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Underground Cables capacity is influenced by thermal properties, particularly the interplay between dynamics of the physical properties and the surrounding soil's heat dissipation capabilities. This paper introduces a new approach to quantifying the long-term effect of climate conditions and soil dynamics on underground cable capacity that leverages machine learning techniques to estimate soil temperature and moisture in the depth range of 0.8 to 1.2 meters. The research extends its focus to assess the impact of climate change using various representative concentration pathways across 52 European stations. The main strength of this model lies in its ability to offer detailed estimations by capturing the relationships among different types of soils. The results show that the quasi Dynamic Thermal Rating methodology produces an average increase in ratings of 7.1%. In addition, it has the potential to further widen the disparity between winter and summer seasons, with an increase of up to 8.1%. Regarding climate impacts, there are moderate reductions over the medium-term emissions horizon, with an average reduction of 0.27% to 0.63%.

Introduction

The rising adoption of Underground Cables (UGC), driven by expanding renewable generation plants [START_REF] Sugihara | Fundamental analysis of electrothermal coordination of underground cables toward high-penetration renewable generation[END_REF], poses a challenge for a warmer, energy-demanding future [START_REF] Van Ruijven | Amplification of future energy demand growth due to climate change[END_REF]. Meteorological factors and climate changes significantly affect UGC capacity, mainly reliant on the surrounding soil's effectiveness in dissipating joule losses. This heat transfer mechanism, impacted by moisture and soil thermal resistivity, holds the potential for up to 50% capacity reduction [START_REF] Brakelmann | Ampacity reduction factors for cables crossing thermally unfavorable regions[END_REF], which cannot be captured using the traditional approach of energy utilities for capacity limits. In this context, large-scale soil factor measurements play a crucial. However, only historical high-resolution models combining data with observations have emerged in the last decade [START_REF] Sungmin | Global soil moisture data derived through machine learning trained with in-situ measurements[END_REF][START_REF] Sabater | ERA5-Land hourly data from 1950 to present[END_REF], with a gap in long-term projections for burial depths between 1 and 5 meters. This underscores the significance of our research in understanding the complexities of climate-induced changes and their implications for the transmission sector over the long term.

To cope with the effects of temperature rise and optimize cable current carrying capacity, Dynamic Thermal Rating (DTR) [START_REF] Wang | Dynamic thermal analysis for underground cables under continuously fluctuant load considering time-varying van wormer coefficient[END_REF][START_REF] Diaz-Aguiló | Introducing mutual heating effects in the ladder-type soil model for the dynamic thermal rating of underground cables[END_REF][START_REF] Olsen | Modelling of dynamic transmission cable temperature considering soil-specific heat, thermal resistivity, and precipitation[END_REF][START_REF] Wang | Dynamic thermal analysis of high-voltage power cable insulation for cable dynamic thermal rating[END_REF][10][START_REF] Anders | Transient ratings of buried power cables. i. historical perspective and mathematical model[END_REF][START_REF] Karimi | Dynamic thermal rating of transmission lines: A review[END_REF][START_REF] Morozovska | Dynamic rating with applications to renewable energy[END_REF] is actively proposed as a technology that aims to identify the real-time current carrying capacity to optimize asset utilization, reduce congestion and improve efficiency as a function of environmental conditions such as ambient and soil temperature. It is crucial to emphasize that the primary objective, as presented in [START_REF] Wang | Dynamic line rating systems for transmission lines: Topical report[END_REF], positions DTR as a strategic tool for system operators. It aids in accurately and reliably determining current rating limits, thereby alleviating constraints based on thermal considerations.

As the temperature is the primary variable in the DTR, weather or mechanical characteristics can be determined from two methods: i) Real-time measurement equipment, known as direct. Usually performed nowadays for brand new circuits with an embedded optical fiber as described in [START_REF] Cherukupalli | Types of Power Cables and Cable with Integrated Fibers[END_REF], offering excellent accuracy and precision, but with barriers such as capital costs and non-applicability to already installed networks. ii) Thermal mathematical model based on information from meteorological conditions, with a non-steady state thermal model using historical data or numerical weather predictions [START_REF] Douglass | Increased power flow through transmission circuits: Overhead line case studies and quasidynamic rating[END_REF]. Deployed as a method that increases capacity compared to static thermal power but reduces the risk of overloading.

