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Proposing practical solutions to mitigate climate change effects on the electrical power system requires a comprehensive understanding and quantification. By conducting an assessment at high grid resolution, this article explores the impact of climate on transmission network capacity, employing established thermal models and a regional expansion plan. The results indicate average reductions of 1.53%, 2.3%, and 0.2% for overhead lines, power transformers, and underground cables, respectively. We propose a quasi-Dynamic Thermal Rating method to counter these effects, estimating maximum capacity. This approach enhances component capacity by an average of up to 35% during winter at the power transformers and up to 14% during nighttime hours for overhead lines. This solution constitutes a viable alternative for electricity operators, to address the dilemma between the necessity of reducing the failure rate/decrease in capacity, and the imperative need for new investments in transmission assets.

Introduction

Climate change projections estimate an average atmospheric temperature increase of 2-4 o C until the end of the century [START_REF]Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections[END_REF][START_REF] Bell | ERA5 hourly data on single levels from 1940 to present[END_REF]. This will directly and negatively impacts the electric power system, affecting transmission capacity, generation, demand, and congestion.

Regarding transmission, which is the main focus of this study, the current carrying capacity of Overhead Lines (OHL), Power Transformers (PT), and Underground Cables (UGC) is determined, among other factors, by their ability to dissipate joule losses into the external environment. In turn, this depends on ambient temperature: the lower the external temperature, the higher the transmission capacity, and vice versa. For instance, in the United States, the impact of global warming is anticipated to cause a reduction in OHL capacity within the range of 1.9% to 5.8% [START_REF] Matthew | Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the united states[END_REF].

In reference to power generation, higher temperatures leads to a reduction in production capacity: on the one hand, a higher ambient temperature increases the sink temperature in thermodynamic cycles, reducing overall conversion efficiency. On the other hand, it reduces air density, in turn reducing, the mass flow intake of fossil fuel generators. Furthermore, factors such as water discharge temperatures and diminishing water flows are anticipated to impact over 80% of the world's thermal power plants due to drought and shifting seasonal patterns, as detailed in [START_REF] Seleshi G Yalew | Impacts of climate change on energy systems in global and regional scenarios[END_REF].

Regarding power demand, this tends to grow with higher ambient temperature due to load thermosensitivity driven by air conditioning. This is in turn accentuated by the growing penetration of air cooling in power systems, including in developing countries. In [START_REF] Romitti | Heterogeneous climate change impacts on electricity demand in world cities circa mid-century[END_REF], the expected annual demand variation in different scenarios ranges from -2.7% to 5.7% on average and is further exacerbated during heat waves, culminating in an increase of up to 21% [START_REF] Añel | Impact of cold waves and heat waves on the energy production sector[END_REF].

The combination of lower transmission capacities, lower generation, and higher load can increase the likelihood of congestion in the transmission and distribution infrastructure. This leads to inefficiency and spikes in local power prices, exacerbating current trends which, for example, resulted in a cost of roughly $4.8 billion in 2016, as reported by the U.S. Department of Energy (DOE) in 2018 [7].

Among the solutions proposed to alleviate network congestion problems, Dynamic Thermal Rating (DTR) [START_REF] Karimi | Dynamic thermal rating of transmission lines: A review[END_REF][START_REF] Keyvani | Indirect weather-based approaches for increasing power transfer capabilities of electrical transmission networks[END_REF][START_REF] Douglass | A review of dynamic thermal line rating methods with forecasting[END_REF][START_REF] Karimi | Dynamic thermal rating of transmission lines: A review[END_REF] is actively being deployed on critical lines. This is a technology aiming at identifying the real-time current carrying capacity of network components, which is, in general, higher than its Static Thermal Rating (STR). On the one hand, this value is strongly weather-dependent; on the other, DTR allows the removal of network congestions and associated curtailments and delays, and can remove network reinforcements whilst improving reliability.

