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Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, several clinical prog-
nostic scores have been proposed and evaluated in hospitalized patients, relying
on variables available at admission. However, capturing data collected from the
longitudinal follow-up of patients during hospitalizationmay improve prediction
accuracy of a clinical outcome. To answer this question, 327 patients diagnosed
with COVID-19 and hospitalized in an academic French hospital between Jan-
uary and July 2020 are included in the analysis. Up to 59 biomarkers were
measured from the patient admission to the time to death or discharge from hos-
pital. We consider a joint model with multiple linear or nonlinear mixed-effects
models for biomarkers evolution, and a competing risks model involving sub-
distribution hazard functions for the risks of death and discharge. The links are
modeled by shared random effects, and the selection of the biomarkers is mainly
based on the significance of the link between the longitudinal and survival parts.
Three biomarkers are retained: the blood neutrophil counts, the arterial pH, and
the C-reactive protein. The predictive performances of the model are evaluated
with the time-dependent area under the curve (AUC) for different landmark and
horizon times, and compared with those obtained from a baseline model that
considers only information available at admission. The joint modeling approach
helps to improve predictions when sufficient information is available. For land-
mark 6 days and horizon of 30 days, we obtain AUC [95% CI] 0.73 [0.65, 0.81]
and 0.81 [0.73, 0.89] for the baseline and joint model, respectively (p = 0.04).
Statistical inference is validated through a simulation study.
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1 INTRODUCTION

The pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), rapidly infectedmillions of people around the world, causing saturation of intensive care units (ICUs) and
emergency departments. In this context, personalized predictions of the survival of hospitalized patients can be useful to
guide therapeutic management (e.g., escalation or limitation of care) and to forecast hospital needs (beds, staff, etc.).
Since 2020, many prognostic scores (Knight et al., 2020; Liang et al., 2020; Myrstad et al., 2020) using information

available at hospital admission (e.g., from medical history, clinical presentation, or biological measurements) have been
developed to quantify the risk of in-hospital mortality for COVID-19 patients (Tjendra et al., 2020; Zhang et al., 2020;
Zhu et al., 2020). These scores ignore the biological evolution during hospitalization, and attempt to use this information
remain scarce. Some studies quantified the prognostic effect of an early change in biomarkermeasurements (e.g., between
2 days; Lavillegrand et al., 2021; Li et al., 2021; Mueller et al., 2020). However, when biomarkers evolve over time, incor-
porating the full follow-up in a statistical model may be useful to better predict disease prognostic. This can be achieved
by jointly estimating a (possibly nonlinear) longitudinal mixed model describing the biomarkers evolution at individual
level, and a survival model describing hazard evolution. These models are usually linked by shared random effects that
model the association between the individual biomarkers evolution and their translation into hazard (Rizopoulos, 2011).
Joint modeling also allows to derive individual dynamic predictions and recent examples of application are numerous
(Desmée et al., 2017; Kerioui et al., 2020; Lavalley-Morelle et al., 2022).
Nowadays, most hospitals are equipped with laboratory information systems that routinely gather all results of biolog-

ical analyses prescribed by the physicians. During a hospital stay, consecutive clinical observations and biological results
represent a huge amount of information that can be used in a joint model to provide individual dynamic predictions. Of
note, when studying in-hospital death as a time-to-event outcome, patient discharge should be taken into account as a
competing event. Shifting the modeling from one single biomarker to potentially hundreds could certainly improve pre-
diction accuracy, but also comes with statistical issues. First, Shen et al. (Shen and Li, 2021) well described computational
and identifiability issues due to the high number of random effects when multiple correlated longitudinal models are
jointly estimated with a survival model. This probably explains why published models are mostly limited to longitudinal
models with two biomarkers (Andrinopoulou et al., 2017; Long andMills, 2018; Rajeswaran et al., 2018), and highlights the
need of methods for variable selection in this context. Recently, a study (Tong-Minh et al., 2022) evaluated the follow-up of
four immune biomarkers (C-reactive protein (CRP), procalcitonin, interleukin-6, and soluble urokinase-type plasminogen
activator receptor) to predict the risk of in-hospital death in COVID-19 patients. This study provided promising results, but
the involved biomarkers were selected based on clinical considerations and no statistical selection procedure is described.
In a high-dimensional setting where biomarkers correspond to gene expression levels, Liu et al. (2019) proposed a factor
analysis model to summarize the co-evolution of gene expressions. Again, this approach makes the estimation computa-
tionally tractable but does not perform marker selection since the loading matrix is full. In order to efficiently leverage
information fromhospital information systems, it appears that variable selection represents a secondmethodological chal-
lenge. While variable selection procedures are known for standard regression models, applications in joint models in the
presence of competing risks are, to our knowledge, lacking.
The objective of the present work is twofold. Taking advantage on real data of patients hospitalized for SARS-CoV-2

infection, the first objective is to propose an original selection strategy to build a multivariate joint model with a subset
of biomarkers most associated with the risk of in-hospital death and discharge from hospital. The second objective is to
compare the predictive performances of such amodel against amodel that only consider baseline information to show the
added value of the proposed strategy. This article is organized as follows. Section 2 introduces the analyzed data; Section 3
presents methodological aspects about uni- andmultivariate joint modeling; Section 4 details themethodology to perform
dynamic predictions and the performances assessment; Section 5 shows the results; and Section 6 provides a simulation
study to support the methodology. Finally, Section 7 is devoted to the discussion.

2 DATA

The study is based on real-life hospital data, obtained from 𝑁 = 327 patients hospitalized in the Department of Infec-
tious and Tropical Diseases in an academic hospital (Bichat, France) during the first wave of the COVID-19 pandemic
(January–July 2020). The project has been approved by the local ethic committee (IRB number 00006477). A manual data
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F IGURE 1 Cumulative incidence functions (CIF) for in-hospital death (red) and hospital discharge (blue). The number of events and
at-risk patients is given at the bottom.

collection allowed to collect clinical variables relative to the patients: baseline characteristics (age, gender, etc.). The pri-
mary outcome is the time until in-hospital death within 30 days. Discharge is considered as a competing event. Figure 1
displays the cumulative incidence functions for the in-hospital death and the discharge from hospital. Thirty days after
admission, about 14% of the patient died, while 72% were discharged. The censored observations correspond to hospital
transfer during the stay or the end of the observation study (at day 30).
An automated extraction from the hospital data warehouse allowed to obtained all results of 59 biological exams pre-

scribed during the hospitalization, up to day 30 or to the time to death or discharge from hospital. The availability and the
frequency of the biomarkermeasurements differ between patients. These biomarkers were classified into eight categories:
complete blood count, coagulation, pulmonary functions, urine samples, kidney functions/cellular lysis, liver/pancreatic
functions,markers of inflammation, and cardiacmarkers. Table S1 shows the complete list description of these biomarkers.
In this study, we consider a baseline score adapted from the 4C score (Knight et al., 2020). This score was developed

in 2020 to predict the in-hospital mortality for COVID-19 patients and combines eight variables (age, sex at birth, num-
ber of comorbidities, respiratory rate, peripheral oxygen saturation on air room, Glasgow coma scale, urea, and CRP at
admission) with different weights (see Table S2). However, since the collected data do not include respiratory rate, periph-
eral oxygen saturation on room air, and Glasgow coma scale, we set to 0 the corresponding weights. Indeed, because
the patients are hospitalized in a medical ward and not in an ICU, these items are likely to be closed to 0. For baseline
urea and CRP values, we used the first available result within 48 h. The remaining missing values are imputed with the
most frequently encountered value knowing the other characteristics of the score (age, sex, and number of comorbidities).
Actually, it affects few individuals (4% and 8% of the patients for the urea and CRP, respectively). Table 1 details the score
components of the analyzed patients. The median [Q1–Q3] score was 6 [4–9] at admission.

