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Abstract

Underground Cables capacity is influenced by thermal properties, particularly the interplay between
dynamics of the physical properties and the surrounding soil’s heat dissipation capabilities. This paper
introduces a new approach to quantifying the long-term effect of climate conditions and soil dynamics on
underground cable capacity that leverages machine learning techniques to estimate soil temperature and
moisture in the depth range of 0.8 to 1.2 meters. The research extends its focus to assess the impact of
climate change using various representative concentration pathways across 52 European stations. The main
strength of this model lies in its ability to offer detailed estimations by capturing the relationships among
different types of soils. The results show that the quasi Dynamic Thermal Rating methodology produces
an average increase in ratings of 7.1%. In addition, it has the potential to further widen the disparity
between winter and summer seasons, with an increase of up to 8.1%. Regarding climate impacts, there
are moderate reductions over the medium-term emissions horizon, with an average reduction of 0.27% to
0.63%.

Keywords: Underground Cables, Climate change, Dynamic Thermal Rating, Transmission.

1 Introduction

The rising adoption of Underground Cables (UGC), driven by expanding renewable generation plants [1],
poses a challenge for a warmer, energy-demanding future [2]. Meteorological factors and climate changes
significantly affect UGC capacity, mainly reliant on the surrounding soil’s effectiveness in dissipating joule
losses. This heat transfer mechanism, impacted by moisture and soil thermal resistivity, holds the potential
for up to 50% capacity reduction [3], which cannot be captured using the traditional approach of energy
utilities for capacity limits. In this context, large-scale soil factor measurements play a crucial. However, only
historical high-resolution models combining data with observations have emerged in the last decade [4,5], with
a gap in long-term projections for burial depths between 1 and 5 meters. This underscores the significance
of our research in understanding the complexities of climate-induced changes and their implications for the
transmission sector over the long term.

To cope with the effects of temperature rise and optimize cable current carrying capacity, Dynamic Thermal
Rating (DTR) [6–13] is actively proposed as a technology that aims to identify the real-time current carrying
capacity to optimize asset utilization, reduce congestion and improve efficiency as a function of environmental
conditions such as ambient and soil temperature. It is crucial to emphasize that the primary objective, as
presented in [14], positions DTR as a strategic tool for system operators. It aids in accurately and reliably
determining current rating limits, thereby alleviating constraints based on thermal considerations.

As the temperature is the primary variable in the DTR, weather or mechanical characteristics can be
determined from two methods: i) Real-time measurement equipment, known as direct. Usually performed
nowadays for brand new circuits with an embedded optical fiber as described in [15], offering excellent accuracy
and precision, but with barriers such as capital costs and non-applicability to already installed networks. ii)
Thermal mathematical model based on information from meteorological conditions, with a non-steady state
thermal model using historical data or numerical weather predictions [16]. Deployed as a method that increases
capacity compared to static thermal power but reduces the risk of overloading.

When this model is applied, meteorological factors and climatic changes have a discernible impact on the
DTR ratio [8], as established by well-known international standards such as IEEE Std 1863 [17] and IEC
60287 [18]. This impact is vital in defining the parameters used for rating estimation, described by energy
conservation and heat transfer mechanisms [19,20] of the cable’s physical properties and the surrounding soil’s
heat dissipation capabilities. Notably, the heat balance highlights the challenge of low heat dissipation in
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UGC exposed directly to the environment (direct soil buried). Understanding and quantifying these factors is
critical to assessing UGC systems’ thermal performance and overall efficiency.

A crucial parameter influencing the rating within the soil’s thermal properties is the soil thermal resistivity
(oCm/W), highly correlated with the moisture content [17,18,21]. This effect becomes particularly significant
when its impact is translated into temperature. In [3], a 50% reduction in the rating is observed when the soil
thermal resistivity is three times greater and the ambient temperature increases by 5 oC. Reinforcing its high
dependence and correlation between temperature and humidity of the surrounding soil, among other factors,
such as laying depth and physical properties [22].

