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Abstract—The adoption of computing resources oversubscrip-
tion in cloud environments is conventionally limited to a restricted
subset of Virtual Machines (VMs) within the providers’ offer-
ings, primarily driven by performance considerations. So far,
VMs schedulers mostly implement all-or-nothing oversubscrip-
tion strategies, wherein all VM resources are either oversub-
scribed or remain unaltered. While the former strategy offers
higher consolidation rates, the latter delivers better performance
guarantees.

In this paper, we conducted an empirical study of the in-
dividual usage of virtual CPUs (vCPUs) in the OVHCLOUD
production environment and we demonstrate that, as they are
not uniformly utilized, the current holistic approach may not be
appropriate. Based on these observations, we introduce a novel
approach, named SWEETSPOTVM, where oversubscription ratios
are applied at the granularity of individual vCPU, instead of
the whole VMs. This novel paradigm unlocks a more flexible
oversubscription management strategy, pinning oversubscription
ratios per vCPU within VMs. We present a prototype of
SWEETSPOTVM to illustrate the feasibility of accommodating
multiple oversubscription levels within a single host and assigning
them to individual vCPU.

We assess the viability of our approach on a physical platform,
demonstrating the possibility of dividing the cost of hosting
VMs by 3, while maintaining the VMs performance at the
level of non-oversubscribed platforms. We, therefore, believe that
SWEETSPOTVM opens new avenues to boost the consolidation
of VMs on a reduced number of servers, with positive impacts
on the environmental footprint of cloud computing.

I. INTRODUCTION

Addressing the challenge of underutilized resources in cloud
data centers remains a significant concern [1], [2], [3], aiming
to reduce both costs and ecological footprints of these virtual
platforms. The consolidation of workloads onto a smaller set
of Physical Machines (PMs) improves efficiency, considering
the non-linear relationship between PM power consumption
and workload [1], [4]. This consolidation also contributes
to erasing the manufacturing footprint due to unnecessary
components.

Various strategies are currently employed to increase re-
source utilization, ranging from aggressive harvesting mecha-
nisms [5], [6] to more passive approaches based on sharing [7].
Oversubscription, also referred to as overallocation or over-
commitment,1 is frequently implemented by cloud providers.

1A strategy commonly employed by cloud providers to rent more virtual
resources than physically available, assuming that customers do not simulta-
neously utilize all the allocated resources.

However, the universal adoption of oversubscription is not
privileged, as many cloud clients prioritize the performance
and reliability of their allocated resources.

Within virtualization and cloud computing, workers play a
pivotal role in managing virtual resources, including virtual
CPUs (vCPUs) exposed to Virtual Machines (VMs) and
containers. These resources are scheduled on the underlying
infrastructure in a manner that accommodates the inherent het-
erogeneity of hosting PMs. Consequently, VMs are designed
to interact with resources that appear to be uniform, with all
the intricacies of hardware heterogeneity handled and managed
by the host machine. In the context of oversubscription, this
uniformity implies that a VM is either entirely oversubscribed
or not oversubscribed at all. This dichotomous choice often
leads to unused resources, as oversubscription is typically
applied only to low pricing-tier VMs.

Paradoxically, beyond the VM scope, heterogeneity in re-
sources has become the de facto industry standard. Perfor-
mance heterogeneity within processor cores is now com-
monplace in contemporary computer systems. Simultaneous
Multithreading (SMT), initially introduced in 1995 [8], has
gained extensive adoption within x86 architectures, introduc-
ing performance variability among CPU cores, based on con-
current thread utilization. Furthermore, architectural designs
incorporating CPU cores with distinct frequency ranges have
become increasingly prevalent. This trend is exemplified by
the big.LITTLE architecture developed by ARM and, more
recently, by Intel’s 12th generation processors, which integrate
a combination of Performance and Energy cores to achieve
diverse performance objectives.

Consequently, processes are commonly scheduled in con-
junction with manufacturer-specific drivers to facilitate the
allocation of time slices based on variations in hardware
performance. Therefore, we propose exposing vCPUs with
various performance levels to VMs.

This paper introduces per-vCPU performance variations
using a novel oversubscription paradigm. Instead of managing
oversubscription at the granularity of a VM, we demonstrate
that the vCPUs of a VM can be oversubscribed individually
to different levels, enabling a more flexible management of
resources at large. This innovative approach provides the
capability to offer a share of resource guarantees to a VM—
i.e., oversubscribing to a 1:1 ratio—while concurrently sharing
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other resources (oversubscribing to an n:1 ratio with n > 1)
across various oversubscription levels.