3 BUILDING OF A JOINTMODELWITHMULTIPLE BIOMARKERS

The main idea of this building process is to model each biomarker individually with a joint model, select the biomarkers
properly fitted, and among them, keep the biomarkers whose evolution is significantly associated with the risk of in-
hospital death. Then, the multivariate analysis is performed including the selected biomarkers.

3.1 Univariate modeling

3.1.1 General univariate model

Let 𝑇 the variable describing the time-to-event distribution, 𝐶 the noninformative censoring distribution, and 𝛿 the event
indicator (1 for in-hospital death, 2 for discharge, and 0 for censoring). The couple (�̃�, 𝛿) is observed with �̃� = min(𝑇, 𝐶).
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TABLE 1 Baseline characteristics (components of the baseline score) for the 327 patients of the data.

Number of patients 327
Age—number (%)
<50 73 (22)
[50–59[ 74 (23)
[60–69[ 71 (22)
[70–79[ 62 (19)
≥80 47 (14)
Gender—male—number (%) 198 (61)
Comorbidities—number (%)
0 139 (43)
1 93 (28)
≥2 95 (29)
Urea (mmol/L)—med [Q1–Q3] 5.6 [4.1–8.1]

NA—number (%) 2 (0.6)
1st measurement >48 h—number (%) 11 (3)

CRP (mg/L)—med [Q1–Q3] 67.5 [30.3–120.8]
NA—number (%) 9 (3)
1st measurement >48 h—number (%) 15 (5)

Score—med [Q1–Q3] 6 [4–9]

Abbreviation: NA: Not available, CRP: C-reactive protein.

We consider the subdistribution hazard framework to model the competing risks. In that case, we define 𝑇𝑒 = 𝑇 × 𝟙𝛿=𝑒 +

∞ × 𝟙𝛿≠𝑒 for 𝑒 = {1, 2}.
Let𝑁 be the total number of analyzed patients and𝐾 the number of biomarkers. Let𝑁𝑘 be the number of subjects who

have at least one measurement for biomarker 𝑘 and {𝑦𝑖1𝑘, … , 𝑦𝑖𝑛𝑖𝑘𝑘} the vector of longitudinal observations of subject 𝑖 (for
𝑖 = 1, … , 𝑁𝑘) for this biomarker. Hence, observation 𝑦𝑖𝑗𝑘 denotes the 𝑗th measurement of patient 𝑖 for biomarker 𝑘 at time
𝑡𝑖𝑗𝑘 (for 𝑗 = 0, … , 𝑛𝑖𝑘). Let𝑚𝑘 be the function describing the structural model of biomarker 𝑘. Let also 𝜆1𝑖𝑘 and 𝜆2𝑖𝑘 be the
instantaneous risks of in-hospital death and discharge, respectively, associated to individual 𝑖 and biomarker 𝑘. Wemodel
each biomarker 𝑘, with a joint model defined as follows:

𝑦𝑖𝑗𝑘 = 𝑚𝑘(𝑡𝑖𝑗𝑘, 𝜓𝑖𝑘) + 𝑔[𝑚𝑘(𝑡𝑖𝑗𝑘, 𝜓𝑖𝑘), 𝜎𝑘]𝜖𝑖𝑗 (1)

𝜆1𝑖𝑘(𝑡|𝜓𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖) = ℎ1𝑘 exp [𝛼1𝑘 × (𝑚𝑘(𝑡, 𝜓𝑖𝑘) − 𝑚𝑒𝑑𝑘) + 𝛽1𝑘 ⋅ 𝑆𝑐𝑜𝑟𝑒𝑖]

𝜆2𝑖𝑘(𝑡|𝜓𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖) = ℎ2𝑘 exp [𝛼2𝑘 × (𝑚𝑘(𝑡, 𝜓𝑖𝑘) − 𝑚𝑒𝑑𝑘) + 𝛽2𝑘 ⋅ 𝑆𝑐𝑜𝑟𝑒𝑖],

where𝜓𝑖𝑘 = 𝑓(𝜇𝑘, 𝜂𝑖𝑘) denotes the individual parameters associated to biomarker 𝑘 expressed as a function of fixed effects,
noted 𝜇𝑘, and individual random effects, noted 𝜂𝑖𝑘. The random effects are assumed to be normally distributed withmean
0 and variance–covariance matrix Ω𝑘 = diag(𝜔2

𝑘
), and independent of the residual Gaussian error, noted 𝜖𝑖𝑗 , of mean 0

and variance 1. 𝜎𝑘 denotes the vector of the errormodel parameters. 𝑆𝑐𝑜𝑟𝑒𝑖 denotes the baseline score associated to patient
𝑖. ℎ1𝑘 and ℎ2𝑘 are the baseline constant hazards for the risk of in-hospital death and the risk of discharge, respectively.
𝛼1𝑘 and 𝛼2𝑘 are the coefficients that link the current predicted value of the biomarker 𝑘 with the instantaneous risks of
events. We considered only a linear link between the longitudinal process and subdistribution risks. The median value of
all observations for biomarker 𝑘 is denoted as 𝑚𝑒𝑑𝑘 and appears in the model in order to avoid numerical issues during
estimation. Finally, 𝛽1𝑘 and 𝛽2𝑘 are the coefficients associated to the baseline score effects on both instantaneous risks.
We emphasize that under a joint modeling approach, it is not necessary to know the value of the biomarker after the
occurrence of the competing event since only the predictions given the structural model are linked with both hazards.
The structural model 𝑚𝑘 describing the marker observations can be (1) a linear mixed-effects model or (2) a nonlinear

mixed-effects model, which is more flexible for describing nonmonotonic trend, but also less parsimonious. In the case of
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linear joint models, the function 𝑚𝑘 is defined as follows:

𝑚𝑘(𝑡𝑖𝑗𝑘, 𝜓𝑖𝑘) = 𝑏0𝑖𝑘 + 𝑏1𝑖𝑘 × 𝑡𝑖𝑗𝑘 (2)

and for nonlinear joint models, the function 𝑚 writes:

𝑚𝑘(𝑡𝑖𝑗𝑘, 𝜓𝑖𝑘) = 𝑏0𝑖𝑘 + 𝑎𝑖𝑘 ×
(

exp
(

𝑏1𝑖𝑘 × (𝑡𝑖𝑗𝑘 − 𝑡lag𝑖𝑘

)
− exp

(
𝑏2𝑖𝑘 × (𝑡𝑖𝑗𝑘 − 𝑡lag𝑖𝑘

))
. (3)

We have

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑏0𝑖𝑘 = 𝜇0𝑘 + 𝜂0𝑖𝑘

𝑏1𝑖𝑘 = 𝜇1𝑘 + 𝜂1𝑖𝑘

𝑏2𝑖𝑘 = 𝜇2𝑘 + 𝜂2𝑖𝑘

𝑎𝑖𝑘 = 𝜇𝑎𝑘 exp(𝜂𝑎𝑖𝑘)

𝑡lag𝑖𝑘
= 𝜇lagk

+ 𝜂𝑡lag𝑖𝑘
.