The utilization of in-situ sensors for measuring soil moisture and temperature at various spatial scales,
as discussed in [23, 24], presents an opportunity to comprehend the interrelationship and devise a solution
to estimate the intricate interaction in exchange processes between land-atmosphere interactions and soil.
Consequently, considerable research efforts have been directed towards this objective over the past few decades.
Noteworthy contributions include satellite observations [25], microwave remote sensing, and physically-based
models [26], providing spatiotemporal estimations. However, these methods may experience deviations in
performance due to complex topography and transient climate conditions [4, 25, 27]. On the other hand,
Machine-Learning models (ML) employing remote sensing data have been applied in various research studies
[4,28–32] with a broad spectrum of data integration. These models, primarily influenced by climatic conditions
and soil taxonomy, including texture and soil type, present a novel alternative that challenges conventional
processes. By ”learning” the intricate interdependencies between meteorological variables and soil dynamics,
they redefine the approach to understanding and modeling these intricate connections.

A limited number of strategies have been developed, incorporating ML in DTR for UGC [33, 34]. As
outlined in [35], an approach that involves the development of a day-ahead DTR forecast relies on a Support
Vector Regression (SVR) method for soil temperature. However, the physical-statistical model for predicting
thermal conductivity, applying a regression model for soil-specific heat, exhibits reduced simulation accuracy
across diverse soil types, limiting its general applicability. To analyze the thermal conductivity and cover a
wide range of soil texture, bulk density, temperature, and moisture, in the last decades, several estimations
models have been proposed [36–41]. In [42], a new empirical model for estimating soil thermal conductivity
was developed. For this, a comprehensive evaluation of several approaches was performed and is influenced by
many factors such as organic matter, soil texture, and particle composition. Resulting in a performance of R2

of 0.98, increased simulation accuracy for ten soil types.
As temperature and soil moisture conditions become increasingly common variables in planning and man-

aging the capacity of UGC [8], establishing projections related to the energy transition is a critical step in
quantifying and understanding the impacts associated with climate change. To tackle the issues outlined
above, the contributions of this paper are:

a) Introduce a probabilistic DTR method aiming to exploit transmission capacity efficiently and minimize
the risk of overloading as part of long-term power system planning

c) Assess trends and possible impacts of climate change on UGC in the long term horizon.

The paper is organized as follows: Section 2 illustrates the machine learning process, thermal model, and
methodology. Results are described in Section 3, and conclusions are drawn in Section 4.

2 Methodology

2.1 Overview

We develop a model to quantify the long-term effect of climate conditions on UGC capacity, summarized in
the block diagram Fig. 1. First, supervised ML models are trained using historical in-situ measurements
[43] and meteorological information [5, 44] in module 2.2. Secondly, meteorological time series data from
both historical [43, 45] and machine learning projections are collected in module 2.3. These data are fed to
components’ thermal models to calculate the time series for the transmission capacity in modules 2.5,2.4.
Subsequently, in the final module 2.6, a probabilistic approach integrated into DTR is proposed [46, 47] by
fitting a probability distribution to the lower tail of the simulations for each month/hour combination and
selecting an accepted level of risk tolerance to thermal overload (0.1% in this case).

2.2 Machine Learning Model

This module aims to target soil moisture (ψ̂) and temperature (Θ̂s) data at 0.25◦, with a daily resolution in a
depth range between 0.8 and 1.2 meters based on hourly-recorded input data. The pre-selection of the features
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Figure 1: Block scheme of the approach proposed for calculating quasi Dynamic Thermal Ratings in UGC.

was performed under a combination of time series of meteorological data, soil properties, and observations,
mainly based on bibliographic analysis [4, 29, 30, 32]. To ensure the spatiality of the system throughout the
European region, we rely on the open sources described in the section 2.3.

