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CONTEXT: CLIMATE-DRIVEN FUTURE  ON POWER SYSTEMS
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[1] Copernicus Climate Change Service (C3S) - June – 2009 – Coordinates (43.80311, 7.1813) 
Climate Data Store (CDS), 10.24381/cds.adbb2d47 (Ac- cessed on 14-03-2023)

Weather - Driven energy systems – Pr. Pierre Pinson
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CONTEXT: CLIMATE-DRIVEN FUTURE  ON POWER SYSTEMS
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[1] Copernicus Climate Change Service (C3S) - June – 2009 – Coordinates (43.80311, 7.1813) 
Climate Data Store (CDS), 10.24381/cds.adbb2d47 (Ac- cessed on 14-03-2023)

Weather - Driven energy systems – Pr. Pierre Pinson 

Regarding overhead lines (OHL) transmission 
capacity, a study relative to the United States 
suggests a decline in the range between 1.9% 

and 5.8%.
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INTRODUCTION: THERMAL RATINGS
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INTRODUCTION: THERMAL RATINGS
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DTR climate change projections for the IT-Lazio Region for a PT, evaluated 
rolling mean for 2.6, 4.5, 8.5 representative concentration pathways
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INTRODUCTION: DYNAMIC THERMAL RATING
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𝐼 𝑽𝒘, 𝜙𝒘, Ɵ , 𝐻  ∀ 𝑡 ∈ [1,2 … 24]

Thermal Model
A. Michiorri, “Power system real-time thermal rating estimation”.
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INTRODUCTION: DYNAMIC THERMAL RATING
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[10] [13] [12] [14,15,16,17,18] [13,11,16]
[22][19, 23, 24] [19, 20] [21]
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INTRODUCTION: DYNAMIC THERMAL RATING
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Capacity 
Planning

Unit 
Commitment

Economic 
Dispatch

OPF

Dynamics

Years

Milliseconds

DTR

[10] [13] [12] [14,15,16,17,18] [13,11,16]
[22][19, 23, 24] [19, 20] [21]

How to use and exploit the Dynamic thermal ratings 
considering climate projections in power system 

planning? 
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2. Objectives

The Climate Change Impact on Power Grid Transmission Capacity
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Dynamic 
Thermal
Ratings

Weather 
and 

Climate 
Change
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OBJECTIVES

Objective Power System Planning (PSP) with Dynamic Thermal Rating (DTR).

     Q1: How to estimate the DTR resource?
• Thermal Models
• Historical reanalysis
• Future Projections

     Q2: How can the DTR be included in PSP?
• Future and Scenario reduction
• Develop Optimization problem G&TEP 

     Q3: How to integrate Climate Change into PSP?
• Scenarios Simulation 

Power 
System

Planning

Dynamic 
Thermal
Ratings

Weather 
and 

Climate 
Change

Q 2

Q 1Q 3
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Weather 
and 

Climate 
Change
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CONTRIBUTIONS

Power 
System

Planning

Dynamic 
Thermal
Ratings

Weather 
and 

Climate 
Change

Q 2

Q 1Q 3

A sample of this is available for the review period, before being 
uploaded to a more suitable platform, at the address: 
https://minesparis-psl.hal.science/hal-04453957v1

10%

90%
70%

30%

90%

10%

Q1

Q2 

Q3

Develop thermal ratings for 
PSC based on climatic factors.

Enhanced Transmission 
Capacity Probabilistic 

Dynamic Rating 

Included the Dynamic Thermal 
limit in a deterministic - GTEP

 The influence of Climate 
Change on Transmission 

Capacity Methodology 
(deterministic) is quantified
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4. Methodology

The Climate Change Impact on Power Grid Transmission Capacity
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Power System Planning
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METHODS
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Component 
Thermal Model 

  

Dynamic Thermal 
Rating Estimation 

Frequency  Group by 
(H,D,M,Y)

Probabilistic 
Distribution

  

Data Collection
• Socio-Economics
• Electrical
• Climate  

 Preprocessing
• Numerical data pre-processing 
• Machine Learning Model 

Network Creation
• Power Plants 
• Load Model
• Power Transmission 

Components

Deterministic
  

Generation and 
Transmission 

Expansion Plan
  

Stochastic

Q1

Techno-Economical 
Benefits

  

Probabilistic 
OPF

  

Q2

Climate Change Impact
  Q3

GTEP 
(Capex, Opex, Curt)