Various studies have incorporated DTR into power system expansion plans [START_REF] Glaum | Enhancing the german transmission grid through dynamic line rating[END_REF][START_REF] Trpovski | A comparative analysis of transmission system planning for overhead and underground power systems using ac and dc power flow[END_REF] and highlighted its importance in RES integration and penetration [START_REF] Hajeforosh | Enhancing the hosting capacity of distribution transformers for using dynamic component rating[END_REF][START_REF] David | Dynamic rating assists cost-effective expansion of wind farms by utilizing the hidden capacity of transformers[END_REF][START_REF] Teh | Reliability impacts of the dynamic thermal rating and battery energy storage systems on wind-integrated power networks[END_REF][START_REF] Lai | Network topology optimisation based on dynamic thermal rating and battery storage systems for improved wind penetration and reliability[END_REF][START_REF] Morozovska | Dynamic rating with applications to renewable energy[END_REF].These studies employ control and sensing devices [START_REF] Michiorri | Forecasting for dynamic line rating[END_REF][START_REF] Douglass | Real-time overhead transmission-line monitoring for dynamic rating[END_REF] or data-driven probabilistic methods to calculate the rating of OHL [START_REF] Mahmoudian | Real time congestion management in power systems considering quasi-dynamic thermal rating and congestion clearing time[END_REF]. All these studies yield generalized findings on the efficacy of DTR, among which the following can be emphasized: a) Decreased system congestion costs due to less generator re-dispatching. b) Reduction or postponement of investments required for reinforcing or expanding existing assets. c) Grid operational flexibility to enhance facilitated integration of RES.
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In this study, we leverage historical and projected meteorological variables at different geographical points on the power system component's location. Through this data, we calculate the maximum current that the system can carry at any point in time without any section's temperature surpassing the predefined maximum threshold, employing DTR methodology. By doing so, we emphasize the significant potential of DTR in enhancing power system flexibility. To reinforce this assertion, we analyze power system planning within the Generation and Transmission Expansion Plan (G&TEP) framework using a tool for modeling hybrid power systems. This is made possible by the availability of widely accepted component thermal models [START_REF]2018, power transformers -part 7: Loading guide for mineral-oil-immersed power transformers[END_REF][START_REF]Electric cables-calculation of the current rating-part 1-1: Current rating equations (100% load factor) and calculation of losses-general[END_REF][START_REF] Iglesias | Guide for Thermal Rating Calculations of Overhead Lines[END_REF], open energy data models [START_REF] Brown | PyPSA-Eur: An open optimisation model of the european electricity system[END_REF] and quantitative climatic projections such as the Representative Concentration Pathways (RCP) [START_REF] Taylor | An overview of cmip5 and the experiment design[END_REF] and Shared Socio-economic Pathways (SSPs) [START_REF] Riahi | The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview[END_REF], which constitute a valuable toolset for assessing regional climate changes and their specific impacts on the energy sector.

As a main contribution, this research aims to quantify the impact of climate change on power system transmission capacity. It also proposes quasi-Dynamic Thermal Rating (qDTR) as the primary solution to recover lost transmission capacity, facilitating the connection of renewable resources and reducing network costs.

Result and Discussion

This study applies qDTR to estimate the maximum allowable currents of power transmission components using historical (qDTRH , from 1970 to 2022) and future weather projections for Europe (qDTRRCPx, where x represents the RCP scenario evaluated from 2023 to 2070).

Firstly, the use of qDTRH instead of STRH increases average transmission capacity in the region of 14.2%, 17.4% and 3.7% for OHL, PT and UGC respectively (see Table 1, first row). The results indicate an average reduction in the transmission capacity of the network, ranging from 1.3% to 8.6% as shown in Figure 1. This outcome is a consequence of an increase in ambient temperature of between 1.3% to 2.4%.

