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QUANTIFYING UNCERTAINTY IN KNEE OSTEOARTHRITIS DIAGNOSIS

Mame Diarra Fall t

T Institut Denis Poisson, Université d’Orléans, Université de Tours, CNRS, 45100 Orléans, France.

ABSTRACT

Knee OsteoArthritis (OA) is one of the most common causes
of physical disability in the world, causing a large personal
and socio-economic burden. Visual assessment of OA still
suffers from subjectivity. Deep learning (DL), and in partic-
ular convolutional neural networks (CNN), has recently led
to remarkable improvements in knee OA detection. How-
ever, traditional deep learning-based knee OA classification
algorithms lack the ability to quantify decision uncertainty.
This is a key point in the medical field where, due to the
high cost of labelling, we are faced with a lack of sufficient
data to train a learning model. We propose here an alterna-
tive approach based on the the concept of Evidential Deep
Learning (EDL). Unlike Bayesian neural networks which in-
directly infer prediction uncertainty through uncertainties in
the network weights, EDL approaches explicitly model this
uncertainty using the theory of subjective logic. Experimen-
tal results on the Osteoarthritis (OAI) database demonstrate
the potential of the proposed approach.

Index Terms— Knee OsteoArthritis, Deep-learning, Un-
certainty, X-ray images, classification.

1. INTRODUCTION

Knee OsteoArthritis is a degenerative disease characterized
by deterioration and damage of the articular cartilage, joint
edges, and reactive hyperplasia of the subchondral bone [1].
Multiple factors, including age, weight, stress, trauma, etc.
may contribute to its occurrence [2]. The disease is associated
with stiffness, swelling, and pain. Knee OA is recognized as
the main cause of reduced mobility in the elderly, and is now
recognized as an independent risk factor for increased mortal-
ity. Since no treatment can prevent the degenerative structural
changes responsible for the progression of knee osteoarthritis,
early detection is essential so that timely behavioural thera-
pies, such as weight loss, can be implemented to delay the
onset and progression of knee OA [3].

The Kellgren and Lawrence (KL) grading system [4] de-
fines knee OA severity in five grades, from O (normal) to 4
(severe), according to the existence and severity of symptoms
such as osteophytes and joint space narrowing (see Fig. 1).
This criterion is however semi-quantitative, and suffers from
subjectivity and ambiguity, which makes early OA diagnosis

Fig. 1. Radiological grades of OA according to the KL scale
very challenging.

It is therefore necessary to develop automated methods
to facilitate the knee OA diagnosis. Several deep learning
(DL) have been proposed to this aim. Most of them are based
on convolutional neural networks (CNN). The latter have
become state-of-the-art technology for image classification
tasks due to their ability to capture spatial information in
images. One can refer to [5] for a brief review of current
CNN-based methods for knee OA. Nevertheless, one ma-
jor drawback of CNN models is their dependency on large
amounts of labelled data. In the field of medical imaging
the small quantity of valid medical datasets, due to the high
cost of labelling, still poses a major challenge for training the
learning model. In this context it is crucial to quantify the
uncertainty associated with the model prediction.

In classical CNN for classification, the softmax function
is used to predict class assignment probabilities. A softmax
output is however often misinterpreted as an indication of
model confidence. Nevertheless a model can be uncertain in
its predictions even with a high softmax output for a particular
class [6]. Bayesian neural networks can address this issue by
putting a prior distribution on the neural network parameters
and inferring their posterior distribution using approximations
such as Variational Bayes [6]. The posterior predictive dis-
tribution is approximated using Monte-Carlo sampling meth-
ods. These models are however computationally demanding
since each data point has to pass through the network at sev-
eral times, and also require in addition considerable modifi-
cations to existing baselines.

Recently, a new class of models based on the concept of
evidential deep-learning (EDL) has been proposed [7], [8].
They allow to compute uncertainty in a single forward pass
by parameterizing distributions on distributions, and involve
minimal modifications to the architecture of standard neural
networks.

