
HAL Id: hal-04454093
https://hal.science/hal-04454093v2

Submitted on 26 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fast multiple precision exp(x) with precomputations
Joris van der Hoeven, Fredrik Johansson

To cite this version:
Joris van der Hoeven, Fredrik Johansson. Fast multiple precision exp(x) with precomputations.
2024 IEEE 31st Symposium on Computer Arithmetic (ARITH), Jun 2024, Malaga, Spain. pp.80-
87, �10.1109/ARITH61463.2024.00023�. �hal-04454093v2�

https://hal.science/hal-04454093v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Fast multiple precision exp(x) with precomputations
Joris van der Hoeven

CNRS, LIX (UMR 7161)
Palaiseau, France

vdhoeven@lix.polytechnique.fr

Fredrik Johansson
Inria, IMB (UMR 5251)

Bordeaux, France
fredrik.johansson@gmail.com

Abstract—What is the most efficient way to compute the expo-
nential function when allowing for the precomputation of lookup
tables? In this paper we study this question as a function of the
working precision and analyze both classical and asymptotically
fast approaches. We present new complexity results, discuss
efficient parameter choices and point out improvements that lead
to speedups over existing implementations.

Index Terms—Elementary functions, Multiple-precision arith-
metic, Table-based methods, FFT

I. INTRODUCTION

We are interested in efficiently computing the exponential
function exp(x) to arbitrary n-bit precision where n may be
much larger than the machine word size, for example n ≈ 104.
For general background and standard techniques that will be
referenced, see [Mul16], [BZ11].

We denote by E(n) the cost of evaluating exp(x) given an
input on the standard interval 0 6 x < 1. We further denote by
E(n, r) the cost of evaluating exp(ε) on the reduced interval
0 6 ε < 2−r, where a Taylor series converges more rapidly.

The classical argument reduction formula exp(x) =
exp(x/2r)2r maps the standard interval to the reduced interval
via r halvings and squarings. A similar r-bit reduction might
be achieved more cheaply after precomputations, say in time
RT (n, r) given some lookup table T . Accordingly, we want to
choose a table design and reduction parameter r minimizing

ET (n) := RT (n, r) + E(n, r).

In practice, this minimization problem will be constrained
by the precomputation time or the available space for tables.
If we aim to perform a large number N of evaluations and
generating the table costs TT (n), then we want to minimize
the amortized cost ET (n) + TT (n)/N .

In this work, we will study several table-based methods
and the associated cost functions RT (n, r) and TT (n). We
provide new complexity analyses, point out practical and
theoretical improvements over previous designs, and make
empirical observations about realistic parameter values and
attainable speedups E/ET .

II. MULTIPLE PRECISION ARITHMETIC

Consider a machine with β-bit words. Typically, β = 64. We
assume that n-bit positive integers are represented using dn/βe
words and that n-bit real numbers in [0, 2−k) are represented
in fixed-point format using d(n − k)/βe words. We make
frequent use of the following primitives:

This work has been supported in parts by the ANR projects NODE (ANR-
22-CE48-0016) and NuSCAP (ANR-20-CE48-0014).

M(n) Cost of multiplying two n-bit integers
A(n) Cost of adding two n-bit integers
P(n) Cost of an n-bit product x1 · · ·x` ∈ Z

It is useful to distinguish between the “classical regime”
with M(n) = O(n2) and the “FFT regime” for huge n
where we can assume that M(n) = O(n log n) [HH21]. In
between, one may also consider the “Karatsuba regime” with
M(n) = O(nlog2 3) or various “Toom-Cook regimes” with
M(n) = O(nγ) and 1 < γ 6 log2 3. We will always assume
that M(n)/(n log n) is a non-decreasing function. We denote
by nFFT the threshold where we enter the FFT regime.

It is well known that various basic complexities can be
expressed in terms of M(n). For instance, quotients and square
roots can be computed in time O(M(n)).

We clearly have A(n) ∝ n, but it is the ratio M(n)/A(n)
that is often interesting to keep in mind. For n 6 β, this ratio
is close to one on modern computers. For n 6 kβ and small k,
the ratio scales linearly with k. In the FFT regime, the ratio
typically exceeds 100. Other linear time operations, such as
multiplying or dividing x by a single-word integer or power
of two, can also be done in time cA(n), for some constant
close to one (e.g. 1/4 < c < 4) that depends on the operation.

Another important operation is the computation of smooth
products. Given x1, . . . , x` ∈ Z \ {−1, 0, 1} such that the
product π := x1 · · ·x` has bit-size at most n, we denote
by P(n) the cost to compute π. The hardest case is when
x1, . . . , x` are all small, whence the name of the operation. It
is classical that π can be computed in time

P(n) 6 M(n/2) + 2M(n/4) + · · · = O(M(n) log n)

using binary splitting. But here again, the precise ratio
P(n)/M(n) depends on the regime. In the naive regime, one
typically has P(n) . 1/2M(n) + O(n). In the FFT regime,
one has P(n)/M(n) ∼ 1/2 log(n/nFFT). If M(n) ∝ nγ , then
P(n)/M(n) ∼ 1/(2γ − 2).

We define P(m,n) := P(m)+ n
mM(m): the cost of a smooth

product of bitsize m and multiplying the result with a number
of n bits. We shall assume that an n-bit hypergeometric sum
s := t1 + · · ·+ t` ∈ Q, tk+1/tk ∈ Q(k), can be computed in
time O(P(n)) via a similar binary splitting process.

A. The standard table-free algorithm for exp

We recall the classical Taylor series-based algorithms by
Brent and Smith [Bre76a], [Smi89], used in popular software
like MPFR [FHL+07] and FLINT/Arb [Joh17].

If n/r is relatively small, then the best approach to com-
pute exp(ε) uses rectangular splitting to evaluate the series

∑N−1
k=0 εk/k! where N ≈ n/r. Together with r squarings for

argument reduction, this yields the overall complexity

E(n) = c1rM(n) + c2
√
n/rM(n) + c3(n/r)A(n)︸ ︷︷ ︸

E(n,r)

where c1, c2, c3 are constants which depend on the multiplica-
tive regime. In the classical and Karatsuba regimes, one should
choose r ∝ n1/3 which gives E(n) = O(n1/3M(n)). In the
FFT regime, taking r ∝ n1/2 yields E(n) = O(n1/2M(n)).