In the remainder of this paper, we first motivate the need for
an oversubscription paradigm closer to the actual usage (cf.
Section II) based on an empirical analysis of OVHCLOUD
production environment, one of the largest European cloud
operators [9]. We, then, detail how oversubscription can be im-
plemented at the vCPU granularity (cf. Section III). We evalu-
ate our prototype in Section IV using realistic Infrastructure-
as-a-Service (IAAS) workloads and report on our ability to
selectively guarantee computing resources. Finally, we discuss
related work (cf. Section V) before concluding in Section VI
on this work and its perspectives.

II. MOTIVATION

In this section, we motivate the need for another oversub-
scription paradigm that better fits to individual vCPU usage.

A. Not all vCPUs are equally used

The cloud is characterized by its heterogeneous workload,
covering VMs hosting storage-oriented services, batch pro-
cesses, or interactive applications. IAAS customers have the
flexibility to configure the level of computing power, typically
indicated by a number of vCPUs to provision, based on their
workload type and anticipated demand (e.g., peak requests per
second on a website).

Cloud providers commonly analyze the utilization of initial
resource allocations through VM CPU usage, a metric often
included in the cloud datasets shared with the research com-
munity [10], [11], [12]. However, global VM usage does not
allow for the differentiation of various workload situations.
For instance, a VM configured with 4 vCPUs and utilizing
25% of its CPU time may concentrate its workload on a
unique vCPU in a CPU-intensive single-threaded context, or
evenly distribute it across all vCPUs in a fully multi-threaded
workload.

To the best of our knowledge, the individual usage of
VM vCPUs has not been previously studied. We, therefore,
conducted such an analysis using exploitation traces from an
production-scale IAAS environment operated by OVHCLOUD,
a major cloud provider.2 This analysis results from the moni-
toring of an OPENSTACK computing platform over a 1-week
window, where the CPU time for each vCPU associated with
each VM was recorded at 5-minute intervals. We consider
a premium offer that delivers dedicated resources—i.e., no
oversubscription is implemented (1:1)—thereby precluding
the examination of contention situations.

Figure 1 first reports on the distribution of provisioned VM
configurations on the left-hand side. The right-hand side of the
Sankey diagram highlights how these VM configurations map
to the CPU that are effectively provisioned by the PMs upon
deployment. While the smallest VM configurations seem to
be prevalent in IAAS platforms (62 % of the VM configura-
tions include at most 2 vCPUs), as previously acknowledged

2https://www.ovhcloud.com/
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Fig. 1. Mapping the distributions of VM sizes to the physical CPUs
provisioned by the OVHCLOUD infrastructure

by [10], the share of provisioned CPU highlights that the
largest VM configurations are the ones which consume most
of the computing resources exposed by the PMs, with 76 %
of the CPUs being provisioned by VMs requesting at least 4
vCPUs.

Beyond this first observation, we further dive into the
effective usage of individual vCPUs by the different VM
configurations. To do so, we derive an utilization metric, and
we order the vCPUs from the most utilized (designated as
vCPU0) to the least utilized (designated as vCPU(n − 1),
where n is the VM size). It is essential to note that during
the 5-minute aggregation period, the guest scheduler of each
VM has the freedom to relocate processes from one vCPU
to another. This allocation may be based, for instance, on the
Completely Fair Scheduler (CFS) queue calibration mecha-
nism [13]. The substantial differences observed in vCPU time
after a 5-minute interval underscore the significance of these
variations, indicating that the workload could not be uniformly
distributed across all VM resources during this time frame.

However, optimal performances on a given platform are
typically obtained for a CPU charge below 100% due, among
others, to SMT and cache contention. To account for it, a
vCPU is labeled as active even if it does not consume 100%
of the associated window CPU time. To perform a sensibility
analysis of this threshold, we examined 3 values to label a
vCPU as active: 1%, 10%, and 30%.

Our results are plotted as Cumulative Distributed Functions
(CDFs) in Figure 2. For each graph, the Y-axis represents the
share of VMs, while the X-axis denotes the proportion of time
during which the vCPU can be deemed active, based on the
considered threshold (indicated in the caption). For instance,
when focusing on the last CDF (lower right) for VMs with 16
vCPUs and an activity threshold of 30%, the comparison is
as follows: for 80% of the VMs (Y-axis), vCPU0 (indicated
by the red line) is considered as active 100% of the time (X-
axis) with the intersection at point A. In contrast, the least used
vCPU, namely vCPU15, is considered as active less than 50%
of the time (intersection at point B).

We first observe that the vCPU0 line can be distinguished

https://www.ovhcloud.com/
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Fig. 2. CDF of individual vCPU utilization ratios of various VMs profiles hosted by OVHCLOUD.

in most of the graphs, having an activity threshold higher than
1%, indicating that during a significant proportion of the time,
the workload is mono-threaded. This highlights that not all
the IAAS workloads are multi-threaded, and not every multi-
threaded workload leverages all the vCPUs provisioned by a
VM.

