’%ﬁ)

We will describe, in terms of certain differential operators on a line bundle, a codimension
three subset of this solutions, namely the one satisfying:
(77) g12 =921 = fi2 + 911 — g2 =0
We define AE as the (codimension three) affine subspace of meromorphic affine connections on
M satisfying the above condition.

We begin by preliminaries facts on differential operators on line bundles. These facts will be
applied on a fixed line bundle on N constructed as follow. Consider the I'-linearization (c)yer

on the trivial module O (see [Definition 2.2)) given by:
ay : Og — v Ou
foo= (eztdy)fory™
and define £ to be the corresponding line bundle on N through the equivalence between linearized
modules and modules on the quotient:

(79) L = (p.Ou)"

(78)
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Given a locally fre sheaf £ of Op;-modules on a manifold, we can consider the sheaf J"E (we
refer to [1] and [I5] Definition 2.21 for a definition). These sheaves fit in exact sequences for
r>1:

r—1

(80) 00— (QHY® ® & JET s —-0

where 77! stands for the truncation map. These maps generalize by compositions to maps:

(81) mo JE — JE

r

for s < r. Each J"E contains the subsheaf spanned by the equivalence classes of sections of &
with the same r-jets, and so there are morphisms of C,;-sheaves:

(82) & — JE

Then the linearization a induces isomorphisms j2 () : j2(Om) — 7*5%(Om), and the action
of v gives a natural linearization by differentials on Qﬁ so there is a natural linearization J? (o)
on J2Oy. By construction J2L is the sheaf (p,.J 2(9H)‘]2" corresponding to the linearization (see

Definition 2.2) J2a induced by a on J?Op. Consider the natural trivialization
T J0y = OF°

given by the global basis (1 ® alzfi’2 j1(1 ® dz1),7%(1)). Then for any v € T, J?a, is the
isomorphism given by the commutative diagram:

(83) J?On —— OF° ¢
Jzaa,l i I
W
v 20— 7" OF° (Cor™h) Aa(z1)
where:
1 _ 3¢y 262/ ]
A (cyz1+dy)® (Cvzi+dv)4 (Cvzl‘ggv)d
2<z1) = 0 (cyz1+dy)3  (eyz+dy)?
0 0 1
Cyz1+dy

Similarly, J'£ can be described by the linearization corresponding to the lower right minor
Ai(z1) of Ay(z1) as above.

Finally, the equivalence between linearized sheaves and sheaves on the base gives a bijection
between morphisms of locally free modules 6 : J'L(xC) — J2L(*C) (where C is the quo-
tient of some I'-invariant divisor C' on H) and I'-equivariant morphisms of locally free modules
6+ J'Og(xC) — J2Oy(xC). The former morphisms & are called meromorphic differential
operators of order two on L. The set P, of such objects is a Oy (*C')-affine space in the sense
that it is the sum of an element and a O g (xC)-vector space, where O (*C') stands for the field
of meromorphic functions with poles supported at C.

Definition 6.1. Let £ and P, as above.
(1) Pr + is the subspace consisting of the § € P, with the property:
(84) S(ker %) C ker nd(xC)

where 7] is the truncation map . Explicitely, the subspace P, ; is the subset of the operators
d € P, with the property that the matrix of 6 = p*J in the canonical basis of J'Oy and J2Oy
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is of the form:
b(z1) c(z1)
(85) A(z1) = [v(z1) a(z1)
0 p(=1)

(2) Pr 4+ is the subspace of the elements § of P, 1 such that 4 = v in (85).
(3) We also define the subspace Pz o C Pr 4+ of the elements ¢ such that the induced morphisms
J2L — J2L/ker n3(+xC) and ker ) — (ker n§ /ker n3)(xC) are zero. Equivalently u = v = 0

in .

Proposition 6.0.2. Consider the subsapce AE o of meromorphic affine connections on N, with
poles at C, satisfying and Pr 1+ as in (6.1). Identify elements of A;gf o with the matrices

(fij» Gij)ij=1.2 of their pullbacks to M and elements of Pr 4+ with the matrices of their pullbacks
to M as in . Then the map:

v o A]—i\:/',C — ON(*C) X 7)57.4_4_
. f22 fa1
vV = (911 v |ge2—91 —3fu |)
0 922 — 911
is an isomorphism of O g (xC)-affine spaces.