A variation of the same algorithm which saves a constant
factor is to evaluate the hyperbolic sine series

exp(ε) = s+
√

1 + s2, s =

N−1∑
k=0

ε2k+1

(2k + 1)!
, N ≈ n

2r
. (1)

An asymptotically faster algorithm is the bit-burst method
in which we write exp(ε) = exp(ε1) exp(ε − ε1) where
ε1 = bε22rc/22r and evaluate the Taylor series for exp(ε1)
using binary splitting. One observes that this series is hyper-
geometric with O(n) bits. This “bit-burst step” can be viewed
as an extra argument reduction r → 2r, giving

E(n, r) = O(P(n)) + E(n, 2r).

Iterated until r > n, this results in the complexity E(n) =
O(P(n) log(n)), or O(M(n) log2(n)) in the FFT regime.

For the bit-burst method, doing r initial squarings does not
reduce the asymptotic complexity in the FFT regime, but it
does help in practice since the first few binary splitting sums
are more expensive.

We mention here a hybrid method which seems to be new:
we combine k bit-burst steps with rectangular splitting, where
the sinh series now only requires N ≈ n/(2k+1r) terms.

In summary, we will use one of the following series
evaluation strategies to compute exp(ε) on 0 6 ε < 2−r,
where the optimal choice depends on n and r:

1) EXP: exp series with rectangular splitting (n/r terms)
2) SH: sinh series with rectangular splitting (n/(2r) terms)
3) BSH: performing some initial bit-burst steps to improve

the rate of convergence of method SH (e.g. one step
giving n/(4r) terms, or two steps giving n/(8r) terms)

4) BB: full bit-burst algorithm (O(log n) iterations)
A completely different algorithm by Brent [Bre76b] and

Salamin [Sal76] involves computing exp(x) via the arithmetic-
geometric mean, achieving E(n) = O(M(n) log n). The
crossover where the Brent-Salamin algorithm beats the bit-
burst method is quite large, however, e.g. n > 107 (see
Table I). Faster argument reduction will increase this crossover
further since Brent-Salamin does not become faster as x→ 0.

B. Empirical comparison of basic operations

For our implementation experiments, we use low-level
fixed-point and integer routines from GMP 6.3 and FLINT
3.1. Timings were obtained on an AMD Ryzen 7 PRO
5850U (Zen3 architecture). In this work, we test only single-
threaded performance. We mention that FLINT uses the cutoff
nFFT = 25600 bits for FFT multiplication.

Table I shows relative timings for A(n) (calling GMP’s
mpn_add_n with n/64 words of input), M(n) (calling

TABLE I
MEASURED RELATIVE TIME FOR n-BIT ADDITION A(n), MULTIPLICATION
M(n), SMOOTH PRODUCT P(n), AND EXPONENTIAL FUNCTION E(n).

RELATIVE TIMINGS FOR THE BRENT-SALAMIN (AGM) ALGORITHM AND
FOR THE EXPONENTIAL FUNCTION IN MPFR 4.2 ARE ALSO SHOWN.

n
M(n)

A(n)

P(n)

M(n)

E(n)

P(n)

EAGM(n)

E(n)

EMPFR(n)

E(n)

128 0.9 1.04 77.0 15.00 5.76
256 2.1 0.62 102.7 14.55 4.34
512 5.9 0.77 70.2 8.38 2.80

1024 19.5 0.49 62.1 4.91 2.04
2048 43.8 0.60 52.8 2.49 1.68
4096 72.0 0.70 46.8 1.61 1.72
8192 109.0 0.81 43.5 1.38 1.67

16384 159.9 0.91 43.6 1.34 1.62
32768 188.1 1.14 47.9 1.15 1.44
65536 187.9 1.74 48.9 1.12 1.46

131072 164.1 2.19 45.7 1.23 1.74
262144 145.1 2.60 44.9 1.32 1.99
524288 156.7 3.13 41.2 1.30 2.23

1048576 164.2 3.45 40.6 1.23 2.34
2097152 162.7 3.87 40.1 1.12 2.43
4194304 171.4 4.21 40.9 1.12 2.57
8388608 190.1 4.40 42.2 1.05 2.64

16777216 202.2 4.53 43.2 0.99 2.98
33554432 191.2 4.85 44.1 0.96 3.20

FLINT’s flint_mpn_mul_n), P(n) (forming the n-bit
product of n/64 words by calling flint_mpn_mul_n in
a tree), and E(n) where the exponential function is imple-
mented using an empirically determined near-optimal number
of squarings r and series strategy EXP, SH, BSH or BB
(see Table III for further details). The series evaluation is
implemented using slightly modified code from FLINT.

For comparison, Table I includes timings for two alterna-
tive implementations of exp(x): the Brent-Salamin algorithm
(AGM) and mpfr_exp in MPFR 4.2. For FLINT’s builtin ex-
ponential function, which uses precomputations, see Table III.

Several related phenomena can be observed roughly when
we enter the FFT regime around n ≈ nFFT ≈ 25000:
• The ratio M(n)/A(n) becomes roughly constant, settling

on a rather large order of magnitude ≈ 100− 200.
• The ratio P(n)/M(n) becomes greater than 1 and subse-

quently grows slowly.
• The optimal value r stabilizes around 32 (see Table III).
The ratio E(n)/P(n) ≈ 50 is remarkably constant consid-

ering that asymptotics predict O(log n).

III. REDUCTION USING TABLE LOOKUP

We will review several strategies for precomputation-based
argument reduction, all of which share the same form (Algo-
rithm 1).

Different choices of the rational parameters qj lead to
different specific algorithms, summarized in Table II. For each
method, we indicate the expected cost RT (n, r) to achieve
0 6 ε < 2−r and the size of precomputed tables (in bits),
where n is the precision. The complexities will be justified
further in the next sections.

Algorithm 1 Meta-algorithm to compute exp(x) to n-bit
precision via table-based reduction to a number 0 6 ε < 2−r

0) Precomputation: choose q1, . . . , qk ∈ Q, precompute
log q1, . . . , log qk as n-bit fixed-point numbers and store
them in a table.

