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Effects of Wariness on Economic Growth in
Overlapping Generations Models

Hai-Ha PHAM∗ Ngoc-Sang PHAM†

December 4, 2023

Abstract

We introduce the notion of wariness in overlapping generations models and
explore its effects on economic growth. In an exogenous growth model, under
standard assumptions, we prove that the capital stock converges to a steady
state. We then explore conditions under which this steady state is increasing
(or decreasing) in the wariness level. We also provide a necessary and sufficient
condition for the dynamic efficiency of the intertemporal equilibrium. In an
endogenous growth model à la Romer (1986), we show that the growth rate of
capital stock per capita in the economy with wariness is lower (higher, respectively)
than that in the economy without wariness if and only if the capital return is
high (low, respectively).

Keywords: wariness, overlapping generations, dynamic efficiency, economic
growth, endogenous growth.
JEL Classifications: D14, D5, E71, O41.

1 Introduction
Uncertainty plays an important role in our society, including economic activities. An
example of uncertainty is the emergence of the COVID-19 pandemic.1 In a world
with uncertainty, some people may worry about the future, prefer to live better now,
and enjoy the present. However, others may save more in order to face uncertainties
in the future. This behavior concerns the notion of wariness. Motivated by these
observations, we aim to investigate the role of wariness in economic growth.
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city. Email: phha@hcmiu.edu.vn. Address: Linh Trung, Thu Duc, Hochiminh, Vietnam
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Caen), 9 Rue Claude Bloch, 14000 Caen, France.

1See Baker et al. (2016) and the website http://www.policyuncertainty.com for the economic Policy
Uncertainty Index, Jurado et al. (2015) for macroeconomic uncertainty index for 12 month horizon,
and Jurado et al. (2015), Ludvigson et al. (2021) for financial uncertainty index for 12 month horizon.
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To model the wariness, we consider that individuals take care not only of the
discounted sum of utilities but also the minimum utility across time. Formally, when
a consumer lives for two periods, we assume that her intertemporal utility is given by

Intertemporal utility =
(
u(c) + βu(d)

)
+ γmin

{
u(c), u(d)

}
, (1)

where c, d represent the consumer’s consumption in the present and the future respectively,
β is the rate of time preference. The parameter γ ∈ [0,∞) represents the wariness of
the household. When λ = 0, we recover the standard case.

In order to understand whether wariness harms or promotes economic development,
we embed the modeling (1) of wariness in a standard overlapping generations model
(OLG model, henceforth). We then study the role of wariness on the dynamics of
capital stocks and the interplay between wariness and economic development.

First, we study how the saving function of the household (with the capital return
given) depends on the wariness. Interestingly, we find that the household’s saving
under the presence of wariness can be higher or lower than that in the case without
wariness. It depends on the relationship between the capital return and the wariness
level. The intuition is the following. When the capital return is high, the household’s
income when old would be high while her income when young would be low. So,
in the presence of wariness, the household cares more about her consumption when
young, which implies that the household consumes more and saves less when young
with respect to the case without wariness. By contrast, the household saves more when
the capital return is low.

Second, we investigate the dynamics of intertemporal equilibrium to understand
how it depends on wariness. Under mild conditions, we prove that the equilibrium
capital path converges to the unique steady state and provide comparative statics.
We call the stationary capital return R∗ the capital return of the economy with
stationary consumption (i.e., the consumption when young equals the consumption
when old and it does not depend on time). We show that when the wariness is
high enough, the steady-state capital stock equals the capital of the economy with
stationary consumption. The intuition behind this is that when households really care
about the worst consumption over two periods of life, they should choose the same
level of consumption when young and old.

The more interesting case is when the wariness level is low. In this case, the
steady-state capital stock is increasing (respectively, decreasing) in the wariness level if
the stationary capital return is low (respectively, high). Interestingly, the steady-state
capital in the economy with wariness may be higher or lower than that in the economy
without wariness. It is higher if either (1) the wariness level and the stationary capital
return are low or (2) the wariness level is high and the capital return of the economy
without wariness is low. We illustrate our theoretical findings with several simulations.

Third, we analyze the effects of wariness in an endogenous growth model à la
Romer (1986). We point out that when the wariness level is quite low, the growth rate
of capital is increasing (respectively, decreasing) in the wariness level if the productivity
is low (respectively, high). However, when the wariness level is high, the growth rate
of capital does not depend on the wariness. We also prove that the capital growth rate
in the economy with wariness is higher than that in the economy without wariness if
and only if the capital return is low.
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Our results in both exogenous and endogenous growth models lead to an important
implication: Taking into account the worst situation does not necessarily harm economic
growth because it may enhance savings and economic growth, particularly in cases of
low capital returns.

Related literature

Our paper is related to the literature on endogenous discounting. Araujo et al. (2011),
Araujo et al. (2016) consider the utility function of the form∑

t≥0 β
tu(ct)+a inft≥0 u(ct)

in an infinite-horizon general equilibrium model. However, they focus on the effects of
parameter a on asset bubbles while we investigate the growth issue.

Ha-Huy and Nguyen (2022) investigate the optimal capital path of an infinite-horizon
model with Ramsey-Rawls criterion where the objective function is ∑t≥0 β

tu(ct) +
a inft≥0 u(ct). They interpret parameter a as the the importance of equity in the
inter-temporal generational evaluation in the choice of the economic agent. They
provide conditions under which the optimal capital stock is constant over time or it
coincides with the solution of the Ramsey problem (i.e., when the parameter a = 0).
Our paper differs from Ha-Huy and Nguyen (2022) in several points. First, we employ a
OLG model instead of a model with an infinitely-lived agent as in Ha-Huy and Nguyen
(2022); by consequence, the economic meaning of the wariness in our paper is quite
different from that of parameter a in Ha-Huy and Nguyen (2022). Second, and more
importantly, the capital path of equilibrium in our paper is never constant over time
(excepted the case where the initial capital is at the steady state). Third, we also
investigate the issue of endogenous growth while Ha-Huy and Nguyen (2022) do not.

Our paper is also related to the literature on the impact of uncertainty. Several
papers document a negative relationship between high uncertainty and firms’ investment.
Kumar et al. (2023) use a survey of firms in New Zealand and show that firms’ perceived
macroeconomic uncertainty leads them to reduce their investment. Bloom et al. (2022)
use a survey measure of subjective uncertainty collected by the U.S. Census Bureau
for approximately 25,000 manufacturing plants and find that there is a strong and
robust negative relationship between investment and high subjective uncertainty of
plant managers.

Fukuda (2008) uses a OLG model but focuses on the profit maximization of the
firm under Knightian uncertainty. He considers that the productivity of firm is random
and the producer faces "uncertainty" in its productivity. By analyzing the effects of
this uncertainty on the dynamic properties of equilibrium, he finds that there may be
multiple steady states and a poverty trap may arise. Bianchi et al. (2023) find sizable
negative effects of stochastic changes in the volatility of demand-side (rate of time
preference) and supply-side (TFP) shocks on consumption, investment, and output.

Different from these papers focusing on the behavior of firms, we study how the
wariness affects the savings of households and then the economic growth. Our novel
point is that if uncertainties generate a wariness in the households’ preferences, then,
in some cases, it may be beneficial to the economy because households may save more
and by the way improve the investment and economic growth.

The remainder of the paper is organized as follows. In Section 2, we introduce
wariness in an exogenous growth model and provide basic properties of households’
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saving. Section 3 presents the effects of wariness in the exogenous growth model while
Section 4 discusses the role of wariness in an endogenous growth model à la Romer
(1986). Section 5 concludes. Formal proofs are gathered in the appendix section.

