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Abstract

Proposing practical solutions to mitigate climate
change effects on the electrical power system re-
quires a comprehensive understanding and quan-
tification. By conducting an assessment at high
grid resolution, this article explores the impact of
climate on transmission network capacity, employ-
ing established thermal models and a regional ex-
pansion plan. The results indicate average reduc-
tions of 1.53%, 2.3%, and 0.2% for overhead lines,
power transformers, and underground cables, re-
spectively. We propose a quasi-Dynamic Thermal
Rating method to counter these effects, estimating
maximum capacity. This approach enhances com-
ponent capacity by an average of up to 35% during
winter at the power transformers and up to 14%
during nighttime hours for overhead lines. This so-
lution constitutes a viable alternative for electricity
operators to address the dilemma between the ne-
cessity of reducing the failure rate/decrease in ca-
pacity and the imperative need for new investments
in transmission assets.

Climate Change, Dynamic Thermal Rating ,
Power Systems Planning, Power transmission.

1 Introduction

Climate change projections estimate an average at-
mospheric temperature increase of 2-4oC until the
end of the century [1, 2]. This will directly and
negatively impact the electric power system, affect-
ing transmission capacity, generation, demand, and
congestion.

Regarding transmission, which is the main focus
of this study, the current carrying capacity of Over-
head Lines (OHL), Power Transformers (PT), and

Underground Cables (UGC) is determined, among
other factors, by their ability to dissipate joule
losses into the external environment. In turn, this
depends on ambient temperature: the lower the ex-
ternal temperature, the higher the transmission ca-
pacity, and vice versa. For instance, in the United
States, the impact of global warming is anticipated
to cause a reduction in OHL capacity within the
range of 1.9% to 5.8% [3].

In reference to power generation, higher temper-
atures lead to a reduction in production capacity:
on the one hand, a higher ambient temperature in-
creases the sink temperature in thermodynamic cy-
cles, reducing overall conversion efficiency. On the
other hand, it reduces air density, which, in turn,
reduces the mass flow intake of fossil fuel genera-
tors. Furthermore, factors such as water discharge
temperatures and diminishing water flows are an-
ticipated to impact over 80% of the world’s thermal
power plants due to drought and shifting seasonal
patterns, as detailed in [4].

Regarding power demand, this tends to grow
with higher ambient temperature due to load ther-
mosensitivity driven by air conditioning. This is,
in turn, accentuated by the growing penetration of
air cooling in power systems, including in develop-
ing countries. In [5], the expected annual demand
variation in different scenarios ranges from -2.7%
to 5.7% on average and is further exacerbated dur-
ing heat waves, culminating in an increase of up to
21% [6].

The combination of lower transmission capaci-
ties, lower generation, and higher load can increase
the likelihood of congestion in the transmission and
distribution infrastructure. This leads to ineffi-
ciency and spikes in local power prices, exacerbat-
ing current trends which, for example, resulted in
a cost of roughly $4.8 billion in 2016, as the U.S.
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Department of Energy (DOE) reported in 2018 [7].
Among the solutions proposed to alleviate net-

work congestion problems, Dynamic Thermal Rat-
ing (DTR) [8–11] is actively being deployed on crit-
ical lines. This technology aims to identify the
real-time current carrying capacity of network com-
ponents, which is generally higher than its Static
Thermal Rating (STR). On the one hand, this value
is strongly weather-dependent; on the other, DTR
allows the removal of network congestions and as-
sociated curtailments and delays and can remove
network reinforcements whilst improving reliabil-
ity.
Various studies have incorporated DTR into

power system expansion plans [12, 13] and high-
lighted its importance in RES integration and pen-
etration [14–18]. These studies employ control and
sensing devices [19,20] or data-driven probabilistic
methods to calculate the rating of OHL [21]. All
these studies yield generalized findings on the ef-
ficacy of DTR, among which the following can be
emphasized: a) Decreased system congestion costs
due to less generator re-dispatching. b) Reduction
or postponement of investments required for rein-
forcing or expanding existing assets. c) Grid oper-
ational flexibility to enhance facilitated integration
of RES.
In this study, we leverage historical and projected