Proof. By the equivalence of categories between equivariant sheaves and sheaves on the base,
there is a bijection between the elements of P, and the matrices A of the form (85]) satisfying

Az(21)A(y21) A7 (21) = A(z1)
A computation shows that in this case a, b, ¢, v satisfy the same functional equations as the ones

satisfied by —% fi1, f22, f21, 922 — g11 where f;;, g;; are any solutions of and . Moreover,
the subset of solutions (f;j, gij)i,j=1,2 of the later system satisfying is in bijection with pairs

consisting of any meromorphic function g1, and functions —% fi1, fo2, fo1, goo —g11 as before. [J

Lemma 6.1. Let Pr _y be the O (xC)-vector space as in|Definition 6.1 It contains an element
01 € Pe++ \ Pro. In particular, it is a direct sum:

(86) P ,P£7++ ; ,P,cy() ©® ON(*C)51
where the isomorphism ® is the projection on Pr o = ker(v) parallel to 6;.

Proof. Pr 4+ \ Pr,o contains the hyperplane P = {v = 1}, which is the subset of elements §
satisfying:
7T? odojl =Idp

These are exactly the splitting of the meromorphic one jet sequence of J'£, i.e. meromorphic
connections on J'£ with poles at C. This in particular includes the meromorphic SLo-opers on
J'L, namely meromorphic connections V inducing the canonical connection of det(J'L) = O L
and inducing an isomorphism between ker 7{(*C) and J'L/ker n{(*C). This subset is in turn
known to be in bijection with the nonempty set of meromorphic projective structures on N with
poles at C' (see [5], Theorem 4.7). We thus define d; as any operator corresponding to such an
element. [

We obtain:

Corollary 6.1. Let M be a principal elliptic bundle with odd first Betti number over a complex
compact curve N with genus g(N) > 2. Let C be an effective divisor of N such that O the
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Oy (xC). Then there exists a Oy (xC)-affine subspace of codimension 8 in the space of mero-

morphic affine connection on M with poles at C, which is isomorphic to the Oy (xC)-affine
space:

O (xC)? x Py o

where Py ~ is the affine space of meromorphic projective structures on N with poles at C.

Proof. The assertion follows from the successive application of [Proposition 6.0.2]and [Lemma 6.1],
and the fact that P, o is isomorphic to the O g (*C)-vector space directing the space of meromor-

phic projective structures on N with poles at C' as pointed out in the proof of O

6.3. Quotients of principal elliptic bundles over higher genus curves. We now classify
the minimal meromorphical affine surfaces with a(M) = 1 such that the associated finite cover
M is a principal elliptic bundle with odd first Betti number over a compact curve with genus
g(N) > 2.

For, we first recall the geometric description of M given in [9]. Let P! seen as the homogeneous
complex manifold G/P, where G = SLy(C) and P the subgroup stabilizing the line Ce; C C2
through the standard representation ((ej, eo is the canonical basis of C2). Let I” C SLy(R) be
the image of the holonomy representation of a uniform (G,G/P) structure on N, that is :

p:H— N=T\H

is the universal cover.
Let us introduce a notation. If p : £ — M is a holomorphic P-principal bundle and
p: P — GL(V) a P-representation, we let:

(87) E(V) = (p.Op @ V)"
where the action of P on p,Op ® V is given by
b-po(f @A) =pu(fob' @ p(b)(A))
Then we have a natural isomorphism (see for example [16]):
(88) Opi(1) = G(Cer)

where G is seen as the total space of the holomorphic P-principal bundle pg/p : G — G /P.
In the rest of the paper we will identify these two modules. In particular there is a natural left

G-linearization (see [Definition 2.2)) of this module defined for any g € G, by:
(;59 : G((Cel) — g*G(C€1)

(89) " o -1
Pg/p«S > DPG/PxS°9

Now we can restrict this line bundle to H C G/P, and we get a I"-linearisation by considering
the isomorphisms (¢-),er’ as above. Then:

Lemma 6.2. The line bundle £ defined as in is naturally isomorphic to L1 =
(P, G(Cey) ) @)ver”.

Proof. 1t is sufficient to find a trivialization of £; such that the isomorphisms ¢, identifies
with the isomorphisms o, as in (78]). For, recall that there exists a global holomorphic section

oo : H — G given by:
10
UO(Z) = <Z 0)
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Such a section defines a trivialization of any module obtained as a representation of G, in
particular:

G((Cel)h}{ — On

[(o0, fer)] = f

o0(v2) =7+ 00(2) (J v )

cyztdy
This implies the following commutative diagram for any v € T":

(90) Voo

Now we have:

¢
G(Cer)lg —>7*G(Ce1)|m

"pﬂol l'y*d’tfo

On v On

O

We denote by R(L) the C*-principal bundle whose fiber over § € N is the set of non-zero
vectors of the fiber £(). Then it is immediate that R(L) is the quotient of R(G(Cey)|m) by
the action of I'" corresponding to the isomorphisms ¢~ from . Moreover, we have a natural
isomorphism:

R(G(Cey)l) = G/P*
where P71 is the kernel of the representation of P on Ce; (i.e. the unipotent radical of P).
Through this identification, the action of I is the natural left action of IV C G on G/P™ (note
that G/ P is biholomorphic to an open subset of C2\ {0} invariant through I" for the standard
action).