2 An OLG Model with wariness
We introduce wariness in a standard two-period OLG model.2

Household and wariness. At period t, Nt individuals are born. We assume
that the population growth rate is constant over time and denote n ≡ Nt+1/Nt. Each
consumer-worker lives two periods. When young, she supplies one unit of labor, earns
a labor income, consumes ct and saves st. When old, she receives the income from her
saving and consumes dt+1.

Assume that the utility of this agent represents by the following function

(1− λ)
(
u(ct) + βu(dt+1)

)
+ λmin

{
u(ct), u(dt+1)

}
where λ ∈ [0, 1] represents the wariness of this individual. When λ = 0, we recover
the standard case. When λ = 1, the agent only cares about the minimum of her(his)
consumption min(u(ct), u(dt+1)).

Denote γ = λ
1−λ . Then, γ varies between 0 and +∞. It also represents the wariness

of the household. The maximization problem of household born at date t is given by

(Pc,t) : max
(ct,dt+1,st)

[
U(ct, dt) ≡ u(ct) + βu(dt+1) + γmin(u(ct), u(dt+1))

]
ct + st ≤ wt (2)
dt+1 ≤ Rt+1st (3)
ct, dt+1, st ≥ 0, (4)

where Rt represents the capital return between time t and t+ 1.
We assume that:

Assumption 1. The function u is twice continuously differentiable, strictly increasing,
strictly concave. u′(0) =∞ and u′(∞) = 0.

Production. Technology is represented by a constant returns to scale production
function F (K,L) where Kt and Lt are the aggregate capital and the labor forces.

The firm’s profit maximization problem is

(Pf,t) : max
Kt,Lt≥0

(
F (Kt, Lt)−RtKt − wtLt

)
(5)

where Rt and wt represent the return on capital and the wage rate.
Denote kt ≡ Kt/Lt denotes the capital intensity, f (kt) ≡ F (kt, 1). We require

standard assumptions.

Assumption 2. The function f is twice continuously differentiable, strictly increasing,
strictly concave. f(0) = 0, f ′(0) =∞ and f ′(∞) = 0.

2See de la Croix and Michel (2002) for an introduction of OLG models.
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The profit maximization implies that

Rt = f ′ (kt) and wt = ω (kt) , where we denote ω (kt) ≡ f (kt)− ktf ′ (kt) (6)

Under a Cobb-Douglas technology represented by F (K,L) ≡ AKαL1−α where A >
0 represents the total factor productivity. In this case, we have Rt = αAkα−1

t and wt =
(1− α)Akαt .

2.1 Intertemporal equilibrium
Definition 1. An intertemporal equilibrium is a positive sequence (Rt, wt, ct, dt+1, st, Kt+1, Lt)t≥0
which satisfies the following conditions:

(1) given the sequence (Rt, wt), the allocation (Kt, Lt) is a solution to the problem
(Pf,t) and the allocation (ct, st, dt+1) is a solution to the problem (Pt),

(2) market clearing conditions:

physical capital : Kt+1 = Ntst

labor : Lt = Nt

consumption good : st + ct + dt/n = f (kt) ,

2.2 Properties of the individual saving function
Definition 2. Given β > 0, w > 0, R > 0, we define sβ(w,R) the unique solution of
the following equation u′ (w − s) = βRu′ (Rs) .

Lemma 1. Let w > 0, R > 0 be given. If β > β′ > 0, then sβ(w,R) > sβ′(w,R).

Proof. DenoteH(s, β) = u′ (w − s)−βRu′ (Rs) . Then, we have ∂H
∂s

(s, β) = −u′′ (w − s)−
βR2u′′(Rs) > 0. We also observe that ∂H

∂β
(s, β) < 0. So, sβ(w,R) is strictly increasing

in β.

Denote β1 ≡ β + γ, β2 ≡ β
1+γ . The following result shows the optimal solution of

households.

Proposition 1. The optimal saving of the household problem (Pc,t) is given by

st =


sβ1(wt, Rt+1) if Rt+1 <

1
γ+β

wt
1+Rt+1

if 1
γ+β ≤ Rt+1 ≤ 1+γ

β

sβ2(wt, Rt+1) if Rt+1 >
1+γ
β

. (7)

Proof. See Appendix A.

When there is no wariness, the optimal saving is st = sβ(wt, Rt+1). Since β1 ≥ β ≥
β2, Lemma 1 implies that

sβ1(wt, Rt+1) ≥ sβ(wt, Rt+1) ≥ sβ2(wt, Rt+1). (8)

It means that the saving of the household under the presence of wariness can be higher
or lower than that in the case without wariness. It depends on the relationship between
the interest rate Rt and the wariness level γ, as shown in (7).
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Let us look at the condition Rt+1 <
1

γ+β in (7). This condition can be rewritten as
Rt+1 <

1
β
(the capital return is low) and γ < 1

Rt+1
− β (the wariness is low). So, when

the capital return and wariness are low, the saving is sβ1(wt, Rt+1) which is higher than
the saving in the case without wariness sβ(wt, Rt+1). The intuition is that when the
capital return is low, the household’s expected income when old would be low while her
income when young would be high. So, in the presence of low wariness, the household
cares more about her consumption when old. This implies that the household consumes
less and saves more when young.

A similar interpretation applies for the case Rt+1 >
1+γ
β

(the capital return is high
βRt+1 − 1 > 0 and the wariness is low γ < βRt+1 − 1.

Condition 1
γ+β ≤ Rt+1 ≤ 1+γ

β
is equivalent to γ ≥ max(βRt+1− 1, 1−βRt+1) which

can be interpreted as the high wariness. In this case, the saving equals wt
1+Rt+1

at which
the consumptions when young and old are the same.

The following result explores the effects of the wariness on the optimal saving.

Proposition 2. Given ωt > 0 and Rt+1 > 0. We denote st(γ) the optimal saving of
the household with the wariness level γ. Let γ1 < γ2. We have different situations.

1. If Rt+1 <
1

γ1+β then st(γ1) > st(γ2).

2. If 1
γ1+β ≤ Rt+1 ≤ 1+γ1

β
then st(γ1) = st(γ2) = wt

1+Rt+1

3. If 1+γ1
β

< Rt+1, then st(γ1) > st(γ2).

Proof. See Appendix A.

By comparing βRt+1 with 1, we obtain the following result showing the monotonicity
of the saving function with respect to the wariness level γ.

Corollary 1. (1) If βRt+1 < 1 then the optimal saving is increasing in γ for γ > 0.
(2) If βRt+1 > 1 then the optimal saving is decreasing in γ for γ > 0.

Proof. See Appendix A.

In some particular cases, we can explicitly compute the household’s saving. Let us
firstly consider the logarithmic utility function.

Corollary 2. If u(c) = ln(c), then sβ(wt, Rt+1) = βwt
1+β , ∀β > 0. In this case, we obtain

the optimal saving

st =


β1wt
1+β1

if Rt+1 <
1

γ+β
wt

1+Rt+1
if 1

γ+β ≤ Rt+1 ≤ 1+γ
β

β2wt
1+β2

if Rt+1 >
1+γ
β

.

When there is no wariness (γ = 0), we recover the standard function of savings:
st = βwt

1+β . Let us denote the optimal allocation when there is no wariness.

cot ≡
wt

1 + β
, dot+1 ≡

βwt
1 + β

Rt+1, sot ≡
βwt

1 + β
. (9)
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Corollary 2 provides an interesting insight. If the return is high in the sense that
Rt+1 >

1+γ
β
, then

ct = 1 + γ

1 + β + γ
wt > cot ≡

wt
1 + β

(10)

dt+1 = β

1 + β + γ
Rt+1wt < dot+1 ≡

β

1 + β
Rt+1wt (11)

st = β

1 + β + γ
wt < sot ≡

β

1 + β
Rt+1wt. (12)

By contrast, when the return rate is low, in the sense that Rt+1 < 1
β+γ , then

ct = 1
1+β+γwt > dt+1 = β+γ

1+β+γRt+1wt, st = β+γ
1+β+γwt.