We then quantify the climate impact of transmission network capacity for three main components: PT, OHL, and UGC. The results are shown in Table 1. Demonstrate how average component ratings can drop from 0.4% to 1.53% (OHL), creating additional costs for the network in the region of 0.006% to 0.064%. Figure 4 reports the average OHL rating variation expected in Europe in the RCP 2.6 Scenario.

Figure 1 visually illustrates the trend, presenting the rating evolution over the next five decades for the European network's OHL [START_REF] Matke | SciGRID -An Open Source Reference Model for the European Transmission Network[END_REF] under low, medium, and high emission scenarios. These ratings are then incorporated into a G&TEP, enabling the calculation of optimal investments and operating costs. Across the three scenarios, not considering climate evolution would result in costs underestimations in the region of 0.1% to 0.2% for CAPEX, -6.2% to 3.1% for OPEX and 9.3% to 70.2% for renewable curtailment.

The next three sections show firstly the increased transmission capacity allowed by qDTR, then the impact of climate change on network transmission capacity calculated by qDTR and finally the effect of climate change on network planning. 

Benefits of qDTR vs STR

We start by analyzing the benefit of using qDTR instead of STR in network operations. Figure 2 reports the percentage variation in average transmission capacity for OHL, PT, and UGC, respectively, in Europe. In this case, qDTRH and STRH are calculated using historical values from 1970 to 2020. Note that qDTRH are always above STRH in all studied regions. Figure 2: Geographical distribution of the mean Historical ∆ % (qDTRH, STRH) difference at the country level. This is performed for the three main power components (OHL, PT and UGC). Fig. 3 shows the yearly and hourly variations of qDTRH for the three components in southeast France. For OHL and PT, we can see that in daily summer hours, qDTRH are lower than STRH. On the contrary, in winter and night hours, qDTRH are far higher, resulting in a larger overall transmission capacity. Concerning UGC, as expected, their qDTR do not change during the day, due to the high thermal inertia of the soil. Another aspect worth mentioning is the daily and yearly variations of qDTRH. For the three components considered, the yearly qDTR variation range in the region is ±15% from the highest to the lowest value, driven by temperature variations. 

Impact of climate change on network transmission capacity

When qDTR are calculated using projections for the next decades instead of weather data relative to past years, the effect of a temperature rise predicted by climatic projections becomes apparent.

Table 1 reports the average and extreme values for the difference in transmission capacity calculated using data on historical weather and expected future weather. In all three scenarios, transmission capacity is expected to drop. Transformers are the component with the highest variation (from -1.0% to -2.3%) followed by OHL (from -0.4% to -1.53%) and UGC (from -0.1% to -0.2%). This is explained by the fact that the OHL rating is mainly influenced by air temperature and wind speed, whilst the PT rating is only influenced by air temperature. Often hottest hours are also characterized by not null wind speeds, reducing the derating effect of temperature. For UGC, the much narrower temperature variation of the soil prevents large rating drops. The worst cases simulated show a maximum reduction of -3.9%, -5.1% and -1% for the ratings of OHL, PT and UGC, respectively.

Figure 4 shows the spatial distribution of the rating variations summarized in 1. The spatial variation of average transmission capacity for the three components is reported above. Figure 4: Geographical distribution of the mean qDTR difference at the country level over fifty years for the RCPs and the historical reanalysis. This is performed for the three main power components (OHL -PT and UGC). The first row reflects the difference in the variation of the historical average for the region, and the subsequent rows illustrate the variation in the average for each of the RCPs. The first row shows the spatial variability of qDTRH in Europe, which is in the region of 20%, 30% and 90% for OHL, PT and UGC. The lower variability of OHL is given, as explained above, by the double dependency from wind and air temperature of its rating. The very high variability of UGC ratings on the contrary is given by the variety of soils in the different regions, which considerably impacts thermal diffusivity and moisture retention. The following three rows show the percentage variation in qDTR in Europe according to the different climate scenarios considered. The variations are almost unanimously negative, with peaks in central Spain, the Arctic and mountainous regions. As mentioned above, UGC presents lower variations because of the high soil inertia.