Let Z ~ A C C* be a lattice, identified with a subgroup of the standard torus of G (namely
the diagonal elements). Since the left actions of A and IV on G commute, there is an induced
action of A on R(L) covering the identity on N, and the quotient map is a unramified cover of
the complex manifold M:

(91) R(L)

where pa is the quotient map for the action of A.

As a remark, note that this description also gives rise to a geometric description for a holomor-
phic flat affine connection Vo on M. Indeed, G/P™ identifies equivariantly as an open subset of
C2\ {0}, and the action of G preserves the canonical flat affine connection of the affine space C2.
In particular the restriction of this connection to G/P™ is both I'-invariant and A-invariant,
so applying |L we get a holomorphic connection Vo on M. In particular, we get the
following;:

Lemma 6.3. Let M —> N be a principal elliptic surface with g(N) > 2 and bl(M) odd.
Let Ggp : G/PT™ — R(L) be the quotient map corresponding to the action of I'. Then any

automorphism ¢ of M lifts through pa oqp as the automorphism of G/P* corresponding to the
left action of an element A € SLo(C).



ON THE CLASSIFICATION OF MEROMORPHIC AFFINE CONNECTIONS ON COMPLEX COMPACT SURFACBS

In particular, the holomorphic affine connection Vo constructed above is invariant through
any automorphism of M.

Proof. The composition pa o Gp is an unramified cover of M, and any automorphism ¢ of M
admits a lift to the total space of this cover ¢. In particular, ¢ normalizes the Galois group of
Qp, that is I, that is :

(92) Vyel', 37 el’, poy=+"0¢

Such an automorphism covers an automorphism of H, that is the action of some A; € SLa(R).
Hence, through the trivialization G/P* ~ H x C* induced by the section g from the proof of

we have:
B(2,5) = (A1 2, A(2)b)

for some holomorphic function A : H — C*. Then rewrites as:
(Ar-y-z o My 2)(eay 2 +da) ez +dy)7'D)

= (,.}/ . Al Tz, A(Z)(C,Y/Al -z 4+ d,y/)_l(CAlz =+ dAl)_lb)

In particular 7/ = AlfyAl_l so that, using that v — ay is an automorphy factor, A is a I''-
invariant holomorphic function, that is a constant. This implies the first assertion. The second
one is obtained by applying O

The final ingredient is the description of holomorphic projective structures in terms of ana-
lytical objects called holomorphic SLy(C)-opers (see for example [5]). On the model P* = G/P,
the sheaf of one-jets J! (EE/P), where Lg/p = G(Cey), is naturally isomorphic to G(C?) (it can

be seen by considering trivialisations of G — G/ P as in the proof of . In particular,
it contains Lg/p as a locally free submodule. Since G(C?) is by definition the sheaf of sections
of a homogeneous bundle on G/P,there is a natural linearization for the left action of G (see
on this sheaf of Og,p-modules, denoted by (<Z>g )gec- Moreover, it admits a global
trivialization induced by the two P-equivariant maps §; : G — C? defined by:

(@ =2 0)

for : = 1,2. The corresponding flat connection of trivial module Vé /p on G(C?) is invariant

through the isomorphisms (gi); )gec since the above functions are invariant through these iso-
morphisms. Moreover, since G is a S Ly (C)-reduction of the bundle of basis of G(C?), there is a

2
natural isomorphism AG(C?) ~ Op1 and the canonical connection coincides with the connection
induce by Vé /P The key property of Vé /P is that the induced morphism of line bundles:

(93) [Vé/P] : ﬁGf/p — ICPI & G(CZ)/EGNJ
is an isomorphism. This indeed enables to recover that
(94) 5?}31: = Lg/p ® (G(C*)/Lg/p) ® Kp1 = Kpr

that is Lg/p = Op (1). The restriction of Vé /p Over H is IV-invariant, so it induces a connection
4 on:

(95) &= (7,G(CHn)"
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2
Since the SLy(C)-reduction of G(C?) is also I"-invariant, we get A€ = Oy. By construction,
we have the same isomorphism as in , so we get:

(96) E=JYLY)
and recover that
(97) L =Ky

The pair (€, @8) is called the holomorphic SLo(C)-oper corresponding to the projective structure
N =T"\H.
Using these facts, we can prove:

Proposition 6.0.3. Let M =5 N bea principal elliptic bundle over a compact curve of genus
g(N) > 2. Letq: N — N be a Galoisian finite cover such that M is the pullback of a an
elliptic surface m : M — N. Suppose that the sum of the multiplicities (my)acr of G at the
ramification points is a multiple of the degree k = deg(q), and that the Galois group I' of G fizes
the ramification points. Then q is an unramified cover.