When the return rate Rt+1 takes a middle value, i.e., 1
β+γ ≤ Rt+1 ≤ 1+γ

β
, then

households consume the same amount in both date: ct = dt+1 = wt
Rt+1

1+Rt+1
, st = wt

1+Rt+1
.

Under the CRRA utility function, we have a similar result.

Corollary 3. If u(c) = c1−σ

1−σ for 0 < σ, then, by solving the equations (wt − s)−σ =
βRt+1(Rt+1s)−σ, we obtain that sβ(wt, Rt+1) = wt

1+R−
1
σ+1

t+1 β
−1
σ

,∀β. By consequence, the

optimal saving is determined as follows:

st =



wt

1+R−
1
σ+1

t+1 β
−1
σ

1

if Rt+1 <
1

γ+β

wt
1+Rt+1

if 1
γ+β ≤ Rt+1 ≤ 1+γ

β
wt

1+R−
1
σ+1

t+1 β
−1
σ

2

if Rt+1 >
1+γ
β

.

3 Wariness and exogenous growth

3.1 Intertemporal equilibrium: convergence and steady state
We now investigate the intertemporal equilibrium. The market clearing condition
requires that nkt+1 = st which becomes

nkt+1 = s(wt, Rt+1) =


sβ1(wt, Rt+1) if Rt+1 <

1
γ+β

wt
1+Rt+1

if 1
γ+β ≤ Rt+1 ≤ 1+γ

β

sβ2(wt, Rt+1) if Rt+1 >
1+γ
β

. (13)

We are interested in the convergence of (kt). To deal with this question, we need
intermediate steps.

Lemma 2. Assume that kf ′(k) is increasing on the interval (0,∞). Given kt, let
kt+1 determined by consider the Euler equation u′ (wt − nkt+1) = β1Rt+1u

′ (Rt+1nkt+1)
and Rt+1 = f ′(kt+1) < 1

γ+β . Then kt+1 is a strictly increasing function of wt =
f(kt)− ktf ′(kt), and so kt.
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Proof. It suffices to prove that wt is increasing in kt+1. Taking the derivative of both
sides of the equation u′ (wt − nkt+1) = β1Rt+1u

′ (Rt+1nkt+1) with respect to kt+1 and
noting that Rt+1 = f ′(kt+1), we have

( ∂wt
∂kt+1

− n)u′′(ct) = β1
∂
(
Rt+1u

′ (Rt+1nkt+1)
)

∂kt+1

or, equivalently, ∂wt
∂kt+1

u′′(ct) = nu′′(ct) + β1
∂
(
Rt+1u

′ (Rt+1nkt+1)
)

∂kt+1

Since u′′ < 0 and f ′(k)u′
(
nkf ′(k)

)
is decreasing in k for any k > 0, we have ∂wt

∂kt+1
> 0.

Note that wt = f(kt) − ktf ′(kt) is increasing in kt. By consequence, we get that kt+1
is an increasing function of kt.

Lemma 3. Assume that f ′(k)u′
(
nkf ′(k)

)
is decreasing in k for any k > 0. Then kt+1

is a strictly increasing function, denoted by G(kt), of kt. By consequence, the capital
path (kt) converges.

Proof. By using the same argument in Lemma 2, we can prove that kt+1 is an increasing
function of kt in each case in the formula (13).

TO Add: We must determine the image of the function G to ensure that a1 >
0, a2 > 0.

Lemma 4. Assume that f ′(k)u′
(
nkf ′(k)

)
is decreasing in k for any k > 0. At

equilibrium, the dynamics of capital is characterized by the following system

nkt+1 = sγ(wt, Rt+1) =


sβ1(wt, Rt+1) if kt > a1

wt
1+Rt+1

if a2 ≤ kt ≤ a1

sβ2(wt, Rt+1) if kt < a2

. (14)

where a1 ≡ G−1
(
(f ′)−1

(
1

γ+β

))
and a2 ≡ G−1

(
(f ′)−1

(
1+γ
β

))
.

Proof. By Lemma 3, we have kt+1 = G(kt) is an increasing function in kt. The rate
of return Rt+1 = f ′(kt+1) is an decreasing function in kt+1 and then decreasing in
kt. Hence the conditions Rt+1 ≡ f ′(G(kt)) < 1

γ+β and Rt+1 >
1+γ
β

are respectively
equivalent to kt > a1 ≡ G−1

(
(f ′)−1

(
1

γ+β

))
and kt < a2 ≡ G−1

(
(f ′)−1

(
1+γ
β

))
. Thus,

the system (13) becomes (14).

Lemma 5 (finding steady state). Assume that the function w(k)
k(1+f ′(k)) is strictly decreasing

in k. Let k∗i , i = 1, 2, 3 be satisfied the following equations

nk∗1 = sβ1

(
ω(k∗1), f ′(k∗1)

)
nk∗2 = sβ2

(
ω(k∗2), f ′(k∗2)

)
nk∗3 = ω(k∗3)

1 + f ′(k∗3) .

We have that: (1)f ′(k∗3) < 1
γ+β if and only if f ′(k∗1) < 1

γ+β , and (2) f ′(k∗3) > 1+γ
β

if
and only if f ′(k∗2) > 1+γ

β
.
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Proof. See Appendix A.

The level k∗1 and k∗2 represent the capital steady state of the economy with discount
rate β1 and β2 respectively. k∗3 is the capital steady state of the economy where the
consumptions of young and old generateions are the same.

We now state the main result of this section, which is a direct consequence of
Lemmas 2-5.

Proposition 3. Suppose that f ′(k)u′
(
nkf ′(k)

)
is decreasing in k for all k > 0. Then

kt+1 is an increasing function, denoted by G(kt), of kt. By consequence, the capital
path (kt) monotonically converges.

Assume, in addition, that the function w(k)
k(1+f ′(k)) is strictly decreasing in k. Then,

the steady state k∗ is determined as follows.

1. If f ′(k∗3) < 1
γ+β , then k

∗ is a solution to the equation nk = sβ1

(
ω(k), f ′(k)

)
.

2. If f ′(k∗3) > 1+γ
β
, then k∗ is a solution to the equation nk = sβ2

(
ω(k), f ′(k)

)
.

3. If 1+γ
β
≥ f ′(k∗3) ≥ 1

γ+β , then k∗ = k∗3, where k∗3 is the unique solution to the
equation n = w(k)

k(1+f ′(k)) .
3

Proposition 3 provides a general condition for the global convergence of the equilibrium
capital stock. It should be notice that assumptions in Proposition 3 are satisfied in
standard specifications. Indeed, if the function cu′(c) is increasing in c or kf ′(k) is
increasing in k, then f ′(k)u′

(
nkf ′(k)

)
is decreasing in k.4

Moreover, if f(k) = Akα, then w(k)
k(1+f ′(k)) = (1−α)Akα−1

1+αAkα−1 , which is strictly increasing in
k. Since k∗3 is the solution to the equation w(k)

k(1+f ′(k)) = n, we have that n = (1−α)A(k∗3)α−1

1+f ′(k∗3) ,
i.e., f ′(k∗3) = αn

1−α−αn . Therefore, we see that

1 + γ

β
≥ f ′(k∗3) ≥ 1

γ + β
⇐⇒ β

1 + γ
+ 1 ≤ 1− α

αn
≤ 1 + γ + β

3.2 Effects of wariness on the equilibrium capital path
In the following, we study the effect of wariness on the equilibrium capital path and
the steady state.