For a joint model associated to biomarker 𝑘, the joint likelihood writes:

𝐿(𝜃𝑘) =

𝑁∏
𝑖=1

∫
𝜂𝑖𝑘

[(
𝑛𝑖𝑘∏
𝑗=0

𝑝(𝑦𝑖𝑗𝑘|𝜂𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃𝑘)

)
𝑝(�̃�𝑖, 𝛿𝑖|𝜂𝑖𝑘; 𝜃𝑘)𝑝(𝜂𝑖𝑘; 𝜃𝑘)

]
d𝜂𝑖𝑘, (4)

where 𝜃𝑘 = {𝜇𝑘, Ω𝑘, 𝜎𝑘, ℎ1𝑘, ℎ2𝑘, 𝛼1𝑘, 𝛼2𝑘, 𝛽1𝑘, 𝛽2𝑘} is the vector of parameters to estimate. 𝑝(𝑦𝑖𝑗𝑘|𝜂𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃𝑘) is the den-
sity function of longitudinal process associated to biomarker 𝑘, 𝑝(𝜂𝑖𝑘; 𝜃𝑘) the density function of random effects and
𝑝(𝑡, 𝛿|𝜂𝑖𝑘; 𝜃𝑘) is the density function of the survival process given by (Jeong & Fine, 2006):

𝑝(𝑡, 𝛿|𝜂𝑖𝑘; 𝜃𝑘) = [𝜆1𝑖𝑘(𝑡|𝜓𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃𝑘) × (1 − 𝐹1𝑖𝑘(𝑡|𝜓𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃𝑘))]
𝟙𝛿=1

×[𝜆2𝑖𝑘(𝑡|𝜓𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃𝑘) × (1 − 𝐹2𝑖𝑘(𝑡|𝜓𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃𝑘))]
𝟙𝛿=2

×(1 − 𝐹1𝑖𝑘(𝑡|𝜓𝑖𝑘, 𝑊𝑖; 𝜃𝑘) − 𝐹2𝑖𝑘(𝑡|𝜓𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃𝑘))
𝟙𝛿=0 , (5)

where, for 𝑒 = {1, 2}:
𝐹𝑒𝑖𝑘(𝑡|𝜓𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃𝑘) = 1 − exp(− ∫ 𝑡

0
𝜆𝑒𝑖𝑘(𝑢|𝜓𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃𝑘) d𝑢) is the individual cumulative incidence function for

event 𝑒 at time 𝑡.
The vector of population parameters 𝜃 can be estimated by maximization of the likelihood. However, to the best of our

knowledge, no available R package can handle this likelihood expression. Therefore, we used the SAEMalgorithm (Delyon
et al., 1999) implemented onMonolix software version 2018R2, as in Lavalley-Morelle et al. (2022). Its variance–covariance
matrix Σ𝑘 is estimated by inversion of the Fisher information matrix (FIM), computed with a stochastic approximation
using the Louis method (Louis, 1982). To ensure better estimation properties, the number of SAEM algorithm chains
is fixed at 10 and the maximum number of iterations for both exploratory phase and stochastic approximation is set at
1000, keeping the default auto-stop criteria when convergence is reached. A previous work (Lavalley-Morelle et al., 2022)
showed that Monolix software is able to provide unbiased and accurate estimates of parameters of a competing risk joint
model in this context.

3.1.2 Selection of biomarkers after univariate modeling

Linear submodel evaluation
We started bymodeling each biomarker individually with the linear joint model for sake of simplicity. The initial values

for the algorithm are set to the estimates obtained by modeling a “no-link” model (i.e., with the link coefficients 𝛼1𝑘 and
𝛼2𝑘 set to 0). A combined error is considered at this step (i.e., 𝑔[𝑚𝑘(𝑡𝑖𝑗𝑘, 𝜓𝑖𝑘), 𝜎𝑘] = 𝜎𝑎𝑘 + 𝜎𝑏𝑘 × 𝑚𝑘(𝑡𝑖𝑗𝑘, 𝜓𝑖𝑘)). After fitting
𝐾 = 59 linear joint models, we obtain 𝜃𝑘 the estimate of 𝜃𝑘.
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Error model selection
The following approach was used to select the error model associated to biomarker 𝑘: if �̂�𝑏𝑘 ≤ 10−4, an additive

error is considered for the biomarker (𝑔[𝑚𝑘(𝑡𝑖𝑗𝑘, 𝜓𝑖𝑘), 𝜎𝑘] = 𝜎𝑎𝑘), if �̂�𝑎𝑘 ≤ 10−4, a proportional error is considered for
the biomarker (𝑔[𝑚𝑘(𝑡𝑖𝑗𝑘, 𝜓𝑖𝑘), 𝜎𝑘] = 𝜎𝑏𝑘 × 𝑚𝑘(𝑡𝑖𝑗𝑘, 𝜓𝑖𝑘)). Otherwise, the error model which minimizes the Bayesian
Information Criteria (BIC) is considered. The models are then refitted with the correct error function, and we define:

̂𝑒𝑟𝑟𝑘 =

⎧⎪⎪⎨⎪⎪⎩

�̂�𝑎𝑘

𝑚𝑒𝑑𝑘

if the biomarker 𝑘 has an additive error
�̂�𝑏𝑘 if the biomarker 𝑘 has a proportional error
�̂�𝑎𝑘

𝑚𝑒𝑑𝑘

+ �̂�𝑏𝑘 if the biomarker 𝑘 has a combined error.

Fit criteria
Biomarkers with a small measurement error ( ̂𝑒𝑟𝑟𝑘 ≤ 25%) and with all relative standard errors (RSE) relative to the

longitudinal parameters under 100% are kept with the linear joint model for the rest of the analysis. Biomarkers with
a small measurement error ( ̂𝑒𝑟𝑟𝑘 ≤ 25%) but with at least one RSE of a longitudinal parameter over 100% are excluded
from the analysis. Finally, biomarkers with a larger measurement error ( ̂𝑒𝑟𝑟𝑘 > 25%) are evaluated using a nonlinear
longitudinal submodel.

Nonlinear submodel
After the linear fit, some biomarkers were tested with the nonlinear submodel. First, due to potential identifiability

issues,𝜇𝑡𝑙𝑎𝑔𝑘
and𝜔𝑡𝑙𝑎𝑔𝑘

are fixed to 0 if theRSE associated to parameter 𝑡𝑙𝑎𝑔 is over 100%. In fact, 𝑡𝑙𝑎𝑔 is an optional parameter
that give more flexibility to the structural function, however, it can be easily removed to simplify the model. Then, same
strategy is conducted for the selection and exclusion of the biomarkers but by being more flexible on the threshold for the
measurement error. Hence, biomarkers with ameasurement error ̂𝑒𝑟𝑟𝑘 ≤ 50% andwith all RSE of longitudinal parameters
under 100% are kept with the nonlinear joint model for the rest of the analysis. Biomarkers with a measurement error

̂𝑒𝑟𝑟𝑘 > 50% or with at least one RSE of a longitudinal parameter over 100%, are excluded from the analysis.

Survival submodel evaluation
For each biomarker selected either with a linear or a nonlinear longitudinal submodel, the last step was to evaluate the

survival part of themodel. Two criteria are considered. The first involves the good quality of survival parameter estimation.
The biomarkers for which the RSE of survival parameters are below 100% are selected for the next. The others are excluded
from the analysis. The second criteria involves the link between the longitudinal process and the instantaneous risk of
death. We want to select biomarkers whose longitudinal evolution is significantly associated with the instantaneous risk
of death. To do that, we perform a Wald test on parameter 𝛼1𝑘 and we note 𝑝 the corresponding p-value. If 𝑝 ≤ 0.05, the
biomarker 𝑘 is selected for the next; otherwise, the biomarker is excluded from the analysis.
A sensibility analysis on the thresholds was conducted. Two alternative scenarios were considered: a stringent scenario

and a flexible scenario. In the stringent scenario, the thresholds for the measurement errors and the RSE of parameters
were reduced by 40% of their values. In the flexible scenario, they were increased by 40% of their values. The different
cases are summarized in Table S3a.