meteorological variables on the power system com-
ponent’s location at different geographical points.
Through this data, we calculate the maximum cur-
rent that the system can carry at any point in
time without any section’s temperature surpassing
the predefined maximum threshold, employing the
DTR methodology. By doing so, we emphasize the
significant potential of DTR in enhancing power
system flexibility. To reinforce this assertion, we
analyze power system planning within the Gener-
ation and Transmission Expansion Plan (G&TEP)
framework using a tool for modeling hybrid power
systems.
This is made possible by the availability of widely

accepted component thermal models [22–24], open
energy data models [25] and quantitative climatic
projections such as the Representative Concen-
tration Pathways (RCPs) [26] and Shared Socio-
economic Pathways (SSPs) [27], which constitute
a valuable toolset for assessing regional climate
changes and their specific impacts on the energy
sector.

In summary, although research on the impact of
climate change on the energy system is becoming
more mature, the above literature review identi-
fies several notable research gaps, highlighting ar-
eas where further research and analysis are neces-
sary. Among them :

1) Previous research on this topic has primarily
focused on the impact of generation production [15,
28–30] and load [5]. When network aspects were
taken into account, only OHL were considered [3].

2) To the authors’ knowledge, the impact of cli-
mate change on long-term in power grid transmis-
sion, including dynamic thermal rating in OHL
[3, 10], UGL [31, 32], and PT [15, 18, 33], has yet
to be thoroughly examined. Most studies have fo-
cused on short and medium-term analysis when ap-
plying DTR [32,34].

3) In these works, the problem and its conse-
quences are clearly defined and quantified. How-
ever, solutions are not suggested, apart from relying
on traditional network reinforcements or smart grid
approaches. Limited research has focused on devel-
oping stable dynamic methods and probabilistic ap-
proaches for network operational planning over ex-
tended periods for OHL [21,34,35], PT, and UGC.

In light of this, this research aims at providing
the following main contributions :

Quantify the impact of climate change on power
system transmission capacity for OHL, PT, and
UGL, considering both historical reanalysis and fu-
ture climatic projections datasets. This quantifica-
tion is done in terms of transmission capacity (in
MVA) and costs for G&TEP.

It also proposes quasi-Dynamic Thermal Rating
(qDTR) as the primary solution to recover lost
transmission capacity, facilitating the connection of
renewable resources and reducing network costs.

2 Methodology

2.1 Overview

We develop a procedure to quantify the impact of
climate change on power grid transmission capac-
ity. This method is described in Fig. 1 and can be
divided into two steps:

Firstly, DTR and qDTR are estimated for OHL,
PT, and UGC [36] using thermal models of the
components and weather data from historical re-
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Figure 1: Visual representation of the procedure
used in this study.

analysis and climatic projections. This allows us to
quantify the variation in transmission capacity due
to climate change.

Secondly, a G&TEP is calculated with a hori-
zon of 2050, using transmission capacities calcu-
lated with historical weather reanalysis and RCPs
projections for STR, and qDTR. This allows us to
quantify the impact of climate change on transmis-
sion capacity, which was calculated in the previous
step.

2.2 Data

The data used in this study can be divided into
two broad categories: (c) component data (static)
and (a) environment data (static and dynamic).
Historical meteorological conditions in Europe
for the period 1970-2020 are obtained from ERA
reanalysis [2], whilst climatic projections for the
period 2020-2070 are obtained from the Copernicus
Climate Change Service (C3S) [1]. Additional
(b) soil properties for underground cable rating
calculations are obtained from [37, 38]. A list of
the parameters used and their source is reported
in Table. 1. Component parameters, relative to
the most popular elements, are obtained from the
existing literature or data sheets provided by the
main manufacturers, such as [39] for OHL, [40] for
UGC, and [41] for PT.