When this model is applied, meteorological factors and climatic changes have a discernible impact on the DTR ratio [START_REF] Olsen | Modelling of dynamic transmission cable temperature considering soil-specific heat, thermal resistivity, and precipitation[END_REF], as established by well-known international standards such as IEEE Std 1863 [START_REF]IEEE Guide for Thermal Resistivity Measurements of Soils and Backfill Materials[END_REF] and IEC 60287 [START_REF] Commission | Electric cables -Calculation of the current rating -Part 1-1: Current rating equations (100 % load factor) and calculation of losses -General[END_REF]. This impact is vital in defining the parameters used for rating estimation, described by energy conservation and heat transfer mechanisms [19,[START_REF]Handbook of applied hydrology[END_REF] of the cable's physical properties and the surrounding soil's heat dissipation capabilities. Notably, the heat balance highlights the challenge of low heat dissipation in UGC exposed directly to the environment (direct soil buried). Understanding and quantifying these factors is critical to assessing UGC systems' thermal performance and overall efficiency.

A crucial parameter influencing the rating within the soil's thermal properties is the soil thermal resistivity ( o Cm/W), highly correlated with the moisture content [START_REF]IEEE Guide for Thermal Resistivity Measurements of Soils and Backfill Materials[END_REF][START_REF] Commission | Electric cables -Calculation of the current rating -Part 1-1: Current rating equations (100 % load factor) and calculation of losses -General[END_REF][START_REF] Dorison | Ampacity calculations for deeply installed cables[END_REF]. This effect becomes particularly significant when its impact is translated into temperature. In [START_REF] Brakelmann | Ampacity reduction factors for cables crossing thermally unfavorable regions[END_REF], a 50% reduction in the rating is observed when the soil thermal resistivity is three times greater and the ambient temperature increases by 5 o C. Reinforcing its high dependence and correlation between temperature and humidity of the surrounding soil, among other factors, such as laying depth and physical properties [START_REF] Cosby | A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[END_REF].

The utilization of in-situ sensors for measuring soil moisture and temperature at various spatial scales, as discussed in [START_REF] Dorigo | The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements[END_REF][START_REF] Tavakol | The soil moisture data bank: The ground-based, model-based, and satellite-based soil moisture data[END_REF], presents an opportunity to comprehend the interrelationship and devise a solution to estimate the intricate interaction in exchange processes between land-atmosphere interactions and soil. Consequently, considerable research efforts have been directed towards this objective over the past few decades. Noteworthy contributions include satellite observations [START_REF] Dorigo | Esa cci soil moisture for improved earth system understanding: State-of-the art and future directions[END_REF], microwave remote sensing, and physically-based models [START_REF] Balsamo | A revised hydrology for the ecmwf model: Verification from field site to terrestrial water storage and impact in the integrated forecast system[END_REF], providing spatiotemporal estimations. However, these methods may experience deviations in performance due to complex topography and transient climate conditions [START_REF] Sungmin | Global soil moisture data derived through machine learning trained with in-situ measurements[END_REF][START_REF] Dorigo | Esa cci soil moisture for improved earth system understanding: State-of-the art and future directions[END_REF][START_REF] Dutra | Robustness of process-based versus data-driven modeling in changing climatic conditions[END_REF]. On the other hand, Machine-Learning models (ML) employing remote sensing data have been applied in various research studies [START_REF] Sungmin | Global soil moisture data derived through machine learning trained with in-situ measurements[END_REF][START_REF] Hengl | Soilgrids250m: Global gridded soil information based on machine learning[END_REF][START_REF] Elsaadani | Assessment of a spatiotemporal deep learning approach for soil moisture prediction and filling the gaps in between soil moisture observations[END_REF][START_REF] Taheri | A review of machine learning approaches to soil temperature estimation[END_REF][START_REF] Delbari | Modeling daily soil temperature over diverse climate conditions in Iran-a comparison of multiple linear regression and support vector regression techniques[END_REF][START_REF] Rani | Chapter 6 -machine learning for soil moisture assessment[END_REF] with a broad spectrum of data integration. These models, primarily influenced by climatic conditions and soil taxonomy, including texture and soil type, present a novel alternative that challenges conventional processes. By "learning" the intricate interdependencies between meteorological variables and soil dynamics, they redefine the approach to understanding and modeling these intricate connections.

A limited number of strategies have been developed, incorporating ML in DTR for UGC [START_REF] Huang | Use of day-ahead load forecasting for predicted cable rating[END_REF][START_REF] Huang | Dynamic cable ratings for smarter grids[END_REF]. As outlined in [START_REF] Bracale | Day-ahead and intraday forecasts of the dynamic line rating for buried cables[END_REF], an approach that involves the development of a day-ahead DTR forecast relies on a Support Vector Regression (SVR) method for soil temperature. However, the physical-statistical model for predicting thermal conductivity, applying a regression model for soil-specific heat, exhibits reduced simulation accuracy across diverse soil types, limiting its general applicability. To analyze the thermal conductivity and cover a wide range of soil texture, bulk density, temperature, and moisture, in the last decades, several estimations models have been proposed [START_REF] Campbell | Soil Physics with BASIC: Transport Models for Soil-Plant Systems[END_REF][START_REF] Devries | Thermal Properties of Soils[END_REF][START_REF] He | A modified normalized model for predicting effective soil thermal conductivity[END_REF][START_REF] Xiong | A new model to predict soil thermal conductivity[END_REF][START_REF] Lu | An Empirical Model for Estimating Soil Thermal Conductivity from Texture, Water Content, and Bulk Density[END_REF][START_REF] Johansen | Thermal conductivity of soils[END_REF]. In [START_REF] Ren | A new empirical model for the estimation of soil thermal conductivity[END_REF], a new empirical model for estimating soil thermal conductivity was developed. For this, a comprehensive evaluation of several approaches was performed and is influenced by many factors such as organic matter, soil texture, and particle composition. Resulting in a performance of R 2 of 0.98, increased simulation accuracy for ten soil types.

