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Abstract

This article addresses one of the components of our ongoing work towards an efficient com-
putational modeling methodology for evaluating all effects on a submerged structure of a remote
underwater explosion. Following up on a previous study devoted to computing the transient acous-
tic fields induced by the shock wave initially sent by the blast on a rigid submarine, we focus here on
the second stage of the underwater event, namely solving the transient fluid-structure interaction
(FSI) between the structure and the incompressible potential flow induced by the delayed, and
slower, oscillations of the gas bubble created by the remote blast.

The boundary element method (BEM) is the best-suited approach for handling potential flow
problems in large fluid domains (idealized as unbounded), whereas the finite element method (FEM)
naturally applies to the transient structure analyses. To perform the FEM-BEM coupling we use a
sub-cycling approach that alternates fluid and solid analyses with Neumann boundary conditions.
The transient nature of the coupled analysis and the recourse to sub-cycling together make the
overall procedure rely on a large number of BEM potential flow solutions, while the complexities
of the wet surface and of the solid transient response imply a need for large BE models for the flow
potential. This combination of reasons mandates accelerating the BE component.

Accordingly, our main contribution is to study the feasibility and effectiveness of coupling the
Hierarchical-matrix accelerated BEM (H-BEM) and the FEM for the FSI problems of interest. In
particular, we show that the same integral operators can be used at all time instants in spite of the
expected global motion of the submerged structure, a feature that the H-BEM can exploit to full
advantage. The proposed original treatment is validated against analytical solutions for the case of
a motionless or mobile rigid spherical immersed object, and then tested on a complex configuration
representative of target applications.

Keywords:. FEM-BEM coupling; Fluid-structure interaction; Fast BEM; Underwater explosion

1 Introduction

Submarines must be designed to withstand the effects of underwater explosions (see Fig. 1). Given the
very high cost of full-scale experimental testing, assessing the effects of a remote underwater explosion
on a given structure rests largely on numerical simulation methods. An underwater explosion is a
complex event [10, 31] that unfolds in two stages having quite different time scales. In the first (fast)
stage, a shock wave is sent, and its effects can be modelled near the structure using a linear acoustic
model for the fluid. In the second stage, the hot gases resulting from the explosion form a pulsating
bubble, inducing a slower and delayed fluid motion that can be treated as an incompressible potential
flow. The blast is assumed to be sufficiently remote for the two phenomena as experienced by the ship
to be temporally separated.
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Our overall goal is to develop a computational methodology for the fluid-structure interaction (FSI)
problem taking into account all effects of the remote blast. A previous study [27] investigated the
computation of transient acoustic fields induced by the shock wave of the blast on a rigid submarine.
In this work, we focus on the second stage, i.e. the transient FSI between the submarine and the
incompressible potential flow induced by the oscillating bubble of gas. The water domain (the ocean)
is assumed to be unbounded, i.e., the free surface (water surface) and the seabed are disregarded. The
water is treated as a homogeneous and inviscid fluid experiencing irrotational flows.

Domain discretisation methods such as the FEM are viable approaches for the treatment of incom-
pressible potential flow. However, the boundary element method (BEM) [7], based on the discretisation
of boundary integral equations (BIEs), is very well suited to the present situation involving potential
flow problems in large fluid domains (idealized as unbounded), as it only requires the discretisation of
the submarine wet surface, whose size and geometrical details may lead to meshing difficulties with
domain discretization. The BEM is indeed used for the present type of applications in e.g. [24,35–37].

The perturbation induced by the bubble of an underwater explosion, and the correlated FSI problem
with a structure, have been extensively studied in the literature [2, 4, 12–14, 17, 32, 38]. In particular,
bubble models with varying degrees of complexity, describing the bubble dynamics and the induced
fluid motion in the absence of a submerged structure, have been proposed [14, 23]. In this work, the
submarine is assumed to remain far enough from the bubble during the whole analysis, so that the
bubble dynamics is only marginally affected by its presence. Based on this hypothesis, the FSI problem
is then formulated in terms of coupling a potential flow and the dynamical response of the structure,
using an existing bubble model (and especially the velocity potential describing the ambient flow) as
input; in practice we rely on the in-house bubble dynamic simulation proposed in [23].

The specific industrial context of this work moreover dictates that the transient structure analyses
be effected using the dedicated FE platform Abaqus R©, which is not open-source and sets limitations on
the implementation of BE-FE coupling procedures. In particular, non-homogeneous Robin boundary
conditions, upon which iterative domain decomposition methods with guaranteed convergence are often
based, are not available in this framework (see [26], Sec. 3.2.2). We thus resort to a sub-cycling approach
that alternates fluid and solid analyses with Neumann boundary conditions. The transient nature of
the overall coupled analysis and the recourse to sub-cycling together make the overall procedure rely
on a large number M of BEM potential flow solutions, while the complexity of the wet surface and of
the solid transient response imply a need for models featuring large numbers N of BE unknowns for the
flow potential; we expect applications to require M ∼ 103− 104 and N ∼ 104− 105. This combination
of reasons mandates accelerating the BE component. We show that under reasonable assumptions all
BE solutions can be obtained by re-using the same time-independent governing integral operators in
spite of the expected global motion of the submerged structure. This makes the H-matrix compression
method a natural acceleration method, whereby blockwise data-sparse low-rank approximations of the
relevant integral operators are pre-computed and stored, then used for accelerating the matrix-vector
products incurred in the GMRES iterations yielding all subsequent BE solutions.

Figure 1: Submarine experiencing a remote underwater blast.
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The main goal of this work is to show the feasibility and effectiveness of coupling the H-matrix
accelerated BEM and the FEM, and taking full advantage of the established reusability of integral
operators in this context, for analysing the transient effect of water motions induced by the pulsating
bubble effect on submerged structures. The article is organised as follows. The governing equations
for our FSI problem and their underlying physical and computational hypotheses, are given in Sec-
tion 2, together with the main ingredients for the iterative BEM-FEM coupling solution method. The
accelerated BEM for the fluid domain is then presented in Section 3, with emphasis on the reasons
allowing the reusability of integral operators. The proposed treatment is validated in Section 4 against
analytical solutions for the case of a motionless or mobile rigid spherical object. Finally, a complex
configuration representative of target applications is treated in Section 5.

2 FSI problem: hypotheses and formulation

2.1 Hypotheses and modeling. The bubble motion is assumed to be slow enough for the fluid to
be treated as incompressible, irrotational and non-viscous. Under these assumptions, the fluid velocity
derives from a velocity potential φ that is a harmonic function, and the fluid pressure is inferred
through Bernoulli’s equation (see (3b) below). We assume the knowledge of a bubble model, that is, a
time-dependent velocity potential φamb (called ambient potential in the sequel) that describes the fluid
motion created by a pulsating bubble in the surrounding fluid medium in the absence of a submerged
structure. The ambient potential depends on time-dependent parameters describing the bubble motion
itself, which are governed by ODEs resulting from energy conservation considerations. In practice, we
use in this work the Hicks bubble model [20,23] to describe the bubble dynamics in the absence of the
ship; in this model, whose details are recalled in Section 5.2, the bubble is assumed to remain spherical
while vertically moving upwards (Fig. 2), and φamb(x, t) depends on the bubble radius R(t) and depth
Z(t). To treat the FSI with the submerged structure, we introduce the additive decomposition

φ = φamb + φper (1)

of the velocity potential, where the main unknown φper of the exterior flow problem is sought in the
whole fluid domain exterior to the structure (i.e. we elect as an engineering approximation to disregard
the remote bubble geometry in the definition of φper). The ambient potential φamb decays at infinity,
and the same is assumed for φ, and hence for φper.