3.2 Multivariate modeling

The biomarkers selected at the univariate stage are grouped following the initial classification (given in Table S1). For
each group, the biomarker with the most significant p-value for 𝛼1𝑘, and where there is at least one measurement in half
of the patients, is considered for inclusion in the multivariate model. Thus, at most eight biomarkers are selected for the
first step of the multivariate model that contains all these biomarkers. Then a first backward selection process including
the selected biomarkers is performed. At each iteration, we remove the biomarker with the highest Wald test p-value for
𝛼1𝑘. We stop when all p-values for the coefficients 𝛼1𝑘 are under 5%. If exists a biomarker for which the standard error of
𝛼1𝑘 has not been estimated for convergence reasons, it is also removed. Finally, a second backward selection is performed
by removing the biomarker with the highest Wald test p-value for 𝛼2𝑘 and stop, as previously, when all p-values for the
coefficients 𝛼2𝑘 are significant. At the end of this step,𝐾′ biomarkers whose evolution is significantly associated with both
instantaneous risk of death and discharge are selected.
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For a given iteration where 𝐾′′ biomarkers are involved in the modeling, the multivariate joint model writes:

𝑦𝑖𝑗1 = 𝑚1(𝑡𝑖𝑗1, 𝜓𝑖1) + 𝑔[𝑚1(𝑡𝑖𝑗1, 𝜓𝑖1), 𝜎1]𝜖𝑖𝑗 (6)

…

𝑦𝑖𝑗𝐾′′ = 𝑚𝐾′′ (𝑡𝑖𝑗𝐾′′ , 𝜓𝑖𝐾′′ ) + 𝑔[𝑚𝐾′′ (𝑡𝑖𝑗𝐾′′ , 𝜓𝑖𝐾′′ ), 𝜎𝐾′′ ]𝜖𝑖𝑗

𝜆1𝑖(𝑡|𝜓𝑖, 𝑆𝑐𝑜𝑟𝑒𝑖) = ℎ1 exp

⎡⎢⎢⎣
𝐾′′∑
𝑘=1

(𝛼1𝑘 × (𝑚𝑘(𝑡, 𝜓𝑖𝑘) − 𝑚𝑒𝑑𝑘)) + 𝛽1 ⋅ 𝑆𝑐𝑜𝑟𝑒𝑖

⎤⎥⎥⎦
𝜆2𝑖(𝑡|𝜓𝑖, 𝑆𝑐𝑜𝑟𝑒𝑖) = ℎ2 exp

⎡⎢⎢⎣
𝐾′′∑
𝑘=1

(𝛼2𝑘 × (𝑚𝑘(𝑡, 𝜓𝑖𝑘) − 𝑚𝑒𝑑𝑘)) + 𝛽2 ⋅ 𝑆𝑐𝑜𝑟𝑒𝑖

⎤⎥⎥⎦
with 𝜓𝑖 = (𝜓𝑇

𝑖1
, … , 𝜓𝑇

𝑖𝐾′′ )
𝑇 . As for the univariate model, 𝜆1𝑖 , 𝜆2𝑖 are the subdistribution hazards for the risk of in-hospital

death and discharge from hospital, ℎ1, ℎ2 the constant baseline risks, and 𝛽1, 𝛽2 the baseline score effects.
Here, the likelihood writes:

𝐿(𝜃) =

𝑁∏
𝑖=1

∫
𝜂𝑖

⎡⎢⎢⎣
⎛⎜⎜⎝

𝐾′′∏
𝑘=1

𝑛𝑖𝑘∏
𝑗=0

𝑝(𝑦𝑖𝑗𝑘|𝜂𝑖𝑘, 𝑆𝑐𝑜𝑟𝑒𝑖; 𝜃)

⎞⎟⎟⎠𝑝(�̃�𝑖, 𝛿𝑖|𝜂𝑖; 𝜃)𝑝(𝜂𝑖; 𝜃)

⎤⎥⎥⎦ d𝜂𝑖, (7)

where 𝜃 = {𝜇, Ω, 𝜎, ℎ1, ℎ2, 𝛼1, 𝛼2, 𝛽1, 𝛽2} is the vector of parameters to estimate, with 𝜇 = (𝜇𝑇
1
, … , 𝜇𝑇

𝐾′′ )
𝑇 , Ω =

diag(𝜔2
1
, … , 𝜔2

𝐾′′ ), 𝜎 = (𝜎𝑇
1
, … , 𝜎𝑇

𝐾′′ )
𝑇 , 𝛼1 = (𝛼11, … , 𝛼1𝐾′′ )𝑇 , 𝛼2 = (𝛼21, … , 𝛼2𝐾′′ )𝑇 .

Same definitions of 𝑝(𝜂𝑖; 𝜃) and 𝑝(𝑡, 𝛿|𝜂𝑖; 𝜃) as presented in Section 3.1.1 are used. Similar to the univariate joint mod-
els, the multivariate joint models are estimated by the SAEM algorithm on Monolix software, with the same settings as
previously described.

4 DYNAMIC PREDICTIONS AND PERFORMANCES COMPARISON

4.1 Dynamic predictions

For patient 𝑖 who has longitudinal observations for biomarker 𝑘 until a landmark time 𝑙: 𝑌𝑖𝑘(𝑙) = {𝑦𝑖𝑗𝑘; 0 ≤ 𝑡𝑖𝑗 ≤ 𝑙}, we
aim at predicting its future biomarker 𝑘 values𝑚𝑖𝑘(𝑙 + 𝑡|𝑙) and his associated survival probability 𝑠𝑖(𝑙 + 𝑡|𝑙)where 𝑡 is the
horizon time. Since the dynamic predictions are applied for patients who are still hospitalized at time 𝑙, we focus on the
following conditional probability:

𝑠𝑖(𝑙 + 𝑡|𝑙) = ℙ(𝑇1𝑖 > 𝑙 + 𝑡|𝑇𝑖 > 𝑙, 𝑌𝑖𝑘(𝑙), 𝑆𝑐𝑜𝑟𝑒𝑖, 𝜃).

For each landmark time 𝑙, the biomarker measurements of patient 𝑖 up to time 𝑙 and the information provided by the
population parameters estimated on the whole data are used to compute the a posteriori distribution of the individual
parameters and infer the desired quantities. Monte-Carlo process as described in literature (Lavalley-Morelle et al., 2022)
is adapted to derive 200 samples of individual parameters. Briefly, the probability of not experiencing the death between
𝑙 and 𝑙 + 𝑡, for a replicate 𝑟 and an individual 𝑖, is computed as follows:

𝑠
(𝑟)
𝑖

(𝑙 + 𝑡|𝜓(𝑟)
𝑖

) =
𝐹

(𝑟)
1𝑖

(∞) + 𝐹
(𝑟)
2𝑖

(∞) − 𝐹
(𝑟)
1𝑖

(𝑙 + 𝑡) − 𝐹
(𝑟)
2𝑖

(𝑙)

𝐹
(𝑟)
1𝑖

(∞) + 𝐹
(𝑟)
2𝑖

(∞) − 𝐹
(𝑟)
1𝑖

(𝑙) − 𝐹
(𝑟)
2𝑖

(𝑙)
(8)

and estimates of𝑚𝑖𝑘(𝑙 + 𝑡|𝑙), 𝑘 = 1, … , 𝐾′, and 𝑠𝑖(𝑙 + 𝑡|𝑙) are obtained by taking the median over 200 replicates. Prediction
intervals are obtained by reporting the 2.5th and the 97.5th percentiles of the distribution.
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TABLE 2 Parameter estimates for the baseline model.

