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Abstract

Acquiring information on spatial phenomena can be costly and time-consuming.
In this context, to obtain reliable global knowledge, the choice of measure-
ment location is a crucial issue. Space-filling designs are often used to control
variability uniformly across the whole space. However, in a monitoring con-
text, it is more relevant to focus on crucial regions, especially when dealing
with sensitive areas such as the environment, climate or public health. It is
therefore important to choose a relevant optimality criterion to build models
adapted to the purpose of the experiment. In this article, we propose two
new optimality criteria: the first aims to focus on areas where the response
exceeds a given threshold, while the second is suitable for estimating sets of
levels. We introduce several algorithms for constructing optimal designs. We
also focus on cost-effective algorithms that produce non-optimal but efficient
designs. For both sequential and non-sequential contexts, we compare our
designs with existing ones through extensive simulation studies.

Keywords: Optimal designs, computer experiment, kriging, Gaussian
processes.

1. Introduction

In many situations, collecting spatial data can be costly or time-consuming.
This is the case in epidemic propagation studies, in the spatial control of pol-
lutants, in climatic phenomena, and so on. When the number of observations
is limited, it is crucial to optimize the positions of sampling locations, taking
into account prior information, generally obtained from previous or indirect
observations or diffusion models. In the case of sequential monitoring, the
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next sampling locations can be selected on the basis of up-to-date informa-
tion. For single-stage sampling, we can only rely on prior information to
select sampling positions.

Space filling designs are the most popular non-sequential designs when
no prior information is available. They aim to ensure uniformly accurate
estimation of the phenomenon over the whole space, see, e.g. [1, 2]. For
example, distance-based approaches such as Minimax, Maximin or other dis-
crepancy criteria have been proposed for the construction of optimal space
filling designs. To reduce computation costs, low discrepancy sequences such
as Halton, Hammersley, Sobol and Faure sequences have provided a first at-
tempt to build easy to compute designs. For high dimensional problems,
Latin Hypercube Designs and orthogonal arrays have been introduced to
ensure equilibrium on axes [3, 4].

In the context of Gaussian fields or Kriging methods, entropy [5, 6, 7, 8]
and Integrated Mean Square Error (IMSE) [9] are the two main criteria
proposed for optimal sensor deployment. Numerous alternatives have been
proposed in recent decades: Conditional Minimizer Entropy (CME) [10],
Generalized Relative Complexity [11], Expected Improvement (EI) [12] and
Expected Improvement Gain (EIG) [13]. All these methods aim to deter-
mine the design carrying the greatest expected amount of information [14].
Recently, many variants of Expected Improvement (EI) [15, 16], such as the
quasi-Expected Improvement (q-EI) [17] have been introduced and widely
used in industrial fields.

The approaches cited above aim to control the global variance without
considering the expected values of the response. The aim of the paper is to
propose optimal designs based on criteria targeting an area of interest. The
approaches cited above aim to control the global variance without considering
the expected values of the response. The aim of the paper is to propose
optimal designs based on criteria targeting an area of interest. We mainly
consider two cases: the first aims to target regions where the response values
is significantly high. The second, more suited to sequential designs, aims to
estimate a given set of levels.

In section 2, we motivate and define the optimality criteria used to target
regions of interest. In section 3, we propose some algorithms for obtaining
efficient designs. In section 4, we carry out simulation studies for sequential
designs when the target area is a level set. We propose several performance
indicators to compare our designs with those obtained in [18]. We then
discuss the relative merits of each method. In section 5, we computationally
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evaluate the effectiveness of our methods for single-stage designs on a few
examples.

2. Optimality criteria focusing on areas of interest

We consider a grid E of size N × N , where N is an integer. We denote
by y(x) ≥ 0 the variable of interest at x ∈ E, and by y the N2−vector
with entries y(x). We consider a grid E of size N × N , where N is an
integer. We denote by y(x) the true response at point x in E, and by y the
N2−vector with entries y(x).We assume that knowledge of y can be modeled
by a Gaussian field:

y ∼ N (µ,Σ), (1)

which corresponds to prior knowledge from a Bayesian perspective, or, in
the field of computer experiments, to a meta-model. For x ∈ E, we denote
µ(x) = E(y(x)) and σ2

x = Σx,x = Var(y(x)).
Let d = {xi}1≤i≤n be a n-point design and yd = (y(xi))1≤i≤n be the n-

vector y restricted to d. Knowing the response yd on the design points, the
updated knowledge on the field is given by the linear updating formula:

µd̄|yd = E(yd̄|yd) = µd̄ + Cov (yd̄, yd) Var−1 (yd) (yd − µd), (2)

and for the variance:

Var (yd̄|yd) = Var (yd̄)− Cov (yd̄, yd) Var−1 (yd) Cov (yd, yd̄) , (3)

where d̄ = E\d is the complement of d, yd̄ the vector of responses restricted to
d̄ and µd = E(yd). Since Var (yd̄|yd) does not depend on the actual value of yd
but only on the position of the observation points, we write Var (yd̄|d) instead
of Var (yd̄|yd). Similarly we write Var (y(x)|d) instead of Var (y(x)|yd).

In most applications, measurement errors are negligible compared to spa-
tial variability. Therefore, we assume that Var (y(xi)|d) = 0 for xi belonging
to d and we will confound y(xi) with its measurement.

The aim of the paper is to construct a design d that provides accurate
knowledge on the area of interest. In order to define optimality criteria, we
first define for any x in E the weighted variance as in [18] :

c(x; d) = w(x)× Var (y(x)|d) , (4)
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where w(x) is a weight function that depends on the area of interest. Two
types of global criteria can be derived from this weighted variance function:
a max-criterion

MC(d) = max
x∈E

c(x; d), (5)

and an integrated criterion

IC(d) =
∑
x∈E

c(x; d). (6)

Then, we seek the design d∗ that minimizes either MC(c) or IC(d). In the
next sections, we propose several weight functions, depending on the goal of
the experiment and the target zone. Note that a design d∗ that minimizes
MC(d) also minimizes maxx∈E h(c(x; d)) for any increasing transformation h.
Such monotonic invariance property does not hold for IC(d).

In the next sections, we propose two different weight functions, depending
on the goal of the experiment and the target area.

2.1. Level set detection
Here, we aim to estimate the level set L = {x ∈ E ; y(x) = T} associated

to a given threshold T > 0. We propose the weight function defined by

wls
T (x) = 2

∣∣∣∣12 − F

(
µx − T

σx

)∣∣∣∣ . (7)

where F is the cumulative distribution function of the standard normal distri-
bution. There are two possible interpretations of the weight function wls

T (x).
The first one is frequentist: consider y(x) as the unknown fixed quantity to be
evaluated and µ(x) as the realization of a normally distributed random vari-
able with mean y(x) and variance Var(y(x)). In that case, wls

T (x) corresponds
to the p-value of the two-tailed test : H0 : “y(x) = T” vs H1 : “y(x) ̸= T”.
The weight wls

T (x) is close to 1 when the hypothesis "x belongs to the level
set" is rejected and is close to 0 otherwise.
The second interpretation is Bayesian: put a flat prior on y(x) that reflects
the ignorance on y(x). Consider the HPD-credible set Cβ(x) of y(x) with
credible level β, then wls

T (x) is the maximal credible level β such that T
does not belongs to Cβ(x). This corresponds to the construction of Bayesian
two-sided hypothesis testing based on confidence intervals (see [19, 20])
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We denote by MCls(d) and ICls(d) the max and integrated criteria related
to wls

T (x).

In [18], another weight function has been proposed to estimate level sets.
It is denoted by wσ2

ϵ
(x) in this paper and defined by

wσ2
ϵ
(x) =

1

(2π(σ2
ϵ + σ2

x))
1/2

exp{− (µx − T )2 /
(
2
(
σ2
ϵ + σ2

x

))
}, (8)

where σ2
ϵ is a smoothing parameter that needs to be calibrated.

We denote by MCW (d) and ICW (d) the max and integrated criteria de-
rived from wσ2

ϵ
(x). The authors in [18] consider only ICW . We will show on

examples that the performance of designs based on MCW (d) are less efficient
than that based on ICW (d).

When σ2
ϵ = 0, wσ2

ϵ
(x) is unbounded for σ2

x close to 0 (see Fig. 1a).
This occurs for points located in the close neighborhood of an observation
point and therefore, the future design points will be concentrated around
already observed points. At the opposite, when σ2

ϵ is large, weights tend to
be uniform over E, resulting in a space-filling design. The choice of σ2

ϵ will
therefore influence the related optimal design.