Table 1: Summary of data and sources. a:ERA
[1,2], b:ISMN [37], c:ESDAC [38].

Variable Units Source

Meteorological

Temp. Air at 2 m (θa) K A

Total precipitation (Pt) mm A

Net surface solar radiation (Sr) Jm−2 A

u - v - wind at 10 m (Ws) ms−1 A

Soil Proprieties

Silt (Ssilt%) % C

Sand (Ssand%) % C

Clay (Sclay%) % C

Organic (Sorg%) % C

Texture Composition (Stext) - C

Bulk (Sbulk) kgm−3 C

Soil Measurements

Temperature (θ) K B

Moisture (ψ) % B

2.3 Preprocessing

The raw data described are pre-processed as fol-
lows: (d) time series are uniformed by linear in-
terpolation to a common time step of 1h. When a
specific coordinate is required, parameters are in-
terpolated linearly from the four nearest available
grid points. (f) soil temperature (θ̂s) and soil mois-

ture (ψ̂) are calculated with a daily resolution in
a depth range between 0.8 and 1.2 meters based
on hourly-recorded input data, using a dedicated
machine-learning-based model (e) for each coordi-
nate (0.25◦), described by the authors in [36]. This
is necessary since the available values from [1] are
either not obtainable at the typical UGC burial
depth (1-5m, in the case of soil temperature) or
absent (in the case of soil moisture).

2.4 Rating estimation

The estimation of ratings starts with the use of (h)
component thermal models based on the thermal
balance between the heat generated by the Joule
effect I2R and the heat dissipated in the environ-
ment by convection or conductivity Qc, radiation
Qr and the solar heat gain Qs. This is shown in
Eq. 1. From this fundamental equation is declined
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as described below for each different component.

I2R+Qs = Qr +Qc (1)

As mentioned above, the OHL thermal is calcu-
lated using the heat balance equation and applying
the model outlined in [24]. The focus for calculating
the conductor’s rating can be outlined as follows:

I =

[
(βQr(θa) + γQc(θa,Ws)− αQs(Sr)

R(θa)

](0.5)
(2)

Where wind speed (Ws) poses the most challeng-
ing conditions for overhead lines as reported in [19]
, coupled with factors like air temperature θa and
solar radiation Sr.
Regarding underground cables, in accordance

with the standard procedures for quantifying the
ampacity of buried UGC, the thermo-electric model
described in [23] is used for this component. Ac-
cording to this standard, the capacity, with the in-
fluence of a dry area formation, is calculated per
day as follows.

I =

√
∆θ −Wd [0.5T1 + n (T2+3 + vT4)] + (v − 1)∆θx
R [T1 + n (1 + λ1)T2 + n (1 + λ1+2) (T2 + vT4)]

(3)

The above equation focuses on the critical tem-
perature of the boundary between the wet and dry
zones ∆θx and the ratio between the thermal resis-
tivity of the dry and wet zones of the back-fill soil v.
With high dependence on variable factors such as
ambient temperature, moisture, and precipitation,
the other parameters such as λ1−2, C, R, T1−3, Wd

obey the cable construction. These parameters can
be determined and calculated according to [23,42],
guides, and suggestions.

Finally, several models are available to estimate
the thermal state of loaded power oil-immersed
transformers’ capacity. Due to its broad recogni-
tion, this study adopts the widely accepted and
straightforward IEC 60076-7 [22] loading guide. It
is modified to incorporate the solar radiation factor
on the component as described in [43]. PT rating
is limited by the HST θh (◦C), depending on ambi-
ent temperature θa (◦C) and the hot-spot gradient
rise of temperature within the transformer ∆θh and
it is calculated in Eq. 4. The Top-oil temperature
θo (◦C) with a cold start state assumptions can be
calculated in Eq. 5.