Then, one can observe that larger VMs tend to exhibit a non-
uniform usage of their vCPUs. Except vCPU0, 2 vCPUs with
close indices (such as vCPU1 and vCPU2) typically report a
low usage shift. As this shift is cumulative, it becomes all the
more pronounced between the least used and the most used
vCPUs, especially in larger VM sizes.

Single-core VMs tend to be less used, indicating that they
may be preferred by clients for non-CPU-oriented workloads.
However, less-used cores in larger VMs are close to the usage
observed in single-core VMs. The count of unused resources
is amplified in the case of bigger VMs as they individually
have more cores matching this low-usage pattern. This leads
us to conclude that the larger the VM, the more resources are
wasted by the cloud infrastructure.

We can, therefore, conclude that i) the largest VMs are
provisioning most of the computing resources, and ii) these
provisioned resources fail to be fairly consumed, hence leading
to wasted resources.

While one could expect the cloud customers to size their
VM appropriately, there are many reasons that can explain the
provisioning of large VMs with a non-uniform resource usage
pattern, among which the lack of predictability of resource

usage or the over-provisioning of resources to address potential
usage peaks. Cloud providers, therefore, have to cope with
this issue and find an alternative to reduce the non-negligible
wastes of computing resources imposed by the number of
provisioned vCPU that are not effectively used.

In the following sections, SWEETSPOTVM introduces the
principle of vertical oversubscription as a solution to mitigate
performance requirements and resource utilization, aiming to
reconcile both dimensions.

B. Introducing vertical oversubscription

The oversubscription of cloud resources remains a non-
trivial exercise as a compromise has to be made between lever-
aging under-utilized capacity and performance, by avoiding
Service-Level Agreement (SLA) violations. This is challenging
as the specific cloud context implies hosting heterogeneous
types of workloads, with almost no direct information on
individual workloads, given that cloud providers are operating
VMs as black-boxes.

Each PM of a given cloud context is singular. Tuning an
oversubscription ratio at the cluster level (e.g., the factor
applied to all the PMs), while trying to avoid SLA violations
on edge situations, leads to configure pessimistic ratios, hence
missing resource optimization opportunities.

The mapping of virtual resources of a VM to the physical
resources of a PM can be implemented in different ways.
Specifically, the oversubscription scope plays a critical role
when accounting for exceptional situations—i.e., those likely
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Fig. 3. Transitioning from horizontal CPU oversubscription to vertical
oversubscription as implemented by SWEETSPOTVM

to provoke SLA violations. Transitioning from a cluster scope
to a server scope, which involves defining a ratio of exposed
virtual resources per server, enables the consideration of both
hardware heterogeneity [14] and workload heterogeneity [10],
[15]. We believe that this shift in scopes has the potential
to further yield more optimistic ratios. In particular, to better
reflect individual usages, the oversubscription computation
scope needs to be extended beyond the per-server limit. In
opposition to the current oversubscription paradigm, which
treats all resources equally in a horizontal manner, as depicted
in Figure 3, we advocate for an orthogonal approach, hence
qualified as vertical oversubscription. In this paradigm, the
consumers of the PM resources are considered to be the
vCPUs, in contrast to the VMs, thereby lowering the scope
granularity.

Similarly to hardware architectures with cores operating
at different maximum clock frequencies (e.g., big.LITTLE
processor architectures), this leverages oversubscription ratios
to introduce different levels of performance within a VM.
The vertical oversubscription paradigm allows, for example, a
cloud provider to guarantee performances on a restricted set of
cores (associated with low or even no oversubscription), while
also mutualizing resources on others (associated with higher
oversubscription ratios).

III. IMPLEMENTATION DETAILS

Conventional horizontal oversubscription paradigm exhibits
resource allocation at a host-based granularity, wherein the
pool of resources associated with a particular PM is uniformly
distributed among all vCPUs relying on the Linux scheduler
for sharing time slices.

In contrast, our vertical oversubscription paradigm assumes
a non-uniform distribution of physical resources among pro-
visioned vCPUs. Specifically, some premium vCPUs may be
allocated to dedicated physical resources, while others may
be subject to oversubscription. In this section, we explore the
coexistence of various oversubscription ratios on a single PM.

A. Local scheduler

A cloud scheduling architecture can be summarized as two
main software components [16], [17].

The first one is a global scheduler, also known as the control
plane, which handles incoming VM deployment requests and
selects the most suitable PM for deployment. It typically
achieves this by communicating with an agent located on each
PM, referred to as the local scheduler, to gather information
about the PMs’s current state.

Once a PM is selected as the target, the VM deployment
request is forwarded to the local scheduler. The local sched-
uler generally assumes responsibility for provisioning tasks,
such as creating a disk image, invoking the hypervisor to
initiate the VM, and, in some cases, determining how resources
are allocated among the VMs, possibly utilizing features like
cgroups for resource management.