Is this paper, we develop an EDL-based method for knee
OA diagnosis. The potential of the proposed approach is eval-



uated for binary and multi-class classification tasks. To the
best of our knowledge, this is the first work based on deep
neural networks that allows to quantify uncertainty in the di-
agnosis of knee OA.

The rest of the paper is organized as follows. In Section
2 the EDL theory is briefly reviewed before presenting our
model. Experimental setups are described in Section 3. Re-
sults are presented in Section 4. We conclude in Section 5 and
point some future research directions.

2. METHODS

2.1. Theory of Evidence and uncertainty

Let x € R? be an input image (in vectorized form) and
f(:|8) : R — RE a NN with parameters 6, where K > 2
stands for the number of classes. We denote a = f(x]0) €
RX the raw output vector of the NN corresponding to the
input x. The output is y = ®(a). A schematic representation
of such a network is depicted in Fig. 2. In classical NN for
classification, ® is given by the softmax function.

Neural Network: f f(x16)
—> —>
(a)
Parameters 6
a: output of the ¥: prediction
Neural Network
x: input data

Fig. 2. Schematic representation of the NN.

The training dataset consists of D = {(x;,y:),%
1,..., Np} where y; is the ground-truth class associated to
X;, in the form of a one-hot encoded vector. The idea behind
EDL is to train the network to give an opinion on a classifica-
tion problem [7]. This originates from the Dempster-Shafer
Theory of Evidence (DST), a generalization of the Bayesian
theory to subjective probabilities. Using the DST theory, we
assign a belief mass by > 0 to each class k£ and consider
u > 0 an overall uncertainty mass such that

U+ Zle b = 1.
A belief mass can be computed using the evidence. If we let
er > 0 be the evidence derived for the k-th class, then
by =% and u= %,
where S = Zszl (ex + 1). The uncertainty is inversely pro-
portional to the total evidence; and if there is no evidence, the
belief for each class is zero and the uncertainty w is one.

Using subjective logic, we can formalize the DST as a
Dirichlet distribution, quantifying belief masses and uncer-
tainty [9].

2.2. Dirichlet Modeling

The Dirichlet distribution is a distribution over probability
mass functions. A random vector P = (Py,..., Px) is dis-
tributed according to the Dirichlet distribution with parameter

a = (a1, ...,ar) if its probability density function is
K K
1 _ H _ F(ak)
fpla) = — [ pi*~!, where f(a) = 5=
5a 1172 [(S)

is the K-dimensional multinomial beta function, S, =
S &, ay, is the Dirichlet strength, with cj, > 0 Vk.

Since classical CNN using sotfmax only provide a point
estimate of the class probabilities for a given sample x, one
solution is to use a Dirichlet distribution to model the proba-
bility distribution of these class probabilities. To this end, one
should define a relationship between the NN output a and the
Dirichlet parameters in the form a = ®(a), where ¢ must
comply with the strictly positive constraint of cc. We consider
®(a) = ReLU(a)+ 1 which satisfies both conditions. To any
input data x; we associate the random variable

, Pir) ~ Dir(p;|a;), 9]

where a; = ®(a;) = ReLU(f(x;]0)) + 1. The class pre-
diction y; is given by the mean of the Dirichlet distribution
Dlr(pl|al), that iS,

v.o— X [e73] QK
Yz—sai - (Sai7...’sa-).

We used a similar idea in [10] to estimate proportions in a
mixture for X-Ray diffraction and hyperspectral imaging.
The problem considered in this paper is different, since it is
a classification problem for which we want to estimate the
uncertainty at the same time.

Pi = (Pﬂ,

2.3. Loss function

To train the neural network, we must define a loss function
using the Dirichlet model (1). As in [10], we consider mini-
mizing the mean square error. That is for any input x;, min-
imize the expectation of the squares of the errors between y;
and P;,

L£37(0) =E(| y; — Pi [I*) =l yi = 3: [I> + Var(P;), (2)

where Var(P;) = Zjil Var(P;;). This loss aims to achieve
the joint goal of minimizing the prediction error and the vari-
ance of the Dirichlet distribution output by the NN.