Definition 3. Denote ks the steady state in the standard economy without wariness,
i.e., ks is determined by

nks = s(ω(ks), f ′(ks)).
3It should be noticed that k∗3 does not depend on γ.
4Observe that ∂

(
f ′(k)u′

(
nkf ′(k)

))
∂k = f ′′(k)u′

(
nkf ′(k)

)
+ f ′(k)u′′

(
nkf ′(k)

)
n
(
f ′(k) + kf ′′(k)

)
. This

is negative if f ′(k) + kf ′′(k) > 0. Moreover, if u′(c) + cu′′(c) > 0,∀c, then we have

∂
(
f ′(k)u′

(
nkf ′(k)

))
∂k

< u′′
(
nkf ′(k)

)
nf ′(k)

(
− kf ′′(k) + f ′(k) + kf ′′(k)

)
< 0.

9



Following de la Croix and Michel (2002) (Proposition 1.11), we introduce an additional
assumption.

Assumption 3. For each β > 0, the function sβ(ω(k),f ′(k))
k

is strictly decreasing in k
and

lim
k→∞

sβ(ω(k), f ′(k))
k

< n < lim
k→0

sβ(ω(k), f ′(k))
k

(15)

Since s ≤ ω(k) ≤ f(k) and limk→∞
f(k)
k

< n, the first inequality in (15) always
holds. It should also be noticed that Assumption 3 holds under standard specifications.
Indeed, when f(k) = Akα, α ∈ (0, 1) and u(c) = ln(c), we have sβ(ω(k),f ′(k))

k
=

β(1−α)Akα−1

1+β , which decreases from∞ to 0 when k increases from 0 to∞. When f(k) =
Akα, α ∈ (0, 1) and u(c) = c1−σ

1−σ with σ > 0, we have sβ(ω(k),f ′(k))
k

= (1−α)Akα−1

1+(αAkα−1)−
1
σ+1β−

1
σ
,

which decreases from ∞ to 0 when k increases from 0 to ∞.
Under Assumption 3, we have the following property.

Lemma 6. Let β > 0 be given. Under Assumption 3, then there exists a unique k
satisfying n = sβ(ω(k),f ′(k))

k
. Moreover, such a k is increasing in β.

We are now ready to state the main result of this section, which provides a full
comparative statics showing the effect of the wariness on the capital steady state.

Proposition 4. Let assumptions in Proposition 3 be satisfied.

1. If f ′(k∗3) < 1
γ+β and Assumption 3 holds, then the capital path converges to k∗ =

k∗1 which is the unique solution to the equation nk = sβ1

(
ω(k), f ′(k)

)
. Moreover,

k∗1 is strictly increasing in the wariness level γ and k∗1 > ks.

2. If f ′(k∗3) > 1+γ
β

and Assumption 3 holds, then the capital path converges to k∗ = k∗2

which is the unique solution to the equation nk = sβ2

(
ω(k), f ′(k)

)
. Moreover, k∗2

is strictly decreasing in the wariness level γ and k∗2 < ks.

3. If 1+γ
β
≥ f ′(k∗3) ≥ 1

γ+β , then the capital path converges to k∗ = k∗3, where k∗3 is
the unique solution to the equation n = w(k)

k(1+f ′(k)) .
Moreover, k∗3 > ks if and only if the interest rate of the economy without wariness
is low (in the sense that βf ′(ks) < 1)

Proof. 1. If f ′(k∗3) < 1
γ+β , then k

∗ is a solution to the equation nk = sβ1

(
ω(k), f ′(k)

)
.

By Lemma 6, we get that k∗ = k∗1 is increasing in β1 and hence in γ.

2. If f ′(k∗3) > 1+γ
β
, we use the same argument as in point 1.

3. Denote H(k) ≡ w(k)
k(1+f ′(k)) . Since H(k) is strictly decreasing and H(k∗3) = n,

condition k∗3 > ks is equivalent to H(ks) > H(k∗3) = n, i.e., w(ks) − nks >
f ′(ks)nks. This is equivalent to u′(ω(ks)− s) < u′(f ′(ks)s), i.e., βf ′(ks) < 1.

10



First, condition f ′(k∗3) < 1
γ+β can be rewritten as βf ′(k∗3) < 1 and γ < 1

f ′(k∗3) − β,
which can be interpreted as low capital return and low wariness respectively. Second,
condition f ′(k∗3) > 1+γ

β
is equivalent to 0 < γ < βf ′(k∗3)− 1, which can be interpreted

as high capital return and low wariness. Note that k∗3 is the capital return of the
economy with stationary consumption (i.e., the consumption when young equals the
consumption when old and it does not depend on time).

Therefore, Proposition 4 indicates that under low wariness and low capital return
(respectively, high capital return), the steady state capital stock is increasing (respectively,
decreasing) in the wariness level.

However, if the wariness level is high enough (in the sense that 1+γ
β
≥ f ′(k∗3) ≥ 1

γ+β ,
or equivalently, γ ≥ max

(
βf ′(k∗3) − 1, 1−βf ′(k∗3)

βf ′(k∗3)

)
, then the steady state capital stock

equals k∗3 which does not depend on the wariness level. The intuition behind this is
that when households really care about the worst consumption over two periods of life,
they should choose the same level of consumption when young and old.

Notice that k∗3 is lower than the steady state ks of the economy without wariness
if and only if the interest rate of the economy without wariness is high (in the sense
that βf ′(ks) > 1).

Proposition 4 leads to a direct consequence which compares the steady states of
the economies with and without wariness.

Corollary 4. 1. k∗ ≥ ks if and only if one of the two following conditions hold:
(1) f ′(k∗3) < 1

γ+β ; (2)
1+γ
β
≥ f ′(k∗3) ≥ 1

γ+β and βf ′(ks) ≤ 1.

2. k∗ < ks if and only if one of the two following conditions hold: (1) f ′(k∗3) > 1+γ
β
;

(2) 1+γ
β
≥ f ′(k∗3) ≥ 1

γ+β and βf ′(ks) > 1.

Condition βf ′(ks) > 1 (respectively, βf ′(ks) < 1) can be named as "high (respectively,
low) real interest rate condition". Indeed, we can write β = 1

1+ρ where ρ is the
subjective interest rate, and f ′(ks) = 1 + rs where rs represents the real capital return
at the steady state of the economy without wariness. By consequence, βf ′(ks) > 1
becomes 1+rs

1+ρ > 1, or equivalently, rs > ρ.

3.2.1 Tractable cases

In this section, we consider some tractable cases where we can explicitly find the
equilibrium capital path and compute the steady state. Denote σ1 ≡ 1

1+β+γ , σ2 ≡
1+γ

1+β+γ . Observe that σ1 is decreasing but σ2 is increasing in γ. When there is no
wariness γ = 0, we have σ1 = σ2 = 1

1+β .

Corollary 5. Assume that f(k) = Akα and u(c) = ln c. At equilibrium, the dynamics
of capital is characterized as follows:

nkt+1 =
(1− σ2)(1− α)Akαt if kt < a2

(1− σ1)(1− α)Akαt if kt > a1
(16)

nkt+1 + nαAkαt+1 = (1− α)Akαt if kt ∈ [a2, a1] (17)

11



where ai ≡
( n

(
αA(1−σi)

σi

) 1
1−α

(1− σi)(1− α)A

) 1
α

for i = 1, 2.5

The unique steady state is determined by

k∗ =



k∗1 ≡
(

(1−σ1)(1−α)A
n

) 1
1−α

if σ1 ≥ αn
1−α , i.e., 1−α

αn
≥ 1 + β + γ

k∗3 ≡
(

(1−α−nα)A
n

) 1
1−α

if σ1 >
αn

1−α > σ2, i.e., 1 + β
1+γ <

1−α
αn

< 1 + β + γ

k∗2 ≡
(

(1−σ2)(1−α)A
n

) 1
1−α

if σ2 ≤ αn
1−α , i.e., 1−α

αn
≤ 1 + β

1+γ

.