In SWEETSPOTVM, the capabilities of the local scheduler
are expanded to include the management of multiple over-
subscription ratios. The PM resources are logically separated
through distinct pools of vCPUs. Each pool is associated with
a given oversubscription ratios and is size can be adjusted
dynamically, depending on hosted VMs.

A pool comprising n cores can support a maximum of n
vCPUs in the absence of oversubscription. At a 2:1 over-
subscription ratio, 2n vCPUs can be accommodated, and this
applies to any oversubscription ratio. The logical segregation
mechanism is further discussed in Section III-B.

Our local scheduler interfaces with the hypervisor using the
libvirt library and has been tested with QEMU/KVM as
the hypervisor of choice due to its support for dynamic CPU
pinning changes.

B. Segregate physical cores

The non-uniform distribution of resources between vCPUs
necessitates the utilization of distinct resource pools, each
characterized by a specific oversubscription ratio. This alloca-
tion is achieved by implementing a shared CPU affinity policy,
wherein vCPUs are affixed to a common set of cores on the
PM.

We identified and addressed two main challenges. Firstly,
the performance and isolation of PM core selection are intri-
cately linked with the PM topology, as established in existing
literature [8]. However, the applicability of our heuristics
across diverse architectures is imperative, given the hetero-
geneous configurations prevalent in cloud data centers [14]
Secondly, the size of the vCPU pools needs to be dynamically
adjusted to cope with unforeseen IAAS workload (covering
VMs of various sizes).

1) Generic core selection: Contemporary PMs exhibit intri-
cate processor topologies, potentially featuring heterogeneous
distribution of cache levels or multiple sockets, making the
segregation process not trivial.

The process of selecting an appropriate core for a given task
usually relies on both the Linux scheduler and manufacturers’
drivers responsible for managing features, such as C-States and
P-States. Manufacturers’ drivers may take decisions, such as
loading a specific core to harness Turbo-boost capabilities or
distributing a workload to optimize cache resource utilization.



These decisions are contingent upon the hardware configura-
tion and the chosen scaling governor.

Directly pinning processes to specific cores would circum-
vent the involvement of these components, posing a significant
threat to the universality of our strategy. In practical imple-
mentation, instead of selecting individual cores, we opt for
the selection of a range of cores, even in the case of premium
vCPUs.

The selection of cores is undertaken with the objective of
closely aligning with the characteristics of the processor topol-
ogy, hence leveraging the optimizations of manufacturer driver
capabilities. When expanding a pool of physical resources
to accommodate a newly provisioned vCPU, the selection of
cores is predicated by a distance metric.

The computation of the distance between two cores depends
on their degree of shared cache, where cores with a lower level
of shared cache, such as in a SMT topology, are deemed closer
than cores with no shared cache. Note that configurations
where the last level of cache is not be universally shared are
common, such as in a multi-socket architectures or with AMD
EPYC processors.

Algorithm 1 Distance (∆) computation between 2 cores
Input: core0, core1
Output: ∆

1: ∆←0
2: for <cachelevels> do
3: if LEVEL(core0) == LEVEL(core1) then
4: return ∆
5: end if
6: ∆← ∆+ 10
7: end for
8: return ∆+ NUMA-DISTANCE(core0, core1)

To account for it, we introduce a core distance metric
extending the Non-Uniform Memory Access (NUMA) dis-
tance [18]. This extended metric incorporates an assessment of
the shared cache levels to provide a more complete evaluation
of core proximity. Linux system exposes for each core and
cache level an ID to identify the cache zone. We retrieve this
data and compute distances between each core, as described
in Algorithm 1. While the incremental value is arbitrary, we
chose it to be in the same order of magnitude as the current
NUMA distance notion.

The selection of a core closer to the existing pool ensures
that the newly added physical resources share cache levels,
resembling the characteristics associated with a socket of the
same architecture but with a reduced core count. Consequently,
in an SMT topology, cores within the same physical unit are
assigned to a common pool.

From a process scheduling perspective, Linux engages
sibling cores only when all physical cores are in use, to
mitigate performance degradation. In comparison to a scenario
where each non-oversubscribed vCPU is assigned to a single
personal physical core, we rather considered them as a group
and pin them to a range of physical CPUs. If the number

of vCPUs matched the number of physical CPUs associated,
the non-oversubscribed status is sustained, and the approach
let the CFS scheduler manage the distribution of work. This
approach maintains the drivers and scheduler behavior, thereby
averting performance deterioration due to SMT (as vCPUs do
not consistently exceed 50%) while judiciously employing it
during peak demands.

2) Pool resizing: A VM with n vCPUs may have a max-
imum of n different oversubscriptions levels (one for each
vCPU). The allocation of a VM to each pool of resources is,
therefore, dependent on its size. Some VM may have a vCPU
allocated to a given pool while others do not or, some VM may
have more vCPUs associated with a given pool than others.