Finally, the heat map in Fig. 5 represents the temporal variation by month and hour of qDTRRCP on a specific node of the network. The effect of increased ambient temperature in the three RCP scenarios is shown in Fig. 5. The observed variations, which are moderately significant, for instance translate into an average rating reduction of -2.3% in July for qDTRRCP 8.5 and -0.7% for qDTRRCP 4.5 in the PT. This could be translated in terms of variation in the risk level regarding the equipment's lifetime for the network operator. On the other hand, the opposite effect can also be observed in specific months and hours, such as -0.9% on February mornings for qDTRRCP 8.5, +0.7% for qDTRRCP 4.5 and +0.02 qDTRRCP 2.6.

Impact of climate change on network costs

This section examines investment decisions within the Generation and Transmission Expansion Plan, incorporating climate-variant supply and qDTR for power system components.

To achieve this, we use a network model from the PyPSA [START_REF] Brown | PyPSA-Eur: An open optimisation model of the european electricity system[END_REF] package, applying STRH and qDTRRCP calculated with historical or climate projections using weather data. The network model is then used to carry out a G&TEP in order to estimate changes in CAPEX, OPEX, and renewable curtailment

The results are summarized in Table 2, which shows: 1 the results of a baseline simulation with STR, 2 the improvements obtained using qDTRH instead of STRH, and 3 the error incurred when using historical weather instead of climate projections in qDTRRCP calculations. In each case, the CAPEX and OPEX are reported for different assets, such as fossil fuel generators, renewable generators, nuclear generators, transmission lines, and storage. For renewable generators, the amount of expected curtailment is also reported.

When comparing the minimum and maximum emission scenarios in Europe under the same projection, a difference of 154 MWh is observed in the dispatch energy for onshore wind. Conversely, in France, electricity generation CO2 targets remain relatively stable for nuclear, run of river, solar, coal lignite,

The average additional transmission capacity provided by qDTR in place of STR, calculated from historical data. The spatial variation on the continent of qDTR, calculated from historical data. The variation of transmission capacity calculated with the specific climatic scenario versus historical weather nuclear, and oil, indicating their consistent performance in the context of the analyzed DTR scenarios (from -0.25% to 0.32%). The impact of climate change is linked to qDTR in Transmission Expansion Plans (TEPs). In scenarios marked by increased greenhouse gas emissions, the transmission capacity requirements are subject to a substantial increase of 49% in Europe and 98% in France for the 2050 scenario, as evidenced in the highemission scenario RCP 8.5. However, It must be noted that using qDTR instead of static rating reduces curtailment by up to 60% in renewables in the French case for the 2.6 scenario due to the massive expansion of renewables, and 17% in the European case.

Concomitantly, as emissions continue to escalate, resulting in elevated temperatures across Europe, the vulnerability to energy curtailments becomes more pronounced. In specific scenarios like RCP 8.5, characterized by high emissions, the likelihood of curtailments increases from 9.3% to 70% in Europe and from 2.6% to 36.6% in France. In the field of renewable technology, onshore wind curtailment displays notable variability across CO2 budgets ranging from up to 1.25 GW for Europe in the low-emission scenario employing STRH, to 1.02 GW in the high-emission scenario using qDTRH. Other technologies, such as solar PV, also manifest changes, albeit with less magnitude, across CO2 budget scenarios qDTRRCP 2.6 and qDTRRCP 8.5, indicating a shift from 233.64 to 129.52 MW. 

Discussion

By conducting an assessment at high grid resolution, this analysis takes a close look at the climate impact on transmission network capacity by utilizing established thermal models and a regional expansion plan for generation and transmission by 2050. Using the qDTR method to estimate maximum capacity with a low-risk exceedance probability, our findings reveal substantial reductions in the mid-term high-emission horizon for power transformers and overhead lines. In contrast, for underground cables, the reductions are more modest, highlighting their lower sensitivity to potential climate changes; this demonstrates that the heat balance has a memory, i.e., soil moisture anomalies may persist for weeks or even months (monthly rate change less than 5%.).