The bubble oscillation may create significant motion of the fluid and the submerged structure. The
domain ΩS(t) occupied by the structure is thus a priori time-dependent, hence so are the fluid domain
ΩF := R3 \ΩS(t) and the wet surface Γ(t) := ∂ΩF(t) ∩ ∂ΩS(t). The structure is assumed to be a
linearly elastic solid; other small-strain models involving structural elements such as plates or shells,
or history-dependent constitutive models, may be accommodated without major changes.

2.2 Governing equations. The displacement u, stress tensor σσσ, perturbed velocity potential φper

and fluid pressure p involved in the coupled FSI problem of interest are governed by the structure
evolution field equations{

(a) ρSü− divσσσ(u) = fv, (b) u(·, 0) = u̇(·, 0) = 0,

(c) constitutive relation between σσσ and u
in ΩS(t)× [0, T ], (2)

(which typically correspond to small-strain linearly elastic deformation), the fluid field equations(a) ∆φper = 0, φper → 0 at infinity

(b) p = C − ρF∂tφ−
ρF

2
|∇φ|2 − ρFgx3

in R3 \ΩS(t)× [0, T ], (3)
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Figure 2: Schematic representation of the bubble motion and the pressure history, after [31].

the kinematic continuity condition

∂nφ
per = −∂nφamb + u̇ · n in Γ(t)× [0, T ], (4)

and the dynamic continuity condition

σσσ(u) · n = −pn in Γ(t)× [0, T ], (5)

where n is the normal to the wet surface Γ(t) pointing into the fluid, ρS, ρF are the mass densities of
the solid and fluid media, fv are external body forces exerted on the solid, g is the gravity. Bernoulli’s
equation (3b), which features a space-independent function C(t) that will prove to be irrelevant, makes
the overall FSI problem defined by equations (2) to (5) nonlinear; in particular, the decomposition (1)
cannot be used in (3b), which must be applied to the total potential φ. By contrast, the decomposi-
tion (1) is used in the linear equations (3a) and (4)

By taking the fluid domain ΩF(t) in the FSI system (2)–(5) as R3 \ΩS(t), we ignore the region of
ΩF(t) occupied by the gas bubble. This is a reasonable engineering simplification when considering
remote enough explosions: φper spatially decays away from the wet surface, so that taking into account
the gas bubble in the definition of φper would alter only moderately the flow solution in the vicinity of
the wet surface, which supports the quantities of primary engineering interest.

2.3 Step-by-step iterative coupling. The transient FSI problem defined by equations (2) to (5) is to
be solved by means of a time-stepping scheme: we introduce a sequence tn = n∆t (0≤n≤M) ofM+1
discrete time instants (using for simplicity a constant time step ∆t) and aim at finding the time-discrete
values (un,σσσn, φn, pn) = (u,σσσ, φ, p)(tn) of the field variables, which are defined on the current solid
domain Ωn

S := ΩS(tn) and wet surface Γn := Γ(tn). We treat the coupling problem incrementally in time:
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having computed the time-discrete solution up to time t = tn−1 included, the solution (un,σσσn, φn, pn)
at time t = tn is to be found by a sub-cycling approach, i.e. by alternating solutions in the fluid domain
and in the solid domain. Specifically, the k-th sub-cycling iteration consists in
(i) Solving the exterior potential flow problem in R3 \Ωn

S for the unknown φk,n per defined by equa-
tion (3a) and the Neumann boundary condition

∂nφ
k,
n

per = −∂nφamb
n + u̇k−1

n · n on Γn, (6)

obtained from the kinematic interface condition (4), then setting φkn := φk,n per + φamb
n and evalu-

ating the pressure pkn on Γn by Bernoulli’s equation (3b);
(ii) Solving the structure equations (2) in Ωn

S at t = tn for (u,σσσ) = (un,σσσn) with the Neumann
boundary condition

σσσ(ukn) · n = −pkn n on Γn (7)
The BEM is applied to problem (i), while problem (ii) is solved with one step of a FEM-based time-
marching scheme. The solid domain and wet surface are updated via

Ωn,k+1
S = Ωn,k

S + ukn, Γk+1
n = Γkn + ukn|Γk

n
,

which in practice means that all nodal coordinates are incremented by the nodal value of ukn, the mesh
connectivity remaining unchanged. Sub-cycling then continues until a stagnation criterion of the form

‖ükn − ük−1
n ‖L2(Γn) ≤ εsc‖ük−1

n ‖L2(Γn) (8)

is verified by the solid acceleration on Γn, where εsc is a preset tolerance.
For the first sub-cycle (k= 1), an initialization must be provided for the Neumann datum u̇0

n in (6);
this is discussed in Sec. 4.2. Choosing u̇0

n properly is important, as a good guess can significantly reduce
the number of sub-cycles, and hence the overall computational work. Moreover, the kinematic boundary
condition (7) can be replaced by a relaxed version to enhance convergence, see (26).

2.4 Boundary element method for the Laplace equation. We use the BEM for solving the potential
flow component of the coupled problem, i.e. problem (i) above. The classical direct integral equation
relating the unknown Dirichlet trace on Γ(t) of the velocity potential φ (harmonic in the exterior
domain ΩF(t) at time t ∈ [0, T ]) to the prescribed Neumann datum q such that ∂nφ = −q reads [3, 7]

1
2φ(y, t)−H{φ(·, t), t}(y) = G

{
q(·, t), t

}
(y) y ∈ Γ(t) , (9)

where G{·, t} and H{·, t} are the single- and double-layer integral operators, defined on the surface Γ(t)
by

G{q, t}(y) =

∫
Γ(t)

G(x− y)q(x) dΓ(x), H{φ, t}(y) =

∫
Γ(t)

∂nG(x− y)φ(x) dΓ(x).

in terms of the (time-independent) free space fundamental solution of the Laplace equation, given by

G(x− y) =
1

4π|x− y|
. (10)

Upon introducing the discrete time instants tn and a standard boundary element discretization of
Γn = Γ(tn), φn :=φ(·, tn) and ∂nφn := ∂nφ(·, tn), equation (9) yields linear systems of the form

[Hn]{φφφn} = [Gn]{Qn} , n= 0, 1, . . . ,M, (11)

where the N -vectors {φφφn}, {Qn} collect the degrees of freedom (DOFs) for the discrete versions of
φ(·, tn) and −∂nφ(·, tn) on the wet surface, while [Gn], [Hn] are N ×N matrix discretizations of the
integral operators G{·, tn} and 1

2I −H{·, tn}. In this work, we use standard three-noded flat triangular
boundary elements and piecewise-linear, continuous interpolations of φ and ∂nφ. The systems (11)
depend on discrete time through (i) the Neumann datum {Qn} and (ii) the wet surface Γn.
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Figure 3: Decomposition of the displacement into rigid and deformation motions, notations.