1) Argument reduction: compute c1, . . . , ck ∈ Z such that
0 6 ε < 2−r where ε := x− L,

L = c1 log(q1) + · · ·+ ck log(qk). (2)

2) Taylor series: compute y := exp(ε) as in section II-A.
3) Reconstruction: output exp(x) = y · E where

E = qc11 · · · q
ck
k . (3)

To first order, the precomputation cost for each method can
be be estimated as TT (n) ≈ kE(n) for a table of size kn bits
(see “Space” in the table). In practice, the numbers qj in all
methods have special form and the log(qj) can therefore can
be computed somewhat faster than general exponentials or log-
arithms, e.g. using binary splitting summation of appropriate
Taylor series for log(x) or arctanh(x). We can also save time
with batch evaluation schemes. For example, the constants
{log(2), log(3), log(5), . . .} used in the Diophantine method
can be computed simultaneously using Machin-like formulas
as discussed in [Joh22]. For the qi = 1 + 2−i in the bitwise
method, a useful method in the sub-FFT regime is to batch
the evaluations with large i (say for i >

√
n), computing each

reciprocal 1/3, 1/5, . . . as a fixed-point number and adding or
subtracting bit-shifted copies to sums for all the log(qi).

We note here that for all algorithms, we can choose param-
eters so that a table valid for n also works efficiently as a table
for any n′ < n by simply restricting to a subset of the table
and reading only the most significant words of the entries.

IV. BITWISE REDUCTION

Most traditional ways to perform argument reductions using
table lookup can be expressed as the following specialization
of Algorithm 1:

0) Precompute Li = log qi for i = 1, . . . , %, where the qi
are of the form 1 + k2−mj with 1 6 k < 2m.

1) Compute i1, . . . , iκ with ε := x−
∑κ
j=1 Lij < 2−r.

2) Compute y ≈ exp(ε) using another algorithm.
3) Output y

∏κ
j=1 qij .

The precise ways how to choose the qi and how to peform
step 3 give rise to various variants that we shall discuss now.

A. Traditional Cordic-BKM style method

The most traditional variant is to take % := r and qi :=
1 + 2−i. For step 1, we start with ε := x. For j = 1, . . . , κ,
we then take ij maximal with Lij < ε and update ε← ε−Lij .
The cost of this step is κA(n), where the average value of κ
is r/2. The required table of logarithms has size rn.

Letting r = n gives the classical BKM method [BKM94],
closely related to CORDIC [Vol59]. The hybrid method of

combining partial BKM-style reduction with polynomial ex-
pansion (e.g. Taylor series) appears previously in [BEIR00].

B. Processing m-bits at a time, greedy variant

The computation time can be reduced by resorting to larger
tables. For m > 1, we now take qi(2m−1)+k := 1 + k2−mj ,
for j = 1, . . . , d r

2m−1e and k = 1, . . . , 2m − 1. Hence % ≈
(2m − 1)r/m and the table size becomes 2m−1

m rn. Step 1 is
done using the same method as above; its average cost drops
to 1−2−m

m rA(n).
The most extreme version of this variant, when m = r,

coincides with traditional table lookup. Taking m = r/m̃
corresponds to m̃-partite table lookup.

C. Processing m-bits at a time, sparse variant

The size of the table can be reduced by an approximate
factor m > 1 by taking % := dr/me and qi := 1 + 2−mi. For
step 1, we again start with ε := x. For k = 1, 2, . . ., let imax

be maximal with Limax
< ε. Then we add bε/Limax

c copies
of imax to the list of ij and update ε← ε− bε/Limax

cLimax
.

Assuming that every such update can be done in time A(n),
the average cost of step 1 is 1−2−m

m rA(n), as for the greedy
variant.

D. Terminate with shifts and adds

The traditional BKM algorithm computes y
∏κ
j=1 qij in

step 3 by updating y ← (1 + 2−ij)y for j = 1, . . . , κ, after
which we return y. This also works for the other variants, ex-
cept that multiplications with numbers of the form 1 +k2−jm

may also involve FMAs at machine precision instead of mere
additions.

Assuming that FMAs are approximately as fast as additions,
the overall cost now becomes 2κA(n). For the traditional and
greedy variants, the average value of κ is 1−2−m

m r. For the
sparse variant, the average value becomes 2m−1

2m r.

E. Terminate with binary splitting

Another idea is to compute E =
∏κ
j=1 qij using binary

splitting in step 3 and then multiply with y. This is fastest
when the bitsize p of E is at most n. Otherwise, the product
can still be split into dp/ne parts which are then multiplied out
with full precision n. For the traditional and greedy variants,
the expected bitsize p is κr/2 ≈ 1−2−m

2m r2. For the sparse
variant, we get p ≈ 2m−1

4m r2.

F. Discussion

It is instructive to analyze the cost of these reduction
algorithms with respect to P(n). In order to be competitive
with other algorithms (see section VII below), this ratio should
remain reasonably small; ideally, it should remain below one.
For the binary splitting variant, this implies p / n; see
the column rmax in Table II. For the greedy shift-and-add
variant, the constraint translates into r

mA(n) / M(n); indeed,
this variant is most useful when n is small or medium, so
P(n) ∝ M(n).

TABLE II
ARGUMENT REDUCTION STRATEGIES BASED ON TABLE LOOKUP AND LINEAR COMBINATIONS OF LOGARITHMS.

Method j qj cj Space RT (n, r) (expected) rmax RT (n, r) (expected)

Shift-add variants Binary splitting variants

Bitwise 1 6 j 6 r 1 + 2−j 0, 1 rn 3r
2
A(n) 2

√
n r

2
A(n) + P

(
r2

4
, n
)

Greedy m-bitwise 1 6 a2m+b 6 r 1 + b2−am 0, 1 2m

m
rn 3r

m
A(n)

√
2mn r

m
A(n) + P

(
r2

2m
, n
)

Sparse m-bitwise 1 6 j < r/m 1 + 2−jm 0, . . . , 2m − 1 1
m
rn 2mr

m
A(n) 21−m/2√mn r

m
A(n) + P

(
2mr2

4m
, n
)

Diophantine 1 6 j 6 2 2, 3 O(2r) 2n O(β−12r)A(n) log2
(

n
2e

)
1.4rA(n) + P(e2r+1, n)

m-Diophantine 1 6 j 6 m 2, 3, . . . , pm O(m2r/(m−1)) mn O(β−12r/(m−1)

m2 logm)A(n)
2.9m 6

√
0.41n
log2 n

1.4rA(n) + P(e3m2 log2m,n)

G. SIMD acceleration

If n is large, then step 1 can benefit from from SIMD
accelerations, for all three variants. Let us briefly sketch how
in the case of the greedy m-bitwise algorithm. Instead of doing
the updates t ← t − Li for one i at the time, we proceed by
batches of, say β, indices i. This means that our updates are
of the form t ← t − Σ, where Σ ←

∑
i∈I Li for a batch

I of new indices in S. Here we rely on the fact that I can
essentially be determined from the β most significant digits
of t. For the computation of Σ, we represent the Li using a
redundant SIMD representation that allows for the addition of
β numbers without carry propagation. The normalization is
done at the end.