Θo =

[
1 +K2R

1 +R
+

Sr

PLL + PNL

]x
(∆θor) + θa

(4)
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Figure 2: Conceptual illustrations of power system component rating capacities can be categorized into
different methods. For DTR, a thermal model is utilized to compute the maximum capacity, taking into
account real-time variables. Contrastingly, for STRs, a fixed value is applied throughout the year as a
constrained capacity limit, without considering changing conditions. qDTR calculates a 0.1% overload
risk over the lower tail values of DTR across a 50-year time horizon. Notably, cooler forced temperatures
and lower irradiation levels increase the capacity during the winter season and nighttime hours.
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Θh = θo + (∆θh2 −∆θh1) (5)

k21 ·Ky (∆θhr) = ∆θh1 (6)

(k21 − 1) ·Ky (∆θhr) = ∆θh2 (7)

Here, ∆θor (°C) denotes the steady-state tem-
perature rise at rated losses; x represents the ex-
ponent associated with oil temperature rise due to
total losses, while R signifies the ratio of load losses
at rated current to no-load losses at rated voltage.
The hot-spot temperature (HST) serves as the piv-
otal limiting parameter for the rating, and it is in-
strumental in computing the load factor K (per
unit) per iteration. This load factor is defined as
the ratio of load current to rated current. Finally,
the solar power is normalized into the load PLL and
the no-load losses PNL in Eq. 4.
The state of the art thermal models for OHL [24],

UGC [23], and PT [22] are used to compute the
DTR (i) for each power component at each coor-
dinate and each hourly time step available in the
datasets [1, 2].
At this point, (j) the simulated historical or fu-

ture DTRs are grouped by time interval (yearly,
monthly, monthly/hourly). For each group, a
power law function is fitted to the lowest tail of
the distribution (k). Finally, an accepted risk for
thermal overload is chosen, x = 0.1% in this work,
and the qDTR in terms of current intensity I are
calculated (l) as in Eq. 8, and conceptually illus-
trated in Fig. 2.

I(x) = Axα (8)

2.5 Planning

The financial impacts resulting from the reduction
in DTR due to climate change are assessed through
a series of G&TEP using [44] and CO2 budgets
for the RCPs from [45–51]. These studies rely on
the use of yearly STRs and monthly/hourly DTRs
(mhDTR), equivalent to 288 DTRs calculated for
each month/hour combination. Several compar-
isons are carried out:
1) G&TEP are carried out using STRH calcu-

lated on a historical reanalysis and qDTRRCP on
the three climatic projections. The comparison

shows the error incurred when not considering the
impact of climate change on transmission capacity.

2) G&TEP are carried out using STRH and
monthly/hourly qDTRH calculated from historical
reanalysis. The comparison shows the benefits of
using frequently changing qDTR to recover the lost
transmission capacity.

The G&TEP is carried out using the library
PyPSA [25], modified in order to accept variable
ratings. This solution allows us to rely on a widely
used model to test the impact of the hypotheses and
produce solid results. Nevertheless, this presents
several limitations, notably the fact that the net-
work run in PyPSA Europe is made of zones and
their interconnections, whilst a real network has a
far higher number of nodes and, more importantly,
lines.

3 Results

This study applies qDTR to estimate the maximum
allowable current carrying capacity of power trans-
mission components using historical (qDTRH, from
1970 to 2022) and future weather projections for
Europe (qDTRRCPx, where x represents the RCPs
scenario of future greenhouse gas emissions evalu-
ated from 2023 to 2070).

The first objective of this study is to analyze cli-
mate change’s impact on components’ transmission
capacity. This can be seen in Table 2, where STR
calculated with future climate projections are, on
average, lower than when calculated with historical
reanalysis. PT are the most affected component,
with average rating reductions up to -3.7%, whilst
UGC are the least affected, with average reductions
in the region of -0.2% due to the lower thermal vari-
ability of the soil. For OHL, the average rating re-
duction is -0.9%. The spatial variability of these
variations can be seen in Fig. 4 and 3, where some
regions, such as the southern Iberian Peninsula or
mountainous regions where reductions can arrive at
-5.5%.