Proof. Let T' be the Galois group of g. We identify I" with a subgroup of SLs(R) normalizing
the holonomy I" of the uniform projective structure on N as described before. By
the action of the Galois group I' of § on N lifts to a left action of I' on the cover R(L) RENy Y
(see (91))), obtained from the natural left action of I on G. In particular, there is an induced I'-
linearization (see (¢7)cer on JH(L*). By construction, the holomorphic S Ly (C)-
oper (&,V]) = (JY(L*), V) (see above) is invariant by this I-linearization.

Consider the line bundle

(98) £'=(q.0"
on N. It is a submodule of the locally free Opn-module
(99) & = (g.6)"

Applying also get a holomorphic connection V¢ on &’. The quotient of I"\G|g by
the action of I' is a holomorphic S Ly(C)-reduction of the bundle of basis of £, so:

2
(100) N\E = On
Moreover the existence of the isomorphism implies that there is a non-trivial morphism:
Vil : £ — Ky®&/L

Denote by C the effective divisor corresponding to the corresponding section of the line bundle
End(L',Kny ® £/L'). In the sequel, we employ the notation deg(L) = [y c1(£) for any line
bundle £ on a compact complex curve N. Using deg(E’) = 0 (see (100))), we get:

(101) deg(S) = deg(Kn) — 2deg(L")
In one other hand, consider the sheaf of sections of the pullback line bundle, that is O ® g*L'.

Since g*L’ is by definition the subsheaf of £ spanned by the sections invariant by the action of
I', we have a well-defined non-trivial morphism of modules:

1: 0/ 7L — L
f®s = fs

Recall that the action of T on M = A\R(L) fixes the fibers of the ramification locus of . Hence,
in a neighborhood U, of any component D, of the ramification locus of § in IV, we can find a

(102)
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coordinate z and a trivialization of £, such the action of the automorphism € € I corresponding
to a generator of m (U, \ Da,9), on a section s € L(U,,), is given by:
€-5(2) =vesoe H(z)

for some v, € A. But € has finite order m, and A contains no non-trivial cyclic element, so
v = 1. As a consequence, a local invariant section of £ on U, vanishes at order m,. Hence,
since q is a finite cover of degree k, the degree of the effective divisor associated with the section

is:

(103) > ma =deg(Og @ G°L') — deg(L) = kdeg(L') — deg(L)
acl

Now, by the Riemann-Hurwitz formula, we also have:

(104) —deg(Ky) = —kdeg(Kn) + |I| — Zma

ael
By (103)), and (101)), we also have:
—deg(Kyg) = —2deg(L)

= —2(kdeg(L) + Y ma)
acl

= kdeg(—Ky) =23 mq + kdeg(S)
acl
Combining the above equality with (104]) we get:
kdeg(S) — Y ma = 1]
a€el
By the assumption on the degree of § the above equality rewrites as:
|| = k’Zma
ael

with &/ > 0 and m, > 2 for any o € I. This is possible only if ¥ = 0, i.e [ = () and 7 is
unramified.

O

Theorem 6.1. Let (M, V) be a minimal meromorphic affine surface with a(M) = 1 and (M BN
N, V) the meromorphic affine principal elliptic bundle obtained as in|Equation 29. If the genus

g(N) > 2, then M = M.

Proof. By IProposition 6.0.3, M has an odd first Betti number, so it corresponds to a quotient
of R(L) by a lattice Z ~ A C C* as in (91)). By construction, the Galois cover g : N — N
(resp. ¢: M — M) in is a composition:

G=7oq (resp.gq=¢q oq)

where 7 : N| — N is a composition of cyclic covers and G, is an unramified finite cover (the
maps ¢’ and ¢; are the corresponding pullbacks of elliptic bundles).

Denote by I'y C I' the Galois group of G, identified with the Galois group of ¢;. Then by
construction M; = I'}\M is the quotient of R(£1) by A where

Ly = (@1*£)F1
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and by the action of I'; lifts to the natural action of a subgroup I'y € SLy(C) on
G(Ceq)|g. Hence I' = (I'",T'q) is the holonomy group of a uniform (G, G/P)-structure

L H— Ny =T"\H
and
L1 = (p1.G(Cer) )"
so M, is obtained as in . In particular, it is a principal elliptic bundle over g(Nl) > 2 with
odd first Betti number. Wlthout loss of generality we can and will further assume that Ni=N
and M1 = M.

In this situation, by construction, the Galois group of § fixes its ramification locus, and

k = deg(q) is a multiple of > mg,. Then [Theorem 6.1| proves that § : N — N is unramified.
ael

Since moreover ¢ = ¢, we get M=M by definition of q’. U
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