Due to the problem’s complexity, we implemented the following preprocessing and numerical transforms: a)
Anomaly extraction. b) Eliminating poor-quality data [48] c) Excluding stations with less than three months of
annual information d) Daily interpolation e) Encoding cyclical Day of the Year (tc) f) Minimum and maximum
scaling [49] f) Feature selection conducted to achieve the highest prediction accuracy. g) Finally, to ensure
broad operability, each analyzed soil is encoded (Scode) by soil texture classification according to [50] and
texture represented in Table 1.

In the initial phase, an evaluation of various machine-learning techniques was carried out in order to select
the most appropriate for our method. This assessment focused on key error measurement indicators such
as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), with particular emphasis on the
computation time of the predictions. Evaluation metrics are given with the following equations:

RMSEq =

√√√√ 1

H

H∑
i=1

(yq,i − ŷq,i)2 (1a)

MAEq =
1

H

H∑
i=1

|yq,i − ŷq,i| (1b)

In the equations, ŷi denotes the estimate of humidity and temperature, while yi represents the observation
for the same variables from ISMN stations. The subscript H signifies the projected horizon of the estimation.
As described in the previous section, a reduction in UGC ratings is associated with lower humidity and
higher temperature. Thus, our analysis focuses on the heightened risk of overloading, the metrics described
in equations , are evaluated the lower 20th quantile for humidity and the 80th quantile for temperature, and
denoted as q.
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Table 1: REVISED USDA SOIL TEXTURE CLASSIFICATION, INDICATING SOIL CODES USED IN THIS STUDY

Texture Class Sand % Silt % Clay % Code

Sand (S) > 85 0-15 0-15 5

Loamy Sand (LS) 70-85 0-20 0-15 5

Sandy Loam (SL) 43-70 7-20 0-27 4

Loam (L) 20-40 40-60 7-27 4

Silt Loam (SiL) 0-20 ≥ 70 0-27 4

Silt (Si) 0-10 80-90 0-10 4

Sandy Clay Loam (SCL) 20-35 28-50 27-40 3

Clay Loam (CL) 20-35 28-50 27-40 3

Silty Clay Loam (SCLa) 0-20 50-70 27-40 3

Sandy Clay (SC) 0-20 0-28 40-60 2

Silty Clay (SCla) 0-10 50-70 40-60 2

Clay (C) 0-20 0-20 ≥ 60 1

The importance of the calculation time is due to the expected regional application of the continental-
scale model, highlighting the need for accuracy and efficiency. The techniques evaluated include Artificial
Neural Network (ANN) [51], Regressions Tree (RT), K-Nearest Neighbours (k-NN), Extreme Gradient Boosting
(XgBoost) [52], Random Forest (RF) [53], Long short-term memory (LSTM), and Lasso linear regression [54].

Considering the soil-inertia nature in the output variables as detailed in [4], this model is supervised-trained
with observations lagged by five days. This lag was determined through time series analysis using a partial
auto-correlation function (PACF) [55]. The dataset is divided by stations and soil types to train and test the
models. The training set is then randomly divided into 70%, with 10% reserved for tuning the model hyper-
parameters using techniques from [49,56]. The remaining 30% serves as a validation set to test the model. To
avoid overfitting, N-fold cross-validation is performed by applying the metrics described in (1) by dividing the
test dataset into five folds, ensuring all soil types are present in each fold, thus guaranteeing homogeneity of
selection.

2.3 Datasets

Quantifying the impact on UGC capacity is conducted by processing data derived from a combination of soil
properties and meteorological variables of the interest region, as outlined in Table 2.

Considering 100year climatologists, ECMWF ERA5 and Copernicus climate change service (C3S) datasets
provide the historical reanalysis(a) [5] and climate projections with a Representative Concentration Pathway
(RCP) of 2.6, 4.5, and 8.5(b) [45]. The high-grid resolution of 0.25◦ datasets provides a time series from
January 01, 1970, to December 31, 2072. However, climatic projections are linearly interpolated with a time
resolution of one day to match the frequency of the In-Situ data.