As temperature and soil moisture conditions become increasingly common variables in planning and managing the capacity of UGC [START_REF] Olsen | Modelling of dynamic transmission cable temperature considering soil-specific heat, thermal resistivity, and precipitation[END_REF], establishing projections related to the energy transition is a critical step in quantifying and understanding the impacts associated with climate change. To tackle the issues outlined above, the contributions of this paper are: a) Introduce a probabilistic DTR method aiming to exploit transmission capacity efficiently and minimize the risk of overloading as part of long-term power system planning c) Assess trends and possible impacts of climate change on UGC in the long term horizon.

The paper is organized as follows: Section 2 illustrates the machine learning process, thermal model, and methodology. Results are described in Section 3, and conclusions are drawn in Section 4.

Methodology

Overview

We develop a model to quantify the long-term effect of climate conditions on UGC capacity, summarized in the block diagram Fig. 1. First, supervised ML models are trained using historical in-situ measurements [START_REF] Dorigo | The international soil moisture network: serving earth system science for over a decade[END_REF] and meteorological information [START_REF] Sabater | ERA5-Land hourly data from 1950 to present[END_REF][START_REF] Hiederer | Mapping Soil Properties for Europe -Spatial Representation of Soil Database Attributes[END_REF] in module 2.2. Secondly, meteorological time series data from both historical [START_REF] Dorigo | The international soil moisture network: serving earth system science for over a decade[END_REF][START_REF]Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections[END_REF] and machine learning projections are collected in module 2.3. These data are fed to components' thermal models to calculate the time series for the transmission capacity in modules 2.5,2.4. Subsequently, in the final module 2.6, a probabilistic approach integrated into DTR is proposed [START_REF] Salas | Weather-Based Quasi Dynamic Thermal Ratings for Power Transformers[END_REF][START_REF] Hadiwidjaja | Quasi-Dynamic Line Rating spatial and temporal analysis for network planning[END_REF] by fitting a probability distribution to the lower tail of the simulations for each month/hour combination and selecting an accepted level of risk tolerance to thermal overload (0.1% in this case).

Machine Learning Model

This module aims to target soil moisture ( ψ) and temperature ( Θs ) data at 0.25 • , with a daily resolution in a depth range between 0.8 and 1.2 meters based on hourly-recorded input data. The pre-selection of the features Figure 1: Block scheme of the approach proposed for calculating quasi Dynamic Thermal Ratings in UGC.

was performed under a combination of time series of meteorological data, soil properties, and observations, mainly based on bibliographic analysis [START_REF] Sungmin | Global soil moisture data derived through machine learning trained with in-situ measurements[END_REF][START_REF] Elsaadani | Assessment of a spatiotemporal deep learning approach for soil moisture prediction and filling the gaps in between soil moisture observations[END_REF][START_REF] Taheri | A review of machine learning approaches to soil temperature estimation[END_REF][START_REF] Rani | Chapter 6 -machine learning for soil moisture assessment[END_REF]. To ensure the spatiality of the system throughout the European region, we rely on the open sources described in the section 2.3.

Due to the problem's complexity, we implemented the following preprocessing and numerical transforms: a) Anomaly extraction. b) Eliminating poor-quality data [START_REF] Dorigo | Global automated quality control of in situ soil moisture data from the international soil moisture network[END_REF] c) Excluding stations with less than three months of annual information d) Daily interpolation e) Encoding cyclical Day of the Year (t c ) f) Minimum and maximum scaling [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] f) Feature selection conducted to achieve the highest prediction accuracy. g) Finally, to ensure broad operability, each analyzed soil is encoded (S code ) by soil texture classification according to [START_REF]Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys[END_REF] and texture represented in Table 1.