After this, climate change’s impact on network
costs is analyzed. This can be seen in Table 3,
where cost variations are, in general, very small,
with slight cost reductions in the case of RCP4.5

and RCP8.5 and slight cost increases in the case
of RCP2.6. It is believed that this is because con-
straints are seldom reached, and the network can
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Figure 3: Climate impacts on transmission capacity, difference in capacity for qDTR in the month of
June under the average RCP 2,6, 4.5 and 8.5 scenario for OHL.

easily rearrange its loads and production patterns
to overcome them.

The impact of using qDTR instead of STR on
transmission capacity is then studied. By maximis-
ing transmission limits always except in the cen-
tral hours of the day, this approach allows to in-
crease the average transmission capacity in Europe
by 14.2%, 17.4%, and 3.7% for OHL, PT and UGC.

It is then tested how the new transmission capac-
ity obtained by using qDTR instead of STR impact
on network costs. Results are presented in Table 3,
where costs increase slightly in the European use
case and fall slightly in the French use case, ex-
cept for RCP4.5 in Europe, where costs increase
considerably up to 6.5%. The next sections show
firstly the increased transmission capacity allowed
by qDTR, then the impact of climate change on
network transmission capacity calculated by qDTR
and finally the effect of climate change on network
planning.

3.1 Impact of climate change on net-
work transmission capacity

When qDTR are calculated using projections for
the next decades instead of weather data relative
to past years, the effect of a temperature rise pre-
dicted by climatic projections becomes apparent.
Table 2 reports the average and extreme values for
the difference in transmission capacity calculated
using historical and expected future weather data.
In all three scenarios, transmission capacity is ex-
pected to drop. Transformers are the component

with the highest variation (from -1.0% to -2.3%),
followed by OHL (from - 0.4% to -1.53%) and UGC
(from -0.1% to -0.2%). This is explained by the
fact that the OHL rating is mainly influenced by
air temperature and wind speed, whilst the PT
rating is only influenced by air temperature. Of-
ten the hottest hours are also characterized by not
null wind speeds, reducing the derating effect of
temperature. For UGC, the much narrower tem-
perature variation of the soil prevents large rating
drops. The worst simulated cases show a maximum
reduction of -3.9%, -5.1%, and -1% for the ratings
of OHL, PT, and UGC, respectively.

Fig. 4 shows the spatial distribution of the rat-
ing variations summarized in Table 2. The spatial
variation of average transmission capacity for the
three components is reported above.
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Figure 4: Geographical distribution of the mean qDTR difference at the country level over fifty years for
the RCPs and the historical reanalysis. This is performed for the main power components (OHL - PT
and UGC). The first row reflects the difference in the variation of the historical average for the region,
and the subsequent rows illustrate the variation in the average for each RCP.
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Table 2: Variation for the three scenarios concern-
ing historical values for qDTR for the European
region.

Description
Component

OHL PT UGC

∆%(qDTRH, STRH)1

Mean 14.2 17.4 3.74

∆%(qDTRH)2

Max 10.7 17.4 29.6

Min -9.4 -16.4 -57.8

∆%(STRRCP, STRH)3

2.6 -0.5 -1.3 -0.1

4.5 -0.9 -2.6 -0.2

8.5 -0.5 -3.7 -0.2

∆%(qDTRRCP2.6, qDTRH)3

Mean -0.4 -1.0 -0.1

Max -1.4 -2.4 -0.5

Min 0.75 0.3 0.8

∆%(qDTRRCP4.5, qDTRH)3

Mean -0.7 -1.7 -0.2

Max -1.7 -3.2 -0.6

Min 0.9 -0.6 0.5

∆%(qDTRRCP8.5, qDTRH)3

Mean -1.53 -2.3 -0.2

Max -3.9 -5.1 -1

Min 0.32 -0.8 1.0
1 The average additional transmission capacity pro-
vided by qDTR in place of STR, calculated from
historical data.