Network
Model

RCP
Projections
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METHODS Q1 : THERMAL MODELS UGC

Heat Exchange Phenomena 

Thermal Model

T4(𝜓 , Ɵ , 𝜌 )

Joule Losses

Rac (Ɵ)

Physical 
Losses

Electrical / 
Physical 

and 
Operating  

Parameters

External 
Losses𝜽𝒂(𝒕)

𝜓𝒎(𝒕)

Stype

Soil 
Thermal 

Resistivity

Precipitation

[1] Standard International. IEC 60287 Electric cables–calculation of the current rating–part 1–1
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METHODS Q1 : THERMAL MODELS PT

𝜽𝒂 𝒕
𝑺𝒓(𝒕)

Electrical / 
Physical 

and 
Operating  
Parameter

s

Iterate 
K

HST = Oh 

𝐼(Ɵ )
[2] 

𝜃 𝜃 < 𝐻𝑆𝑃

Heat Exchange Phenomena 

Thermal Model

[1] 

Θ =
1 + 𝐾 𝑅

1 + 𝑅
+

𝑆

𝑃 + 𝑃𝑁𝐿
ΔΘ + Θ

Θ = Θ + ΔΘ − ΔΘ

[1] A. Michiorri, “Power system real-time thermal rating 
estimation”.
[2] IEC 60076-7:2018 - Power transformers - Part 7: Loading 
guide for mineral-oil-immersed power transformers
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METHODS Q1 : THERMAL MODELS OHL

Heat Exchange Phenomena 

Thermal Model

𝜃 𝜃 , 𝑉 , 𝜙 , 𝐻  ∀ 𝑡

[1] CIGRE. Standard  cigre wg 22.12 - the thermal behaviour of overhead conductors. CIGRE, 144:107–105, 2014

𝜽𝒂(𝒕)

Pc (𝜽𝒂 a,Ws,)

Pr (𝜽𝒂)

R (𝜽𝒂)

Electrical / 
Physical 

and 
Operating  

Parameters

𝑽𝒘, 𝜙𝒘(𝒕)

𝑯(𝒕) Ps (H)

h

[1] 

𝐼 𝑂𝐻𝐿 =  
𝑃 Θ + 𝑃 Θ , 𝑊 − 𝑃 𝐻

𝑅 Θ
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METHODS Q1 : DYNAMIC THERMAL RATING
HISTORICAL DYNAMIC RATING
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METHODS Q1 : DYNAMIC THERMAL RATING
HISTORICAL DYNAMIC RATING
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METHODS Q1 : QUASI - DTR

FUTURE / HISTORICAL RATING 
CALCULATION
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METHODS Q1 : QUASI - DTR

𝑓 𝐼 = 𝐼𝑥

FUTURE / HISTORICAL RATING 
CALCULATION Exceedance 

Risk Value



23I 04/07/2024Sergio Montaña

METHODS Q1 : QUASI - DTR
qDTR

qSeasonally Static 
Thermal Rating

qStatic Thermal 
Rating

qDTR Monthly 
[0.1%] Per Power 

System Component
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qDTR Day/Night 
[0.1%] Per Power 

System Component

METHODS Q1 : QUASI - DTR
qDTR

Seasonally Static 
Thermal Rating

Static Thermal 
Rating

𝐼 𝑽𝒘, 𝜙𝒘, Ɵ , 𝐻  ∀ 𝑡∈ [1,2 … 24]

∀ 𝜃 <  𝜃  

qDTR Monthly 
[0.1%] Per Power 

System Component
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METHODS Q1 : QUASI - DTR

𝐼 𝑽𝒘, 𝜙𝒘, Ɵ , 𝐻  ∀ 𝑡∈ [1,2 … 24]

∀ 𝜃 <  𝜃  
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METHODS Q2 : POWER SYSTEM PLANNING

Generation Expansion Plan Network Expansion Plan

subject to

Market Clearance optimization 
Generation–demand balance
Generator limits 
Ramping constraints 

OPEX:    

CAPEX:

- Operating cost of generation units

- Cost Building generation

subject to

Power balance constraints 
Branch power flow limit 
Generator limits
Network constraints

OPEX:    

CAPEX:

- Load-shedding cost
- Losses 
- Operating cost of generation units
- Cost of Building new lines
- Upgrading 

min 𝑂𝑃𝐸𝑋  + 𝐶𝐴𝑃𝐸𝑋 min 𝑂𝑃𝐸𝑋  +  𝐶𝐴𝑃𝐸𝑋

[1] A. J. Conejo, L. Baringo Morales, S. J. Kazempour, and A. S. Siddiqui, Investment in
Electricity Generation and Transmission. Cham: Springer International Publishing, 2016. doi:
10.1007/978-3-319-29501-5.