V. DIOPHANTINE APPROXIMATION

The Diophantine approximation method [Sch06], [Joh22]
is an instance of Algorithm 1 which achieves r-bit reduction
using much smaller tables than the methods in the previous
section. Take q1, . . . , qm to be the first m > 2 prime numbers.
Then any x can be approximated arbitrarily well by Z-
linear combinations c1 log(q1) + · · · cm log(qm). Equivalently,
in exponential form, any y > 0 can be approximated arbitrarily
well by qm-smooth rational numbers qc11 · · · qcmm .

Heuristically, we can find such an r-bit accurate approxi-
mation with |cj | = O(2r/(m−1)). For example, using the first
m = 2 primes, some approximations of π are

28 · 3−4 = 3.16 ...
21931643 · 3−1218730 = 3.141592601 ...

2−3824416943916269 · 32412938439979599 = 3.1415926535897933 ...

where the last approximation achieves 16-digit accuracy
using 16-digit coefficients cj . Using m = 5 primes, we can
achieve 16-digit accuracy with 4-digit cj :

26 · 34 · 5−10 · 72 · 112 = 3.1473 ...
2−31 · 3−57 · 5136 · 741 · 11−89 = 3.141592609 ...

2−583 · 33227 · 57718 · 7−8681 · 11555 = 3.1415926535897934 ...

Finding such cj amounts to solving the approximate inho-
mogeneous integer relation problem x ≈ c1α1 + · · ·+ cmαm.
We solve this problem in two stages:

1. Precomputation (independent of both x and n, depending
only on the algorithm parameters m and r): use LLL [LLL82]

to find increasingly precise solutions to the homogeneous
problem d1α1 + · · ·+ dmαm ≈ 0, for example:

1 0 0 0 0
1 1 −1 0 0
0 −1 −2 1 1
1 2 −3 1 0
−3 4 −2 −2 2
−2 2 2 −7 4
−18 −3 22 1 −9
19 −23 −22 1 19

log(2)
log(3)
log(5)
log(7)
log(11)

 =

0.693
0.182
0.0263
0.00797
0.000102
1.61 · 10−5

6.51 · 10−7

4.99 · 10−8

Let (di,1, . . . , di,m) be row vectors of such solutions and

εi = di,1 log q1 + · · · + di,m log qm, for i = 1, . . . , `. For
a tuning parameter τ > 0, we retain the best solution that
achieves εi ≈ 2−τi.

2. For a given x, we now compute c1, . . . , cn as follows. We
start with cj ← 0 for j = 1, . . . ,m. For i = 1, . . . , `, we let
ki ← bx/εic and we update x← x−kiεi and cj ← cj+kidi,j
(for j = 1, . . . ,m).1

To analyze the parameters in this method, we will assume
that the discovered integer relations satisfy heuristic bounds
stronger than those strictly guaranteed by LLL.

In order to achieve an r-bit argument reduction, we should
have ε` ≈ 2−τ` ≈ 2−r, so we take ` ≈ r/τ . Heuristically,
we have |di,j | / 2τi/(m−1), so |cj | / 2τ+`τ/(m−1)/(1 −
2−τ/(m−1)). In order to keep the |cj | small, it is therefore
important to take τ small. When τ 6 m, we may use the
approximation (1− 2−τ/(m−1))−1 ≈ (m−1)/(τ log 2), which
is correct up to a factor two. Since log2(q1 · · · qm) ≈ m log2m
(by the prime number theorem), we then have

log2(q
|c1|
1 · · · q|cm|m) / 2

τ+
r

m−1 m−1
τ log 2m log2m.

For similar reasons as in section IV, we wish to bound the right
hand side by n. For fixed m and r, the minimum of 2τ/τ is
reached at τ ≈ 1/ log 2 ≈ 1.44, after which the right hand
side simplifies into ϕ(m, r) := e2r/(m−1)(m − 1)m log2m.
When m is fixed, we have ϕ(m, r) 6 n as long as

r 6 (m− 1) log2

n

e(m2 −m) log2m
. (4)

1This algorithm can be viewed as a version of Babai’s nearest plane
algorithm for solving the closest vector problem (CVP) for lattices [Bab86].
The authors thank Léo Ducas for pointing this out.

In the case when m = 2, this yields r 6 log2(n/2e). Let
us now consider ϕ(m, r) ≈ e2r/mm2 log2m for larger values
of m. If we fix the ratio λ := r/m, then ϕ(m, r) ≈ n yields

m ≈
√

n

e2λ log2m
≈
√

n

e2λ log2 n

Hence r = λm is maximal if λ
2λ/2

is maximal, which happens
for λ ≈ 2

log 2 ≈ 2.89. Taking λ this way, we then have
ϕ(m, r) 6 n when m /

√
n/(e3 log2 n).

The logarithms log q1, . . . , log qm and the matrix (di,j) are
precomputed and respectively require nm and ≈ r` bits of
space. Since ϕ(m, r) 6 n, the entries di,j and the cj fit into
integers of size β. If they actually fit into integers of size
β/2, β/4, . . ., then we may use a packed representation for the
matrix (di,j). Optionally (and in particular when r = λm with
λ as above), we may also store ε1, . . . , ε` in a table, which
requires n` ≈ nr/τ ≈ nr log 2 more bits of space. Such a
table can be (re)computed in time `mA(n) ≈ rmA(n) log 2.

With these tables, the costs of the updates x← x−kiεi and
ci ← ci + kidi,j are bounded by `A(n) resp. `mM(τ + r/m).
Since τ+r/m 6 β, we have M(τ+r/m) ≈ A(β), the cost of
an arithmetic operation with machine precision. If τ + r/m 6
β/2κ, then we may achieve mM(τ + r/m) ≈ mA(β)/2κ by
storing the di,j in packed format.

If m is small, then the cost of all updates becomes
rA(n) log 2+rmM(β) log 2 ≈ rA(n) log 2, which is typically
negligible with respect to P(n) due to the bound (4). If m is
large and r = λm with λ = 2/ log 2 as above, then the cost
becomes 2mA(n)+2m2M(β). Since m2 ≈ n/(e3 log2 n), we
have 2m2M(β) / (2β/(e3 log2 n))M(n), which is generally
small compared to 2mA(n). The cost therefore simplifies to
2mA(n).