Parameter (unit) Value SE RSE (%) p-Value
Death
ℎ1(𝑑

−1) 0.0003 0.00016 53
𝛽1 0.36 0.05 14 <10−5

Discharge
ℎ2(𝑑

−1) 0.13 0.016 13
𝛽2 −0.14 0.02 13 <10−5

Note: p-Value of Wald tests are provided for the coefficients associated to the baseline score effect.
Abbreviations: RSE, relative standard error; SE, standard error.

4.2 Comparison with the baseline model

For the baselinemodel, two subdistributionhazard functions are considered (for the risk of in-hospital death anddischarge
from hospital). Both are adjusted on the value of the baseline score:

𝜆1𝑖(𝑡) = ℎ1 exp (𝛽1 ⋅ 𝑆𝑐𝑜𝑟𝑒𝑖) (9)

𝜆2𝑖(𝑡) = ℎ2 exp (𝛽2 ⋅ 𝑆𝑐𝑜𝑟𝑒𝑖).

For both baseline and multivariate joint modeling, three landmark times are considered at 3, 6, and 9 days after
patient admission. Multiple horizon times are also considered, from landmark time plus 1–30 days after admis-
sion. The predictive performances are assessed and compared by computing the time-dependent receiver operator
characteristic area under the curve (ROC AUC) for both the multivariate joint model and the baseline model.
Details on computation are given in Supporting Information S1. We consider the cumulative–dynamic definition
described in previous works (Blanche et al., 2015) using the timeROC (Blanche et al., 2013) package available in
R software. Finally, tests for comparing the time-dependent ROC AUC of both models is also computed using the
timeROC package.

5 RESULTS

5.1 Baseline model

Table 2 presents parameter estimates for the baseline model. A significant effect of the baseline score on both risks is
highlighted: a patient with a one point higher baseline score has his risk of death multiplied by 1.43 (95% CI [1.30, 1.58])
and his risk of discharge divided by 1.15 (95% CI [1.11, 1.20]).

5.2 Uni- and multivariate joint models

Figure 2 details the selection process of the 59 biomarkers. Based on the value of the residual error of the longitudinal
submodels, 31 biomarkers are considered with a linear joint model and 22 with a nonlinear joint model. For the 31 linear
biomarkers, 2 are excluded because at least one RSE of a survival parameter is over 100%, and 7 excluded because the link
between the longitudinal and the survival part is not significant. For the nonlinear biomarkers, 19 are excluded because
at least one RSE of a longitudinal or a survival parameter is over 100%. Hence, 22 biomarkers are selected with a linear
model and 3 with a nonlinear model.
Table S4 presents those 25 biomarkers grouped following the initial classification and ranked by increasing p-valueWald

test on 𝛼1𝑘. Seven biomarkers are selected for the multivariate analysis: blood neutrophil counts, D-dimers, arterial pH,
lactate dehydrogenase (LDH), albuminemia, CRP (in logarithmic scale), and NT-proBNP.
After backward selection, we selected three biomarkers significantly associated with both risks of in-hospital death

and discharge: the blood neutrophil counts, the arterial pH, and the CRP. Figure 3 shows the longitudinal evolution of
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F IGURE 2 Flowchart for the univariate selection.

F IGURE 3 Individual longitudinal evolution of the selected biomarkers, stratified by clinical outcome.

each biomarker. Parameter estimates for the multivariate joint model are shown in Table 3. An increase in the blood
neutrophil counts or the CRP, or a decrease in arterial pH is associated with a higher risk of death (𝛼1𝑛 = 0.14, 95% CI
[0.07, 0.20], 𝛼1𝑐 = 0.63, 95%CI [0.20, 1.06], 𝛼1𝑝 = −11.4, 95%CI [−16.93, −5.87]) and a lower risk of discharge (𝛼2𝑛 = −0.14,
95% CI [−0.25, −0.03], 𝛼2𝑐 = −1.09, 95% CI [−1.44, −0.74], 𝛼2𝑝 = 25.2, 95% CI [12.75, 37.65]). Even after adjustment on the
biomarker levels, the baseline score also has a significant effect on both risks: a higher baseline score is associated with
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TABLE 3 Parameter estimates of the multivariate joint model.

Parameter (unit) Value SE RSE (%) p-Value
Longitudinal submodel
Blood neutrophil counts
𝜇0𝑛 (109 ⋅ L−1) 4.59 0.16 3.6
𝜇1𝑛 (109 ⋅ L−1 ⋅ d−1) −0.15 0.024 16.0
𝜇2𝑛 (109 ⋅ L−1 ⋅ d−1) −0.16 0.016 10.0
𝜇𝑎𝑛 (109 ⋅ L−1) 5.30 1.58 29.8
𝜔0𝑛 (109 ⋅ L−1) 2.10 0.15 7.1
𝜔1𝑛 (109 ⋅ L−1 ⋅ d−1) 0.13 0.017 13.0
𝜔2𝑛 (109 ⋅ L−1 ⋅ d−1) 0.076 0.018 24.2
𝜔𝑎𝑛 (109 ⋅ L−1) 0.83 0.21 24.8
𝜎𝑏𝑛 0.32 0.0070 2.2
Arterial pH
𝜇0𝑝 7.44 0.0035 0.05
𝜇1𝑝 (d−1) 0.0027 0.00079 29.1
𝜔0𝑝 0.039 0.0027 7.1
𝜔1𝑝 (d−1) 0.0053 0.00061 11.6
𝜎𝑎𝑝 0.055 0.00092 1.7
C-reactive protein
𝜇0𝑐 (log(mg ⋅ L−1)) 4.18 0.061 1.5
𝜇1𝑐 (log(mg ⋅ L−1) ⋅ d−1) −0.16 0.012 7.3
𝜔0𝑐 (log(mg ⋅ L−1)) 0.93 0.048 5.2
𝜔1𝑐 (log(mg ⋅ L−1) ⋅ d−1) 0.15 0.011 7.4
𝜎𝑎𝑐 (log(mg ⋅ L−1)) 0.71 0.015 2.1
Survival submodel
Death
ℎ1 (d−1) 0.00037 0.00024 65.3
𝛼1𝑛 (L ⋅ 10−9) 0.14 0.033 24.2 < 10−5

𝛼1𝑝 −11.4 2.82 24.9 < 10−5

𝛼1𝑐 (−log(mg ⋅ L−1)) 0.63 0.22 34.7 0.004
𝛽1 0.33 0.060 18.1 < 10−5

Discharge
ℎ2 (d−1) 0.014 0.0069 51.4
𝛼2𝑛 (L ⋅ 10−9) −0.14 0.054 39.1 0.01
𝛼2𝑝 25.2 6.35 25.2 < 10−5

𝛼2𝑐 (−log(mg ⋅ L−1)) −1.09 0.18 16.2 < 10−5

𝛽2 −0.12 0.032 27.3 0.0002

Note: p-Values of Wald tests are reported for the link coefficients and the coefficients associated with the baseline score effect.
Abbreviations: RSE, relative standard error; SE, standard error.

a higher risk of death (𝛽1 = 0.33, 95% CI [0.21, 0.45]) and a lower risk of discharge (𝛽2 = −0.12, 95% CI [−0.18, −0.05]).
Some diagnostic plots that assessed the quality of the longitudinal submodels can be found in Figure S1.
The results of uni- and multivariate selection under stringent and flexible scenarios of the sensibility analysis are

described in Table S3b and Figures S2a and S2b. When stringent thresholds are used, the interest of the backward strategy
is limited because only three biomarkers entered in the multivariate analysis and remained in the final model. Of note,
those three biomarkers are not selected in the current scenario. On the contrary when thresholds are too flexible, more
biomarkers are involved and the final multivariate joint model retains two biomarkers that are also selected in the cur-
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F IGURE 4 Dynamic predictions and 95% prediction intervals for patient A (left) and patient B (right). Patient A was discharged at time
24 and patient B died at time 22. Predictions for biomarker evolution are on the first three rows (blood neutrophils count, arterial pH, and
C-reactive protein (CRP), respectively), and predictions for the survival on the last row.

rent scenario (pH and CRP). Of note, under the flexible scenario, blood neutrophil counts are modeled linearly and are
removed during the backward process.
Finally, somedetails about computation time are given in Supporting Information S2.We evaluated through simulations

the CPU times needed to estimate parameters as well as standard errors. Estimation of both parameters and standard
errors is scalable according to the number of patients included (the estimation process will take twice as long if there are
twice as many subjects). However, the relation between the CPU time spent to estimate standard errors and the number
of biomarkers involved is almost exponential. Considering a too large set of biomarkers in the backward process would be
inappropriate with this approach.