2 The spatial variation on the continent of qDTR,
calculated from historical data.

3 The variation of transmission capacity calculated
with the specific climatic scenario versus historical
weather

The first row shows the spatial variability of
qDTRH in Europe, which is in the region of 20%,
34%, and 87% for OHL, PT, and UGC. As ex-
plained above, the lower variability of OHL is due
to the double dependency on wind and air tem-
perature of its rating. On the contrary, the very
high variability of UGC ratings is due to the variety
of soils in the different regions, which considerably
impacts thermal diffusivity and moisture retention.
The following three rows show the percentage vari-
ation in qDTR in Europe according to the different
climate scenarios considered. The variations are al-
most unanimously negative, with peaks in central
Spain, the Arctic, and mountainous regions. As

mentioned above, UGC presents lower variations
because of the high soil inertia.

Finally, the heat map in Fig. 5 represents the
temporal variation by month and hour of qDTRRCP

on a specific network node. It shows the effect
of increasing ambient temperature in the three
RCPs scenarios. The observed variations, which
are moderately significant, for instance, translate
into an average rating reduction of -2.3% in July for
qDTRRCP8.5 and -0.7% for qDTRRCP4.5 in the PT.
This could be translated in terms of variation in
the risk level regarding the equipment’s lifetime for
the network operator. On the other hand, the op-
posite effect can also be observed in specific months
and hours, such as -0.9% on February mornings for
qDTRRCP8.5, +0.7% for qDTRRCP4.5 and +0.02%
qDTRRCP2.6.

3.2 Impact of climate change on net-
work costs

This section examines the G&TEP investment de-
cisions, incorporating climate-variant supply and
qDTR for power system components.

To achieve this, we use a network model from
the PyPSA [25] package, applying STRH and
qDTRRCP calculated with historical or climate pro-
jections using weather data. The network model
is then used to carry out a G&TEP to estimate
changes in capital expenditure (CAPEX), opera-
tional expenditure (OPEX), and renewable curtail-
ment.

The results are summarized in Table 3, which
shows:1 the results of a baseline simulation with
STR,2 the improvements obtained using qDTRH

instead of STRH, and 3 the error incurred when
using historical weather instead of climate projec-
tions in qDTRRCP calculations. The expected cur-
tailment amount, the total System Cost, and the
LCOE are also reported. However, these values are
relative only to new investments and don’t consider
the existing infrastructure.

Case 1: Reference case, G&TEP for constrained
CO2 emissions without considering climate change
impact on network transmission capacity. In this
case study, the G&TEP model was used to ana-
lyze the optimal power system planning and op-
eration under the carbon emission constraints im-
posed by the RCPs. The model used historical re-
analysis data for the STRs. The objective is to
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determine the different portfolios of generation ca-
pacity necessary to achieve specific emission reduc-
tion targets. The study’s results are reported in
terms of CAPEX and OPEX in billion euros (BAC),
as well as the renewable curtailment in gigawatt-
hours (GWh). The results show that the three sce-
narios analyzed have virtually the same CAPEX
of 355.5 BAC and OPEX of 18.9BAC/y, with varia-
tions confined to the low percent digits and slightly
more visible differences in renewable curtailment.
Similar costs nevertheless hide different allocations
in the energy mix, with lower investments in Gas
power stations in RCP2.6 compensated by higher
investments in wind. Table 3 reports for this the
difference between the results of Case 2 and Case
1.

Case 2: Quantifying the impact on G&TEP of

the climate change impact on the transmission net-
work. In this case study, the G&TEP is again cal-
culated for the three RCPs, but with a different set
of STRs, estimated using the climatic data from the
relative RCPs. The study results are reported in
Table 3, which shows the percentage difference for
all the parameters between Case 2 and Case 1. The
study quantifies how the higher temperatures from
climate change, as simulated in the RCPs data, im-
pact the reduced transmission capacity of the net-
work. The results show an increase in CAPEX and
a reduction in OPEX, leading to overall higher sys-
tem costs, except the RCP2.6 Scenario.