Mitigating the risk of exceeding the Static Season Rating, attributed to the likelihood of overload in unfavorable meteorological conditions that impede heat dissipation (e.g., low wind speed, high temperature, low precipitation), is achieved with a reduction of up to 99.998%. This improvement positively contributes to the reliability of the transmission system. However, as part of a trade-off, qDTR allow us to optimize energy utilization during the colder nighttime hours in both summer and winter. This is particularly crucial for managing nighttime winter load peaks. The observed contrast is more prominent in summer than in winter, attributable to the elevated temperature variations.

Regional advantages in electricity sector investments, linked to atmospheric carbon concentration, are predominantly centered around renewables. This trend is evident in the analysis of twelve distinct scenarios tailored for all EU countries with a time horizon of 2050, ensuring that investment strategies align with the dynamic nature of climate-affected power supply and the thermal characteristics of critical system components. Furthermore, the use of qDTRH data reveals a reduction in transmission planning costs, harnessing the flexibility of the generation system, with a particularly notable effect in the scenarios tailored for France.

The introduction of qDTR opens a new avenue for curtailing reductions. Our results demonstrate, across all CO2 targets and emission scenarios, the pivotal role of qDTR in enabling greater utilization of renewables without the need for storage technology. As an illustration, in France, with the CO2 and qDTRRCP 2.6 scenarios, curtailment sees a reduction of up to 59% compared to STRH. This reduction translates into enhanced network transmission capacity and a higher capacity expansion for renewable energy.

Conclusions

Overall, this work confirms that 1) predicted climate, with higher ambient temperatures, causes a reduction in power system transmission capacity, in the region of 1.53%, 2.3%, and 0.2% for OHL, PT, and UGL, respectively. 2) the qDTR approach proposed, allows for higher transmission capacities, overcoming the rating reduction caused by climate change, as it improves component capacity by up to 35% on average during winter for PT and up to 14% during nighttime hours for OHL. 3) Overall network costs change modestly and we achieve a consistent reduction in renewable production curtailment.

Method

Overview

We develop a procedure to quantify the impact of climate change on power grid transmission capacity. This method is described in Fig. 7 and can be divided into two steps:

1) Firstly, DTR and qDTR are estimated for OHL, PT, and UGC [START_REF] Montana | Long-term dynamic thermal ratings of underground cables integrating soil dynamics and climate projections[END_REF] using thermal models of the components and weather data from historical reanalysis and climatic projections. This allows us to quantify the variation in transmission capacity due to climate change. 2) Secondly, a G&TEP is calculated with a horizon of 2050, using transmission capacities calculated with historical weather reanalysis, RCP, STR, and qDTR. This allows us to quantify the impact of climate change on transmission capacity calculated in the previous step.

Data

The data used in this study can be divided into two broad categories: (c) component data (static) and (a) environment data (static and dynamic). Historical meteorological conditions in Europe for the period 1970-2020 are obtained from ERA reanalysis [START_REF] Bell | ERA5 hourly data on single levels from 1940 to present[END_REF], whilst climatic projections for the period 2020-2070 are obtained from the Copernicus Climate Change Service (C3S) [START_REF]Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections[END_REF]. Additional (b) soil properties for underground cable rating calculations are obtained from [START_REF] Dorigo | The international soil moisture network: serving earth system science for over a decade[END_REF][START_REF] Hiederer | Mapping Soil Properties for Europe -Spatial Representation of Soil Database Attributes[END_REF]. A list of the parameters used and their source is reported in Table . 3. Component parameters, relative to the most popular elements, are obtained from the existing literature or data sheets provided by the main manufacturers such as [START_REF] Kiessling | Overhead Power Lines Planning, Design, Construction -Hard-drawn AL1 ACSR. PublisherName[END_REF] for OHL, [START_REF] Kable | High and extra high voltage cables. www.tfkable.com[END_REF] for UGC, and [34] for PT. 