3 Accelerated fluid BEM solver

When dealing, as here, with potential flows, the BE mesh of the wet surface must allow accurate enough
modeling of the geometrical details, but is not additionally constrained by wavelength / frequency
considerations as in the shock wave case [27]. Our target applications typically require N ∼ 104 − 105

velocity potential DOFs on Γ, M ∼ 103 − 104 time steps, and multiple BEM solves per time step due
to sub-cycling. Solving O(M) BEM problems of size N remains too expensive, however, unless BEM
matrices can be reused in compressed form at each time step and sub-cycling iteration. For this reason,
accelerating the BEM by means of the fast multipole method (FMM) is ill-suited to the present needs:
each new BEM solution would have to be computed more or less from scratch, resulting in a O(MN)
overall computational work [28]. By contrast, a preliminary computation and storage of compressed
versions of the single- and double-layer integral operators by the H-matrix method is well-suited to
solving many BEM problems governed by the same integral operator. While the latter characteristic is
not a priori true in the present context due to the wet surface being time-dependent (see Section 2.4),
integral operator reusability is nevertheless achievable, as explained next in Section 3.1, allowing us
to take advantage of H-matrix acceleration for each BEM solution required by the step-by-step FSI
iterations (see Sec. 3.2). Moreover, H-matrix compression is known to be efficient for operators whose
kernel is asymptotically smooth, a property that the Laplace kernel (10) enjoys [5].

3.1 Reusing integral operators. Let Γn and Γ0 respectively denote the current and initial configura-
tions of the wet surface, and let Φn be the deformation taking Γ0 to Γn: using a Lagrangian description
and omitting the discrete time index n for brevity, the current position x on Γ of a material point is
related to its initial position x̂ on Γ0 through

x = Φ(x̂) (x̂∈Γ0,x∈Γ)

In practice, the action of Φ is computed by sequentially updating the wet surface using the converged
kinematic response of the structure at each time step (see Sec. 2.3).

To cater for a potentially significant rigid-body contribution to the wet surface deformation, Φ is
assumed to have the form

Φ = R◦ (I+w), i.e. x = R(x̂+w(x̂)) (x̂∈Γ0,x∈Γ) (12)

where w is a displacement field and R describes a rigid-body motion (RBM), see Fig. 3. The de-
composition (12) can be formulated with R chosen arbitrarily: given Φ, choose a RBM R and set
w := R−1Φ−I. A sensible choice for R may be found by solving the minimization problem

min
c,B
‖Φ−R‖2L2(Γ0), Rx̂ = R[c,B](x̂) = c + Bx̂ (13)

which, since |Φ(x̂)−Rx̂| = |w(x̂)|, aims at finding the smallest (in the L2(Γ0) norm sense) non-rigid
displacement w. In (13), the generic RBM R is expressed in terms of a translation vector c∈R3 and
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a rotation matrix B ∈ R3×3 satisfying BTB = BBT = I and Det(B) = 1, and is thus determined (for
three-dimensional configurations) by 6 scalar parameters.

The current velocity potential φ is governed by the BIE (9) written on the current wet surface Γ.
To determine the effect of the wet surface change on the BIE, we reformulate it on the fixed (initial)
surface Γ0 by setting x = R(x̂+w(x̂)) and introducing the convected versions on Γ0 of the datum and
unknown potential, respectively given by q̂ := q ◦Φ and φ̂ := φ◦Φ. This reformulation relies on the
key observations that we have

n(Rx) = Bn(x), dΓ(Rx) = dΓ(x)

and, by virtue of the isotropy and translational invariance of the kernel G,

G(Rx−Ry) = G(x−y), n(Rx) ·∇G(Rx−Ry) = n(x) ·∇G(x−y) = ∂n(y)G(x−y)

for any RBM R. As a result, the BIE (9) is recast as

1

2
φ̂(ŷ)−

∫
Γ0

nw(x̂) ·∇G
(
x̂− ŷ + w(x̂)−w(ŷ)

)
φ̂(x̂)J(x̂) dΓ(x̂)

=

∫
Γ0

G
(
x̂− ŷ + w(x̂)−w(ŷ)

)
q̂(x̂)J(x̂) dΓ(x̂), ŷ ∈ Γ0 (14)

wherein J := ‖(I+∇w)−Tn‖Det(I+∇w) is the surface Jacobian of the mapping I+w (see e.g. [19],
Def. 5.4.2) and nw := (I +∇w)−Tn / ‖(I +∇w)−Tn‖ is the unit normal on Γw := (I + w)Γ0 (see
e.g. [19], Prop. 5.4.14). Equation (14) is readily seen to be the BIE formulation of the potential flow
problem in the domain Ωw exterior to the deformed surface Γw defined by

∆φ̂w = 0 in Ωw, ∂nφ̂w = q̂w on Γw, |φ̂w(x)| = O(|x|−2) at infinity (15)

where φ̂w := φ̂◦ (I+w)−1 = φ◦R and q̂w := q̂ ◦ (I+w)−1 = g ◦R are the convected versions on Γw
of φ̂ and q̂. In other words, solving the BIE (9) is equivalent to solving the BIE (14) or the exterior
boundary-value problem (15), with R and w related to Φ through (12).

For any purely rigid deformation Φ (i.e. Φ = R for some RBM R), the convected BIE (14) and
the associated exterior problem (15) holds with w = 0; we have φ̂w = φ̂0 = φ̂, q̂w = q̂0 = q̂, and the
BIE (9) becomes

1

2
φ̂0(ŷ)−

∫
Γ0

n(x̂) ·∇G(x̂− ŷ) φ̂0(ẑ) dΓ(x̂) =

∫
Γ0

G(x̂− ŷ) q̂(x̂) dΓ(x̂). (16)

Consequently, if the FSI induces a purely rigid motion of Γ(t), all potential flow problems arising
can be set as Laplace BIEs on the initial surface Γ0; the integral operators are constant, and hence
reusable. If Γ(t) evolves in a “mostly rigid” manner in time (i.e. if the non-rigid displacement w(·, t) is
small enough, in a sense made more precise below by (18), at all times), we can still solve problem (9)
approximately by setting w = 0 (i.e. neglecting the effect of w) in (14) and solving (16) for φ̂0.

Practical operator reuse. The practical outcome of the foregoing analysis is quite simple. The initial
BEM-discretized operators H0, G0 are computed once (as data-sparse approximations, see Sec. 3.2).
The current surface Γ = Φ(Γ0) is monitored by sequentially updating the nodal positions of the
boundary elements using the structure incremental kinematic response, the BE mesh connectivity
being conserved. The correspondence between φ and φ̂0 reduces to {φφφ} = {φ̂φφ0} (with {φφφ} and {φ̂φφ0}
understood as values attached to nodes of the BEM meshes of Γ and Γ0 that correspond to each other
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by convection) and likewise {Q} = {Q̂0} with the same interpretation. Therefore, if the wet surface
moves in a mostly rigid manner, the BE systems (11) are simply approximated as

[H0]{φφφn} = [G0]{Qn} , n= 0, 1, . . . ,M, (17)

where in particular the discrete Neumann datum vector {Qn} holds the values of the Neumann datum
qn computed at the nodal locations of the current surface Γn and using its unit normal.