The dynamic nature of VMs encourages a dynamic pool
size. Rather than defining the size of each pool statically, the
allocation is changed upon each deployments. This flexibility
accommodates the uncertainty associated with the number
of VM creation requests, enabling our system to efficiently
allocate resources in response to varying workloads.

A VM deployment is implemented as the assignment of
its vCPUs to the associated vCPU pools. If a pool is not
sufficient to provision a new vCPU, this pool can automatically
grow by selecting the closest unallocated core from its current
configuration. In practice, this implies changing the pinning
of VMs having at least one vCPU in the considered pool to
accommodate the new range. While frequent changes in core
pinning can potentially introduce performance overhead due
to increased context switches, it is important to note that, in
our specific context, such changes are infrequent occurrences.
They only occur when a VM is being deployed or decommis-
sioned. These VM deployment and decommissioning events
do not happen at a high frequency within the time scale of
CPU operations.

If a pool size extension fails due to a lack of available re-
sources, the VM deployment is rejected by the local scheduler.
Furthermore, VM departures from the system do change the
allocation to accommodate future deployments.

C. Pool heterogeneity requirements

In a n:1 oversubscription scenario, a cloud provider guar-
antees that no more than n vCPUs can contend for a single
physical core. However, oversubscription relies on workload
heterogeneity and the assumption that unused resources by
some VMs can be utilized by others.

Consequently, a VM should not be oversubscribed with
itself, as this mislead the guest into expecting a certain level
of CPU availability that is impossible to receive in practice.
The introduction of oversubscription with 2 VMs can also
pose a significant risk of performance degradation. This risk
diminishes when more VMs are being provisioned, as the
probability of all VMs simultaneously reaching their peak
usage diminishes.

In an horizontal setting, while each PM may have an
oversubscription objective, its resources are only effectively
oversubscribed when the number of virtual resources provi-
sioned exceeds its configuration. This guarantees a certain



heterogeneity in the workload. In our vertical context, oversub-
scription may occur earlier, as we limit the resources available
for use by vCPUs. For example, a subset of physical resources
may be oversubscribed before all cores are allocated.

To mitigate the risks of contention associated with over-
subscribed contexts, we increase workload heterogeneity when
possible. In practice, it is possible to allocate different oversub-
scription levels of VMs to the same set of resources provided
that they adhere to the conditions imposed by the lowest
oversubscription level within the VM set. In simpler terms,
a vCPU with a 2:1 oversubscription level may coexist with a
vCPU having a 3:1 oversubscription level, but only if the set
of physical resources still complies with the 2:1 ratio (as the
”no more than 2 vCPUs per physical core” condition satisfies
the ”no more than 3 vCPUs per physical core” condition).

While this approach increases the allocated resources, as
the 3:1 overcommitted vCPU is ”upgraded”, it may be strate-
gically employed to enhance workload heterogeneity tem-
porarily, if there are some unallocated resources to leverage.
Alternatively, remediation mechanisms, like those involving
cgroups are feasible, but they may be considered at odds with
the oversubscription principle, which aims to distribute the
pool of resources equally among all consumers.

Hence, our strategy relies on the pooling of oversubscribed
vCPUs when feasible, effectively leveraging all resources
that remain unallocated by the current hosted VMs. Upon
deployments, we also prevent VMs from being oversubscribed
with themselves by verifying than the pool size is greater than
the requested virtual resources.

D. Oversubscription templates

In a vertical oversubscription scenario, the vCPUs of a given
VM may be oversubscribed to different ratios. This is achieved
using what we term an oversubscription template.

A template is a configuration specifying an oversubscription
ratio for each vCPU index (or range of vCPUs). While any
vCPU can be oversubscribed to any positive amount, we
believe that using progressive oversubscription ratios is a good
practice. The VM should be aware of the performance of
its individual cores to leverage the most of our approach. A
general rule stating ”the lower the vCPU index is, the better
the performance” emphasizes that.

Oversubscription templates are configurable and may be
changed by cloud providers to match the specificities of their
workloads.

IV. EMPIRICAL EVALUATION

In this section, we discuss how our vertical oversubscription
paradigm was evaluated.

A. On core priority

While a VM workload may not use more than the equivalent
of one core at a given time, its workload may be spread
through all its vCPUs due to the CFS behavior. However, in a
vertically oversubscribed scenario, performance obtained by a

VM is improved if its workloads foster its least-oversubscribed
cores.

This can be done in different manners, such as pinning in-
side the VM the workload of interest. More generic approaches
imply to develop a specific Linux scheduler and/or a driver.