Figure 5: Difference in the calculated qDTR month/hour between historical values and RCP projections
2.6, 4.5, 8.5. This is performed for the three main power components (OHL - PT, and UGC) in a node
located in Tavel, southeast France.
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Table 3: Variation for the three scenarios concerning yearly fix rating and costs, the scenarios covering
historical static (STRH, historical (qDTRH) and projected (qDTRRCP). Values are in % and calculated
as 1-y/x, meaning that positive values represent cost reductions and negative values represent cost
increases.

SCENARIO EUROPE FRANCE

RCP 2.6 4.5 8.5 2.6 4.5 8.5

S
T
R

H

CAPEX (BAC) 3.55E+2 3.55E+2 3.55E+2 6.65E+1 6.65E+1 6.65E+1

OPEX(BAC) 1.89E+1 1.89E+1 1.89E+1 3.17E+0 3.17E+0 3.17E+0

System Cost(BAC) 4.00E+2 4.00E+2 4.00E+2 7.39E+1 7.39E+1 7.39E+1

LCOE(AC/MWh) 2.77E+1 2.77E+1 2.77E+1 3.53E+1 3.53E+1 3.53E+1

Curtailment (GW) 7.32E+0 7.30E+0 7.32E+0 1.53E-1 1.54E-1 1.60E-1

∆
(S

T
R

R
C
P
,
S
T
R

H
)

CAPEX (%) -4.99E-4 -5.16E-3 -1.59E-3 1.12E-3 1.99E-4 -2.37E-3

OPEX (%) 1.70E-2 4.71E-3 1.26E-2 -6.06E-2 -5.71E-2 -1.66E-2

System Cost (%) 1.45E-3 -4.06E-3 -7.96E-6 -5.09E-3 -5.57E-3 -3.80E-3

LCOE(%) 1.45E-3 -4.06E-3 -7.96E-6 -5.09E-3 -5.57E-3 -3.80E-3

Curtailment (%) 2.57E-1 -5.04E-1 -3.01E-1 6.67E+0 -1.75E+0 9.59E-1

∆
(q

D
T
R

H
,
S
T
R

H
)

CAPEX (%) 2.32E-2 1.42E-2 2.41E-2 1.78E-2 1.51E-2 1.85E-2

OPEX(%) 1.44E-1 1.36E-1 1.32E-1 -1.87E-1 -1.99E-1 -1.97E-1

System Cost (%) 3.66E-2 2.77E-2 3.60E-2 -2.73E-3 -6.41E-3 -3.18E-3

LCOE(%) 3.66E-2 2.77E-2 3.60E-2 -2.73E-3 -6.41E-3 -3.18E-3

Curtailment (%) 6.49E-1 8.45E-3 4.26E-1 -2.66E-1 5.99E-1 6.77E+0

∆
(q

D
T
R

R
C
P

/
H
)

CAPEX (%) -6.26E-3 4.59E+0 -1.20E-2 -2.03E-3 4.75E-3 9.08E-4

OPEX (%) 4.88E-3 2.20E+1 1.68E-2 1.30E-2 -3.36E-2 5.95E-3

System Cost (%) -5.02E-3 6.52E+0 -8.81E-3 -5.19E-4 8.76E-4 1.42E-3

LCOE(%) -5.02E-3 6.52E+0 -8.81E-3 -5.19E-4 8.76E-4 1.42E-3

Curtailment (%) 4.57E-2 4.20E-1 -6.10E-2 -1.20E+0 3.64E+0 -2.13E+0

∆
(q

D
T
R

R
C
P
,
S
T
R

H
)

CAPEX (%) 1.70E-2 4.61E+0 1.21E-2 1.58E-2 1.99E-2 1.94E-2

OPEX (%) 1.49E-1 2.21E+1 1.49E-1 -1.74E-1 -2.32E-1 -1.91E-1

System Cost (%) 3.16E-2 6.55E+0 2.72E-2 -3.25E-3 -5.53E-3 -1.76E-3

LCOE(%) 3.16E-2 6.55E+0 2.72E-2 -3.25E-3 -5.53E-3 -1.76E-3

Curtailment (%) 6.94E-1 4.28E-1 3.65E-1 -1.47E+0 4.21E+0 4.79E+0
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Figure 6: qDTRH calculated for each month/hour combination for OHL, PT, and UGC calculated in
the node of Tavel (southeast France). Colors represent months from the coldest (blue) to the warmest
(red). A dashed black line represents yearly static ratings.