Solution error caused by operator reuse. The difference φ̂w− φ̂0, i.e. the approximation error φ−φ0

incurred by reusing the integral operators defined on Γ0, may be estimated with the help of the theory
of shape differentiation of boundary-value problems [19]. Subject to sufficient regularity of Γ0 and
g, solutions φ̂w of interior boundary value problems similar to (15) are differentiable w.r.t. w in a
neighborhood of w = 0 (at which the approximation φ̂0 is evaluated), the relevant norm for w being
the W 1,∞ norm defined (on extensions to R3 of w) by

‖w‖1,∞ := sup
x,y∈R3,y 6=x

(
|w(y)|+ |w(y)−w(x)|

|y−x|

)
. (18)

This implies an approximation error φ̂w − φ̂0 that is linear in w for small enough ‖w‖1,∞. This is
an acceptable approximation for small distortions of the shape of Γ(t), an assumption for example
implicitly made when the chosen structure model assumes small strains. Moreover, the shape differen-
tiation framework gives the option of refining the foregoing small-w approximation: first-order (in w)
corrections of φ̂w can be found by solving additional BIEs that result from differentiating (14) w.r.t.
w at w = 0, the unknowns of the latter being also governed by the same fixed integral operators.

3.2 H-matrix acceleration. We just determined conditions under which the flow problems arising
in the sub-cycling iterations can acceptably be formulated using the fixed BEM matrices H0 and
G0. This makes it attractive to precompute data-sparse approximations of H0 and G0 based on
hierarchical matrices, or H-matrices. This task rests on existing methods pertaining to H-matrices,
which we concisely describe thereafter for completeness. OurH-matrix solver for the BEM systems (17)
is implemented in the in-house fast BEM code [9]. Since a large number of problems (17) have to be
solved, the data-sparse H-BEM matrices are stored in RAM memory to reduce the time spent reading
them this many times.

H-matrix representation. Originally introduced by Hackbush [18], H-matrices aim at computing
data-sparse approximations of dense matrices A ∈ RN×N such as H0 and G0. The general idea is to
(i) partition A into blocks and (ii) find low-rank approximations of those blocks known a priori to be
amenable to this treatment. Here, the same set of indices I = {1, . . . , N} can be used for numbering
the rows and columns of BEM matrices A. Blocks are sub-matrices Aσ×τ of A, where σ ⊂ I and
τ ⊂ I are subsets of row and column indices of A, corresponding to clusters Xσ, Xτ of collocation and
interpolation nodes of the BE mesh. For the present Laplace case, blocks that are deemed admissible
(i.e. admit accurate low-rank approximations) satisfy the η-admissibility criterion

min
(
diam(Xσ), diam(Yτ )

)
≤ η dist

(
diamXσ, Yτ

)
,

where diam(X) and dist(X,Y ) are the diameter of a cluster X and the Euclidean distance between
clusters X,Y , respectively. In particular, diagonal blocks (such that σ= τ) are not deemed admissible:
they contain the contributions of singular integrals and have full numerical rank as a result.

8



Figure 4: Illustration of the clustering of the degrees of freedom: (a) partition of the DOFs of a submarine, and
(b) corresponding binary tree. After [8].

Figure 5: Illustration of the construction of the block cluster tree: (a) clustering of the unknowns on the geometry
and (b) corresponding block clustering in the matrix. After [8].

Hierarchical clustering of the unknowns. To maximize the proportion of entries of A belonging
to η-admissible blocks while keeping some of the latter large, which are conflicting goals, the block
subdivision is recursive. This key ingredient is implemented by defining a binary tree TI . Each node
of TI defines a subset σ ⊂ I of indices, i.e. a cluster Xσ of nodes. Sets σ are recursively partitioned
into two subsets, i.e. σ = σ1 ∪ σ2, until their size |σ| satisfies |σ| ≤ nleaf (where nleaf is given). The
subdivision starts from the root node containing the complete set of indices σ = I (see Fig. 4). Once
determined, the binary tree TI is used to define a block cluster representation TI×I of A, each node of
TI×I containing an ordered pair (σ, τ) of index sets of TI associated to block Aσ×τ (see Fig. 5). Finally,
a non-uniform partition P of A into blocks is defined by tracing the branches of TI×I from the root
node, recursively subdividing any encountered block Aσ×τ into 2× 2 sub-blocks until Aσ×τ is either
η-admissible or too small (i.e. min(|σ|, |τ |) ≤ nleaf); P then collects all nodes at which subdivision is
stopped. This treatment in particular produces admissible blocks that are as large as possible. The
partition P is divided into two sub-partitions Pad and Pnon-ad, holding respectively all admissible and
non-admissible blocks.

Low-rank block approximation. Various methods allow to compute low-rank approximations of ad-
missible blocks. The truncated singular value decomposition [16] produces approximations of smallest
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rank for prescribed accuracy ε in spectral or Frobenius norm, but at a computational and memory cost
that is excessive for large-scale problems. The adaptive cross approximation (ACA) [6] yields quasi-
optimal low-rank approximations without requiring that complete blocks be computed and assembled.
The ACA iteratively improves an approximation Bk of a block B ∈ Rm×n by adding rank-1 matrices:
Bk =

∑k
`=1 u`v

T
` with u` ∈ Rm, v` ∈ Rn. The truncation error can be monitored, and ACA stops at

rank k= r such that ‖B−Br‖F ≤ εACA‖B‖F, where ‖ · ‖F denotes the Frobenius norm, and εACA > 0
is a preset tolerance. The rank-r approximation Br is completely defined by the r pairs of vectors
(u`,v`), which are stored at a O

(
r(m+n)

)
memory cost. Contributions of block B to matrix-vector

products Aφφφ are evaluated as Bφφφ ≈
∑r

`=1

(
vT
`φφφ
)
u`. We use the ACA algorithm described in [8], whose

computational complexity for approximating a given block B ∈ Rm×n to rank r is O
(
r2(m+ n)

)
.

Resulting H-BEM. To solve problems (17) efficiently, data-sparse approximations H0,ε,η, G0,ε,η of
H0, G0 such that ‖H0,ε,η−H0‖≤ ε‖H0‖ and ‖G0,ε,η−G0‖ ≤ ε‖G0‖ are computed using the foregoing
methodology. Problems (17) are then replaced with their H-matrix approximations

[H0,ε,η]{φφφkn} = [G0,ε,η]{Qk
n}, (19)

which for each right-hand side {Qk
n} is solved iteratively by means of the GMRES algorithm [29]. The

overall FSI process entails many matrix-vector products, whose memory requirement and cost is much
reduced thanks to the data-sparse character of H0,ε,η and G0,ε,η.