In our evaluation, we used a third approach based on a
root daemon running on each VM. The daemon, composed of
around 150 Python lines of code, computes the CPU usage
each 200 ms. The minimal number of cores required to run
this load is deducted and applied by deactivating unnecessary
VMs cores. Deactivation is executed in decreasing core index
order, deactivating the farthest index cores as they are the least
powerful ones in our template. This consolidation strategy
aims to concentrate the workload on the most powerful cores,
with vCPU0 exhibiting the highest performance. If more than
80% of the activated cores are used, a new one is permitted,
allowing to handle an increasing intensity in the workload.

This approach implies a certain latency before activating all
cores, however, we found it to be acceptable for the size of
VMs considered. Activating all cores in a VM composed of 8
vCPUs is performed in a maximum of 7× 0.2 = 1.4 seconds
(assuming we start in the worst case from having only vCPU0
activated).

B. On workload generation
Our proposed solution was tested on a physical platform to

assess VM performances.
The input is generated from customer traces, encompassing

actions, such as VM creation, VM usage, and VM deletion.
This compilation of customer activities is collectively referred
to as the ”workload”.

Ensuring the inclusion of realistic workloads was paramount
in our context, given that oversubscription relies on a hetero-
geneous usage of resources by customers. To achieve this,
we chose to utilize CLOUDFACTORY [19] for workload gen-
eration. This decision was motivated by the tool’s capability
to generate workloads that match statistics in terms of VM
usage patterns. The workload was composed of an increasing
number of VMs, each having 8 vCPU, overall matching the
CPU usage observed in Azure context [10].

The considered VMs hosted two distinct types of applica-
tions. Firstly, there was a micro-services architecture, known
as Social Network, derived from the DEATHSTARBENCH [20].
The response times of these micro-services were continuously
monitored and utilized as a proxy for the individual perfor-
mance of the respective VMs. While being dynamic through
time, the applied input ranged between 10 to 1,000 requests
per second. Secondly, the StressNG load test was applied to a
second set of VMs. This load test facilitated the precise load
on CPU resources for each VM, contributing to an overall
realistic context on the given host. The load of each VM was
also dynamic and could change between 0% and 100% of
resources used every 90 seconds.

C. Experimental IAAS platform
For our example, we used the PM described in Table I

as a worker node. Of the 256 cores, 20 were kept for the
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Fig. 4. DEATHSTARBENCH social network response time on different oversubscription scenarios

monitoring and components parts, leading to 232 usable cores.
Memory was not a limiting factor in all the experiments
reported afterward.

TABLE I
HARDWARE SETTINGS OF OUR IAAS WORKER NODE

Processor AMD EPYC 7662 64-cores ×2
Total threads 2× 64 cores × 2 hyperthreads = 256
Memory 1 TB
OS Linux Redhat 8.6
Hypervisor QEMU & KVM 7.1

D. Experimental results

We applied the same workload in different contexts. Ini-
tially, as a baseline, we executed the workload without consid-
ering oversubscription, thereby limiting the virtual resources
to the amount proposed by the platform. This configuration is
used to set our ground truth as being the optimal performances
that can be obtained from our experimental testbed.

The evaluation and comparison of the considered oversub-
scription techniques was conducted in both horizontal (single
ratio) and vertical (multiple ratios) approaches. Specifically,
we measured performances under platforms with average
oversubscription ratios of 2:1, 3:1, and 4:1. In the horizontal
approach, the targeted ratio was uniformly applied to all the
provisioned vCPUs. In the vertical approach, the oversubscrip-
tion template was chosen to have, on average, the same ratio as
the one targeted by the horizontal configuration. For example,
with a 3.0 oversubscription ratio, 1 vCPU was dedicated for
each VM (referred to as vCPU0), one was oversubscribed to
a 1.5:1 ratio (vCPU1), and all others were oversubscribed to
a 6:1 ratio (vCPUn, for n within 2 to 7). For a workload
composed of VMs with 8 vCPUs, this led to an average over-
subscription ratio of r = vCPU

CPU = 8
(1/1)+(1/1.5)+(6/6) = 3.0.

Other templates used by SWEETSPOTVM are described
in Table II. While these choices are arbitrary and can be
customized by the cloud provider, we selected templates that

dedicate part of the resources—i.e., no oversubscription on
vCPU0—while oversubscribing others more aggressively to
match the ratio. This type of template allows us to illustrate
the heterogeneous usage being made of vCPUs.

TABLE II
OVERSUBSCRIPTION TEMPLATES CONSIDERED IN OUR EXPERIMENTS

Oversubscription vCPU0 vCPU1 vCPU2–7
target ratio ratio ratio

2:1 1:1 1.5:1 2.6:1
3:1 1:1 1.5:1 6.0:1
4:1 1:1 1.5:1 16.0:1

The performance of each context, evaluated through the
95th response time of each exposed service, is visualized
in Figure 4. Unsurprisingly, the baseline without any over-
subscription exposes a good response time, as no vCPU is
competing for resources nor SMT is required (as the overall
CPU usage remains below 50%).