In the initial phase, an evaluation of various machine-learning techniques was carried out in order to select the most appropriate for our method. This assessment focused on key error measurement indicators such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE), with particular emphasis on the computation time of the predictions. Evaluation metrics are given with the following equations:

RMSE q = 1 H H i=1 (y q,i -ŷq,i ) 2 (1a) MAE q = 1 H H i=1 |y q,i -ŷq,i | (1b) 
In the equations, ŷi denotes the estimate of humidity and temperature, while y i represents the observation for the same variables from ISMN stations. The subscript H signifies the projected horizon of the estimation. As described in the previous section, a reduction in UGC ratings is associated with lower humidity and higher temperature. Thus, our analysis focuses on the heightened risk of overloading, the metrics described in equations , are evaluated the lower 20th quantile for humidity and the 80th quantile for temperature, and denoted as q. 
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The importance of the calculation time is due to the expected regional application of the continentalscale model, highlighting the need for accuracy and efficiency. The techniques evaluated include Artificial Neural Network (ANN) [START_REF] Lecun | Deep learning[END_REF], Regressions Tree (RT), K-Nearest Neighbours (k-NN), Extreme Gradient Boosting (XgBoost) [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF], Random Forest (RF) [START_REF] Breiman | Random forests[END_REF], Long short-term memory (LSTM), and Lasso linear regression [START_REF] Tibshirani | Regression Shrinkage and Selection Via the Lasso[END_REF].

Considering the soil-inertia nature in the output variables as detailed in [START_REF] Sungmin | Global soil moisture data derived through machine learning trained with in-situ measurements[END_REF], this model is supervised-trained with observations lagged by five days. This lag was determined through time series analysis using a partial auto-correlation function (PACF) [START_REF] Seabold | statsmodels: Econometric and statistical modeling with python[END_REF]. The dataset is divided by stations and soil types to train and test the models. The training set is then randomly divided into 70%, with 10% reserved for tuning the model hyperparameters using techniques from [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF][START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF]. The remaining 30% serves as a validation set to test the model. To avoid overfitting, N-fold cross-validation is performed by applying the metrics described in (1) by dividing the test dataset into five folds, ensuring all soil types are present in each fold, thus guaranteeing homogeneity of selection.

Datasets

Quantifying the impact on UGC capacity is conducted by processing data derived from a combination of soil properties and meteorological variables of the interest region, as outlined in Table 2.

Considering 100year climatologists, ECMWF ERA5 and Copernicus climate change service (C3S) datasets provide the historical reanalysis (a) [START_REF] Sabater | ERA5-Land hourly data from 1950 to present[END_REF] and climate projections with a Representative Concentration Pathway (RCP) of 2.6, 4.5, and 8.5 (b) [START_REF]Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections[END_REF]. The high-grid resolution of 0.25 • datasets provides a time series from January 01, 1970, to December 31, 2072. However, climatic projections are linearly interpolated with a time resolution of one day to match the frequency of the In-Situ data.

Observing temporal variations in soil is crucial for estimating soil moisture and temperature behavior and assessing sensitivity to climate change and soil taxonomic properties. This mandates the availability of soil moisture datasets that exhibit superior quality, extended duration, continuity, and consistency. In this study, in situ soil moisture (d) , taxonomy (c,d) , and temperature measurements (d) sourced from the International Soil Moisture Network [START_REF] Dorigo | The international soil moisture network: serving earth system science for over a decade[END_REF] and [START_REF] Hiederer | Mapping Soil Properties for Europe -Spatial Representation of Soil Database Attributes[END_REF] are employed. The dataset involves data from 52 networks, spanning the years 2006 to 2022 and covering depths from 0.05 to 120 m.

Steady-State Thermal model with Moisture Migration

In line with standard procedures for quantifying the ampacity of buried UGC, a thermo-electric model from [START_REF] Commission | Electric cables -Calculation of the current rating -Part 1-1: Current rating equations (100 % load factor) and calculation of losses -General[END_REF] is employed. According to this standard, the capacity, with the influence of a dry area formation, is calculated per each day (i) as follows: The above equation focuses on the critical temperature of the boundary between the wet and dry zones ∆θ x and the ratio between the thermal resistivities of the dry and wet zones of the back-fill soil v i . With high dependence on variable factors such as ambient temperature, moisture, and precipitation, the other parameters such as λ 1-2 , C, R, T 1-3 , W d obey the cable construction. These parameters can be determined and calculated according to [START_REF] Brakelmann | Ampacity reduction factors for cables crossing thermally unfavorable regions[END_REF][START_REF] Commission | Electric cables -Calculation of the current rating -Part 1-1: Current rating equations (100 % load factor) and calculation of losses -General[END_REF], guide and suggestions.