3.3 Pressure evaluation on the wet surface. The evaluation of the fluid pressure on Γ by means of
Bernoulli’s equation (3b), being involved in the dynamic boundary condition (7), is a key part of the
sub-cycling process. It entails computing ∂tφ and |∇φ|2 by post-processing the BEM solution for φ:
• The time derivative ∂tφ is evaluated pointwise on Γ using the backward differentiation formula of

order 4 (BDF4), except for the first time steps where lower-order BDF1, BDF2 or BDF3 formulas
are used depending on the number of available past values of φ.
• The velocity potential gradient is decomposed as ∇φ = ∇Γφ+(∂nφ)n, where the normal deriva-

tive ∂nφ is known from the kinematic boundary condition (6) while the surface gradient ∇Γφ is
evaluated on each element by differentiating the BEM interpolation of the nodal values [30]. We
then have |∇φ|2 = |∇Γφ|+ (∂nφ)2.

3.4 Summary of the computational FSI procedure. We finally summarize the step-by-step H-
BEM/FEM coupling procedure.

Pre-computations. The H-BEM operators are computed and stored, then the coupling procedure
starts.

Sub-cycling steps. At each time tn and sub-cycling iteration k, the following steps are carried out:
• Estimate the structure normal velocity n · vkn (with initial conditions for the case n = 0) and
∂nφ

amb on the updated surface Γkn; compute the Neumann datum for (6).
• Solve (19) for φper (within tolerances εGMRES for GMRES and ε for H-matrix compression).
• Compute p elementwise using Bernoulli’s equation (3b) (Sec. 3.3), with C(t) = 0 since the

pressure has to vanish at infinity, and then the nodal forces f [34].
• Compute the structure response increment by performing one step of a FEM-based time-marching.
• Check the stagnation convergence criterion: advance to the next time step if (8) is verified, and

to the next sub-cycling iteration otherwise.

10



Figure 6: Rigid sphere in an infinite fluid domain, with uniform ambient flow velocity U(t)e1. The sphere is
either motionless (Sec. 4.1) or mobile with O(t) = O(0) + d(t)e1 (Sec. 4.2)

It is possible to guard against the non-rigid deformation of Γ becoming too large over time by checking
periodically whether it remains below a preset threshold. This threshold can be defined in terms of
the residual of the minimization (13), or alternatively of the mean on Γ0 of |divSŵ|. Should this test
fail at some time step, we would update Γ, compute new H-matrix approximations of G,H defined on
the updated surface, and restart sub-cycling iterations. We have not yet implemented this provision.

4 Validation example: rigid sphere in a uniform flow

We consider a rigid sphere Γ of radius a immersed in an infinite fluid domain, with spatially uniform
ambient flow velocity U(t)e1 for a given time-dependent velocity amplitude U(t), t ∈ [0, T ] (Figure 6).
We disregard gravity and its possible effects (buoyant force, hydrostatic pressure) for this example.
The ambient velocity potential is thus given at any point x = (x1, x2, x3) by

φamb(x, t) = U(t)x1 , (20)

This configuration allows to validate first the H-matrix BEM solver (motionless sphere case, Sec. 4.1),
then the step-by-step coupling procedure (mobile sphere case, Sec. 4.2).

4.1 Motionless sphere. We first consider the case where the sphere is motionless, and centered at
the coordinate origin, so that the fluid domain is ΩF := {x ∈ R3, |x| > a}, see Figure 6. All fluid
variables for this problem are known in closed form, see Appendix A; in particular, the net force f(t)
exerted by the force density p(x, t)n(x) on the motionless sphere is given by

f(t) = −
∫

Γ
p(x, t)n(x) dΓ(x) = 3

2mFU̇(t)e1, (21)

where mF := 4πa3ρF/3 is the mass of water that would fill the sphere.
Numerical results were obtained with the following parameters: ρF = 1000 kg/m3, a = 3 m,

U(t) = U0 cos(2πft) (with U0 = 15.0 m/s and f = 4 Hz), total duration T = 0.5 s (two periods)
divided into M = 200 time steps. The BEM model uses planar triangular elements with piecewise-
linear C0 interpolation, for a total of N = 2562 DOFs. The H-matrix approximations of H0 and G0

were computed using a minimum block size nleaf = 50 and a relative accuracy threshold equal to 10−4.
The GMRES tolerance was set to 10−4.

The computed fluid quantities are in good agreement with their reference analytic values, as shown
by the relative errors E(g; θi) on time histories t 7→ (g(θi, t)) at three angular positions θi on the sphere
(g = φ, ∂tφ, |∇φ|, p, (θ1, θ2, θ3) = (0, 3π/10, π/2)) given in Table 1; we have set

E2(g; θ1, θ2, θ3) :=

∑3
i=1 ‖g(θi, ·)− gref(θi, ·)‖2T∑3

i=1 ‖g(θi, ·)ref‖2T
, with ‖h‖2T :=

∫ T

0
h2(t) dt (22)
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E(φ; θi) E(∂tφ; θi) E(|∇φ|2; θi) E(p; θi)

7.4 10−4 3.2 10−3 5.5 10−3 3.2 10−3

Table 1: Motionless sphere: relative errors (see (22)) on fluid quantities against reference analytic values

Figure 7: Motionless sphere: comparison between analytical and computed net force histories.

and gref indicating the reference value. The computed axial net force f(t) := f(t) · e1 agrees similarly
well with its analytical counterpart, as shown in Fig. 7; the relative error E(f) := ‖f −f ref‖T /‖f‖T on
t 7→ f(t) is 3.5 10−3. This simple example of a motionless sphere validates theH-matrix-based potential
flow BEM solver, with the approximations induced by the H-matrix compression, the iterative solver
and the BEM discretization still allowing relative errors well below the typical industry target precision
of 1% on all fluid variables.

4.2 Mobile rigid sphere. We now study the case where the ambient flow (20) induces a motion of
the rigid sphere (see Fig. 6), which provides a validation test for our coupling procedure. The ambient
flow still being uniaxial and uniform, the sphere moves along e1 and its translational displacement d(t)
has the form d(t) = d(t)e1. For this example, closed-form solutions are available for all fluid quantities
(see Appendix A) as well as the resulting motion t 7→ d(t) of the sphere, found to be given in terms of
the initial conditions d(0), ḋ(0) and other parameters of the problem by

d(t) =
3mF

2m+mF

∫ t

0

(
U(τ)−U(0)

)
dτ + ḋ(0)t+ d(0) , (23)

The numerical results are obtained with the same parameters as for the motionless sphere (Sec. 4.1)
except for the ambient velocity, here set to U(t) = A t4(T − t)4, with T = 0.5 s and A = 15(0.25)−8

SI (set such that Umax = 15 m/s); moreover, ḋ(0) = 0 and m = 2mF. At a discrete time tn, the
acceleration an is computed from the nodal forces fn. Then, assuming a linear variation in time of the
acceleration in [tn−1, tn] and setting a−1 = v−1 = d−1 = 0, the velocity and displacement are obtained
as

vn = 1
2

(
an + an−1

)
∆t+ vn−1 , dn = 1

6

(
an + 2an−1

)
∆t2 + vn−1∆t+ dn−1 .