5.3 Dynamic predictions and performances comparison

First, to illustrate the dynamic predictions, we consider two patients. Patient A, who has a baseline score of 8, was dis-
charged at day 24. Patient B, who has a baseline score of 6, died at day 22. We first computed survival probabilities from
the baseline model for these two patients at horizon time 30. We predicted a high survival probability for both patients:
90% (95% CI [87, 93]) and 95% (95% CI [93, 97]) for patients A and B, respectively. Of note, patient B has a greater prob-
ability of discharge because of a lower baseline score. Figure 4 shows the dynamic longitudinal and survival predictions
from the full multivariate joint model for the two patients, for different landmark and horizon times. For patient A, all
the predictions are good, in light with the result of the baseline model and the actual outcome for this patient. For patient
B, we see that his survival probability is getting worse as the landmark time increases. He finally died at time 22. In this
case, the use of the full information available up to the landmark time helps to improve predictions.
To assess the prediction performances of the model, time-dependent ROC AUC are computed for the baseline model

as well as the multivariate joint model. Figure 5 shows the results of this estimation. Given the small sample of failures
for the times close to the landmark time, we are interested in predictions for late horizon times. The multivariate joint
model has higher ROCAUC for late horizon times, compared to the baselinemodel. For example, for landmark time 9 and
horizon time 30, AUC [95% CI] is 0.64 [0.55, 0.74], and 0.84 [0.75, 0.93] for the baseline and the joint model, respectively
(Table 4). There is a significant difference in ROC AUC between both models for landmark times 6 and 9. In other words,
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F IGURE 5 Time-dependent area under the
curve (AUC) computed on the data set for
various landmark and horizon times. The
number of at-risk patients at each landmark is
given on the top.

TABLE 4 Tests for comparing ROC AUC at horizon time 30 between the baseline and the joint model.

Horizon time = 30 Landmark day 3 Landmark day 6 Landmark day 9
AUC [95% CI]—baseline model 0.79 [0.65,0.81] 0.73 [0.65,0.81] 0.64 [0.55, 0.74]
AUC [95% CI]—joint model 0.82 [0.75,0.89] 0.81 [0.73,0.89] 0.84 [0.75,0.93]
p-value 0.37 0.04 < 10−5

Abbreviation: CI, confidence interval; ROC AUC, receiver operator characteristic area under the curve.

when sufficient information is available, themultivariate joint model performs better compared to the baselinemodel and
the benefit is higher as more information becomes available.
Of note, we also computed ROC AUC for multivariable joint model under stringent and flexible scenarios of the sensi-

bility analysis. ROC AUC [95% CI] for landmark=D9 and horizon=D30 are, respectively, 0.76 [0.67, 0.85] and 0.81 [0.72,
0.90] for the stringent and the flexible scenario. This reduction, compared with our current scenario, is not significant
(p-values are, respectively, 0.05 and 0.09). Details are given in Table S3b.
Finally, to show the interest of biomarker selection, we present the results of the multivariate joint model estimation

including the seven biomarkers considered in the multivariate analysis in Table S5. Some biomarker effects disappear
after adjustments on all others and the complexity of estimation reflects a high degree of uncertainty particularly in the
estimates of link coefficients. The ROCAUC is not significantly improved with the seven biomarkers (ROCAUC [95% CI]
for landmark = D9 and horizon = D30 is 0.85 [0.77, 0.93], p = 0.50).

6 SIMULATION STUDY

We performed a simulation study to answer three points. The first is to show that the SAEM algorithm implemented on
Monolix software provides good estimation performances of such multivariate joint model. The second is to assess the
performances of the selection process at the multivariate stage (i.e., the backward process). Finally, we will assess the
ROC AUC indicator under different scenarios because some authors described a possible overestimation of this indicator
(Schmid et al., 2013).

6.1 Simulation settings

We simulated 𝑀 = 100 data sets of 𝑁 = 300 patients assuming that 𝐾 = 7 biomarkers (𝑏𝑚1 to 𝑏𝑚7) were available at
most 30 days after the hospital admission. The biomarkers were simulated according to the design of the application,
that is to say considering the patterns and the estimated parameters of the seven biomarkers included in the multivariate
analysis. Biomarker measurements were reported for each patient at different frequencies until time to in-hospital death
or discharge from hospital or also end of the first 30 days of the stay, with no other censoring process. Table 5 summarizes
those characteristics. Longitudinal submodels refer to Equations (2) and (3) with 𝑡𝑙𝑎𝑔 = 0.
For the survival part, we considered two competing events. We supposed that 𝑏𝑚1, 𝑏𝑚2, and 𝑏𝑚3 are truly associated

with the event 1 (risk of in-hospital death), 𝑏𝑚4 and 𝑏𝑚5 are not associated but have their slopes correlated with those
of 𝑏𝑚2 and 𝑏𝑚3, respectively, and 𝑏𝑚6 and 𝑏𝑚7 are not associated and not correlated with other biomarkers. A scenario
with stronger correlations was also considered. In this one, we simulated 𝑏𝑚4 and 𝑏𝑚5 having a correlation on intercept
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TABLE 5 Characteristics of the seven simulated biomarkers.

Biomarker Correspondence Longitudinal submodel Error model Measurement frequency
𝑏𝑚1 Blood neutrophil counts Nonlinear Proportional Every 2 days
𝑏𝑚2 Arterial pH Linear Additive Every 1.5 days
𝑏𝑚3 CRP Linear Additive Every 2 days
𝑏𝑚4 NT-proBNB Linear Additive Every 3 days
𝑏𝑚5 D-dimers Linear Proportional Every 3 days
𝑏𝑚6 Albuminemia Linear Proportional Every 3 days
𝑏𝑚7 LDH Linear Proportional Every 3 days

Abbreviations: CRP, C-reactive protein; LDH, lactate dehydrogenase.

and slope parameters of 0.95 with the ones of 𝑏𝑚2 and 𝑏𝑚3, respectively. We followed methods already described (Fine,
2001; Lavalley-Morelle et al., 2022) to generate failure time data. The subdistribution for the risk of in-hospital death is
given by

ℙ(𝑇1𝑖 < 𝑡|𝜓𝑖, 𝑊𝑖; 𝜃) = 1 − exp

(
−∫

𝑡

0

𝑝1 𝑔1 exp(−𝑔1 × 𝑠) × 𝜆(𝑠)