Under the constraints on m, the denominator and numerator
of E := qc11 · · · qcmm are typically both of size / n/2. The cost
to evaluate this fraction with a precision of n bits is bounded
by 2P(n/2)+cM(n) = P(n)+(c− 1/2)M(n), where c 6 5/3
depends on the multiplicative regime.

See Table II for a summary of the complexities and memory
requirements.

VI. EMPIRICAL COMPARISON OF TABLE-BASED METHODS

We have implemented prototype code for computing exp(x)
using the following table-based methods:

1) The m-Diophantine method
2) The 1-bitwise method (both the classical and binary

splitting variants)
3) The greedy 8-bitwise method
Table III, presents the absolute running time for the table-

free method as a baseline E(n), compared with the relative
costs ẼT = ET /E and T̃T = TT /E of the other methods.

For each method, we report the series strategy (EXP, SH,
BSH, BB), reduction parameter r, and number of primes m
(Diophantine method only), which minimize ET , by exhaus-
tively timing all combinations. We have restricted the search
space to r and m of the form 2k or 3 · 2k.

We also show the corresponding ẼT for the current default
exponential function arb_exp in FLINT. That implementa-
tion uses static tables for multiplicative reduction exp(x) =
exp(x − j/2r) exp(j/2r) at low precision (5 KB tables for
r = 8 up to n < 512 and 36 KB bipartite tables for r = 10
up to n < 4608) [Joh15] and dynamic m-Diophantine tables
with m = 13 for n < 4194304.

Some of our observations follow.

A. Best methods for dynamic tables

For applications requiring N function evaluations, the mea-
sured ẼT and T̃T values roughly suggest generating

• 8-bitwise tables when we expect N > 103,
• 1-bitwise tables when we expect N > 102,
• m-Diophantine tables when we expect N > 101,

provided, in each case, that the memory consumption is
acceptable for the given n.

Note that the parameters in Table III are chosen for
N →∞. If the goal is to minimize the cost for a specific
N , then the parameter values in the table are suggestive, but
somewhat different parameters may be optimal: typically, it
will be more efficient to trade a much (e.g. 2 or 4 times)
smaller r and TT for a slightly (e.g. 10%) larger ET .

B. Static tables

The 1-bitwise method is up to twice as fast as the argu-
ment reduction with static tables currently used in FLINT’s
arb_exp while using comparably-sized tables. The supe-
riority of the classical BKM-style reduction is explained
by the large size of M(n)/A(n) beyond machine precision,
making addition of logarithms better than multiplication of
exponentials. The 8-bitwise method is even more efficient, but
uses significantly larger tables.

For software that can ship with ≈ 102 KB of static tables
for elementary functions, it appears reasonable to use 1-bitwise
tables for n up to a few thousand and (m ≈ 8)-bitwise tables
for n up to a few hundred.

C. Huge tables

If N →∞, further speedups are possible using even larger
m-bitwise tables. For example, 16-bitwise reduction (tested
but not reported in Table III) achieves ẼT = 0.29 for n = 128
with a 3 MB table (r = 48) and ẼT = 0.16 for n = 4096
with a 2 GB table (r = 1024). In practice, there may be
diminishing returns for such large tables due to cache size
and memory bandwidth bottlenecks; we have not investigated
these effects further.

D. Maximum speedup

The speedup 1/ẼT with each tested table-based method is
maximized near n ≈ 216 bits. Intuitively, this occurs when we
enter the FFT regime where M(n)/A(n) flattens out. Beyond
this point, trading full-precision multiplications for additions
gives little further improvement.

TABLE III
CALCULATING exp(x), x =

√
2− 1, TO n-BIT PRECISION, USING VARIOUS ALGORITHMS. FOR EACH METHOD AND n, WE SHOW THE EMPIRICALLY

DETERMINED OPTIMAL PARAMETER r AND SERIES EVALUATION STRATEGY. FOR THE METHODS USING A TABLE T , WE SHOW THE RELATIVE
EVALUATION TIME ẼT = ET /E AND PRECOMPUTATION TIME T̃T = TT /E (LOWER VALUES ARE BETTER).

No tables m-Diophantine 1-bitwise Greedy 8-bitwise FLINT

Bits n r Series Time (E) m r Series ẼT T̃T Table r Series ẼT T̃T Table r Series ẼT T̃T Table ẼT

128 4 EXP 0.18 µs 2 6 EXP 4.16 16.0 32 B 8 EXP 0.72 46 128 B 48 EXP 0.47 1995 24 KB 0.76
256 12 EXP 0.38 µs 4 16 EXP 2.53 12.4 128 B 24 EXP 0.56 56 768 B 32 EXP 0.43 1732 32 KB 0.63
512 8 EXP 1.06 µs 4 16 EXP 1.40 7.1 256 B 32 EXP 0.51 36 2.0 KB 64 EXP 0.30 1491 128 KB 0.69

1024 12 SH 3.28 µs 3 24 EXP 0.98 4.0 384 B 64 EXP 0.43 29 8.0 KB 128 EXP 0.25 1244 512 KB 0.80
2048 12 SH 11.5 µs 3 24 SH 0.72 2.3 768 B 128 EXP 0.34 23 32 KB 256 EXP 0.21 1017 2.0 MB 0.79
4096 24 SH 37.8 µs 12 48 SH 0.57 3.2 6.0 KB 128 SH 0.31 19 64 KB 512 EXP 0.21 984 8.0 MB 0.56
8192 24 SH 0.12 ms 16 64 SH 0.49 3.2 16 KB 256 SH 0.26 22 256 KB 512 SH 0.19 959 16 MB 0.45

16384 24 BSH 0.41 ms 32 128 SH 0.43 5.3 64 KB 384 SH 0.26 20 768 KB 768 SH 0.17 892 48 MB 0.45
32768 32 BSH 1.40 ms 32 192 BSH 0.35 4.2 128 KB 512 SH 0.22 17 2.0 MB 1024 SH 0.16 850 128 MB 0.48
65536 16 BB 4.11 ms 32 192 BSH 0.38 3.9 256 KB 768 SH 0.23 19 6.0 MB 1536 SH 0.16 948 384 MB 0.59