B = W d 1 2 T 1 + n (T 2 + T 3i + v i T 4i ) (2a) C = nR i (1 + λ 1 + λ 2 ) (T 2 + v i T 4i ) (2b) 
I i = ∆Θ i -B + (v -1)∆Θ x R i T 1 + nR i (1 + λ 1 )T 2 + C ∀i = 1..H (2c)
Where the thermal resistance T 4 of the surrounding medium for a single core cable, lay horizontally, is defined as

T 4i = ρ si 2π ln u + u 2 -1 + ln 1 + 2L S 1 2 (3) 
Where ρ si is the thermal resistivity of soil, S 1 spacial axis distance between cables, u is the ratio of the distance from the surface to the cable axis L, and the external diameter of the cable D e . Hence, it is imperative to calculate ρ si , and the analysis must also incorporate considerations based on the cable environment. In conclusion, the relationship between the buried UGC's capacity and the input parameters can be described as a function of Eq. ( 4). This relationship holds true for uniform soils, where thermal properties remain constant at each coordinate.

I DT Ri = I(Θ i , ρ si , ψ i , constant parameters) (4)

Dynamic Soil Model

Modeling soil moisture and temperature dynamics is an area that has been developed over the last century. Differential equations involving consideration of various factors have been presented, as described in the previous section. A one-dimensional representation of heat flow in a vertical direction (x) is outlined in [START_REF] Sabater | ERA5-Land hourly data from 1950 to present[END_REF], in which the thermal diffusivity α s is characterized as a direct relationship between the thermal conductivity (λ s ) and the inverse of the soil density and specific heat capacity. Our approach will implement the dynamics model addressing the physical properties and processes within soils using machine learning, as described in Section 2. However, a mathematical model correlating soil hydraulic-physical properties with thermal conductivity (λ s ) needs to be established to determine the thermal resistivity of each analyzed soil.

∂Θ ∂t = α s ∂ 2 Θ ∂x 2 (5) 
To address this, the estimation of soil thermal conductivity, which is the inverse of ρ s , is conducted following the interrelation proposed in [START_REF] Johansen | Thermal conductivity of soils[END_REF][START_REF] Ren | A new empirical model for the estimation of soil thermal conductivity[END_REF]. This involves unsaturated soils and incorporates parameters such as λ dry , λ sat , and the Kersten coefficient K e .

λ si = (λ sati -λ dry i )K ei + λ dryi ∀i = 1..H (6a) K ei = exp (α -ψ -β i ) (6b)
Here, α and β represent the shape factors of the volumetric water content (ψ) and thermal conductivity curve, respectively. These factors exhibit linear relationships with particle size distribution (S % ) and organic matter content (S org % ), as defined below:

α = a 1 S Sand % + a 2 S Silt % + a 3 S org % + a 4 (7a) β = b 1 S Clay % + b 2 S org % + b 3 (7b)
Where, the weighting factors of the physical parameters of the model are as follows At this point, the thermal conductivity is calculated for each soil using the features described in Table 2. This, in turn, allows us to estimate the v ratio and the thermal resistivity of the soil ρ s per day.

Quasi Dynamic Thermal Ratings

Finally, a quasi-dynamic Thermal Ratings (qDTR) is applied to calculate ratings for a long-term horizon, as proposed in [START_REF] Salas | Weather-Based Quasi Dynamic Thermal Ratings for Power Transformers[END_REF][START_REF] Hadiwidjaja | Quasi-Dynamic Line Rating spatial and temporal analysis for network planning[END_REF]. After collecting the time series and parameters described in Sections 2.3 and 2.5, the DTR is calculated using (2),(3). These time series are fitted with a probability distribution described in [START_REF] Clauset | Power-law distributions in empirical data[END_REF], in the lower tail of the simulations for each month/day combination. An accepted level of tolerance to the risk of thermal overload (0.1% in this case) is then selected.

Figure 2: The conceptual illustrations of this proposed method display the DTR calculated throughout a year (2000-2022) for a specific coordinate, represented in blue. The STR H is depicted in black, the monthly qDTR H in green, and the qDTR Hs for the winter and summer seasons in indigo and orange, respectively This method is conceptually illustrated in Fig. 2. First, the thermal model calculates the maximum capacity-DTR over a 1-year horizon. In contrast plotted as a dash black line, the Static Thermal Rating (STR H ) applies a fixed value as a constrained capacity limit throughout the year, under-utilizing the UGC and potentially overloading, regardless of changing conditions, with a 0.1% exceedance probability. The qDTR H is then calculated with the same risk of exceeding over the lower tail values of the DTR across a 50-year time horizon for a monthly/yearly approach, as shown in the central figure. Finally, the qDTR Hs is calculated for winter and summer with the same industry seasonal approach.