[1][1]
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METHODS Q2 : POWER SYSTEM PLANNING

𝑓 𝑥 = min 𝑂𝑃𝐸𝑋  +  𝐶𝐴𝑃𝐸𝑋

,

min
, ,

𝑤t 𝐶 , 𝑃 ,

∈

+ 𝐼 𝑃 , + 𝐼( , )𝑧 ,

, ∈∈
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METHODS Q2 : POWER SYSTEM PLANNING

𝑓 𝑥 = min 𝑂𝑃𝐸𝑋  +  𝐶𝐴𝑃𝐸𝑋

,

𝑃 ,

∈

− 𝑃( , ),

, ∈

= 𝑃 ,

∈

 ∀𝑖 ∈ 𝑁

𝑃( , ), ≤ 𝑃 , ,
,  (𝑧 + 𝑧 ) ∀  𝑖, 𝑗 ∈ 𝐿

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑃 ,  𝑔 , ≥ 𝑃 , ≥ 𝑃 ,  𝑔 ,  ∀ 𝑔 ∈ 𝐺, 𝑡 Generator Constrains

Nodal Balance

Lines Constrains OPFDC

𝑃 , =
(𝜃 − 𝜃 )

𝑋
  ∀  𝑖, 𝑗 ∈ 𝐿

𝑔 ≥ 𝑃 ≥ 𝑔  ∀ 𝑔 ∈ 𝐺

0 ≤ 𝑧  ≤  𝑧         ∀  𝑖, 𝑗 ∈ 𝐿
Limit Capacity (Thermal Limit)

min
, ,

𝑤t 𝐶 , 𝑃 ,

∈

+ 𝐼 𝑃 , + 𝐼( , )𝑧 ,

, ∈∈
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METHODS Q2 : OPF

min 𝐶 𝑃

∈

𝑃

∈

− 𝑃( , )

, ∈

= 𝑃

∈

 ∀𝑖 ∈ 𝑁

𝑔 ≥ 𝑃 ,  ≥ 𝑔  ∀ 𝑔 ∈ 𝐺

𝑃( , ) ≤ 𝑃 ,
,  ∀  𝑖, 𝑗 ∈ 𝐿

𝑃 , =
(𝜃 − 𝜃 )

𝑋
  ∀  𝑖, 𝑗 ∈ 𝐿

𝜃 = 0

−𝜋 ≤ 𝜃 −  𝜃 ≤ 𝜋   ∀  𝑖, 𝑗 ∈ N
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METHODS Q2 : OPF

𝑃

∈

− 𝑃( , )

, ∈

= 𝑃

∈

 ∀𝑖 ∈ 𝑁

𝑔 ≥ 𝑃 ,  ≥ 𝑔  ∀ 𝑔 ∈ 𝐺

𝑃( , ) ≤ 𝑃 ,
,  ∀  𝑖, 𝑗 ∈ 𝐿

𝑃 , =
(𝜃 − 𝜃 )

𝑋
  ∀  𝑖, 𝑗 ∈ 𝐿

𝜃 = 0

𝐼_ 𝑂𝐻𝐿 =  
𝑄 Θ + 𝑄 Θ , 𝑊 − 𝑄 𝑆

𝑅 Θ
 

min 𝐶 𝑃

∈

−𝜋 ≤ 𝜃 −  𝜃 ≤ 𝜋   ∀  𝑖, 𝑗 ∈ N
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METHODS Q2 : OPF

𝑃
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− 𝑃( , )
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𝑔 ≥ 𝑃 ,  ≥ 𝑔  ∀ 𝑔 ∈ 𝐺
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,  ∀  𝑖, 𝑗 ∈ 𝐿

𝑃 , =
(𝜃 − 𝜃 )

𝑋
  ∀  𝑖, 𝑗 ∈ 𝐿

𝜃 = 0
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𝑃
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− 𝑃( , )