Under a 2:1 oversubscription template, where the num-
ber of hosted VMs is doubled, both vertical and horizontal
approaches perform similarly. There is no significant perfor-
mance degradation (please note the logarithmic scale) with
the traditional (horizontal) approach, indicating that pinning
vCPUs differently does not notably improve performance.

Under a 3:1 oversubscription template, host resources are
still not fully utilized. However, performance decreases signif-
icantly with the traditional approach, while our vertical over-
subscription template keeps maintaining VM performances
closer to their optimal values, succeeding hosting more VMs—
i.e., 3× more than the baseline.

The performance gain is even more significant with the
4:1 oversubscription template. In this situation, the horizontal
approach leads to an overloaded CPU, and fewer time slices
being attributed to each vCPU (note that the Y-axis scale had
to be adjusted accordingly). Using a vertical approach, the con-
tention is limited to only a subset of the vCPUs of the VM, and
the vCPU0 keeps exhibiting good performances, compared to
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Fig. 5. Performance degradation in response time of the social network app
of DEATHSTARBENCH (as multiple of the baseline)

the horizontal oversubscription. This demonstrates that vertical
oversubscription can be adopted to mitigate the effects of an
overloaded situation.

As such, oversubscription can be used to introduce different
levels of performance on different cores. When VMs uses
their most powerful cores (the less shared ones) in priority,
performances can be close to the optimal.

The VM count is emphasized in Figure 5. Our strategy
does host the same number of vCPUs and, therefore, the
same number of VMs. When the average oversubscription
achieved is not an integer, small differences may appear, which
may be mitigated by changing the oversubscription templates.
In this example, our average oversubscription was slightly
above the 2:1 target (leading to one additional deployment),
while being slightly below the 4:1 target (leading to 3 fewer
deployments). Notably, one should note that the quantity of
memory (VRAM)—and its potential oversubscription—is not
affected, compared to a horizontal oversubscription mecha-
nism, as the number of VMs hosted is similar for the same
targeted oversubscription ratio. The performance degradation
is expressed here in the form of the multiple of the 95th

response time of the baseline. In the 2:1 oversubscription
scenario, the degradation is reduced by 10% (from 1.8 times
the baseline to 1.6), by half in the 3:1 oversubscription
scenario (from 2.9 times the baseline to 1.3), and by a factor
of 50 in the 4:1 situation (from 107 times the baseline to
2.1 times). While variability may be observed due to other
resources (such as the network), the performance degradation
is clearly mitigated by SWEETSPOTVM compared to state-of-
the-art strategies enforcing horizontal oversubscription.

By dedicating CPUs to the VMs and oversubscribing oth-
ers more aggressively, our scheduler succeeds in preserving
performances by considering the heterogeneous usage made
by VMs of their vCPUs. Specifically, with the last oversub-
scription ratio having no contention, r = 3.0, our approach
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Fig. 6. Evolution of resources allocation and usage per oversubscription level
for a SWEETSPOTVM template targeting 2:1

closely aligns with the performance of the non-oversubscribed
scenario, while allowing the deployment of 3× more VMs in
that case.

The allocation size of the different oversubscription levels
targeting an average oversubscription of 2:1 is depicted in
Figure 6. The premium subset, dedicated to all vCPU0,
provisions 59 physical cores under our workload. Its usage
remains low compared to its allocation size, avoiding any
concurrency issues (at most 40 cores, 68% of the provisioned
resources). The second subset, dedicated to vCPU1, reports
on the same number of vCPUs attributed. However, as vCPU0
concentrates most of the workload, the vCPU1 subset exhibits
a lower core usage, with only 31 physical cores being effec-
tively used (21% less than the 40 cores). The last subset has a
much larger number of hosted vCPUs, as each VM allocates 6
vCPUs to this oversubscription ratio. Its 136 attributed cores
were used, with a peak of up to 51% of the provisioned
resources.

The performance obtained from the VM perspective de-
pends on the contention observed in the pool of host re-
sources considered. In this example, while the 2:1 is the most
oversubscribed one, no contention is observed (as the size of
the allocation is far greater than its usage), leading to good
performance even on the least powerful VM vCPUs.

E. On the provisioning of small VMs

Our paper focused on the use case of relatively large VMs,
due to both their proportion in the count of provisioned vC-
PUs and their tendencies to have non-uniform usage patterns
between their individual vCPUs, as exemplified in Section II.
Nonetheless, nothing prevents SWEETSPOTVM from hosting
smaller VM configurations in conjunctions with larger VMs
as it uses to be case in production-scale IAAS platforms. In
particular, SWEETSPOTVM can accommodate smaller VMs
by allocating their VMs to non-oversubscribed pools, hence



preserving their quality of service, based on the observations
we drawn from Figure 2.