Results

This study applies qDTR to estimate the maximum allowable currents of UGC using historical (from 1970 to 2022) and future (from 2023 to 2070) weather projections for Europe. The HV cable used in this paper is described in Table 4 obtained from [START_REF]High and extra high voltage cables[END_REF] and complemented from [START_REF] Commission | Electric cables -Calculation of the current rating -Part 1-1: Current rating equations (100 % load factor) and calculation of losses -General[END_REF], with a manufacturer reference A2X(F)K2Y-800RM. 
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Firstly, to apply qDTR, the data described in 2.3 needs retrieval. For projecting humidity and temperature based on each representative concentration pathway, a machine learning model with a daily step was trained, validated, and selected as outlined in 2.2.

The performance of each model was compared with the ERA-5 data, which were used as a benchmark. Results not shown in this paper indicate that techniques such as KNN and LST, with deviations of +0.05m 3 m -3 over the observations, increase the computational cost. On the other hand XGBoost [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF], as illustrated in [START_REF] Olsen | Modelling of dynamic transmission cable temperature considering soil-specific heat, thermal resistivity, and precipitation[END_REF], and Lasso [START_REF] Tibshirani | Regression Shrinkage and Selection Via the Lasso[END_REF] described in [START_REF] Wang | Dynamic thermal analysis of high-voltage power cable insulation for cable dynamic thermal rating[END_REF], exhibited the most favorable performance for humidity and temperature, in the techniques evaluation process. This was evidenced by achieving the lowest error values among all models, outlined in Table . 5 and6

. ψi = K k=1 f k (x i ) (8a) 
x i = [[w s , Θ a , S r , t s ] i-5:i-1 , S % , S code1-5 ] (8b) 
Where x i is the flattened feature vector for the i-th observation

Θi = x i • βL (9a) βL = arg min β    1 2H H i=1 (Θ i -x i • β) 2 + λ p j=1 |β j |    (9b) 
x i = [[Θ a , S r , t s ] i-5:i-1 , S % , S code1-5 ] (9c) 
β is the coefficient vector associated with the features, βL is the estimated parameter vector using LASSO and λ is the regularization parameter. The results are derived from diverse station selected through cross-validation, as detailed in Table 7. This table provides information on the various soil codes used. For a graphical representation of the performance across different soil codes, refer to in Fig. 3. At first glance, the XGBoost Moisture model demonstrated lower average error values than the ERA5 model. It is essential to note that MAE has the same units, m 3 m -3 . With marginally superior performance, the Lasso temperature models denote the robustness of ERA5, establishing themselves as a dependable choice for historical references.

From here, we quantify the climate impact of transmission network capacity for underground cables. The qDTRs are fitted with a probability distribution commonly employed to characterize natural phenomena [START_REF] Clauset | Power-law distributions in empirical data[END_REF]. Specifically, the power law distribution is applied to the lowest 2% of the calculated ratings for each month/day combination. Across all month/hour combinations, considering an exceedance probability of 0.1%, the results show that the coefficient of determination (r 2 ) exceeds 0.9. This procedure is applied to the three projected RCP scenarios, revealing a moderate but noticeable effect of temperature increase according to climate projections, as shown in Fig. 4. Preliminary results suggest that colder temperatures, increased precipitation, and reduced irradiance levels contribute to increased capacity during winter. For instance, in the qDTR Hw scenario, the increase may be as high as 8.1%. Additional analysis of this chart reveals a decrease -albeit small -of 0.56% in ∆ % (qDTR RCP4.5 , qDTR H ) for this specific location. Conversely, a temporal shift in the usual annual temperature cycle is noticeable, with lower capacity observed around September. This phenomenon is attributed to the thermal memory and inertia inherent in buried cabling, causing a time delay in temperature exchange between different layers. The same inertia translates into low daily variability, suggesting that these devices can be effectively analyzed at lower frequencies. This is exemplified by the dashed line, which indicates a monthly (qDTR H month ) analysis approach. Finally, the same procedure is applied on a country scale, and the results are summarized in Table 8 and geographically represented in Fig. 6. The UGC location retrieved from [START_REF] Brown | PyPSA-Eur: An open optimisation model of the european electricity system[END_REF] and described as average, maximum decrease for the qDTRs calculated for the ten lines. It is possible to observe an average reduction in ratings in the order of 0.16%, 0.27%, and 0.33%, respectively, for the 2.6, 4.5, and 8.5 RCP. With maximum peaks in the high emission scenario of 1.38 %

The research investigates the methodology employed in [START_REF] Montana | The climate change impact on power grid transmission capacity[END_REF], while also offering a broader perspective on additional components. 