, ∈

= 𝑃

∈

 ∀𝑖 ∈ 𝑁

𝑔 ≥ 𝑃 ,  ≥ 𝑔  ∀ 𝑔 ∈ 𝐺

𝑃( , ) ≤ 𝐶𝐷𝐹                     ∀  𝑖, 𝑗 ∈ 𝐿

𝑃 , =
(𝜃 − 𝜃 )

𝑋
       ∀  𝑖, 𝑗 ∈ 𝐿

𝜃 = 0
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METHODS – DATA AND SCENARIOS

ERA5 Hourly Data On 
Single Levels From 1940 

To The Present

Climate And Energy 
Indicators For Europe 

From 2005 To 2100 
Derived From Climate 

Projections

[10] [11] 

• Socio-Economics
• Regional Geometry 

(NUTS)
• Historical  and 

Projected: GDP and 
Population

• Electrical
• Historical and Electrical 

Demand (Country)
• Generation Capacity
• Cable Parameters
• Lines Location
• Soil Taxonomy
• Generator techno-

economic 

I 04/07/2024Sergio Montaña

[10]Hersbach, et al : ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S)
[11] Copernicus Climate Change Service (2021): Climate and energy indicators for Europe from 2005 to 2100 derived
from climate projections. Copernicus Climate Change Service (C3S) Climate
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5. Results

The Climate Change Impact on Power Grid Transmission Capacity



34I 04/07/2024Sergio Montaña

ISGT-2023
Paper 1 

Submitted / R0
Paper 2

In preparation
Paper 3

Submitted / R0
Paper 4 
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ISGT-2023
Paper 1 

Submitted / R0
Paper 2

Submitted / R0
Paper 3

Submitted / R0
Paper 4 

 Q1: How estimate the DTR resource? Q2: How can the DTR be included in PSP?
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5.1 How to estimate the DTR 
resource?

The Climate Change Impact on Power Grid Transmission Capacity
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RESULTS : UNDERGROUND CABLES INTEGRATING SOIL DYNAMICS 

λ = λ − λ 𝐾 + λ 𝑎𝑡 2 𝑚𝑡𝑠 

     𝐾 = exp α − ψ  𝑎𝑡 2 𝑚𝑡𝑠 

Paper 2: Long-term Dynamic Thermal Ratings of Underground Cables Integrating Soil Dynamics and Climate Projections

THEOERICAL 
MODELS 

(Empirical model)
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RESULTS : UNDERGROUND CABLES INTEGRATING SOIL DYNAMICS 

Model
ERA543210CV
2.722.392.152.292.032.230

RM
SE

_8
0 3.642.832.632.732.432.691

2.763.373.163.194.812.922
2.902.141.902.251.852.023
3.562.703.112.603.482.894
3.12.952.742.833.162.71Avg.
2.722.392.152.292.032.230

M
AE

_8
0 2.183.062.842.854.612.561

2.321.871.611.951.551.712
2.582.382.772.263.142.553
2.213.412.563.032.962.644
2.42.622.392.482.862.34Avg.

Paper 2: Long-term Dynamic Thermal Ratings of Underground Cables Integrating Soil Dynamics and Climate Projections

λ = λ − λ 𝐾 + λ 𝑎𝑡 2 𝑚𝑡𝑠 

     𝐾 = exp α − ψ  𝑎𝑡 2 𝑚𝑡𝑠 
THEOERICAL 

MODELS 
(Empirical model)
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RESULTS : UNDERGROUND CABLES INTEGRATING SOIL DYNAMICS 
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RESULTS : QUASI-DYNAMIC THERMAL RATINGS FOR POWER TRANSFORMERS

Answer # 1 – Climate change could 
reduce average rating up to 2%

Paper 1: Weather-Based Quasi Dynamic Thermal Ratings for Power Transformers
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RESULTS : QUASI-DYNAMIC THERMAL RATINGS FOR POWER TRANSFORMERS

Answer # 2 – The qDTRs methodology 
introduced  an average uplift in the region of 7.7%

Map Of Provence Transmission 
Network With A Location Of PT

Answer # 1 – Climate change could 
reduce average rating up to 2%

Higher 
Ratings

Reducing 
the risk of 

overloading

Paper 1: Weather-Based Quasi Dynamic Thermal Ratings for Power Transformers
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RESULTS : POWER GRID TRANSMISSION CAPACITY