131072 32 BB 10.0 ms 32 192 BSH 0.41 4.0 512 KB 1024 SH 0.24 22 16 MB 2048 SH 0.17 1096 1.0 GB 0.62
262144 32 BB 24.0 ms 32 192 BSH 0.44 3.9 1.0 MB 768 BSH 0.29 23 24 MB 2048 SH 0.19 1271 2.0 GB 0.60
524288 32 BB 56.1 ms 64 384 BSH 0.45 8.8 4.0 MB 1536 SH 0.31 34 96 MB 2048 SH 0.22 1494 4.0 GB 0.62

1048576 32 BB 0.13 s 64 512 BSH 0.48 8.5 8.0 MB 1536 BSH 0.32 39 192 MB 4096 SH 0.23 2198 16 GB 0.64
2097152 32 BB 0.30 s 64 512 BSH 0.52 8.5 16 MB 2048 BSH 0.34 52 512 MB 0.67
4194304 32 BB 0.69 s 64 512 BB 0.61 8.3 32 MB 3072 BSH 0.35 72 1.5 GB 1.00
8388608 32 BB 1.60 s 96 768 BB 0.62 12.5 96 MB 4096 BSH 0.37 96 4.0 GB 1.00

16777216 32 BB 3.66 s 96 768 BB 0.62 12.3 192 MB 4096 BSH 0.42 105 8.0 GB 1.01
33554432 32 BB 8.38 s 96 1024 BB 0.62 12.1 384 MB 4096 BB 0.46 109 16 GB 1.01

E. Binary splitting products

The crossover where our binary splitting variant of the
bitwise method wins over the classical BKM-like shift-and-
add version is 262K bits (in the table, we report timings for the
classical method below this point and for the binary splitting
version above). For n in the millions, it gives a 10% to 20%
speedup. For example, at 1M bits, we have ẼT = 0.32 with
binary splitting and ẼT = 0.37 without.

F. Low precision

In the few-word regime, say for n 6 1024, function call
and loop overheads remain significant in our prototype code
which handles generic n, and we should be able to achieve
better performance by specializing code for each multiple of
the word size. For example, a version of the 1-bitwise method
for n = 128 using fully inlined double-word arithmetic runs
in around 57 ns (ẼT = 0.31), versus 133 ns (ẼT = 0.72) for
the generic code. We leave a closer study for future work.

VII. BINARY SPLITTING

The binary splitting technique has a double character: it can
both be considered as one of the strategies for power series
evaluation and as another strategy for argument reduction
(from |x| < 2−r to |x| < 2−2r). Let us recall the technique
with more details and discuss a few variants.

For complexity analyses in the FFT regime, we assume that
the reader is familiar with the fact that one multiplication
requires three conversions into and from an FFT representation

that is crafted for the bit-size of the result. For a result of bit-
size n, the cost of one conversion is approximately M(n)/6.

A. Traditional binary splitting

Assume that 0 6 x < 2−r and n = 2lr. We decompose
x = L + t with L ∈ 2−2rN and 0 6 y < 2−r. Our aim is
the efficient approximation E ≈ eL with a precision of n bits,
after which we obtain the exponential of x as ex ≈ Ey, where
y ≈ et. In what follows, it will be suggestive to set ε := L.
For k ∈ N and δ ∈ 2N, we define

Σk;δ :=
∑

06i<δ

Πk+i;δ−iε
i, Πk;δ :=

(k + δ)!

k!
,

so that

Σk;2δ = Πk+δ;δΣk;δ + Σk+δ;δε
δ (5)

Πk;2δ = Πk+δ;δΠk;δ. (6)

We compute Σ0;2l and Π0;2l using these recursive relations,
after which Σ0;2l/Π0;2l ≈ eε. (A minor technical improvement
would be to factor out (k + δ)! from Σk;δ .)

For k + δ 6 n, the bit-size of Πk;δ is bounded by
δ log2 n and the bit-size of εδ2−δr is at most δr. Since binary
splitting is usually applied after some of the other argument
reductions, we may assume r � log n. Then the bit-size of
Σk;δ is approximately δr and the cost of computing Π0;2l

(and all intermediate Πk;δ) negligible with respect to the cost
to compute Σ0;2l .

In the naive, Karatsuba, and Toom-Cook regimes with
M(n) ∝ nγ , the multiplications Πk+δΣk;δ are also much
cheaper than the multiplications Σk+δ;δε

δ . Consequently, the
cost of the full algorithm is approximately the same as the
cost P(n) ≈ M(n)/(2γ − 2) of multiplying 2l integers of bit-
size 6r using binary splitting plus the cost 6 2/3M(n)/(2γ−
1) of the repeated squarings ε2, ε4, . . . , ε2l−1

. The cost of the
final division is again negligible.

In the FFT regime, the cost of the multiplications Πk+δΣk;δ

and the final division cannot necessarily be neglected, so the
total cost of the algorithm may a priori become as large as
2P(n) + 4/3M(n). But Σk;2δ can be computed in the FFT
model and the FFT transform of εδ can also be cached. The
complexity accordingly drops to 4/3P(n) + 4/3M(n). In the
most favorable case when n/r � nfft, the multiplications and
divisions by the Πk;δ actually do become negligible. In that
case, the cost of the algorithm further drops to 2/3P(n).

B. Optimizations when r approaches n

Below the FFT regime, the cost of binary splitting is only
a constant times larger than the cost of multiplication. In the
FFT regime, we recall that P(n) ≈ M(n) log(n/nFFT). A
particularly interesting case for us is when r > nFFT and
n/r is moderately large (e.g. n/r ≈ 28). Can we reduce the
log(n/nFFT) overhead with respect to multiplication in this
case?

Two things that we wish to exploit are the fact that multi-
plications with the Πk;δ are cheap in this regime and that we
may precompute some powers of ε and replace (5) a more
efficient formula. More precisely, let R = ∆r with ∆ = 2κ

be such that r 6 R 6 n. For any k ∈ ∆N with k < n, we
have

Σk;∆ = Πk;∆ + Πk+1;∆−1ε+ · · ·+ Πk+∆−1;1ε
∆−1. (7)

Assuming that ε, . . . , ε∆−1 are known, the computa-
tion of Σk;∆ is cheap, under our assumptions. From
Σ0;∆,Σ∆;∆, . . . ,Σ2l−∆;∆, we may complete the computation
of Σ0;2l in time (2/3(l − κ) + 1/3)M(n), using binary split-
ting.