Observing temporal variations in soil is crucial for estimating soil moisture and temperature behavior and
assessing sensitivity to climate change and soil taxonomic properties. This mandates the availability of soil
moisture datasets that exhibit superior quality, extended duration, continuity, and consistency. In this study,
in situ soil moisture(d), taxonomy(c,d), and temperature measurements(d) sourced from the International Soil
Moisture Network [43] and [57] are employed. The dataset involves data from 52 networks, spanning the years
2006 to 2022 and covering depths from 0.05 to 120 m.

2.4 Steady-State Thermal model with Moisture Migration

In line with standard procedures for quantifying the ampacity of buried UGC, a thermo-electric model from [18]
is employed. According to this standard, the capacity, with the influence of a dry area formation, is calculated
per each day (i) as follows:

B =Wd

[
1

2
T1 + n (T2 + T3i + viT4i)

]
(2a)

C = nRi (1 + λ1 + λ2) (T2 + viT4i) (2b)

Ii =

√
∆Θi −B + (v − 1)∆Θx

RiT1 + nRi(1 + λ1)T2 + C
∀i = 1..H (2c)
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Table 2: DATASETS AND PARAMETERS

Variable Units Process Source

Meteorological

Temp. Air at 2
m (Θa)

◦C 2.2 a,b Dynamic

Total precipita-
tion (Pt)

mm 2.2 a,b Dynamic

Net surface solar
radiation (Sr)

Jm−2 2.2 a,b Dynamic

u - v - wind at 10
m

ms−1 2.2 a,b Dynamic

Soil Proprieties

Silt (Ssilt%
) % 2.5,2.2 c Static

Sand (Ssand%
) % 2.5,2.2 c Static

Clay (Sclay%
) % 2.5,2.2 c Static

Organic (Sorg%) % 2.5 c Static

Texture Compo-
sition (Stext)

- 2.2 c Static

Bulk (Sbulk) kgm−3 2.5,2.2 c Static

Soil Measurements

Temperature (Θ) ◦C 2.2,2.6 d Dynamic

Moisture (ψ) % 2.2,2.5 d Dynamic

The above equation focuses on the critical temperature of the boundary between the wet and dry zones
∆θx and the ratio between the thermal resistivities of the dry and wet zones of the back-fill soil vi. With high
dependence on variable factors such as ambient temperature, moisture, and precipitation, the other parameters
such as λ1−2, C, R, T1−3,Wd obey the cable construction. These parameters can be determined and calculated
according to [3, 18], guide and suggestions.

Where the thermal resistance T4 of the surrounding medium for a single core cable, lay horizontally, is
defined as

T4i =
ρsi
2π

{
ln
(
u+

√
u2 − 1

)
+ ln

(
1 +

(
2L

S1

)2
)}

(3)

Where ρsi is the thermal resistivity of soil, S1 spacial axis distance between cables, u is the ratio of the
distance from the surface to the cable axis L, and the external diameter of the cable De. Hence, it is imperative
to calculate ρsi , and the analysis must also incorporate considerations based on the cable environment. In
conclusion, the relationship between the buried UGC’s capacity and the input parameters can be described as
a function of Eq. (4). This relationship holds true for uniform soils, where thermal properties remain constant
at each coordinate.

IDTRi
= I(Θi, ρsi , ψi, constant parameters) (4)

2.5 Dynamic Soil Model

Modeling soil moisture and temperature dynamics is an area that has been developed over the last century.
Differential equations involving consideration of various factors have been presented, as described in the pre-
vious section. A one-dimensional representation of heat flow in a vertical direction (x) is outlined in (5), in
which the thermal diffusivity αs is characterized as a direct relationship between the thermal conductivity (λs)
and the inverse of the soil density and specific heat capacity.

Our approach will implement the dynamics model addressing the physical properties and processes within
soils using machine learning, as described in Section 2. However, a mathematical model correlating soil
hydraulic-physical properties with thermal conductivity (λs) needs to be established to determine the thermal
resistivity of each analyzed soil.
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∂Θ

∂t
= αs

∂2Θ

∂x2
(5)

To address this, the estimation of soil thermal conductivity, which is the inverse of ρs, is conducted following
the interrelation proposed in [41,42]. This involves unsaturated soils and incorporates parameters such as λdry,
λsat, and the Kersten coefficient Ke.