Conclusions

Through an assessment conducted at a grid resolution, this analysis investigates the impact of climate on transmission network capacity using established thermal models. Employing the Quasi-Dynamic Thermal Rating method to estimate maximum capacity with a low-risk exceedance probability, Our findings highlight moderate reductions in the mid-term emission horizon for underground cables, showing sensitivity to potential climate changes, with a mean reduction from 0.27% to 0.63%. It reflects that the variation caused by the meteorological conditions in the lower risk scenario (0.1%) is reduced at depth buried cables. Conversely, the In addition, this paper estimated soil moisture and soil temperature at a depth of 1 meter. The results, obtained through 5-Fold validation, demonstrate mean absolute errors of 0.08 (± 0.02) m 3 m -3 for soil moisture and 2.51 (± 0.17) ( o K) for soil temperature. This highlights a better accuracy than the benchmark model and gives more strength to the present study. As part of a future improvement proposal for this module, we suggest integrating additional soil layers, potentially up to 5, and extending the extrapolation to depths of 5 meters. Furthermore, expanding the scope of station inclusion to a global scale is recommended to ensure comprehensive coverage of all soil types.

The primary advantage of the qDTR methodology is its ability to yield higher average ratings throughout most of the year compared to the annual industry rating, resulting in an average increase of 7%. Moreover, it has the potential to further widen the disparity between winter and summer seasons, with an increase of up to 8.1%.
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 35 Figure 3: Daily time series of estimated soil moisture with (a) XGBoost at Soil 5 and (b) LASSO (Green) at Soil 2 compared to ERA data (RED) and Test Values (Black dash)

Figure 4 :

 4 Figure 4: Yearly representation of qDTR week/month for historical qDTR H values and projections qDTR RCP2.6, 4.5, 8.5 in node located in South Spain, in-dash blue the qDTR H month as a reference
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 6 Figure 6: Comparative Analysis: Assessing qDTR variations among historical qDTR H , STR H , and RCP projections qDTR RCP2.6, 4.5, 8.5 at ten French UGC (b) Regional Analysis: Examining variations in UGL assessments between historical data and RCP 8.5 projections across France

  

  

Table 1 :

 1 REVISED USDA SOIL TEXTURE CLASSIFICATION, INDICATING SOIL CODES USED IN THIS STUDY

	Texture Class	Sand %	Silt %	Clay %	Code
	Sand (S)	> 85	0-15	0-15	5
	Loamy Sand (LS)	70-85	0-20	0-15	5
	Sandy Loam (SL)	43-70	7-20	0-27	4
	Loam (L)	20-40	40-60	7-27	4
	Silt Loam (SiL)	0-20	≥ 70	0-27	4
	Silt (Si)	0-10	80-90	0-10	4
	Sandy Clay Loam (SCL)	20-35	28-50	27-40	3
	Clay Loam (CL)	20-35	28-50	27-40	3
	Silty Clay Loam (SCLa)	0-20	50-70	27-40	3
	Sandy Clay (SC)	0-20	0-28	40-60	2
	Silty Clay (SCla)	0-10	50-70	40-60	2
	Clay (C)				

Table 2 :

 2 DATASETS AND PARAMETERS

	Variable	Units Process Source	
		Meteorological		
	Temp. Air at 2	• C	2.2	a,b	Dynamic
	m (Θa)				
	Total precipita-	mm	2.2	a,b	Dynamic
	tion (Pt)				
	Net surface solar	Jm -2 2.2	a,b	Dynamic
	radiation (Sr)				
	u -v -wind at 10	ms -1 2.2	a,b	Dynamic
	m				
		Soil Proprieties		
	Silt (S silt % )	%	2.5,2.2	c	Static
	Sand (S sand % )	%	2.5,2.2	c	Static
	Clay (S clay % )	%	2.5,2.2	c	Static
	Organic (Sorg % )	%	2.5	c	Static
	Texture Compo-	-	2.2	c	Static
	sition (Stext)				
	Bulk (S bulk )	kgm -3 2.5,2.2	c	Static
		Soil Measurements		
	Temperature (Θ) • C	2.2,2.6	d	Dynamic
	Moisture (ψ)	%	2.2,2.5	d	Dynamic

Table 3 :

 3 WEIGHTING FACTORS FOR THE EMPIRICAL MODEL OF THE SOIL THERMAL CONDUCTIVITY

	a 1	a 2	a 3	a 4	b 1	b 2	b 3
	0.493 0.86 0.014 0.778 0.736 0.006 0.222

Table 4 :

 4 UNDERGROUND CABLE PARAMETERS

	Parameter	Default Value	Unit/Symbol
	Name	Cable A2X(F)	-
	Conductor Material	Aluminium	-
	Insulation Type	XLPE	-
	Conductor type	Segmental	-
	L	1000	mm
	ρ 20	2.826 × 10 -8	Ω • m
	α 20	4.03 × 10 -3	1/K
	Θ	90	°C
	tan (δ)	1 × 10 -3	-
	U 0	72500	V
	ε	2.5	-
	Frequency	50	Hz
	S	400	mm
	C	0.295 × 10 -9	F/m
	R 0	0.0367 × 10 -3	Ω/m 2
	dc	33	mm
	De		