In the FFT regime, we can compute ε2, . . . , ε∆−1 ef-
ficiently, by writing ∆ = ∆1∆2 with ∆1 ≈ ∆2,
by precomputing ε2, ε3, . . . , ε∆1−1 (of negligible cost) and
ε∆1 , ε2∆1 , . . . , ε∆−∆1 , and then compute all products εiεj∆1

jointly using an FFT representation that can contain an R-
bit result. This can be done in time S(∆) 6 S(∆2) +
(∆1 + ∆2)M(R)/6 + (∆1 − 1)(∆2 − 1)M(R)/6 6 (∆ +
∆2 + · · ·)M(R)/6 ≈ (22κ−l/6)M(n). For instance, if
n = 28r, then taking ∆ = 32, the total cost be-
comes (2 + 1/3 + 4/6)M(n) = 3M(n), which is better than
17/3M(n). In general, taking κ = dl/2e, we achieve an
approximate speed-up of two.

C. An asymptotic optimization

The above optimization accelerates the work for the nodes
of the binary splitting trees that are close to the leafs. Can we
do something similar for the inner nodes?

More precisely, assuming that Σ0;∆,Σ∆;∆, . . . ,Σ2l−∆;∆

are known, can we effciently compute Σ0;∆′ ,Σ∆′;∆′ , . . .,
Σ2l−∆′;∆′ for some larger ∆′ with ∆ | ∆′ | 2l?

For any k ∈ ∆′N with k < n, formula (7) generalizes to

Σk;∆′ =
∑

06i<∆′/∆

Πk+∆i;∆′−∆iΣk+∆i;∆(ε∆)i. (8)

In the most favorable case, the products Πk+∆i;∆′−∆iΣk+∆i;∆

are cheap. A minima, our assumption r � log n ensures that
their bit-sizes are approximately bounded by r∆.

Assuming that the products Πk+∆i;∆′−∆iΣk+∆i;∆ are
known, we wish to evaluate (8) in the FFT model. For this,
we first precompute ε∆, ε2∆, . . . , ε∆′−∆. We next cut these
powers into chunks of R bits and transform them into an FFT
model capable of holding products of (a bit more than) 2R bits.
We next transform the products Πk+∆i;∆′−∆iΣk+∆i;∆. We
can now evaluate (8) in the FFT model and finally transform
back in order to obtain the desired result.

Not counting the precomputations, this method allows
us to compute Σk;∆′ using ∆′/∆ forward and back-
ward transforms and

(
∆′/∆

2

)
products in the FFT model.

Altogether, this can be done in time 2
3 (∆′/∆)M(R) +

O((∆′/∆)2R). The O((∆′/∆)R) term is subdominant as
long as ∆′/∆ = O(logR). In unfavorable cases when the
bit-size of Πk+∆i;∆′−∆i exceeds nFFT, one may compute the
products Πk+∆i;∆′−∆iΣk+∆i;∆(ε∆)i in an FFT representation
for products of three numbers. The 2

3 (∆′/∆)M(R) term
should then be replaced by (∆′/∆)M(R).

The total cost to compute Σ0;∆′ , . . . ,Σ2l−∆′ thus lies be-
tween 2/3M(n) and M(n), still not counting precomputations.
In other words, we are able to do log2(∆′/∆) = O(logR)
recursive levels for about the price of a single one without the
FFT optimizations. This acceleration is an example of FFT
trading [Hoe10], [Hoe16].

The precomputations take time ≈ (∆′/∆)2M(R)/3, by first
computing ε∆, ε2∆, . . . , ε∆′−∆ as above and then converting
into the chunked FFT model. As long as (∆′/∆)2R 6 n,
the cost of the precomputations remains small with respect to
2/3M(n).

Now consider the application of the above technique
to compute all Σk;∆ for ∆ = Λ,Λ2, . . . ,Λp and k =
0,∆, . . . , (Λ− 1)∆, where Λ = 2blog log2 nc and p is maximal
with Λp+1 6 2l. By what precedes, this can be done in
time O(pM(n)) = O(lM(n)/ log log n). We may deduce Σ0;2l

and Π0;2l using l − p log2 Λ 6 2 log2 Λ conventional binary
splitting steps of cost O(M(n) log log n).

As a conclusion, we have reduced the overall price of
the argument reduction by an asymptotic factor log log n.
This actually leads to a general exponentiation algorithm
of cost E(n) = O(M(n) log2 n/ log log n), based on binary
splitting only. This is worse than the Brent-Salamin method
(of complexity O(M(n) log n), but it remains remarkable that
the asymptotic complexity of the binary splitting method can
be reduced at all in this case.

VIII. EVALUATING THE TAYLOR SERIES

Let us now investigate methods for evaluating the final Tay-
lor series for exp after completion of all argument reductions.
At this point, we assume that 0 6 ε < 2−r and that we want
to compute 1 + · · ·+ 1

(N−1)!ε
N−1 for N ≈ n/r.

A. Rectangular splitting

For p, q ∈ N with pq ≈ N , we may write

eε ≈ 1

(N − 1)!

∑
06i<p

 ∑
06j<q

(N − 1)!

(pj + i)!
(εp)j

 εi.
Let yi,j := (N−1)!

(pj+i)! (ε
p)j be the innermost summand and

Yi := yi,0 + · · · + yi,q−1. The advantage of organizing the
double sum in this way is that yi,j can be deduced from yi+1,j

using yi,j = (pj+ i+1)yi+1,j , where pj+ i+1 always fits in
a single word. Starting with the values yp−1,0, . . . , yp−1,q−1

and Yp−1, we use this to compute yi,0, . . . , yi,q−1 and Yi for
i = p−2, . . . , 0. We finally compute Y0+Y1ε+· · ·+Yp−1ε

p−1.
This time, ε and εp essentially have full n-bit precision. In

the naive regime, ε2, . . . , εp−1 are most efficiently computed
using squaring for all even powers. Since one square can be
done in time 1/2M(n), the p first powers can be computed
in time 3/4pM(n). In the Karatsuba and Toom-Cook regimes,
squaring takes time 2/3M(n), and the complexity becomes
5/6pM(n). In the FFT regime, assuming for simplicity that
p = s2, we first compute transforms of ε, . . . , εs−1 and
εs, . . . , (εs)s−1, and then retrieve the εis+j from products of
these transforms. The cost is (p/3 + 2s/3 +O (

√
s))M(n).

Altogether, the cost of rectangular splitting is c(p +
q)M(n) + 2pqA(n), where c ∈ (1/3, 5/6) depends on the
multiplicative regime. The second term is typically negligible.
Taking p ≈ q, the complexity thus becomes 2c

√
NM(n).