In addition, we also need to ensure that the NN has the
expected behaviour under foreign data inputs, by reinforcing
for example the flatness of the Dirichlet distribution. We con-
sider a regularization term in the loss function, consisting of
the KL divergence with respect to the uniform Dirichlet dis-
tribution [7]. The overall loss considered is then,

Li(0) = £7F(0) + KL [Dir(p;|é;)|Dir(p:[1)],  (3)



where Dir(p;|1) refers to the uniform Dirichlet distribution,
a; =y;+ (1 —-y;) ©a; (with @ referring to the element-
wise product) are the Dirichlet parameters after removing the
non-misleading evidence from predicted parameters o; for
sample ¢, A; = min(1,¢/k) is an annealing coefficient, ¢ is
the index of the current training epoch and k is a fixed num-
ber (often set to k = 10).

The KL divergence in the loss (3) exhibits a closed-form,

"(E)

K
I'(K) kl;ll T (&r)

+ > (@ — 1) lw (Gir) — (Z dik)] ;
k=1

k=1

KL [Dir(p;|&; )| [Dir(p:[1)] = log

where (-) is the digamma function.

3. EXPERIMENTAL SETUP

We evaluate our method on the publicly available Osteoarthri-
tis Initiative (OAI) data set. This cohort recruited 4796 par-
ticipants with age ranging from 45 to 79. As the OAl is a
multi-center study, the physical resolution and dimension of
the knee X-ray images collected from the baseline cohort are
not homogeneous. Pre-processing is required to ensure that
all images have the same size. We use the 4130 X-ray im-
ages with 8260 knee joints from [11]. The data distribution is
represented in Fig. 3 below.

Healthy

Seve

lodera

Minimal
Fig. 3. Dataset distribution

3.1. Dataset preparation

The dataset of X-ray images of knee joints is not suitable in
terms of clarity and localization as input for the DL models. It
is therefore necessary to perform a data pre-processing step,
during which the images are transformed to clearly capture
the joint area where OA information is likely to exist. This
involves first cropping the image to the desired region of the
knee, so that all undesirable regions are excluded. To achieve
this, we cropped the images by 60 pixels top and bottom, re-
sulting in images of size 224 x 104 x 3. The second step was
to perform histogram equalization to improve contrast and en-
sure good visibility of the desired areas.

We randomly assigned images to the training, validation,
and test sets with respectively the following percentages 64%,
16% and 20%. All data were normalized, and we also used a
data augmentation scheme in the training phase using a hori-
zontal random flip with a probability of 0.5.

3.2. Training phase

We conduct the experiments with the ResNet-101 architec-
ture [12]. The standard softmax layer is replaced by a ReLU
whose output is used as an evidence vector for the Dirich-
let distribution. The network is trained from scratch for 200
epochs in experiments 1 (described below), and 500 in exper-
iments 2 and 3. We choose Adam as the optimizer, with an
initial learning rate of 10~3 and a weight decay of 10~ to
avoid overfitting. We also choose a learning rate schedule,
decreasing the learning rate by 10% every 20 epochs.

3.3. Performance metrics

In our experiments, quantitative evaluation was performed us-
ing four different metrics:

1. Accuracy: percentage of predictions that match exactly
the ground-truth.

2. Precision: fraction of true positives among predicted
positives.

3. Recall: fraction of the total number of true positives
retrieved.

4. Fl-score: harmonic mean of precision and recall.

We now present the results on different test sets derived
from the original data.

4. NUMERICAL RESULTS

In this section, the performance of the proposed method is
assessed on binary and multi-class classification tasks.