The computed fluid quantities are, again, in good agreement with their reference analytic values,
as shown by the relative errors E(g) := ‖g− gref‖T /‖g‖T given (with ‖ · ‖T again as in (22)) in Table 2
on the time histories of g = φ, ∂tφ, |∇φ|v · ∇φ, p at the same three angular positions on the sphere
as in the previous example. The computed response of the submerged mobile sphere is also recovered
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E(φ) E(∂tφ) E(|∇φ|2) E(v · ∇φ) E(p) E(f) E(d)

M = 200 1.7 10−3 2.8 10−3 4.5 10−3 3.7 10−3 3.0 10−3 2.6 10−3 2.2 10−3

M = 1000 1.5 10−3 2.1 10−3 3.9 10−3 3.3 10−3 2.3 10−3 1.4 10−3 1.5 10−3

Table 2: Mobile sphere: relative errors on histories of fluid quantities, net force f and net displacement d against
reference analytical values

accurately, see the relative errors on the net force and displacement histories given in Table 2. For
additional graphical comparison, the computed and reference net force and displacement histories are
shown (using M = 200) in Fig. 8.

The relative error for the acceleration is dictated by εsc = 10−3. When using M = 200 time steps,
the stagnation tolerance εsc = 10−3 imposed on the accelerations was found not to be always verified
by the velocities, especially at time instants for which the velocity is low. This in turn induces higher
relative errors on the other time-dependent quantities at such instants (compensated by the small
magnitude of those quantities at such times). When using M = 1000 time steps, the preset stagnation
tolerance εsc was found to be satisfied by all time-dependent quantities. Note that the choice of εsc
must be consistent with that of the other tolerance values (notably εGMRES = 10−4 and ε = 10−4).

Table 3 shows the average number
〈
Nsc

〉
of sub-cycles needed at each time step for the acceleration

and velocity to satisfy the stagnation tolerance εsc (i.e the cumulative number of sub-cycles used for
each time step divided by M). For given εsc,

〈
Nsc

〉
mainly depends on M and the quality of the

initial guess used for the velocity. Since sub-cycling iterations aim at iteratively finding the normal
component of vn+1, the choice of v0

n+1 is of great importance. Setting v0
n+1 = vn, while quite simple,

resulted in too many sub-cycles for M = 200. We instead considered either the linear guess

v0
n+1 = vn + ∆tan ,

yielded by a first-order Taylor expansion, or the quadratic guess

v0
n+1 = vn + ∆tan + 1

2∆t2ȧn ,

where the numerical time derivative of the acceleration is evaluated using the BDF4 scheme. Table 3
shows the obtained values of

〈
Nsc

〉
when using either guess. When M = 200 and εsc = 10−2, using

the quadratic guess results in
〈
Nsc

〉
very close to its lowest possible value of 2 (as two sub-cycles are

needed in order to check the stagnation-based stopping criterion). The results of Table 3 otherwise

Figure 8: Mobile sphere: comparison of computed net force and displacement histories (obtained using a quadratic
guess for the velocity, εsc = 10−3 and M = 200) with corresponding analytical solutions.
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εsc 10−2 (L) 10−2 (Q) 10−3 (L) 10−3 (Q) 10−4 (Q)〈
Nsc

〉
(M = 200) 2.74 2.11 2.34 3.31
(M = 1000) 2.20 2.03 3.09 2.08 2.25

Table 3: Average number
〈
Nsc

〉
of sub-cycles per time step. Influence of the stagnation tolerance εsc, the choice

of initial guess and the number M of time steps.

show that the quadratic guess consistently requires (on average) less sub-cycles that the linear guess,
and that

〈
Nsc

〉
remains close to 2 for all tested tolerances εsc when M = 1000 (small time step).

This example completes the validation of the proposed procedure by showing that the unknown
motion of the submerged solid can be accurately recovered, and emphasizes the importance of using a
good initial guess for the wet surface velocity in the sub-cycling.

5 Fluid-structure interaction between a stiffened hull and a gas bubble

Hull stiffening is of primary importance for a submarine to withstand the adverse effect of high hydro-
static pressures or underwater explosions while limiting its weight. This example accordingly considers
the effects of a gas bubble created by an underwater explosion on a stiffened hull with representative
characteristics and dimensions.

5.1 Geometry, modeling and discretization. The submerged structure is a cylindrical hull closed
by two hemispheres, whose characteristics are given in Figure 9; the diameter and total length of the
hull are 2a = 6.6 m and 2L = 73.3 m respectively. The internal side of the cylindrical part of the
hull features 85 regularly spaced stiffeners, whose arrangement and dimensions (including thicknesses)
are shown in Figure 10 (the hemispherical closing parts not being stiffened). The structure is made of
steel with the following characteristics: mass density ρs = 7800 kg/m3, Young’s modulus E = 204 GPa,
Poisson’s ratio ν = 0.3. The whole structural FE model is made of Abaqus R© shell elements (S4R),
with 5 integration points along the thickness. The element sizes are such that the flange is meshed
with two elements, the web with three elements, while six elements lie between two stiffeners for the
cylindrical part (Fig. 10). This results in a FE model comprising approximately 3 105 nodes and 5
DOFs per node, with about 105 nodes located on the wet surface Γ.

Figure 9: FSI between the stiffened hull and the gas bubble, notations.
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Figure 10: Portion of the stiffened cylindrical hull: notations and terminology, stiffener shape and dimensions.

The fluid region, made of water (ρf = 1000 kg/m3, cf = 1500 m/s), is taken as the entire infinite
domain exterior to the wet surface. The implied assumption of a sufficiently remote water surface
is reasonable since, for the considered time durations, the maximum variation of the bubble depth is
about 15 m, which remains small compared to the initial depth of 100 m. The depth therefore manifests
itself only through the hydrostatic part of the pressure in Bernoulli’s equation and as a parameter of
the bubble model given thereafter. The presented numerical results were obtained without taking into
account the hydrostatic pressure.

5.2 Gas bubble model and characteristics. We consider an explosion of m = 1000 kg of TNT
occurring at a point xb located at a distance d0 = 50 m from the hull center xh (so the standoff
distance is ds = d0−a= 46.7 m), with xb and xh assumed to be at the same depth: xb

3 = xh
3 =−100 m

(Fig. 9). The blast generates a gas bubble of maximum radius Rb
max and pseudo-period T b given by [32]

Rb
max = K1

( ρgm

p0−ρgxb
3

)1/3
≈ 7.3 m, T b = K2

( ρgm2/5

p0−ρgxb
3

)5/6
≈ 0.42 s (24)

(the dimensional constants having the values K1 ≈ 3.50 SI and K2 ≈ 2.11 SI [33]). The shock
factor [10] K :=

√
m/ds ' 0.68 for this explosion is considered by practitioners to be quite large. As

schematically depicted in Figure 2, the bubble generated by the explosion pulsates while its centre
moves up towards the surface. Several models are available for describing the pulsating bubble motion;
here we use the simple Hicks model, whereby the bubble is assumed to remain spherical (with a time-
dependent radius R(t)) while moving vertically (with a time-dependent depth xb

3(t) = xb
3 +Z(t)). The

fluid motion outside the bubble and in the absence of a submerged structure predicted by this model
is given by the ambient velocity potential

φamb(x, t) = − R2(t)Ṙ(t)

|x− xb(t)|
− R3(t)Ż(t)(x3−xb

3(t))

2|x− xb(t)|3
(|x− xb(t)| ≥ R(t)), (25)

where xb(t) = xb+Z(t)e3. From energy conservation arguments, the time-dependent parameters R(t),
Z(t) of the above model are found by solving a system of two nonlinear ODEs, whose initial conditions
are usually calibrated so that the response t 7→ (R(t), Z(t)) is consistent with the maximum radius and
pseudo-period (24) (see Chap.1 and App. C.2 of [26] for details). The resulting bubble radius and depth
variations, for the explosion parameters as given above, are illustrated in Figure 11. The Hicks model
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leads to a slightly smaller value of Rmax than expected, and is also known to underestimate energy
losses (compared to measured values), which manifests itself with a smaller than expected decline of
Rmax for each bubble expansion [23].