V. RELATED WORK

A. Resource oversubscription

Most hypervisors enable oversubscription by allowing the
sum of all allocated virtual resources to exceed the PM
capabilities [21], [22], [23]. To avoid SLA violations, over-
subscription is usually limited at a certain level, quantified as
a ratio between the number of virtual resources provided and
the available physical resources.

To the best of our knowledge, this ratio is only applied hor-
izontally (albeit homogeneously through all vCPUs) by state-
of-the-art cluster managers. For instance, OPENSTACK [24]
and BORG [25] restrict the oversubscription of resources by
utilizing a single static value for the entire cluster PMs.

The horizontal oversubscription was also proposed to be
defined per PM. It may be static, by taking into account indi-
vidual PM performance [14]. Alternatively, it can be dynamic,
relying on predicted peak usage [15], as new deployments
must be performed on resources seen as available in the
long run. Peak prediction may be computed using VM per-
centile [10] or standard deviation [15]. However, none of these
approaches dive into the actual usage workloads within each
VM, which may not utilize all their vCPUs homogeneously.
Each PM maintains a single oversubscription level, determined
by its configuration or the cluster-scale configuration.

In this paper, we proposed a vertical oversubscription
paradigm, where each vCPU may have an individual oversub-
scription level. This approach allows cloud providers to better
fit consumer requirements (by considering the vCPUs rather
than the VM), achieving more optimistic oversubscription
ratios while guaranteeing a minimum amount of available
resources.

B. Performance heterogeneity

Performance heterogeneity for VMs has been previously
investigated to improve energy proportionality [26], [27], [28],
[29]. This is achieved by migrating VMs between PMs with
different architectures depending on the VM workload. This
approach is also horizontal, as the performance is adapted
for all the provisioned vCPUs. In our proposal, performance
heterogeneity does not arise from hardware differences, but
rather from the applied oversubscription ratio, enabling a
more flexible management and a better resource packing. Yet,
SWEETSPOTVM offers a complementary approach to cope
with hardware heterogeneity and to contribute to the imple-
mentation of energy proportionality in cloud infrastructure
while minimizing the number of PMs required to host a set
of VMs.

VI. CONCLUSION

In conclusion, this paper has introduced SWEETSPOTVM,
a novel oversubscription paradigm that addresses per-vCPU
performance variations, departing from the conventional ap-
proach of oversubscribing resources at the VM granularity. By

demonstrating the feasibility of individually oversubscribing
vCPU to different extents, we have introduced a more flexible
resource management strategy for IAAS platforms supporting
the cloud industry. In particular, this innovative approach
allows cloud providers to propose resource guarantees to a VM
on a 1:1 ratio, while concurrently reallocating other resources
across potentially multiple oversubscription levels (n:1 ratio
with n > 1).

Our contribution is implemented as a functional software
prototype, leveraging cache level distance between cores to
efficiently segregate multiple oversubscription levels. Our eval-
uation demonstrates that the performances achieved by a non-
oversubscribed environment can be replicated in an over-
subscribed context, allowing cloud providers to consider the
generalization of oversubscription and therefore, drastically
reducing the number of servers required to host their customer
services and the associated workloads.

We foresee several perspectives for this work, notably on
the applied oversubscription templates. While these templates
are defined statically in this paper, we believe that they could
also benefit from more dynamic tuning approaches, including
techniques where the targeted template configuration is driven
by performance objectives rather than a fixed ratio. Examining
the impact of diverse oversubscription templates based on VM
size or distinct premium tiers is also left as a prospect for
future work.

SOFTWARE ARTEFACTS

For the sake of reproducibility of the empirical results we
shared in this paper, our software prototype is made publicly
available.3 In particular, we documented an offline mode
to reproduce all the reported experiments. Furthermore, the
daemon used in the experiments to prioritize the cores with
lower indexes inside the VMs is also available.4

ACKNOWLEDGMENTS

This work is supported by the “FrugalCloud” In-
ria and OVHCLOUD partnership. Additionally, this work
also received partial support from the French government
through the Agence Nationale de la Recherche (ANR)
under the France 2030 program, including partial fund-
ing from the CARECLOUD (ANR-23-PECL-0003), DIS-
TILLER (ANR-21-CE25-0022), and SeMaFoR (ANR-20-
CE25-0017) grants.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
Second Edition. 2013.

[2] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, p. 127–144, ACM, 2014.

[3] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the cloud: An
analysis on alibaba cluster trace,” in 2017 IEEE International Conference
on Big Data (Big Data), pp. 2884–2892, 2017.

3https://github.com/jacquetpi/sweetspotvm
4https://github.com/jacquetpi/cpu-staker/

https://github.com/jacquetpi/sweetspotvm
https://github.com/jacquetpi/cpu-staker/


[4] J. Krzywda, A. Ali-Eldin, T. E. Carlson, P.-O. Östberg, and E. Elmroth,
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