As shown in Fig.1b, the main difference between the weight functions
wls

T (x) and wσ2
ϵ
(x) lies in their behaviors when uncertainty is large. For a

given value of |µx−T | and a large value of σ2
x, wσ2

ϵ
(x) ≈ 0 whereas wls

T (x) ≈ 1.
In section 4, we compare sequential designs build w.r.t. wls

T (x) and wσ2
ϵ
(x) by

simulation studies. Note that the weight function wls
T (x) has no parameter

to calibrate.

2.2. Areas exceeding a given threshold
Here, we aim to build designs that give an accurate knowledge of the area

{x ; y(x) > T} where the response y(x) exceeds a given threshold T . In that
case, we propose the weight function defined by

wexc
T (x) = P(y(x) > T ) = F

(
µ(x)− T

σx

)
. (9)

We give two interpretations of the weight function wexc
T (x) as above:

wexc
T (x) is the p-value of the one-tailed hypothesis test H0 : “y(x) > T”

vs H1 : “y(x) ≤ T”. In the Bayesian interpretation with a flat prior on y(x),
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(a) weight functions w.r.t. µx − T
for σx = 0.05
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(b) weight functions w.r.t. σx

for µx − T = 0.1

Figure 1: Comparison of weight functions wls
T (blue, straight) and wσ2

ϵ
for σ2

ϵ = 0.005 (red,
dashed), σ2

ϵ = 0.2 (green, dot-dashed) and σ2
ϵ = 0.8 (orange, dotted)

wexc
T (x) = P(y(x) > T ) is the posterior distribution of the event ”y(x) > T”,

given µx. Therefore, wexc
T (x) corresponds to the faith that x belongs to the

target area.
We denote by MCexc(d) and ICexc(d) the max-criterion (5) and the inte-

grated criterion (6) related to wexc
T (x).

3. Algorithms for optimal designs

We review some algorithms for obtaining optimal designs according to a
generic criterion C(d) that is to be minimized. In our applications, C(d) will
be either MC(d) = maxx∈E c(x; d) or IC(d) =

∑
x∈E c(x; d), where c(x; d) is

defined by (4). We consider two types of design: non-sequential and sequen-
tial.

Non-sequential designs rely entirely on prior information since all ob-
servation points are chosen before the experiment. They are suitable for
parallelized computer experiments or sampling campaigns where responses
are analyzed after the fact.

In adaptive sequential designs, on the other hand, responses on design
points are observed after each stage. Therefore, the optimal designs points
at a given stage can be based on the meta-model updated by the observations
from the previous stages.

3.1. Non-sequential design
The standard strategy for computationally obtaining an optimal design

is to iteratively improve a fictitious starting design d(0) using an exchange
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algorithm (see [21] for a review). Usually, the starting design d(0) is a stan-
dard space-filling or random design. However, these designs can be far from
optimal and therefore require a large number of iterations to improve. We
propose here a starting design, denoted d†, based on a cost-effective algo-
rithm. Our simulation studies show that it is highly efficient (see figures 9
and 10).

3.1.1. Construction of the starting design d†

The starting design d(0) = d† = {x1, x2, . . . , xn} is constructed from an
empty design by sequentially adding one point at a time. Each new point
maximizes (4) with updated variance and unchanged mean functions. Note
that this algorithm only requires the calculation of n− 1 updated covariance
matrices.

Start with the empty design d0 = ∅ and a given meta-model M0 :
N (µ,Σ). Define the weight function w0(x), as in (9), (7) or (8) depend-
ing on the goal of the experiment. Choose the point x1 that maximizes
h0(x) = w0(x)× Var (y(x)|d0) and set d1 = {x1}. Define the updated meta-
model M1, with the same mean function µ(x) as the initial meta-model M0

and with the updated variance Σ1 given by (3) with d = d1. Note that, since
the point x1 is not observed, the mean function cannot be updated. Based
on the new meta-model M1, we can define a new weight function w1(x).

At the second step, choose x2 that maximizes w1(x)×Var (y(x)|d1). Put
d2 = {x1, x2}, define a new meta-model M2 with the same mean function and
the updated variance matrix given d2. Then, define the new weight function
w2(x), and so on... After n iteration, we get the n points {x1, ..., xn} of d†.
This is detailed in Algorithm 1.

Note that the weight function wi(x) is based only on the mean func-
tion and the updated variance function var(y(x)|di−1). Therefore, it is not
necessary to compute the entire updated variance matrix, only the diagonal
terms.