(18)

Proof. This is just a direct consequence of Lemma 4. See Appendix A for detailed
computations.

The following graphic illustrates the relationship kt+1 = G(kt).

Figure 1: G(k) with different wariness levels for A = 8, α = 0.3, β = 0.7, n = 1.3.

When there is no wariness (i.e., γ = 0), we have σ1 = σ2 = σ = 1
1+β and hence we

recover the standard system nkt+1 = β
1+β (1− α)Akαt . In this case, we have

lim
t→∞

kt = ks ≡
(β(1− α)A
n(1 + β)

) 1
1−α . (19)

We can verify that condition k∗3 < ks, i.e., 1−α
αn

< 1+β is equivalent to βf ′(ks) > 1.6

Proposition 5 (comparative statics). Assume that f(k) = Akα and u(c) = ln c.

1. When γ is low: γ ≤ 1−α
αn
− (1 + β), or, equivalently, βf ′(ks) ≤ 1+β

1+β+γ then the
capital path (kt) converges to k∗1 which is higher than ks.
Notice that βf ′(ks) ≤ 1+β

1+β+γ requires a low real interest rate, i.e., βf ′(ks) < 1.
5We see that ai is decreasing in σi, for i = 1, 2. Therefore, a1 is increasing but a2 is decreasing in

γ.
6Indeed, we observe that f ′(ks) = αA(ks)α−1 = αA n(1+β)

β(1−α)A = nα(1+β)
β(1−α) . Thus, βf

′(ks) = n(1+β)α
(1−α) .
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2. When 1−α
αn
≤ 1 + β

1+γ , or, equivalently, βf
′(ks) ≥ (1+β)(1+γ)

1+β+γ , the capital path (kt)
converges to k∗2 which is lower than ks.
Here, we need that βf ′(ks) > 1.

3. When 1 + β
1+γ <

1−α
αn

< 1 + β + γ, or, equivalently,

1 + β

1 + β + γ
< βf ′(ks) < (1 + β)(1 + γ)

1 + β + γ
(20)

the capital path (kt) converges to k∗3. Moreover,

k∗3 ≥ ks ⇔ αn

1− α ≤
1

1 + β
⇔ βf ′(ks) ≤ 1. (21)

Note that we need β
1+γ − β = β γ

1+γ <
1−α
αn
− (1 + β) < γ.

Proof. k∗2 is decreasing in γ because it is decreasing in σ2 and σ2 is increasing in γ. k∗1
is increasing in γ because it is decreasing in σ1 and σ1 is decreasing in γ.

Figure 2 shows the capital path for different values of the wariness level.

Figure 2: Dynamic capital with different wariness levels γ for β = 0.7, α = 0.3, n =
1.3, A = 8.

At the steady state, k∗ ≥ ks if and only if one of the two following conditions hold:
(1) γ ≤ 1−α

αn
− (1 + β); (2) 1 + β

1+γ <
1−α
αn

< 1 + β + γ and 1−α
αn
≥ 1 + β. Condition

(2) is equivalent to 1 + β ≤ 1−α
αn

< 1 + β + γ. By consequence, we obtain the following
result.

Corollary 6. Assume that f(k) = Akα and u(c) = ln c. We have that: k∗ ≥ ks if and
only if 1 + β ≤ 1−α

αn
, or equivalently βf ′(ks) ≤ 1.

Figure 3 illustrates how the physical capital at the steady state depends on the
wariness level γ. On the right hand side, we have 1 + β > 1−α

αn
and k∗ < ks, ∀γ > 0.

On the left hand side, we have 1 + β < 1−α
αn

and k∗ > ks, ∀γ > 0.
When we work with a CRRA utility function, we have the following result which

is a direct consequence of Propositions 3 and 4.
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Figure 3: The capital at the steady state versus wariness. On the left: A = 5, n =
1.2, β = 0.6, α = 0.3. On the right: A = 5, n = 1.6, β = 0.9, α = 0.3.

Corollary 7. If f(k) = Akα with 0 < α < 1, and u(c) = c1−σ

1−σ with 0 < σ 6= 1, then at
equilibrium, the dynamics of capital is characterized as follows

nkt+1 = sγ(wt, Rt+1) =



(1−α)Akαt
1+(αAkα−1

t+1 )−
1
σ+1β

−1
σ

1

if kt > a1

(1−α)Akαt
1+αAkα−1

t+1
if a2 ≤ kt ≤ a1

(1−α)Akαt
1+(αAkα−1

t+1 )−
1
σ+1β

−1
σ

2

if kt < a2

. (22)

where ai ≡
( n

(
αA(1−σi)

σi

) 1
1−α

(1− σi)(1− α)A

) 1
α

for i = 1, 2.
The unique steady state is determined by

k∗ =


k∗1 if 1−α

αn
> 1 + β + γ

k∗3 ≡
(

(1−α−nα)A
n

) 1
1−α

if 1 + β
1+γ ≤

1−α
αn
≤ 1 + β + γ

k∗2 if 1−α
αn
≤ 1 + β

1+γ

. (23)

where k∗i is the positive solution of the equation nk∗i = (1−α)A(k∗i )α

1+(αA(k∗i )α−1)−
1
σ+1β

−1
σ
i

, for i = 1, 2.

1. When σ1 ≡ 1
1+β+γ >

αn
1−α , i.e., γ is low: γ < 1−α

αn
− (1 + β), then the capital path

(kt) converges to k∗1 which is higher than ks.

2. When σ2 ≤ αn
1−α , i.e., 1−α

αn
≤ 1 + β

1+γ , the capital path (kt) converges to k∗2 which
is lower than ks.

3. When σ1 <
αn

1−α < σ2, i.e., 1 + β
1+γ < 1−α

αn
< 1 + β + γ, the capital path (kt)

converges to k∗3. Moreover,

k∗3 ≥ ks ⇔ βf ′(ks) ≤ 1⇔ αn

1− α ≤
1

1 + β
. (24)

By combining 3 cases, we observe that: k∗ ≥ ks if and only if 1 + β ≤ 1−α
αn

, or
equivalently βf ′(ks) ≤ 1.

14



3.3 Effect of wariness on dynamic efficiency
Following Malinvaud (1953) and Cass (1972), we define the notion of dynamic efficiency.

Definition 4. 1. A sequence of capital stock (kt) is a feasible path if f(kt)− nkt+1 ≥
0,∀t ≥ 0.

2. A feasible path (kt) is efficient if there does not exist another feasible path
(k′t) satisfying f(k′t) − nk′t+1 ≥ f(kt) − nkt+1,∀t and there exists at least t0 ≥ 0 with
f(k′t0)− nk′t0+1 > f(kt0)− nkt0+1.

3. An intertemporal equilibrium is dynamically efficient if its capital path is efficient.

According to the consumption good market clearing condition nkt+1+ct+dt
n

= f(kt),
any equilibrium capital path is feasible. An interesting question is whether it is efficient.

By using the same argument in Proposition 2.4 in de la Croix and Michel (2002),
we obtain the following result.

Lemma 7. Under conditions in Proposition 3, an intertemporal equilibrium is dynamically
efficient if f ′(k∗) > n, and dynamically inefficient if f ′(k∗) < n.