Comments on the bubble model. The adopted hypothesis of incompressible flow is suitable provided
the characheristic time scale Tb of bubble motions is large enough compared to the characteristic time
Ts of sound propagation phenomena. For this example or our target applications, the typical bubble
pulsation period is Tb ∼ 0.5 s, whereas typical distances (submarine length, distance between the
bubble and the submarine) are L ∼ 100 m, corresponding to a sound travel time of Ts ∼ 0.07 s
in water. Hence, Tb ∼ 15Ts. This observation makes the incompressible flow hypothesis acceptable
from an engineering standpoint, while indicating that high-accuracy modeling may require finer bubble
models such as that proposed in [22] (which takes into account causal propagation effects and reduces
to the Hicks model in the limiting case Ts/Tb → 0). Such refined models can still be formulated in
terms of an ambient potential φamb, but imply more complexity in the computational modeling of the
fluid medium as φamb is no longer harmonic. A possible middle ground worthy of future investigation
consists in still seeking a harmonic perturbed potential φper while using such non-harmonic φamb as
input in the FSI problem (2)-(5).

The standoff distance ds = 46.7 m is approximately 6 times the maximum bubble radius (24).
Reducing the distance between the explosion and the structure could violate the hypotheses of remote
underwater explosion, as the bubble dynamics should be computed taking into account the presence
of the ship. For this reason, we consider an unrealistic explosive weight, to make the explosion severe
enough without reducing the standoff distance.

5.3 Preliminary orders of magnitude. To estimate the magnitude of the main variables before
performing the full FSI analysis, we begin by computing the fluid motion generated by the oscillating
bubble when the submerged hull is rigid and motionless. We thus compute the velocity potential and
pressure on the wet surface Γ over a duration of T = 1 s divided into M = 1000 time steps, by solving
problem (27) with φamb(x, t) given by (25) at each time instant. The wet surface Γ is meshed with
three-noded linear triangular boundary elements comprising N = 1890 nodal fluid DOFs. Gravity and
its effects (buoyant force, hydrostatic pressure) is disregarded for this preliminary evaluation.

The computed time histories of φ and p at the standoff point of the rigid hull are plotted in
Figure 12. The perturbation φper of the velocity potential due to the hull is quite small compared to
the ambient potential φamb. This is explained by the moderate spatial variation of φamb on Γ for the
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Figure 11: Bubble radius and depth variation predicted by the Hicks model, for an underwater explosion of 1000
kg of TNT at water depth ξexp = 100 m.
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Figure 12: Velocity potentials and total pressure at the standoff point of the rigid structure. The inertial contri-
bution to the pressure for t ≥ TW is also shown.

chosen considered location xb(T ) of the bubble center xb(t); in fact, in the limiting case of an infinitely
remote bubble for which φamb is constant on Γ, we have ∂nφamb = 0 and therefore φper = 0.

To reflect the fact that industrial applications of the bubble effect analysis would disregard its effect
over a short initial duration TW that is dominated by the initial shock wave, we shift the time origin
in the bubble model (25) by setting the time variable therein to t+TW . Moreover, to avoid disrupting
the FSI coupling algorithm by subjecting the structure to an artificial pressure jump at the first time
step, we smoothly transition the pressure from a zero initial value to the bubble model pressure pb(t)
over a short duration Tsmooth by defining

pb
η(t) := pb(t+TW) η

(
t/Tsmooth

)
, η(u) =


0 u≤ 0

1− exp
(

2e−1/u

u−1

)
, 0≤ u≤ 1

1 u≥ 1.

,

where the above cutoff function η [1] is C∞(R). All results shown thereafter use TW = 50 ms and
Tsmooth = 10 ms.

Figure 12 also shows the inertial contribution −ρF∂φ/∂t to the total pressure in Bernoulli’s equa-
tion (3b), for t ≥ TW . This inertial contribution is dominant, and remains largely so if the structure
is deformable and mobile (the inertial contribution still constituting over 99 % of the pressure); this
fact is well known in the naval industry [22, 23]. We nonetheless wanted to compute the pressure us-
ing Bernoulli’s equation, rather than just its inertial approximation, to check and confirm its validity.
Forgoing the evaluation of the approximated Bernoulli equation slightly speeds up the overall analysis,
as ∇φ no longer needs to be evaluated on Γ.

5.4 Numerical solution of the FSI problem. The FSI problem is treated by means of the proce-
dure presented in Section 3.4: the fluid pressure is obtained from the ambient velocity potential (25)
using Bernoulli’s equation (3b), and provides the Neumann datum for the structure part, through (5).
Notations and physical parameters are given in section 5.1.

Parameters. The wet surface is meshed with three-noded triangular boundary elements and features
Nf ≈ 105 DOFs for the fluid potential. The H-matrix approximations of H0 and G0 are computed
using a minimum block size nleaf = 200 and a relative accuracy threshold equal to 10−4, while the
GMRES tolerance is set to 10−4. Fields are interpolated from the BE mesh to the FE mesh, and vice
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versa, using the code feflo.a [25]. The following time parameters are used: TW = 50 ms, Tsmooth = 10
ms, analysis duration T = 0.93 s discretized into M = 930 time steps. The Hilber-Hughes-Taylor
(HHT) implicit time stepping scheme, which is the default scheme of Abaqus R© implicit, is used for
the structure, with α = 0.05, β = 0.275625, γ = 0.55 [11, 15, 21]. The sub-cycling is performed with a
constant initial guess for the velocity and εsc = 10−2 (see Sec. 4.2), the structure being assumed to be
at rest at the initial time t = 0. We allowed for the possibility of plasticity in the Abaqus R© model
used, setting the elasticity limit to σlim = 355 MPa. However, as this study considers the effect of the
bubble in isolation (i.e. leaving out the prior shock wave), the deformation was observed to remain
elastic despite the high explosion charge.

Global deformation: bending. Figure 13 shows nine snapshots of the computed structure motion,
taken every 100 ms. As expected, the most noticeable deformation mode is bending. This bending
notably results from the dependence of the bubble ambient flow (25) on the distance to the bubble
center: the cylinder extremities being farther to the bubble center than the cylinder center, the pressure
magnitude is larger at the cylinder center. This effect gets more pronounced as the standoff distance
reduces.

The structure undergoes a back-and-forth motion, induced by the bubble ebb and flow generating
alternating positive and negative pressures (see Fig. 12). The stiffeners play a minor role in the bending
process, and more generally in the structure response. Indeed, contrary to the shock wave case, the
global deformation dominates the local ones. For that reason, some submarine hulls are equipped with
longitudinal stiffeners (parallel to the cylinder axis) that improve the hull resistance to bending.