1 − 𝑝1(1 − exp(−𝑔1 × 𝑠))
d𝑠

)
(10)

with 𝜆(𝑠) = exp[𝛼11 × (𝑚1(𝜓𝑖1, 𝑡𝑖𝑗1) − 𝑚𝑒𝑑1) + 𝛼12 × (𝑚2(𝜓𝑖2, 𝑡𝑖𝑗2) − 𝑚𝑒𝑑2) + 𝛼13 × (𝑚3(𝜓𝑖3, 𝑡𝑖𝑗3) − 𝑚𝑒𝑑3)]. Parameters
𝑝1 and 𝑔1 are used to control the number of event 1 at infinite time and the speed of onset.
The subdistribution for the competing risk was then obtained using an exponential distribution with rate 𝑡

𝑏
where 𝑏

controls the speed of event 2 onset:

ℙ(𝑇2𝑖 < 𝑡|𝜓𝑖, 𝑊𝑖; 𝜃) = (1 − 𝐹1(∞)) ×
(

1 − exp
(

−
𝑡

𝑏

))
. (11)

𝑝1, 𝑔1 were set to 0.05, 0.1, respectively, and 𝑏was fixed to 10 to obtain about 17% cause 1 failures, 69% cause 2 failures, and
14% administrative censoring at time 30, similar to the application. Further details about true values for model parameters
are given in Supporting Information S3.

6.2 Evaluation of the estimation performances, selection process, and ROC AUC
indicator

6.2.1 Evaluation of the estimation performances

For each simulated data set, the true model is estimated and writes as follows, considering 𝐾′′ = 3:

𝑦𝑖𝑗1 = 𝑚1(𝑡𝑖𝑗1, 𝜓𝑖1) + 𝑔[𝑚1(𝑡𝑖𝑗1, 𝜓𝑖1), 𝜎1]𝜖𝑖𝑗 (12)

…

𝑦𝑖𝑗𝐾′′ = 𝑚𝐾′′ (𝑡𝑖𝑗𝐾′′ , 𝜓𝑖𝐾′′ ) + 𝑔[𝑚𝐾′′ (𝑡𝑖𝑗𝐾′′ , 𝜓𝑖𝐾′′ ), 𝜎𝐾′′ ]𝜖𝑖𝑗

𝜆1𝑖(𝑡|𝜓𝑖) =
𝑝1 𝑔1 exp(−𝑔1 × 𝑡)

1 − 𝑝1(1 − exp(−𝑔1 × 𝑡))
exp

⎡⎢⎢⎣
𝐾′′∑
𝑘=1

(𝛼1𝑘 × (𝑚𝑘(𝑡, 𝜓𝑖𝑘) − 𝑚𝑒𝑑𝑘))

⎤⎥⎥⎦
𝜆2𝑖(𝑡|𝜓𝑖) =

𝑝2 𝑔2 exp(−𝑔2 × 𝑡)

1 − 𝑝2(1 − exp(−𝑔2 × 𝑡))
exp

⎡⎢⎢⎣
𝐾′′∑
𝑘=1

(𝛼2𝑘 × (𝑚𝑘(𝑡, 𝜓𝑖𝑘) − 𝑚𝑒𝑑𝑘))

⎤⎥⎥⎦.
The model is estimated by maximization of the likelihood using the SAEM algorithm implemented on Monolix 2018
software with the same settings as explained in the application.



14 of 19 LAVALLEY-MORELLE et al.

We aim to assess the performances of the estimation on the longitudinal parameters and the survival parameters for
the event 1. We define 𝜃 = {𝜇, 𝜔, 𝑝1, 𝑔1, 𝛼11, 𝛼12, 𝛼13} and �̂� its estimate. The model specification for data simulation does
not allow to easily identify 𝑝2, 𝑔2, 𝛼21, 𝛼22, and 𝛼23 that is why estimation evaluation was based on vector �̂�. We evaluated
the empirical relative bias and relative root mean square errors (RRMSE) of �̂� defined as:

Relativebias =
1

𝑀

𝑀∑
𝑚=1

̂𝜃𝑚 − 𝜃

𝜃
× 100 and RRMSE =

√√√√ 1

𝑀

𝑀∑
𝑚=1

(
̂𝜃𝑚 − 𝜃

𝜃
× 100

)2

. (13)

We also provided violin plots of relative estimation errors (REE) defined for each data set 𝑚 ∈ {1, … , 𝑀} as:

REE𝑚 =
̂𝜃𝑚 − 𝜃

𝜃
× 100. (14)

6.2.2 Evaluation of the backward process

The objective is to assess the ability of the backward process to find the “true”model, that is to say the final set of biomark-
ers truly associated with the risk of in-hospital death. The first iteration of the process starts with the seven biomarkers
included in the multivariate joint model, and at each iteration, the biomarker with the highest p-value on 𝛼1𝑘 is removed.
We stop when all the p-values for 𝛼1𝑘 < 5%. For each data set 𝑚 ∈ {1, … , 𝑀} and for a given iteration of the backward
process involving 𝐾′′ biomarkers, we estimated the joint model defined in Equation (12).
We finally report the final set of biomarkers after the backward process for each simulation and each scenario

of correlations.

6.2.3 Evaluation of the ROC AUC indicator

To answer this objective, we computed the ROCAUC for the landmark time D9 and horizon time D30 for both truemodel
and final model provided at the end of the backward process, for each simulated data set. We compared both distributions
using paired t-test.

6.3 Results

6.3.1 Evaluation of the estimation performances

Table 6 provides relative bias and RRMSE expressed in percentage. Relative bias and RRMSE are low for most of param-
eters. Longitudinal parameters are accurately estimated (while more uncertainty for some random effects, with higher
relative bias and RRMSE). The parameters that link the longitudinal and the survival processes (𝛼11, 𝛼12, 𝛼13) are of par-
ticular interest and are estimated with a relative bias around 13% and an RRMSE around 30%. The design of the simulation
may cause this moderate uncertainty of estimation for those parameters. In a previous work where only one biomarker
was handled in a richer design and with a higher number of patients (Lavalley-Morelle et al., 2022), the RRMSE were
reduced. Overall, this suggests good estimation performances given the size of the data set and in particular, the small
number of event 1 (deaths). Violin plots can be found in Figure S3 and provide same conclusion.

6.3.2 Evaluation of the backward process

The upset plot on Figure 6 is an efficient way to visualize the proportion of replicates finding the truly associated biomark-
ers. In the first scenario of correlations (correlation of 0.8 on slope parameters), 75% of the replicates contains the three
correct biomarkers (𝑏𝑚1, 𝑏𝑚2, and 𝑏𝑚3): 64% only those three, 9% with one additional biomarker, and 2% with two addi-
tional biomarkers. In 21% of cases, the process found only two of the true associated biomarkers. For the remaining cases,
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TABLE 6 Estimated relative bias and root mean square errors (RMSE) based on 100 simulations.