λsi = (λsati − λdryi
)Kei + λdryi ∀i = 1..H (6a)

Kei = exp (α− ψ−β
i ) (6b)

Here, α and β represent the shape factors of the volumetric water content (ψ) and thermal conductivity
curve, respectively. These factors exhibit linear relationships with particle size distribution (S%) and organic
matter content (Sorg%), as defined below:

α = a1SSand%
+ a2SSilt% + a3Sorg% + a4 (7a)

β = b1SClay%
+ b2Sorg% + b3 (7b)

Where, the weighting factors of the physical parameters of the model are as follows

Table 3: WEIGHTING FACTORS FOR THE EMPIRICAL MODEL OF THE SOIL THERMAL CONDUCTIVITY

a1 a2 a3 a4 b1 b2 b3

0.493 0.86 0.014 0.778 0.736 0.006 0.222

At this point, the thermal conductivity is calculated for each soil using the features described in Table 2.
This, in turn, allows us to estimate the v ratio and the thermal resistivity of the soil ρs per day.

2.6 Quasi Dynamic Thermal Ratings

Finally, a quasi-dynamic Thermal Ratings (qDTR) is applied to calculate ratings for a long-term horizon, as
proposed in [46, 47]. After collecting the time series and parameters described in Sections 2.3 and 2.5, the
DTR is calculated using (2),(3). These time series are fitted with a probability distribution described in [58],
in the lower tail of the simulations for each month/day combination. An accepted level of tolerance to the risk
of thermal overload (0.1% in this case) is then selected.

Figure 2: The conceptual illustrations of this proposed method display the DTR calculated throughout a year
(2000-2022) for a specific coordinate, represented in blue. The STRH is depicted in black, the monthly qDTRH

in green, and the qDTRHs
for the winter and summer seasons in indigo and orange, respectively

This method is conceptually illustrated in Fig. 2. First, the thermal model calculates the maximum
capacity-DTR over a 1-year horizon. In contrast plotted as a dash black line, the Static Thermal Rating
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(STRH) applies a fixed value as a constrained capacity limit throughout the year, under-utilizing the UGC and
potentially overloading, regardless of changing conditions, with a 0.1% exceedance probability. The qDTRH

is then calculated with the same risk of exceeding over the lower tail values of the DTR across a 50-year time
horizon for a monthly/yearly approach, as shown in the central figure. Finally, the qDTRHs

is calculated for
winter and summer with the same industry seasonal approach.

3 Results

This study applies qDTR to estimate the maximum allowable currents of UGC using historical (from 1970
to 2022) and future (from 2023 to 2070) weather projections for Europe. The HV cable used in this pa-
per is described in Table 4 obtained from [59] and complemented from [18], with a manufacturer reference
A2X(F)K2Y-800RM.

Table 4: UNDERGROUND CABLE PARAMETERS

Parameter Default Value Unit/Symbol

Name Cable A2X(F) -

Conductor Material Aluminium -

Insulation Type XLPE -

Conductor type Segmental -

L 1000 mm

ρ20 2.826× 10−8 Ω ·m
α20 4.03× 10−3 1/K

Θ 90 °C

tan (δ) 1× 10−3 -

U0 72500 V

ε 2.5 -

Frequency 50 Hz

S 400 mm

C 0.295× 10−9 F/m

R0 0.0367× 10−3 Ω/m2

dc 33 mm

De 69 mm

Firstly, to apply qDTR, the data described in 2.3 needs retrieval. For projecting humidity and temperature
based on each representative concentration pathway, a machine learning model with a daily step was trained,
validated, and selected as outlined in 2.2.

The performance of each model was compared with the ERA-5 data, which were used as a benchmark.
Results not shown in this paper indicate that techniques such as KNN and LST, with deviations of +0.05m3m−3

over the observations, increase the computational cost. On the other hand XGBoost [52], as illustrated in (8),
and Lasso [54] described in (9), exhibited the most favorable performance for humidity and temperature, in
the techniques evaluation process. This was evidenced by achieving the lowest error values among all models,
outlined in Table. 5 and 6.