Convergence of sub-cycling iterations. For this example, the FSI iterative sub-cycling process, used
at each time step, experienced convergence issues. To remedy them, we introduced a relaxation co-
efficient α, possibly depending on the iteration k, such that the Neumann data (6) for the k + 1-th
potential flow iterate is recast as

∂nφ
k+1,
n

per = −∂nφamb + αkvkn · n + (1− αk)vk−1
n · n (26)

where vkn and vk−1
n are structure velocity iterates. To obtain convergence, the relaxation parameter

must be set to a low value. In this example, we set α = 0.1, which allows the coupling iterations
to converge, within Nsc ∼ 10 sub-cycles for most time steps (those near the bubble pulses requiring
Nsc ∼ 20 sub-cycles). These values of Nsc make it potentially costly to refine either space or time dis-
cretizations. Moreover, the considered time and space discretisations yield displacements with smooth
time variation, whereas the velocities become disturbed after the first bubble pulse. This in particular
makes the linear or quadratic guesses of Sec. 4.2 for the velocities inefficient.

Computational work. The total computational cost for this FSI problem can be decomposed into
three main contributions:
• the fluid BEM solutions;
• all other fluid computations related to post-processing: pressure evaluations using (3b), compu-

tation of the nodal forces from the nodal pressures, field interpolations using feflo.a . . .
• the structure FEM solutions.

At the current stage of implementation, these components are not equally optimized. Most of our
work to date has been devoted to the fluid BEM solves. Firstly, the H-matrix representations of the
integral operators are computed only once, at the first time step, which results in a drastic reduction
of computational work since the cost of each subsequent matrix-vector product is small compared to
this initial assembly time. Secondly, we use an efficient initial guess for our GMRES iterative solver
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Figure 13: Snapshots of the structure deformation (with a magnification factor of 70) during the FSI, for t ∈
[100, 900] ms. The color maps show the 2-norm of the displacement vector on the wet surface.

(the solution of the previous time step), resulting for this example in only about 5 GMRES iterations
for each BEM solve. Finally, thanks to the H-matrix method being embarrassingly parallel, the H-
matrix-vector product is parallelized on 36 CPUs. All these optimizations lead to a solution time of
about 13 seconds per potential flow problem, and 10 seconds for all other fluid computations related to
post-processing. This performance is satisfactory given the number Nf ≈ 105 of fluid DOFs, for which
standard BEMs would hardly have been usable. On the other hand, our computational environment
did not provide us the same flexibility for optimizing the structure solution process, as increasing the
number of CPUs also increases the number of Abaqus R© licences. We were thus prevented to fully
exploit parallelization for them, and performed the Abaqus R© analyses on just 12 CPUs, for a cost of
about 10 seconds per structure solution.
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6 Concluding remarks

In this work, we have shown H-matrix accelerated BEM to be a very efficient and appropriate method
for solving coupled fluid-structure interaction problems, arising in the naval industry, where ships are
subjected to pulsating potential flow motions, in particular thanks to the demonstrated reusability of
integral operators in this context.

The computational performances of the coupled solution methodology can still be significantly
improved, by minimizing the overall number of fluid and structure solutions needed for a given analysis
with preserved accuracy. This objective can be met by reducing the number of sub-cycling iterations
per time step and the overall number of time steps. Indeed, the simple alternating-solution sub-cycling
method implemented here as a first try showed unsatisfactory convergence behavior when applied to a
large-scale analysis, and we are currently investigating alternative algorithms whose convergence is both
faster and guaranteed. Additionally, implementing variable time step strategies whereby refinement in
time is selectively applied around instants where the bubble stops contracting and starts expanding
again is also expected to yield substantial reductions in overall computational effort.

From a physical modeling viewpoint, it will also be necessary to include the effect of the free water
surface or the sea bed in the analyses. As the Green’s function for such configurations is not isotropic,
the issue of BEM operator re-usability at each time step will require additional thinking.
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Appendix A Reference solutions for the motionless- and mobile-sphere problems

Motionless sphere. The fluid domain is ΩF := {x ∈ R3, |x| > a}, see Figure 6. The perturbation
φper(·, t) := φ(·, t)−φamb(·, t) at time t of the flow induced by the presence of the sphere solves the
exterior boundary-value problem

∆φper = 0 in ΩS ∂nφ
per = −∂nφamb on Γ φper → 0 if |x| → ∞ (0≤ t≤ T ) (27)
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with ∂nφamb = U(t) n ·e1 = U(t)x1/a as a consequence of (20). Problem (27) is easily solved in closed
form for φper using separation of variables in spherical coordinates, whereupon φ is found as

φ(x, t) = U(t)
(

1

2

a3

|x|3
+ 1
)
x1 (28)

Then, using the above solution in Bernoulli’s equation (3b) with its hydrostatic term set to zero, the
pressure on Γ is readily obtained as

p(x, t) = C(t)− 3ρF

2
U̇(t)x1 +

9ρF

8a2
U(t)2(a2 − x2

1) x ∈ Γ

and the axial force result (21) finally follows from evaluating the integral with the above-given pressure
(the value of C(t) being irrelevant since

∫
ΓC(t)n dΓ = 0).

Mobile sphere. The ambient flow still being uniaxial and uniform, the sphere has an axial transla-
tional displacement d(t) = d(t)e1. Introducing coordinates x′ := x−d(t)e1 following the sphere motion,
the flow potential φ = φ(x, t) can be expressed in terms of x′ as φ(x, t) = φ(x + d(t), t) =: ψ(x′, t).
This change of unknown implies ∇φ = ∇′ψ, ∆φ = ∆′ψ and ∂tφ = ∂tψ− ḋ∂x′1ψ, with obvious notation.
The flow perturbation caused by the moving sphere is therefore defined (in the moving coordinates)
by the potential ψper solving problem (27) with U(t) replaced by U(t)−ḋ(t), and is thus given by (28)
with the same substitution. As a result, the velocity potential for this problem is given by

φ(x, t) = ψ(x′, t) =
(
U(t)− ḋ(t)

)( 1

2

a3

|x′|3
+1
)
x′1 + ḋ(t)x′1 + U(t)d(t) (29)

Bernoulli’s equation (3b), with its hydrostatic term set again to zero, yields the pressure on Γ as

p(x, t) = C(t) +
9ρF

8a2

(
U(t)− ḋ(t)

)2
(x′1

2−a2) +
ρF

2

( (
d̈(t)−3U̇(t)

)
x′1 + ḋ2(t)− 2(U̇d+Uḋ)(t)

)
,

and the corresponding axial net force, given by

f(t) =
mF

2

(
3U̇(t)− d̈(t)

)
, (30)

(the value of C(t) again not being relevant) features the two expected terms, namely the force in the
absence of motion and the added mass term. The sphere moves according to Newton’s second law, i.e.

(2m+mF)d̈(t) = 3mf(t), (31)

from which the sphere motion (23) is easily obtained by using (30) in (31) and twice integrating in
time. Finally, using (23) in (29) yields the flow solution in terms of t 7→ U(t), m, mF, d(0) and ḋ(0).
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