Parameter True value Relative bias (%) RRMSE (%)
Longitudinal part—biomarker 1
Fixed effects
𝜇01 4.6 0.4 3
𝜇11 −0.15 −8 15
𝜇21 −0.16 −7 14
𝜇𝑎1 5.3 −9 17
Random effects
𝜔01 2.0 −2 11
𝜔11 0.10 14 28
𝜔21 0.07 −8 36
𝜔𝑎1 0.80 25 46
Error parameter
𝜎𝑏1 0.30 2 3
Longitudinal part—biomarker 2
Fixed effects
𝜇02 7.4 3−5 0.04
𝜇12 0.003 −6 18
Random effects
𝜔02 0.04 2 11
𝜔12 0.005 6 17
Error parameter
𝜎𝑎2 0.05 −0.1 1
Longitudinal part—biomarker 3
Fixed effects
𝜇03 4.2 −0.08 1
𝜇13 −0.16 −5 9
Random effects
𝜔03 0.90 −0.9 11
𝜔13 0.15 7 15
Error parameter
𝜎𝑎3 0.70 −0.1 2
Survival part
𝑝1 0.05 −23 37
𝑔1 0.10 16 32
𝛼11 0.14 15 35
𝛼12 −11 13 32
𝛼13 0.60 11 23

Abbreviation: RRMSE, relative root mean square errors.

the process only found one associated biomarker (2%) or 𝑏𝑚4 (correlated with 𝑏𝑚2) was selected instead of 𝑏𝑚2 (2%). We
emphasize that all final models should have similar predictive performances.
For the scenario of stronger correlations, the upset plot is given in Figure S4. Similar to the previous scenario of correla-

tions, 72% of the replicates contains a correct set of biomarkers: 43% the true set of biomarkers, 15% with a very correlated
biomarker instead of the associated one, 13% with one additional biomarker, and 1% with three additional biomarkers. In
20% of cases the backward selected only two associated biomarkers, and in 4%, only one. For the remaining cases (4%),
the process retains one or two associated biomarkers with an additional one.
Overall, the backward strategy demonstrates good performances even in the presence of strong correlations.
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F IGURE 6 Final set of biomarkers selected
after the backward process (simulation study).

F IGURE 7 Distributions of receiver operator characteristic area under the curve (ROC AUC) of the true model and the final model for
landmark time = D9 and horizon time = D30. True model corresponds to the multivariate joint model with bm1, bm2, and bm3 and the final
model the one with the biomarkers selected after the backward process. Gray lines represent situations when the final model is equal to the
true model and red lines represent other cases.

6.3.3 Evaluation of the ROC AUC indicator

Figure 7 provides the distribution of ROC AUC for landmark = D9 and horizon time = D30 under the true and the final
model, for the first scenario of correlations. Of note, 64% of ROCAUCwere equal for bothmodels, as the backward strategy
leads to the true set of biomarkers in those cases. The figure shows that ROC AUC, in most cases, tends to be lower when
a wrong model is selected, and more rarely, overestimated. In mean [95% CI], the ROC AUC is reduced by 0.010 [0.003,
0.017] (p = 0.007) under the final model, which, although significant, is very small.

7 DISCUSSION

In this work, we proposed to evaluate the added value of modeling the full trend of various biomarkers to predict the
risk of in-hospital death for COVID-19 patients, compared to using only information available at hospital admission. We
developed a strategy to select between various biomarkers most associated with prognostic. The proposed methodology
has the advantage to select a subset of most relevant biomarkers based on statistical methodology and not only on clinical
considerations. We explored more information than an entire clinical-based approach that would directly considered a
small set of biomarkers in the final model. However, we emphasize that building a predictive tool according to statistical
criteria or only clinical knowledge may produce similar results.
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We found that the dynamics of the blood neutrophil counts, arterial pH and CRP were significantly associated with
the risk of in-hospital death and discharge from hospital: an increase in the blood neutrophil counts or the CRP, or a
decrease in the pH is associated with a higher risk of death and a lower risk of discharge. We showed that the individual
predictions from the multivariate joint model were significantly improved and outperformed those from the baseline
modelwhen sufficient informationwas available.Hence, such a tool can be useful for clinicians in routinemedical practice
as it may support clinical decisions such as therapeutic escalation or limitation of care. These decisions usually occur
during the follow-up, and considering up-to-date longitudinal information to derive survival probabilities seems crucial.
More generally, our methodology could be straightforwardly extended to other outcomes or medical conditions, and be
easily implemented into hospital information systems to provide clinicians with dynamically updated prognostic scores
and their estimated uncertainty.
Our real-case study also has some limitations. First, we recall that the baseline score referring to the 4C score was com-

puted for each patient with some missing data for CRP and urea components. While it affects few individuals, the single
imputation of missing data, given the other variables of the score, can introduce a small bias in the modeling, damped
by the fact that the entire score slightly depends only slightly on those components. Second, one can argue that complex
biomarker trends are not accounted for in the choice of the modeling. However, in such case, we think that no parametric
model can approximate the evolution, and nonparametric models are out of the scope of this article. Moreover, it worth
noting that biomarkers whose evolution is hard to model are generally noninformative biomarkers that have no added
value in terms of predictions. Then, two different thresholds for the residual error were used for the selection of linear
and nonlinear models during univariate analysis. This relies on subjective appreciations and others thresholds could be
proposed as well. Some biological measurements exhibit erratic behavior and are hard tomodel: The residual error should
not be too high, but some flexibility is needed. We showed in the sensibility analysis that the choice of the thresholds in
the univariate analysis impacts the set of biomarkers selected in the final model. However, all the scenarios considered
lead to predictive performances that do not differ significantly. We also considered a set of biomarkers frequently pre-
scribed to avoid at most selective missingness. However, it is worth noting that some biomarkers may have been more
often measured in severe patients. In an extreme case, the population parameters estimated for such biomarker can be
biased and not reflecting the dynamic in the whole population. In the survival part, the baseline risk functions considered
may seem restrictive. However, the objective of the work is to provide a powerful predictive tool and we showed through
the application that the predictions performed well with this parametrization. That is why nomore complex function was
considered. Then, in the backward processes, we chose to select biomarkers that are associated with both competing risks.
As an alternative approach and for other applications, we could allow for different biomarkers being associated with one
or both risks. Finally, our model should also be validated on an external data set before being used in practice. Due to the
sample size and the number of events, an internal validation by splitting data was found inappropriate.
In a methodological point of view, we demonstrated well estimation performances of the SAEM algorithm. We eval-

uated the estimation in a complex design with three longitudinal submodels (with one nonlinear) and two competing
risks with a small number of event 1. Bias and RRMSE were relatively low for most of parameters. However, as we are in
a subdistribution approach, estimation performances relative to survival parameters associated with event 2 are impos-
sible to evaluate. It may be an interesting future research. Moreover, although backward selection procedure has known
drawbacks, it has never been proposed in the context of joint modeling with competing risks and we found here interest-
ing performances in the simulation study even when introducing correlations between biomarkers. We emphasize that
strong correlation structures were considered in the simulations. In reality, correlations strongly depend onmeasurement
errors and are probably lower than those considered. Other selection strategies as the forward or forward–backward step-
wise strategies may be considered, although they may be more time-consuming because of the number of combinations
to test at each iteration of the process. We acknowledge that the backward strategy may be computationally expensive
depending on the machine hardware and software configuration. We showed through simulations that this strategy may
be extended for a larger set of patients but not for a too large set of biomarkers. In fact, the stochastic algorithm used to
compute the FIM shows an exponential growth in terms of CPU time spent as the number of biomarkers increases. This
algorithm is implemented according to the Louis method and is run once parameters have been estimated (see Kuhn and
Lavielle, 2005, for more details). The whole estimation process (parameters and standard errors) is thus, time-consuming.
Recently, Delattre and Kuhn (2023) developed an interesting alternative: a stochastic algorithm to compute the FIM as the
SAEM algorithm iterates. It offers the potential to be less time-consuming, however, it has not been evaluated for multi-
ple responses and joint models so future developments are needed to consider this alternative. Finally, we note that the
compare function used for testing and comparing time-dependent AUC between the baseline and the multivariate joint
model was not designed for nested models. It would imply a loss of power and not a rise of the type-I error. Hence, there
is no a negative impact on our results.
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A possible extension of this work could be the implementation of a selection procedure based on penalized likeli-
hood such as LASSO penalization because forward/backward selection on regression models have been shown to be
outperformed by this type of methods in a high-dimensional context.
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