Preprocessing

The raw data described are preprocessed as follows: (e) time series are uniformed by linear interpolation to a common time step of 1h. When a specific coordinate is required, parameters are interpolated linearly from the four nearest available grid points. (d, f) soil temperature and soil moisture are calculated using a dedicated machine-learning-based model for each coordinate. This is necessary since the available values from [START_REF]Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections[END_REF] are either not obtainable at the typical UGC burial depth (1-5m, in the case of soil temperature) or absent (in the case of soil moisture).

Rating estimation

The estimation of ratings starts with the use of (h) component thermal models based on the thermal balance between the heat generated by the Joule effect I 2 R and the heat dissipated in the environment by convection or conductivity Qc, radiation Qr and the solar heat gain Qs. This is shown in Eq. 1, where the parameters are influenced by: surface absorptivity for α, surface emissivity, maximum allowable temperature Tc and air temperature Ta for β. The parameter γ depends on atmospheric values such as wind speed Ws and Ta for OHL, and soil parameters such as soil temperature Ts and soil moisture ψs for UGC.

I 2 R + αQs = βQr + γQc (1) 
The state of the art thermal models for OHL [START_REF] Iglesias | Guide for thermal rating calculations of overhead lines[END_REF], UGC [36] and PTR [START_REF]2018 -power transformers -part 7: Loading guide for mineral-oil-immersed power transformers[END_REF] are used to compute the DTR (i) for each power component at each coordinate and each hourly time steps available in the datasets [START_REF]Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections[END_REF][START_REF] Bell | ERA5 hourly data on single levels from 1940 to present[END_REF].

At this point, (j) the simulated historical or future DTRs are grouped by time interval (yearly, monthly, monthly/hourly, etc.). For each group, a power law function is fitted to the lowest tail of the distribution (k). Finally, an accepted risk for thermal overload is chosen, x = 0.1% in this work, and the qDTR in terms of current intensity I are calculated (l) as in Eq. 2. For DTR, a thermal model is utilized to compute the maximum capacity, taking into account real-time variables. Contrastingly, for STRs, a fixed value is applied throughout the year as a constrained capacity limit, without considering changing conditions. qDTR, calculates a 0.1% overload risk over the lower tail values of DTR across a 50-year time horizon. Notably, cooler forced temperatures and lower irradiation levels increase the capacity during the winter season and nighttime hours.

I(x) = Ax α (2)

Costs estimation

The financial impacts resulting from the reduction in DTR due to climate change are assessed through a series of G&TEP using [START_REF] Brown | PyPSA: Python for Power System Analysis[END_REF] and CO2 budgets for the RCP from [START_REF] Van Vuuren | Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs[END_REF][START_REF] Clarke | Scenarios of greenhouse gas emissions and atmospheric concentrations[END_REF][START_REF] Smith | Multi-gas forcing stabilization with the minicam[END_REF][START_REF] Wise | Implications of limiting co2 concentrations for land use and energy[END_REF][START_REF] Fujino | Multi-gas mitigation analysis on stabilization scenarios using aim global model. Multigas Mitigation and Climate Policy[END_REF][START_REF] Hijioka | Global ghg emissions scenarios under ghg concentration stabilization targets[END_REF][START_REF] Riahi | Scenarios of long-term socio-economic and environmental development under climate stabilization[END_REF] . These studies rely on the use of yearly STRs, and monthly/hourly DTRs (mhDTR), equivalent to 288 DTRs calculated for each month/hour combination. Several comparisons are carried out: 1) G&TEP are carried out using STRH calculated on a historical reanalysis and qDTRRCP on the three climatic projections. The comparison shows the error incurred when not considering the impact of climate change on transmission capacity.