For which r should we use this method? When taking r
twice as large, we save c′

√
NM(n) operations where c′ =

2c
(

1−
√

1/2
)

. This should be compared with the cost of
using one step of binary splitting. In the Karatsuba regime,
we have c′ ≈ 0.5 and the cost of one step of binary splitting
is 4/3M(n). The threshold for N therefore lies around 7. In the
FFT regime, c′ may approach 0.2 and one binary splitting step
costs 1/3M(n) log(n/nfft), so the threshold becomes N ≈
2.8 log2

2(n/nfft). When using the optimized version of binary
splitting, the threshold becomes N ≈ 0.7 log2

2(n/nfft).

B. Hyperbolic optimizations

An interesting question concerns the existence of “higher or-
der” generalizations of the hyperbolic formula (1). It is remark-
able that an order three generalization (mainly of theoretical
interest) indeed exists: with f : x 7→ 1+ 1

6!x
6+ 1

12!x
12+· · · , we

claim that eε can be recovered from f(ε) and f(2ε). Indeed,
setting ω = e2πi/6 and yi := exp(ωiε) for i = 0, . . . , 5, we
have eε = y0, f(ε) = y0 + · · ·+y5, and f(2ε) = y2

0 + · · ·+y2
5 .

The remarkable relations y3 = −y0, y4 = −y0, y5 = −y0, and
y1 = y0y2 allow us to express f(ε) and f(2ε) as polynomials
in terms of y0 and y2 only. We regard this as a system of two

equations in y0 and y2, which can be solved using Newton’s
method in time O(M(n)).

IX. DISCUSSION

It remains to develop production-ready implementations of
elementary functions using the techniques we have discussed.
In particular, we have not yet implemented all tricks from
sections VII and VIII, nor SIMD acceleration. An interesting
question for future study is whether FFT techniques can yield
practical improvements even at reasonably low precision, e.g.
thousands of bits as opposed to millions of bits.

We note that all algorithms presented for the exponential
function have direct analogs for other elementary functions:
for example, we can compute trigonometric functions by
writing exp(ix) = cos(x) + i sin(x) and using arctangents
instead of logarithms and Gaussian integers instead of integers.
Generalizing further, an interesting question is whether similar
techniques work for holonomic functions.

REFERENCES

[Bab86] László Babai. On Lovász’ lattice reduction and the nearest lattice
point problem. Combinatorica, 6:1–13, 1986.

[BEIR00] JC Bajard, M Ercegovac, L Imbert, and F Rico. Fast evalua-
tion of elementary functions with combined shift-and-add and
polynomial methods. In 4th Conference on Real Numbers and
Computers, pages 75–87, 2000.

[BKM94] J.-C. Bajard, S. Kla, and J.-M. Muller. BKM: a new hardware
algorithm for complex elementary functions. IEEE Transactions
on Computers, 43(8):955–963, 1994.

[Bre76a] R. P. Brent. The complexity of multiple-precision arithmetic. The
Complexity of Comp. Problem Solving, pages 126–165, 1976.

[Bre76b] Richard P. Brent. Fast multiple-precision evaluation of elementary
functions. Journal of the ACM, 23(2):242–251, April 1976.

[BZ11] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic.
Cambridge University Press, 2011.

[FHL+07] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick
Pélissier, and Paul Zimmermann. MPFR: A multiple-precision
binary floating-point library with correct rounding. ACM Trans-
actions on Mathematical Software, 33(2):13:1–13:15, June 2007.

[HH21] David Harvey and Joris van der Hoeven. Integer multiplication
in time O(n logn). Annals of Mathematics, 193(2):563, 2021.

[Hoe10] Joris van der Hoeven. Newton’s method and FFT trading. Journal
of Symbolic Computation, 45(8):857–878, 2010.

[Hoe16] Joris van der Hoeven. Faster Chinese remaindering. https://hal.
archives-ouvertes.fr/hal-01403810, 2016.

[Joh15] F. Johansson. Efficient implementation of elementary functions
in the medium-precision range. In 22nd IEEE Symposium on
Computer Arithmetic, ARITH22, pages 83–89, 2015.

[Joh17] Fredrik Johansson. Arb: Efficient arbitrary-precision midpoint-
radius interval arithmetic. IEEE Transactions on Computers,
66(8):1281–1292, August 2017.

[Joh22] Fredrik Johansson. Computing elementary functions using multi-
prime argument reduction. arXiv:2207.02501, 2022.

[LLL82] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász.
Factoring polynomials with rational coefficients. Mathematische
annalen, 261:515–534, 1982.

[Mul16] Jean-Michel Muller. Elementary Functions: Algorithms and
Implementation. Birkhäuser, 3rd edition, 2016.

[Sal76] Eugene Salamin. Computation of π using arithmetic-geometric
mean. Mathematics of Computation, 30(135):565, July 1976.

[Sch06] Arnold Schönhage. Fast algorithms for computing exp, ln, sin,
cos at medium precision. In Thomas Lickteig, Klaus Meer,
and Luis Miguel Pardo, editors, 04061 Abstracts Collection -
Real Computation and Complexity. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2006. https://drops.dagstuhl.de/opus/
volltexte/2006/458/.

[Smi89] D. M. Smith. Efficient multiple-precision evaluation of elementary
functions. Mathematics of Computation, 52:131–134, 1989.

[Vol59] Jack E Volder. The CORDIC trigonometric computing technique.
IRE Transactions on electronic computers, (3):330–334, 1959.

https://hal.archives-ouvertes.fr/hal-01403810
https://hal.archives-ouvertes.fr/hal-01403810
https://drops.dagstuhl.de/opus/volltexte/2006/458/
https://drops.dagstuhl.de/opus/volltexte/2006/458/

	Introduction
	Multiple precision arithmetic
	The standard table-free algorithm for exp
	Empirical comparison of basic operations

	Reduction using table lookup
	Bitwise reduction
	Traditional Cordic-BKM style method
	Processing m-bits at a time, greedy variant
	Processing m-bits at a time, sparse variant
	Terminate with shifts and adds
	Terminate with binary splitting
	Discussion
	SIMD acceleration

	Diophantine approximation
	Empirical comparison of table-based methods
	Best methods for dynamic tables
	Static tables
	Huge tables
	Maximum speedup
	Binary splitting products
	Low precision

	Binary splitting
	Traditional binary splitting
	Optimizations when r approaches n
	An asymptotic optimization

	Evaluating the Taylor series
	Rectangular splitting
	Hyperbolic optimizations

	Discussion
	References