When f ′ is strictly decreasing and f ′(0) > n > f ′(∞), there exists a unique so-called
golden rule capital stock k = kGR determined by f ′(kGR) = n (note that kGR does not
depend on γ). In such a case, the conditions f ′(k∗) > n and f ′(k∗) < n are respectively
equivalent to k∗ < kGR and k∗ > kGR. Hence, we can investigate dynamic efficiency
by comparing the steady state k∗ with the golden rule capital stock.

The following result is a direct consequence of Proposition 4 and Lemma 7.

Proposition 6. Let assumptions in Proposition 3 be satisfied.

1. If f ′(k∗3) < 1
γ+β and Assumption 3 holds, then the intertemporal equilibrium is

dynamically efficient if f ′(k∗1) > n and dynamically inefficient if f ′(k∗1) < n.
By consequence, if f ′(k∗3) < 1

γ+β < n, then intertemporal equilibrium is dynamically
inefficient.

2. If f ′(k∗3) > 1+γ
β

and Assumption 3 holds, then the intertemporal equilibrium is
dynamically efficient if f ′(k∗2) > n and dynamically inefficient if f ′(k∗2) < n.
By consequence, if f ′(k∗3) > 1+γ

β
> n, then intertemporal equilibrium is dynamically

efficient.

3. If 1+γ
β
≥ f ′(k∗3) ≥ 1

γ+β , the intertemporal equilibrium is dynamically efficient if
f ′(k∗3) > n and dynamically inefficient if f ′(k∗3) > n.

Proposition’s point 3 indicates that when the capital return f ′(k∗3) and the wariness
have a middle value, the equilibrium is dynamically efficient (inefficient) if there is
under-accumulation (over-accumulation) at k∗3.

Points 1 and 2 are more interesting because k∗1 and k∗2 depend on the wariness level
γ2. Proposition’s point 1 suggests that when the capital return f ′(k∗3) is lower than

1
γ+β , the equilibrium is dynamically efficient if there is under-accumulation at k∗1, i.e.,
k∗1 < kGR. According to Proposition 4, k∗1 is strictly increasing in the wariness level γ.
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So, in this case, the equilibrium is more likely to be dynamically efficient if the wariness
is low enough. By contrast, when the capital return f ′(k∗3) is higher than (1 + γ)/β,
then the equilibrium is more likely to be dynamically efficient if the wariness is quite
high.

When f(k) = Akα, we find that kGR =
(
αA
n

) 1
1−α . Therefore, we can explicitly find

conditions for the dynamic efficiency.

Corollary 8. Assume that f(k) = Akα, u(c) = u1−σ

1−σ , ∀0 < σ 6= 1, and u(c) = ln(c),
for σ = 1. We have that:

1. If 1−α
nα

> 1 + γ+β, then the inter-temporal equilibrium is dynamically efficient if
1−α
α

< 1 + n1− 1
σ ( β

1+γ )− 1
σ and dynamically inefficient if 1−α

α
> 1 + n1− 1

σ ( β
1+γ )− 1

σ .

2. If 1−α
n

< 1 + β
1+γ , then the inter-temporal equilibrium is dynamically efficient if

1−α
α

< 1+n1− 1
σ (β+γ)− 1

σ and dynamically inefficient if 1−α
α

> 1+n1− 1
σ (β+γ)− 1

σ .

3. If 1 + β
1+γ ≤

1−α
n
≤ 1 + γ + β, then the inter-temporal equilibrium is dynamically

efficient if α > 1
n+2 and inefficient if α < 1

n+2 .

Proof. See Appendix A.

4 Wariness and endogenous growth
We now introduce endogenous growth à la Romer (1986). Assume that the production
function at date t is ft(k) = Atf(k), where the productivity At is taken as given by
the firm. But, in equilibrium, due to a positive externality, At is a function of the
aggregate capital kt: At = A(kt). By consequence, we obtain the dynamical system of
(kt)

nkt+1 = st =


sβ1(wt, Rt+1) if Rt+1 <

1
γ+β

wt
1+Rt+1

if 1
γ+β ≤ Rt+1 ≤ 1+γ

β

sβ2(wt, Rt+1) if Rt+1 >
1+γ
β

=



sβ1

(
A(kt)

(
f(kt)− ktf ′(kt)

)
, A(kt+1)f ′(kt+1)

)
if A(kt+1)f ′(kt+1) < 1

γ+β

A(kt)
(
f(kt)−ktf ′(kt)

)
1+A(kt+1)f ′(kt+1) if 1

γ+β ≤ A(kt+1)f ′(kt+1) ≤ 1+γ
β

sβ2

(
A(kt)

(
f(kt)− ktf ′(kt)

)
, A(kt+1)f ′(kt+1)

)
if A(kt+1)f ′(kt+1) > 1+γ

β

.

For the sake of simplicity, we consider the logarithmic utility function u(c) = ln(c)
and the Cobb-Douglas production function f(k) = kα. In this case, the wage equals
wt = (1− α)Atkα and the capital return equals Rt = αAtk

α−1
t .

According to Lemma 2, the saving of household is given by

st =


β1wt
1+β1

if Rt+1 <
1

γ+β
wt

1+Rt+1
if 1

γ+β ≤ Rt+1 ≤ 1+γ
β

β2wt
1+β2

if Rt+1 >
1+γ
β
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where recall that β1 ≡ β + γ, β2 ≡ β
1+γ .

Assume that the endogenous productivity At is determined by At = Ak1−α
t , where

A > 0 represents the exogenous productivity of our model. Hence, the wage is wt =
(1−α)Ak1−α

t kαt = (1−α)Akt while the capital return equals Rt = αAk1−α
t kα−1

t = αA,
∀t. Therefore, we obtain the following result.

Proposition 7. Consider an endogenous growth model described above. The rate of
growth of the capital stock per capita equals

kt+1

kt
= g(γ) ≡


β1(1−α)A
n(1+β1) if αA < 1

γ+β
(1−α)A
n(1+αA) if 1

γ+β ≤ αA ≤ 1+γ
β

β2(1−α)A
n(1+β2) if αA > 1+γ

β

. (25)

Notice that when there is no wariness (γ = 0), we recover the standard saving
st = βwt

1+β and the rate of capital growth equals g0 ≡ β(1−α)A
n(1+β) . So, our result leads to

interesting implications.

1. If (γ + β)αA < 1 (the wariness and productivity are quite low), then the growth
rate of physical per capital g(γ) is increasing in the wariness level γ and g(γ) > g0.

2. If αA > 1+γ
β

(the wariness is quite low but the productivity is quite high), then
the growth rate of physical per capital g(γ) is decreasing in the wariness level γ
and g(γ) < g0.

3. If 1
γ+β ≤ αA ≤ 1+γ

β
(the productivity is moderate and the wariness is high), then

g(γ) ≥ g0 if and only if αβA ≤ 1 (i.e., the capital return is low).

Observe that g(γ) ≤ g0 if and only if one of the following conditions holds: (1)
αA > 1+γ

β
; (2) 1

γ+β ≤ αA ≤ 1+γ
β

and αβA ≥ 1. The second condition means that
max( 1

γ+β ,
1
β
) = 1

β
≤ αA ≤ 1+γ

β
.

Inversely, g(γ) > g0 if and only if one of the following conditions holds: (1) (γ +
β)αA < 1; (2) 1

γ+β ≤ αA ≤ 1+γ
β

and αβA < 1. The second condition means that
1

γ+β ≤ αA < 1
β
.