Paper 3: The Climate Change Impact on Power Grid Transmission Capacity

QUASI-DYNAMIC THERMAL RATINGS
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RESULTS : CLIMATE IMPACT (1972 TO 2072 )

Paper 3: The Climate Change Impact on Power Grid Transmission Capacity
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RESULTS : CLIMATE IMPACT (1972 TO 2072 )

Reduce Capacity Enhance 

Paper 3: The Climate Change Impact on Power Grid Transmission Capacity
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RESULTS : CLIMATE IMPACT (1972 TO 2072 )

Inertia -
Monthly rate 
change of less 

than 5%.
Seasonality

Paper 3: The Climate Change Impact on Power Grid Transmission Capacity
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RESULTS : CLIMATE IMPACT (1972 TO 2072 )

Paper 3: The Climate Change Impact on Power Grid Transmission Capacity

Developed database of DTR (100 years) 
and qDTR - 0.25° x 0.25 
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5.2 How can the DTR be included in 
PSP?

The Climate Change Impact on Power Grid Transmission Capacity
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RESULTS : CLIMATE IMPACT

Capacity Expansion Planning with pypsa — Data Science for Energy System Modelling 
(fneum.github.io)

Pypsa-Eur

Paper 4: Assessing Regional Capacity Expansion: The Role of Quasi-Dynamic Thermal Ratings in a Changing Climate

The Climate Change Impact on Power Grid Transmission 
Capacity
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RESULTS : CLIMATE IMPACT

Capacity Expansion Planning with pypsa — Data Science for Energy System Modelling 
(fneum.github.io)

Pypsa-Eur

Paper 4: Assessing Regional Capacity Expansion: The Role of Quasi-Dynamic Thermal Ratings in a Changing Climate

The Climate Change Impact on Power Grid Transmission 
Capacity
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RESULTS : CLIMATE IMPACT

Capacity Expansion Planning with pypsa — Data Science for Energy System Modelling 
(fneum.github.io)

Pypsa-Eur

Paper 4: Assessing Regional Capacity Expansion: The Role of Quasi-Dynamic Thermal Ratings in a Changing Climate

The Climate Change Impact on Power Grid Transmission 
Capacity

RCP

Reduce 

Impact of the 
use of qDTR

Impact of the 
Climate

Increase
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RESULTS : CLIMATE IMPACT

Paper 4: Assessing Regional Capacity Expansion: The Role of Quasi-Dynamic Thermal Ratings in a Changing Climate

Assessing Regional Capacity Expansion: The Role of Quasi-
Dynamic Thermal Ratings in a Changing Climate
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RESULTS : CLIMATE IMPACT

Paper 4: Assessing Regional Capacity Expansion: The Role of Quasi-Dynamic Thermal Ratings in a Changing Climate

Assessing Regional Capacity Expansion: The Role of Quasi-
Dynamic Thermal Ratings in a Changing Climate

Reduce 
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6. Discussion

The Climate Change Impact on Power Grid Transmission Capacity
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CONCLUSIONS AND NEXT STEPS

 Enhanced Transmission Capacity: Implementing qDTR instead of STR significantly enhances average transmission capacity across 
Europe. This method shows improvements of 14.2%, 17.4%, and 3.7% for overhead lines (OHL), power transformers (PT), and underground 
cables (UGC), respectively.        

 Soil Moisture Anomalies: The research validates previous findings that soil moisture anomalies exhibit a memory effect, persisting for 
weeks or months with a monthly rate change of less than 5%. This persistence impacts the thermal balance and, consequently, the 
transmission capacity.       

 Optimize capacity utilization: The first results of the case studies presented in this thesis and the accompanying publications have 
demonstrated the significant potential of DTR for RES grid integration.     

 Sensitivity to Climate: While geographical and technological factors influence transmission networks, capacity is susceptible to increases 
in ambient air temperature and fluctuating environmental factors. With higher ambient temperatures, predicted climate projections cause a 
reduction in power system transmission capacity in the region of 1.53%, 2.3%, and 0.2% for OHL, PT, and UGL, respectively.   

 Next Steps: Using the first PSP approach with Open - Tool, the overall grid costs change modestly, and the renewable curtailment is 
consistently reduced. The objective will be to develop the optimal formulation for the G&TEP, which will be determined by considering 
uncertain conditions for the demand and production scenarios.



55I 04/07/2024Sergio Montaña

CONCLUSIONS AND NEXT STEPS
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