ψ̂i =

K∑
k=1

fk(xi) (8a)

xi = [[ws,Θa, Sr, ts]i−5:i−1, S%, Scode1−5 ] (8b)

Where xi is the flattened feature vector for the i-th observation

Θ̂i = xi · β̂L (9a)

β̂L = argmin
β

 1

2H

H∑
i=1

(Θi − xi · β)2 + λ

p∑
j=1

|βj |

 (9b)

xi = [[Θa, Sr, ts]i−5:i−1, S%, Scode1−5
] (9c)
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β is the coefficient vector associated with the features, β̂L is the estimated parameter vector using LASSO
and λ is the regularization parameter.

Table 5: MACHINE LEARNING PERFORMANCE - TEMPERATURE AT 80TH PERCENTILE

Model

CV 0 1 2 3 4 ERA

R
M
S
E

8
0

0 2.23 2.03 2.29 2.15 2.39 2.72

1 2.69 2.43 2.73 2.63 2.83 3.64

2 2.92 4.81 3.19 3.16 3.37 2.76

3 2.02 1.85 2.25 1.90 2.14 2.90

4 2.89 3.48 2.60 3.11 2.70 3.56

Avg. 2.71 3.16 2.83 2.74 2.95 3.10

M
A
E

8
0

0 2.23 2.03 2.29 2.15 2.39 2.72

1 2.56 4.61 2.85 2.84 3.06 2.18

2 1.71 1.55 1.95 1.61 1.87 2.32

3 2.55 3.14 2.26 2.77 2.38 2.58

4 2.64 2.96 3.03 2.56 3.41 2.21

Avg. 2.34 2.86 2.48 2.39 2.62 2.40

Table 6: MACHINE LEARNING PERFORMANCE - MOISTURE AT 20TH PERCENTILE

Model

CV 0 1 2 3 4 ERA

R
M
S
E

2
0

0 0.29 0.07 0.13 0.08 0.14 0.22

1 0.05 0.21 0.08 0.09 0.08 0.15

2 0.05 0.03 0.10 0.04 0.04 0.09

3 0.05 0.06 0.06 0.16 0.05 0.07

4 0.13 0.08 0.11 0.05 0.19 0.24

Avg. 0.11 0.09 0.10 0.08 0.10 0.16

M
A
E

2
0

0 0.29 0.06 0.11 0.07 0.13 0.22

1 0.04 0.21 0.08 0.08 0.07 0.14

2 0.04 0.03 0.11 0.03 0.04 0.08

3 0.04 0.05 0.05 0.17 0.04 0.06

4 0.12 0.07 0.10 0.04 0.19 0.24

Avg. 0.11 0.08 0.09 0.08 0.09 0.15

The results are derived from diverse station selected through cross-validation, as detailed in Table 7. This
table provides information on the various soil codes used. For a graphical representation of the performance
across different soil codes, refer to in Fig. 3. At first glance, the XGBoost Moisture model demonstrated lower
average error values than the ERA5 model. It is essential to note that MAE has the same units, m3m−3. With
marginally superior performance, the Lasso temperature models denote the robustness of ERA5, establishing
themselves as a dependable choice for historical references.

From here, we quantify the climate impact of transmission network capacity for underground cables. The
qDTRs are fitted with a probability distribution commonly employed to characterize natural phenomena [58].
Specifically, the power law distribution is applied to the lowest 2% of the calculated ratings for each month/day
combination. Across all month/hour combinations, considering an exceedance probability of 0.1%, the results
show that the coefficient of determination (r2) exceeds 0.9.
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Table 7: FIVE-FOLD CROSS VALIDATION FOR MOISTURE AND TEST