To sum up, we get the following result:

Corollary 9. (1) The growth rate of capital stock per capita in the economy with
wariness is less than that in the economy without wariness, i.e., g(γ) ≤ g0 if and only
if the capital return is high in the sense that αβA ≥ 1.

(2) g(γ) > g0 if and only if αβA < 1 (the capital return is low).

5 Conclusion
We have investigated the effects of wariness on the economic dynamics of the economy
in OLG models. Under standard assumptions of utility and production functions, we
have proved the capital stock of intertemporal equilibrium, in the exogenous growth
economy, converges to a steady state. We have also studied how this steady state
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depends on the wariness. We have shown that whether the effects are positive or
negative depend on the structure of the economy, specially the interest rate of the
economy without wariness. This insight holds not only for the exogenous growth
model but also for the endogenous growth framework à la Romer (1986).

A promising avenue for future research involves extending our work to encompass
a stochastic economy with incomplete markets.

A Appendix
Proof of Proposition 1. For the sake of simplicity, we remove the subscript and
consider the problem

P (w,R) : max
(c,d,s)

{
U(c, d) ≡ u(c) + βu(d) + γmin(u(c), u(d)) (26)

c+ s ≤ w, d ≤ Rs, c, d, s ≥ 0, (27)

Denote U∗ the maximum value of the problem P (w,R). We also observe that

U∗ = max
(

max
c+s≤w,
d≤Rs
c≥d

{
u(c) + (β + γ)u(d)

}
, max
c+s≤w,
d≤Rs
c≤d

{
(1 + γ)

(
u(c) + β

1 + γ
u(d)

)})
. (28)

Denote β1 ≡ β + γ, β2 ≡ β
(1+γ) . We have β1 > β > β2.

Consider the first problem

(P1) : max
(c,d,s)

u(c) + β1u(d) (29)

c+ s ≤ w, d ≤ Rs, c ≥ d ≥ 0 (30)

In optimal, we must have c + s = w and d = Rs. So, solving (P1) is equivalent to
solving the following problem

(P ′1) : max
s
u(w − s) + β1u(Rs) (31)

w − s ≥ Rs ≥ 0⇔ 0 ≤ s ≤ w

1 +R
(32)

Denote G(s) ≡ u(w − s) + β1u(Rs). We have G′(s) = −u′(w − s) + β1Ru
′(Rs) and

G′′(s) = u′′(w − s) + β1R
2u′′(Rs) < 0.

Observe that G′(0) = +∞ and G′( w
1+R) = u′( Rw

1+R)(β1R − 1). By consequence, we
obtain that:

1. If β1R ≥ 1, then c = d = w R
1+R and s = w

1+R .

2. If β1R < 1, then s = sβ1 which is a unique solution to the equation G′(s) = 0.

Consider the second problem

(P2) : max
(c,d,s)

u(c) + β2u(d), (33)

c+ s ≤ w, d ≤ Rs, 0 ≤ c ≤ d. (34)

By using the similar argument, the solution of (P2) is given by
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1. If β2R ≤ 1, then c = d = w R
1+R and s = w

1+R .

2. If β2R > 1, then s = sβ2 which is a unique solution to the equation −u′(w− s) +
β2Ru

′(Rs) = 0.

We now come back to the original problem.

U∗ = max
(

max
c+s≤w,
d≤Rs
c≥d

{
u(c) + (β + γ)u(d)

}
, max
c+s≤w,
d≤Rs
c≤d

{
(1 + γ)

(
u(c) + β

1 + γ
u(d)

)})
. (35)

We consider three cases.

1. If β1R < 1, then the solution of (P1) satisfies s = sβ1 . Since β1 > β2, we have
β2R < 1 which implies that the solution of (P2) satisfies c = d = w R

1+R and
s = w

1+R . Note that the allocation c = d = w R
1+R and s = w

1+R is feasible for the
problem (P1). This follows that the maximum value of the problem (P1) is higher
than (1 + γ)

(
u(w R

1+R) + β
1+γu(w R

1+R)
)

= (1 + γ + β)u( Rw
1+R). So, the solution of

the problem (P (w,R)) satisfies s = sβ1 .

2. If β2R > 1, then by using the same argument, we obtain that s = sβ2 .

3. If β1R ≥ 1 ≥ β2R, then c = d = w R
1+R and s = w

1+R .

Proof of Proposition 2. Given γ, denote β1(γ) ≡ β + γ, β2(γ) ≡ β
1+γ .

Since 0 < γ1 < γ2, we have 1
γ2+β <

1
γ1+β <

1+γ1
β

< 1+γ2
β

. So, we consider 5 cases.

1. If Rt+1 <
1

γ2+β then Rt+1 <
1

γ1+β . According to Proposition 1, we have st(γ1) =
sβ1(γ1)(ωt, Rt+1) and st(γ2) = sβ1(γ2)(ωt, Rt+1). Thanks to Lemma 1, we have

sβ1(γ1)(ωt, Rt+1) < sβ1(γ2)(ωt, Rt+1).

Hence st(γ1) < st(γ2).

2. If 1
γ2+β ≤ Rt+1 <

1
γ1+β then we have st(γ1) = sβ1(γ1)(ωt, Rt+1) < wt

1+Rt+1
. Since

1
γ2+β ≤ Rt+1 <

1+γ2
γ

, Proposition 1 implies that st(γ2) = wt
1+Rt+1

. So st(γ1) <
st(γ2).

3. It is a direct consequence of Proposition 1.

4. If 1+γ1
β

< Rt+1 ≤ 1+γ2
β

, we have st(γ1) = sβ2(γ1)(ωt, Rt+1) and st(γ2) = wt
1+Rt+1

. So,
st(γ1) > st(γ2).

5. If Rt+1 >
1+γ2
β

, by using the similar argument as point 1, we get that st(γ1) >
st(γ2).
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Proof of Lemma 5. For the sake of simplicity, we write s(i)(k∗i ) instead of sβi
(
ω(k∗i ), f ′(k∗i )

)
,

for i = 1, 2.

1. If f ′(k∗1) < 1
γ+β .

By definition of s(1)(k∗1), we have that

u′
(
w(k∗1)− s(1)(k∗1)

)
= β1f

′(k∗1)u′
(
f ′(k∗1)s(1)(k∗1)

)
Then we have u′

(
w(k∗1)− s(1)(k∗1)

)
< u′

(
f ′(k∗1)s(1)(k∗1)

)
which is equivalent to

w(k∗1)− s(1)(k∗1) > f ′(k∗1)s(1)(k∗1), i.e., s(1)(k∗1) = nk∗1 <
w(k∗1)

1+f ′(k∗1) .

If the function w(k)
k(1+f ′(k)) is strictky decreasing for any k > 0, then we get that

k∗1 < k∗3 because n = ω(k∗3)
k∗3(1+f ′(k∗3)) <

w(k∗1)
k∗1(1+f ′(k∗1)) . So, f

′(k∗3) < f ′(k∗1) < 1
γ+β .

2. By using the same argument, we have that: If f ′(k∗1) > 1
γ+β , then f ′(k∗3) >

f ′(k∗1) > 1
γ+β .

3. If f ′(k∗1) = 1
γ+β , then n = ω(k∗3)

k∗3(1+f ′(k∗3)) = w(k∗1)
k∗1(1+f ′(k∗1)) , then k

∗
1 = k∗3.

4. If f ′(k∗2) > 1+γ
β
, then s(2)(k∗2) = nk∗2 >

w(k∗2)
1+f ′(k∗2) . So, n = ω(k∗3)

k∗3(1+f ′(k∗3)) >
w(k∗2)

k∗2(1+f ′(k∗2)) .
Thus, k∗2 > k∗3, f ′(k∗2) < f ′(k∗3).