3.3 Impact of qDTR vs. STR on
network transmission capacity
and costs

Case 3: Quantify the benefit of using qDTRs in-
stead of STRs in G&TEP In this use case, the
G&TEP is run with a different set of transmission
capacity constraints. Instead of using STRs to es-
timate the available transmission capacity, qDTRs
calculated from historical weather reanalysis are
used. The objective is to quantify the benefit
of qDTRs, mainly due to the exploitation of the
higher transmission capacity at night. Results re-
ported in Table 3 show the percentage difference
between Case 3 and Case 2 for all the parameters.
The results show an overall reduction of costs, both
CAPEX and OPEX, in all three scenarios.

Case 4. Quantifying the importance of consid-
ering the effect of climate change when calculating
qDTRs. In this last use case, the G&TEP model
was run considering qDTRs calculated for the re-
spective RCPs. The study’s objective is to show
the error that would be incurred by not consider-
ing the impact of climate change on transmission
capacity when using qDTRs. The results, reported
in Table 3, show the percentage difference for all the
parameters between Case 4 and Case 3. The results

show different cost behaviors in the three scenarios,
with OPEX and renewable curtailment always un-
derestimated when RCPs are not considered due to
the lower effective available transmission capacity.

Finally, the last lines of Table 3 present the cost
difference between Case 4 and Case 1. Again, all
costs are reduced in all three scenarios, even when
higher temperatures and lower transmission capac-
ities are considered.

Fig. 6 shows the yearly and hourly variations
of qDTRH for the three components in southeast
France. For OHL and PT, we can see that in daily
summer hours, qDTRH are lower than STRH. On
the contrary, in winter and night hours, qDTRH

are far higher, resulting in a larger overall trans-
mission capacity. Concerning UGC, as expected,
their qDTR does not change during the day due to
the high thermal inertia of the soil. Another aspect
worth mentioning is the daily and yearly variations
of qDTRH. For the three components considered,
the yearly qDTR variation range in the region is
±15% from the highest to the lowest value, driven
by temperature variations.
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4 Conclusions

Overall, this work confirms that:
1) Predicted climate, with higher ambient tem-

peratures, causes a reduction in power system
transmission capacity in the region of 0.5%, 3,7%,
and 0.2% for OHL, PT, and UGL, respectively, in
the business as usual RCP8.5 scenario. 2) when
this reduction is integrated into a G&TEP study,
it results in different combination of CAPEX and
OPEX leading to little overall system cost increases
for the scenarios RCP8.5 and RCP4.5, but slightly
lower costs in RCP2.6.
2) The proposed qDTR approach allows for

higher transmission capacities, overcoming the rat-
ing reduction caused by climate change. On av-
erage, qDTR leads to an increase in transmission
capacity in the region of 14.2%, 17.4%, and 3.7%
for OHL, PT, and UGC while maintaining a con-
trolled thermal overload probability. This results,
in turn, in lower system costs in the three future
scenarios and lower renewable curtailment.
Further work: The work must first be carried

out on different use cases and more precise network
models able to capture better the costs associated
to transmission lines. Also, a methodology to bet-
ter integrate qDTRs within OPF and G&TEPmust
be developed in order to better understand the lim-
its of this approach.
Furthermore, data and software developed are

available for researchers to facilitate the replica-
tion and generalization of this study or its use in
order to build future research. A sample of this
is available for the review period before being up-
loaded to a more suitable platform at the address:
https://minesparis-psl.hal.science/hal-04453957v1
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