Description CV Fold

ID Station Soil
Code

1 2 3 4 5 Test

1 SOD140 3

2 Borda Coll 4

3 Hupsel 5

4 Kehrigk 5

5 Hoal-08 3

6 Ribera de Sio 4

7 ITCSM-15b 5

8 ITCSM-05d 5

9 ITCSM-06b 3

10 Camidels Nerets 4

11 Kuusamo 5

12 ITCSM-10c 5

13 Marsh Bubnow 3

14 San Pietro Capo 4

15 Voulton 4

16 Abrahams 5

17 ITCSM-17c 5

18 SOD071 3

19 Falkenberg 4

20 PoriII 4

21 ITCSM-14c 5

22 ITCSM-05c 5

23 Clot de les Peres
II

1

24 Clot de les Peres
I

1

26 Suizy 1

27 Serra de
CostaAmpla

1

28 ITCSM-03b 5

29 Kvarstadseter 5

30 Pessonada 4

31 La Cultiada 4

32 Hoal-07 3

This procedure is applied to the three projected RCP scenarios, revealing a moderate but noticeable effect
of temperature increase according to climate projections, as shown in Fig. 4. Preliminary results suggest that
colder temperatures, increased precipitation, and reduced irradiance levels contribute to increased capacity
during winter. For instance, in the qDTRHw

scenario, the increase may be as high as 8.1%. Additional
analysis of this chart reveals a decrease – albeit small – of 0.56% in ∆%(qDTRRCP4.5, qDTRH) for this
specific location. Conversely, a temporal shift in the usual annual temperature cycle is noticeable, with lower
capacity observed around September. This phenomenon is attributed to the thermal memory and inertia
inherent in buried cabling, causing a time delay in temperature exchange between different layers. The same
inertia translates into low daily variability, suggesting that these devices can be effectively analyzed at lower
frequencies. This is exemplified by the dashed line, which indicates a monthly (qDTRHmonth

) analysis approach.
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(a)

(b)

Figure 3: Daily time series of estimated soil moisture with (a) XGBoost at Soil5 and (b) LASSO (Green) at
Soil2 compared to ERA data (RED) and Test Values (Black dash)

(a) (b)

Figure 5: (a) The calculated delta values between historical qDTRH and qDTRRCP4.5
(b) Ten most represen-

tative Nuts 1 regions in Europe

Fig. 5 illustrates the spatial distribution of thermal ratings across NUTS-2 regions in Europe (Nomenclature
of Territorial Units for Statistics [60]), highlighting regional differences in the effects of climate change on
underground cable capacity. The visualization showcases the spatial variability of qDTRH in Europe, with
fluctuations of up to 2%. This variability, almost unanimously negative, is influenced by diverse soil types
across regions, significantly impacting thermal diffusivity and moisture retention.
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Figure 4: Yearly representation of qDTRweek/month for historical qDTRH values and projections
qDTRRCP2.6, 4.5, 8.5 in node located in South Spain, in-dash blue the qDTRHmonth

as a reference

Finally, the same procedure is applied on a country scale, and the results are summarized in Table 8
and geographically represented in Fig. 6. The UGC location retrieved from [61] and described as average,
maximum decrease for the qDTRs calculated for the ten lines. It is possible to observe an average reduction
in ratings in the order of 0.16%, 0.27%, and 0.33%, respectively, for the 2.6, 4.5, and 8.5 RCP. With maximum
peaks in the high emission scenario of 1.38 %

The research investigates the methodology employed in [62], while also offering a broader perspective on
additional components.

Table 8: qDTR differences over a fifty-year period for qDTRRCP2.6, 4.5, 8.5
and qDTRH datasets for 10 UGC in