5. If f ′(k∗2) < 1+γ
β
, then s(2)(k∗2) = nk∗2 <

w(k∗2)
1+f ′(k∗2) . So, n = ω(k∗3)

k∗3(1+f ′(k∗3)) <
w(k∗2)

k∗2(1+f ′(k∗2)) .
Thus, k∗3 > k∗2, f ′(k∗3) < f ′(k∗2) < 1+γ

β
.

6. If f ′(k∗2) = 1+γ
β
, then s(2)(k∗2) = nk∗2 = w(k∗2)

1+f ′(k∗2) . So, k
∗
2 = k∗3.

Proof of Corollary 1. (1) Let βRt+1 < 1. We consider two cases:

• For γ ∈ (0, 1
Rt+1
−β), Proposition 1 implies that st(γ) = sβ1(γ) which is increasing

in γ.

• For 1
Rt+1
− β ≤ γ, we have 1

β+γ ≤ Rt+1 <
1
β
< 1+γ

β
. Then Proposition 1 implies

that st = wt
1+Rt+1

which does not depend on γ.

(2) Let βRt+1 > 1. We consider two cases:

• For γ < βRt+1 − 1, i.e., 1+γ
β

< Rt+1, Proposition 1 implies that st(γ) = sβ2(γ)
which is decreasing in γ.

• For γ ≥ βRt+1 − 1, we have 1
β
< Rt+1 <

1+γ
β
. Then Proposition 1 implies that

st = wt
1+Rt+1

which does not depend on γ.
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Proof of Corollary 5. First we verify that the conditions Lemma 4 hold when
u(c) = ln c and f(k) = Akα. In fact, we have ω(k) = (1 − α)Akα. Thus the function
h(k) = ω(k)

k
= (1− α)Akα−1 is decreasing in k and then ω(k)

k(1+f ′(k)) is also decreasing in
k. The function f ′(k)u′(nkf ′(k)) = 1

nk
is also decreasing in k.

The rate of return
Rt+1 = f ′(kt+1) = αAkα−1

t+1 .

From Lemma 4, the dynamic of capital at equilibrim satisfies the following equation

nkt+1 =


β1ω(kt)

1+β1
= β1(1−α)Akαt

1+β1
= (1− σ1)(1− α)Akαt if αAkα−1

t+1 < 1
γ+β

(1−α)Akα
1+αAkα−1

t+1 .
if 1

γ+β ≤ αAkα−1
t+1 ≤ 1+γ

β

(1− σ2)(1− α)Akαt if αAkα−1
t+1 > 1+γ

β

.

When αAkα−1
t+1 < 1

γ+β , we have kt+1 = G(kt) with G(k) = G1(k) = 1
n
(1−σ1)(1−α)Akα.

By consequence, we can check that condition αAkα−1
t+1 < 1

γ+β becomes k1 > a1.
Similarly, αAkα−1

t+1 > 1+γ
β

becomes kt < a2 while 1
γ+β ≤ αAkα−1

t+1 ≤ 1+γ
β

becomes
a2 ≤ kt ≤ a1. As a consequence, we obtain (16) and (17).

Proof of Corollary 7. Remind that k∗1, ks and k∗2 are respectively the solution of
the following equations

g1(k) ≡ (1− α)Akα−1

1 + (αAkα−1)− 1
σ

+1β
− 1
σ

1

= n

gs(k) ≡ (1− α)Akα−1

1 + (αAkα−1)− 1
σ

+1β−
1
σ

= n

g2(k) ≡ (1− α)Akα−1

1 + (αAkα−1)− 1
σ

+1β
− 1
σ

2

= n

Since the function αAkα−1 is strictly decreasing in k and the function x

1+β
−1
σ x1− 1

σ
=

1
x−1+β

−1
σ x−

1
σ

is strictly increasing in x > 0, then the function g1(k), gs(k), g2(k) are
strictly decreasing in k. Since β1 = β + γ and β2 = β

1+γ , we obtain that k∗1 is strictly
decreasing in γ and k∗2 is strictly increasing in γ. Moreover, k∗1 > ks > k∗2.

Proof of Corollary 8. We firstly consider the case u(c) = ln c.

1. If 1−α
nα

> 1 + γ + β then from Corollary 5, we have k∗ = k∗1 =
(

(1−σ1)(1−α)A
n

) 1
1−α .

The condition kGR > k∗ is equivalent to

(1− σ1)(1− α)A
n

<
αA

n
.

Using the fact that σ1 = 1
1+γ+β , we obtain the equivalent condition 1−α

α
< 1−σ1 =

1 + 1
β+γ . Hence k

∗ < kGR if and only if 1−α
α

< 1 + 1
β+γ . Inversely, we see that

k∗ > kGR if and only if 1−α
α

> 1 + 1
β+γ .
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2. If 1−α
αn
≤ 1 + β

1+γ , then from Corollary 5, we have k∗ = k∗2 =
(

(1−σ2)(1−α)A
n

) 1
1−α .

So, we find

f ′(k∗) = αA

(
(1− σ2)(1− α)A

n

)α−1
1−α

= αn

(1− σ2)(1− α) .

By consequence, condition f ′(k∗) > n is equivalent to 1−α
α

< 1
1−σ2

.

Recall that σ2 ≡ 1+γ
1+β+γ . So,

1
1−σ2

= 1+β+γ
β

= 1 + 1+γ
β
. Hence, f ′(k∗) > n becomes

1−α
α

< 1 + 1+γ
β

while f ′(k∗) < n becomes 1−α
α

> 1 + 1+γ
β
.

3. If 1+ β
1+γ ≤

1−α
n
≤ 1+γ+β then k∗ = k∗3 =

(
(1−α−nα)A

n

) 1
1−α

. Hence the condition

k∗ < kGR satisfies if and only if (1−α−nα)A
n

< αA
n

which is equivalent to α > 1
n+2 .

So, we obtain our result.

We now consider the case u(c) = u1−σ

1−σ , ∀0 < σ 6= 1.

1. If 1−α
n

> 1 + γ + β then k∗ = k∗1 is the solution of the equation g1(k) ≡
(1−α)Akα−1

1+(αAkα−1)−
1
σ+1β

− 1
σ

1

= n. Here, recall that β1 ≡ β + γ, β2 ≡ β
1+γ .

We can verify that g1(k) is a strictly decreasing function and g1(kGR) = 1−α
α

n

1+n1− 1
σ β
− 1
σ

1

<

n = g1(k∗1) if and only if 1−α

α

(
1+n1− 1

σ β
− 1
σ

1

) < 1. Hence k∗1 < kGR and then

the inter-temporal equilibrium is dynamically efficient if 1−α
α

< 1 + n1− 1
σβ
− 1
σ

1 .
Inversely, the inter-temporal equilibrium is inefficient.

2. If 1−α
n
< 1 + β

1+γ then k∗ = k∗2 is the solution of the equation

g2(k) ≡ (1− α)Akα−1

1 + (αAkα−1)− 1
σ

+1β
− 1
σ

2

= n.

We can verify that g2(k) is a strictly decreasing function and then we have
g2(kGR) = n

1+n1− 1
σ β
− 1
σ

2

1−α
α

< n = g2(k∗2) if and only if (1−α)

α

(
1+n1− 1

σ β
− 1
σ

2

) < 1 .

Hence k∗2 < kGR and then the inter-temporal equilibrium is dynamically efficient
if 1−α

α
< 1 + n1− 1

σβ
− 1
σ

2 and inefficient if 1−α
α

> 1 + n1− 1
σβ
− 1
σ

2 .

3. We use the same argument in the proof of part 3 of the case u(c) = ln(c).
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