Binary classification

First, the model has been trained to detect two classes. We
consider two classification scenarios .

e Experiment 1. The aim of this experiment is to detect
knee OA at an early stage. We therefore classify normal
patients (KLO) versus those with mild OA (KL2). The
test database includes 1086 images.

e Experiment 2. This aims at detecting the pres-
ence/absence of knee OA. We create a binary dataset
by combining classes KLO and KL1 to represent neg-
ative diagnosis of KOA (denoted as "Normal"); KL2,
KL3, and KL4 are combined to represent positive diag-
nosis ("Abnormal"). There are 1656 images in the test
database.



Multi-class classification

o Experiment 3. The aim of this third experiment is to
determine the severity of KOA. We therefore remove
classes KLLO and KL1 and consider classes KL.2, KL3,
and KL4. The number of images in the test database is
721.

Table 1 summarizes the results of the three classification ex-
periments on the test set. Note that the table can be mislead-
ing for our approach, since totally uncertain predictions (i.e.
u = 1) are also considered failures when computing over-
all accuracy. Despite this, the performance results are good,
and quite similar for Experiments 1 and 2. This is promis-
ing, as experiment 1 is challenging due to the similarity be-
tween KLO and KL2 images. This also shows the model’s
ability for early detection. The results of experiment 3 are
slightly less good. Confusion matrices (not shown here) indi-
cate large misclassifications of knee joints categorized as KL3
(moderate) and predicted as KL2 (minimal). These images
show minimal variations in terms of joint space width and os-
teophytes formation, making them challenging to distinguish.
Moreover, due to the very unbalanced data distribution (see
Fig. 3), we have much less data for these classes, making the
classification task even more difficult.

Experiment Accuracy Flscore Precision Recall
1 0.72 0.71 0.72 0.70
2 0.73 0.73 0.73 0.73
3 0.66 0.64 0.62 0.66

Table 1. Model performance on the three experiments.

Uncertainty quantification

The strength of our approach lies in its ability to quantify un-
certainty. We first examine the average uncertainty for right
and wrong predictions. The results are presented in Table 2
for the three experiments. Our model associates higher un-
certainty to erroneous predictions, in all the three data sets.
Uncertainty is also higher for experiment 3, for which the
classification results are less good.

Experiment Right prediction Wrong prediction
1 0.14 0.23
2 0.18 0.34
3 0.43 0.59

Table 2. Average uncertainty for right and wrong predictions.

It may be useful to look at the images and the results ob-
tained when the classification results matches the groundtruth.
Fig. 4 shows that the proposed method in this case produces
high probability and low uncertainty, indicating a confident
classification.

Actual  Predicted
Experiment Test image Probability Uncertainty
Class Class
Healthy Healthy 0.93 0.12
Normal Normal 0.90 0.19

3 H Minimal ~ Minimal 0.84 0.24

Fig. 4. Results with correctly classified data.

Finally, we examine the results obtained in the case of
misclassification. Fig. 5 displays some of these results. In the
case of a severe misclassification in Experiment 3, for exam-
ple with a KL4 (severe) grade predicted as KL2 (minimal),
the model produces a high uncertainty (v = 0.57).

Actual  Predicted
Experiment Test image Probability Uncertainty
Class Class
1 Minimal  Healthy 0.53 0.24

# il
2 Eﬂ Abnormal  Normal 0.69 0.30
3 p I Severe Minimal 0.65 0.57

Fig. 5. Results with misclassified data

5. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a new classification method
for knee OA diagnosis. These preliminary results are promis-
ing since classification task can be challenging particularly
when dealing with complex data such as X-ray images used
for the knee OA diagnosis. Being able to quantify uncertainty
is a key point of the proposed method

There are, however, some limitations. The dataset was
relatively small and highly unbalanced. Another limitation
was the lack of clean classes due to the high similarity of X-
ray images particularly in early stages of knee OA. Future
work will be devoted to explore other kind of data augmenta-
tion [13], and combining texture and shape information [14].
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