France

Line Hist ∆%RCP8.5 ∆%RCP4.5 ∆%RCP2.6

ID (A) Mean Max Mean Max Mean Max

1257 1073 -0.44 -1.19 -0.31 -0.88 -0.13 -0.79

8566 1012 -0.42 -0.48 -0.24 -0.09 -0.21 -0.01

5676 1110 -0.36 -0.69 -0.21 -0.59 -0.14 -0.29

8554 941 -0.33 -0.77 -0.42 -0.98 -0.21 -0.37

5808 1002 -0.33 -0.53 -0.39 -0.99 -0.22 -0.23

5792 1006 -0.30 -1.14 -0.13 -0.41 -0.15 0.00

2271 947 -0.30 -1.38 -0.19 -0.91 -0.08 -0.70

8178 1046 -0.27 -1.20 -0.27 -0.60 -0.19 -0.91

8544 1094 -0.27 -0.53 -0.25 -0.43 -0.07 -0.27

5730 1085 -0.23 -0.55 -0.30 -0.40 -0.20 -0.50

Average -0.33 -0.85 -0.27 -0.63 -0.16 -0.41

4 Conclusions

Through an assessment conducted at a grid resolution, this analysis investigates the impact of climate on
transmission network capacity using established thermal models. Employing the Quasi-Dynamic Thermal
Rating method to estimate maximum capacity with a low-risk exceedance probability, Our findings highlight
moderate reductions in the mid-term emission horizon for underground cables, showing sensitivity to potential
climate changes, with a mean reduction from 0.27% to 0.63%. It reflects that the variation caused by the
meteorological conditions in the lower risk scenario (0.1%) is reduced at depth buried cables. Conversely, the
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(a) (b)

Figure 6: Comparative Analysis: Assessing qDTR variations among historical qDTRH, STRH, and RCP
projections qDTRRCP2.6, 4.5, 8.5

at ten French UGC (b) Regional Analysis: Examining variations in UGL as-
sessments between historical data and RCP8.5 projections across France

soil type change could reduce up to 57% of the capacity. In addition, the results reaffirm the previous literature
findings showing the heat balance has a memory, i.e., soil moisture anomalies may persist for weeks or even
months into the future (monthly rate change less than 5%).

In addition, this paper estimated soil moisture and soil temperature at a depth of 1 meter. The results,
obtained through 5-Fold validation, demonstrate mean absolute errors of 0.08 (± 0.02)m3m−3 for soil moisture
and 2.51 (± 0.17) (oK) for soil temperature. This highlights a better accuracy than the benchmark model
and gives more strength to the present study. As part of a future improvement proposal for this module, we
suggest integrating additional soil layers, potentially up to 5, and extending the extrapolation to depths of
5 meters. Furthermore, expanding the scope of station inclusion to a global scale is recommended to ensure
comprehensive coverage of all soil types.

The primary advantage of the qDTR methodology is its ability to yield higher average ratings throughout
most of the year compared to the annual industry rating, resulting in an average increase of 7%. Moreover, it
has the potential to further widen the disparity between winter and summer seasons, with an increase of up
to 8.1%.
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A. Xaver, F. Annor, J. Ardö et al., “The international soil moisture network: serving earth system
science for over a decade,” Hydrology and earth system sciences, vol. 25, no. 11, pp. 5749–5804, 2021.

[44] R. Hiederer, “Mapping Soil Properties for Europe - Spatial Representation of Soil Database Attributes,”
Publications Office of the European Union, Luxembourg, EUR 26082EN, 2013.

[45] Copernicus Climate Change Service, “Climate and energy indicators for Europe from 2005 to 2100 derived
from climate projections,” Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2021,
DOI: 10.24381/cds.f6951a62.

[46] Montana Salas, Sergio Daniel and Michiorri, Andrea, “Weather-Based Quasi Dynamic Thermal Ratings
for Power Transformers,” in IEEE PES ISGT Europe 2023, Grenoble, France, October 2023. [Online].
Available: {https://hal.archives-ouvertes.fr/hal-04227016v2}

[47] Hadiwidjaja, Stella and Montana Salas, Sergio Daniel and Michiorri, Andrea, “Quasi-Dynamic
Line Rating spatial and temporal analysis for network planning,” 2023. [Online]. Available:
{https://hal.archives-ouvertes.fr/hal-03766110v2}

[48] W. Dorigo, A. Xaver, M. Vreugdenhil, A. Gruber, A. Dostálová, A. D. Sanchis-Dufau, D. Zamojski,
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