Table 5 :

 5 MACHINE LEARNING PERFORMANCE -TEMPERATURE AT 80TH PERCENTILE

					Model			
		CV	0	1	2	3	4	ERA
		0	2.23	2.03	2.29	2.15	2.39	2.72
	RMSE80	1 2 3	2.69 2.92 2.02	2.43 4.81 1.85	2.73 3.19 2.25	2.63 3.16 1.90	2.83 3.37 2.14	3.64 2.76 2.90
		4	2.89	3.48	2.60	3.11	2.70	3.56
		Avg. 2.71 3.16 2.83 2.74 2.95 3.10
		0	2.23	2.03	2.29	2.15	2.39	2.72
	MAE80	1 2	2.56 1.71	4.61 1.55	2.85 1.95	2.84 1.61	3.06 1.87	2.18 2.32
		3	2.55	3.14	2.26	2.77	2.38	2.58
		4	2.64	2.96	3.03	2.56	3.41	2.21
		Avg. 2.34 2.86 2.48 2.39 2.62 2.40

Table 6 :

 6 MACHINE LEARNING PERFORMANCE -MOISTURE AT 20TH PERCENTILE

					Model			
		CV	0	1	2	3	4	ERA
		0	0.29	0.07	0.13	0.08	0.14	0.22
	RMSE20	1 2 3	0.05 0.05 0.05	0.21 0.03 0.06	0.08 0.10 0.06	0.09 0.04 0.16	0.08 0.04 0.05	0.15 0.09 0.07
		4	0.13	0.08	0.11	0.05	0.19	0.24
		Avg. 0.11 0.09 0.10 0.08 0.10 0.16
		0	0.29	0.06	0.11	0.07	0.13	0.22
	MAE20	1 2	0.04 0.04	0.21 0.03	0.08 0.11	0.08 0.03	0.07 0.04	0.14 0.08
		3	0.04	0.05	0.05	0.17	0.04	0.06
		4	0.12	0.07	0.10	0.04	0.19	0.24
		Avg. 0.11 0.08 0.09 0.08 0.09 0.15

Table 7 :

 7 FIVE-FOLD CROSS VALIDATION FOR MOISTURE AND TEST

		Description		CV Fold
	ID	Station	Soil	1 2 3 4 5 Test
			Code	
	1	SOD140	3	
	2	Borda Coll	4	
	3	Hupsel	5	
	4	Kehrigk	5	
	5	Hoal-08	3	
	6	Ribera de Sio	4	
	7	ITCSM-15b	5	
	8	ITCSM-05d	5	
	9	ITCSM-06b	3	
	10	Camidels Nerets	4	
	11	Kuusamo	5	
	12	ITCSM-10c	5	
	13	Marsh Bubnow	3	
	14	San Pietro Capo	4	
	15	Voulton	4	
	16	Abrahams	5	
	17	ITCSM-17c	5	
	18	SOD071	3	
	19	Falkenberg	4	
	20	PoriII	4	
	21	ITCSM-14c	5	
	22	ITCSM-05c	5	
	23	Clot de les Peres	1	
		II		
	24	Clot de les Peres	1	
		I		
	26	Suizy	1	
	27	Serra de	1	
		CostaAmpla		
	28	ITCSM-03b	5	
	29	Kvarstadseter	5	
	30	Pessonada	4	
	31	La Cultiada	4	
	32	Hoal-07	3	

Table 8 :

 8 qDTR differences over a fifty-year period for qDTR RCP2.6, 4.5, 8.5 and qDTR H datasets for 10 UGC in France

	Line	Hist	∆ % RCP8.5	∆ % RCP4.5	∆ % RCP2.6
	ID	(A)	Mean Max Mean Max Mean Max
	1257 1073 -0.44 -1.19 -0.31 -0.88 -0.13 -0.79
	8566 1012 -0.42 -0.48 -0.24 -0.09 -0.21 -0.01
	5676 1110 -0.36 -0.69 -0.21 -0.59 -0.14 -0.29
	8554	941	-0.33 -0.77 -0.42 -0.98 -0.21 -0.37
	5808 1002 -0.33 -0.53 -0.39 -0.99 -0.22 -0.23
	5792 1006 -0.30 -1.14 -0.13 -0.41 -0.15	0.00
	2271	947	-0.30 -1.38 -0.19 -0.91 -0.08 -0.70
	8178 1046 -0.27 -1.20 -0.27 -0.60 -0.19 -0.91
	8544 1094 -0.27 -0.53 -0.25 -0.43 -0.07 -0.27
	5730 1085 -0.23 -0.55 -0.30 -0.40 -0.20 -0.50
	Average	-0.33 -0.85 -0.27 -0.63 -0.16 -0.41