2) G&TEP are carried out using STRH and monthly/hourly qDTRH calculated from historical reanalysis. The comparison shows the benefits of using frequently changing qDTR to recover the lost transmission capacity. 

Figure 1 :

 1 Figure 1: Climate impacts on transmission capacity, difference in capacity for qDTR in the month of June under the average RCP 2,6, 4.5 and 8.5 scenario for OHL.

Figure 3 :

 3 Figure 3: qDTRH calculated for each month/hour combination for OHL, PT and UGC calculated in the node of Tavel (southeast France). Colors represent months from the coldest (blue) to the warmest (red). Yearly static ratings are represented by a dashed black line.

Figure 5 :

 5 Figure 5: Difference in the calculated qDTR month/hour between historical values and RCP projections 2.6, 4.5, 8.5. This is performed for the three main power components (OHL -PT and UGC), in a node located in Tavel, southeast France.

  (a) European electricity system infrastructure (b) French electricity system infrastructure

Figure 6 :

 6 Figure 6: Regional G&TEP evaluated with Static Annual Rating at 0.1% probability of overload

Figure 7 :

 7 Figure 7: Visual representation of the procedure used in this study

Figure 8 :

 8 Figure8: Conceptual illustrations of power system component rating capacities can be categorized into different methods. For DTR, a thermal model is utilized to compute the maximum capacity, taking into account real-time variables. Contrastingly, for STRs, a fixed value is applied throughout the year as a constrained capacity limit, without considering changing conditions. qDTR, calculates a 0.1% overload risk over the lower tail values of DTR across a 50-year time horizon. Notably, cooler forced temperatures and lower irradiation levels increase the capacity during the winter season and nighttime hours.

Figure 9 :

 9 Figure 9: Meteorological change projection , evaluated rolling mean for 2.6, 4.5, 8.5 RCP and the 2nd percentile values for each region

Table 1 :

 1 Variation for the three scenarios with respect to historical values for qDTR for the European region.

	Description		Component	
		OHL	PT	UGC
	∆ % (qDTR H , STR H ) 1			
	Mean	14.2	17.4	3.74
	∆ % (qDTR H )			
	Max	10.7	17.4	29.6
	Min	-9.4	-16.4	-57.8
	∆ % (qDTR RCP2.6 , qDTR H ) 3		
	Mean	-0.4	-1.0	-0.1
	Max	-1.4	-2.4	-0.5
	Min	0.75	0.3	0.8
	∆ % (qDTR RCP4.5 , qDTR H ) 3		
	Mean	-0.7	-1.7	-0.2
	Max	-1.7	-3.2	-0.6
	Min	0.9	-0.6	0.5
	∆ % (qDTR RCP8.5 , qDTR H ) 3		
	Mean	-1.53	-2.3	-0.2
	Max	-3.9	-5.1	-1
	Min	0.32	-0.8	1.0

Table 2 :

 2 Variation (in %) for the three scenarios with respect to yearly fix rating and costs, the scenarios covering historical static (STR

	, historical (qDTR H ) 2
	H ) 1

Table 3 :

 3 Summary of data and sources. a:ERA[START_REF]Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections[END_REF][START_REF] Bell | ERA5 hourly data on single levels from 1940 to present[END_REF], b:ISMN[START_REF] Dorigo | The international soil moisture network: serving earth system science for over a decade[END_REF], c:ESDAC[START_REF] Hiederer | Mapping Soil Properties for Europe -Spatial Representation of Soil Database Attributes[END_REF]. Soil composition: Silt, sand, clay, organic, bulk, texture

	Parameter, Units	Unit	Source
	Air temperature at 2 m	• C -θa	a
	Total precipitation	mm -σ	a
	Net surface solar radiation	Jm -2 -H	a
	u -v -wind at 10 m	ms -1 -W s	a
	Soil composition	%	b, c
	Soil Temperature	Jm -2 -θs	b
	Soil Moisture	Jm -2 -ψs	b