3.1.2. Exchange algorithm
From a starting design d(0), the exchange algorithm, see [22, 23], displayed

in Algorithm 2, consists of iterative permutations of the design’s inner and
outer points. A permutation is accepted if the corresponding criterion is
improved. We denote d(k) the design obtained after k iterations.

In addition, simulated annealing [24] can be used within the exchange
algorithm to avoid local extrema issues. However, we did not observe any
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Algorithm 1: Construction of the n-point design d†.
Input: Put d0 = ∅ the empty design ;
Initialize the prior meta-model as M0 : N (µ; Σ)
Define the function w0(x) from M0.
foreach i from 1 to n do

foreach x in E do
Compute hi(x) = wi−1(x)× Var (y(x)|di−1) ;

end
Choose xi = ArgMaxx∈E (hi(x)) ;
Put di = {xi} ∪ di−1 ;
Put Mi : N (µ,Σi), where Σi is the updated covariance w.r.t. di
(µ is unchanged).

Define the function wi(x) from Mi.
end
Output: design d† = dn.

improvement over the exchange algorithm in our simulation studies.

3.2. Sequential designs
A sequential design is divided in N stages. At Stage i, we have to build

a ni-point design di based on the updated meta-model, which consists of an
initial meta-model updated with the observations obtained in the previous
stages (see [25, 26, 27]). The new design di can be constructed by using
Algorithm 1 and 2 with the updated meta-model obtained with Formulas (2)
and (3). Examples of sequential designs are given in Section 4.

3.3. Efficiency factor
For any n-point design d, the theoretical efficiency factor of d is defined

by

eff(d) =
C(dopt)

C(d)
.

where dopt is the theoretical n-point design that minimizes the criterion C(d).
Since dopt is not attainable, we approximate eff(d) by

eff(d) =
C(d∗∗)

C(d)
. (10)
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Algorithm 2: Exchange algorithm.
Input: Choose a starting design d(0), maximal number of iterations

M ;
foreach k from 1 to M do

Randomly draw x ∈ d(k−1) ;
Randomly draw x′ ∈ d̄(k−1) ;
Permute x and x′ considering dtemp = d(k−1) ∪ {x′}\{x} ;
if C (dtemp) < C

(
d(k−1)

)
then

d(k) = dtemp;
else

d(k) = d(k−1);
end

end
Output: design d∗ = d(M).

where d∗∗ is computed as follow: we draw 1000 n-point designs (d(0)1 , ..., d
(0)
1000),

where the n points are chosen at random over the grid. For each design d
(0)
i ,

we apply the exchange algorithm and obtain a design d∗i . The design d∗∗ is
the design that minimizes C(d) among (d∗1, ...d

∗
1000).

4. Simulation studies for sequential designs

In this section, the aim of the experiment is to provide an accurate es-
timation of the level set L = {x : y(x) = T} for a given T on a 150 × 150
grid. We consider sequential adaptive designs with one additional point at
each stage. Once the design point is observed, the level set is estimated by
L̂ = {x ∈ E ; ŷ(x) = T} where ŷ(x) is the mean of the updated meta-model.

Before starting the experiments, we assume no prior information on the
mean. In this case, we recommend to choose, for all x ∈ E, µ(x) = T as
a default choice for the mean function of the meta-model (1). This choice
implies that any point x potentially belongs to the level set L. For the co-
variance matrix of the meta-model, we assume that Σ the Matérn covariance
function

cov(xi, xj) = 21−νσ2(d
√
2ν/κ)νKν(d

√
2ν/κ)/Γ(ν) (11)

with σ = 0.7, ν = 0.7 and κ = 0.2, where d = d(xi, xj) is the Euclidean
distance between xi and xj, Γ is the Gamma function and K the modified
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(a) Example 1:
smooth level set.

(b) Example 2:
complex disconnected level set.

Figure 2: Map of y(x) and level set L = {x : y(x) = 0.85} (black line).

Bessel function.
As we have no prior information on the mean, we start with a space-filling

design with few points. Once the design points are observed, we update the
mean and the variance of the meta-model by applying Formula 2 and 3.
Then, we start the sequential design with one of our criteria, ICls or MCls,
based on the updated meta-model. At each stage, we construct the 1-point
design that minimizes the updated criterion.

We compare our designs with those obtained by minimizing the criteria
ICW or MCW . To calibrate the parameter σ2

ε , we follows the recommendation
given in [18], i.e. we choose choose σ2

ε = (maxx µ(x) −minx µ(x))/20 which
is updated at each stage.

To compare the relative performance of the models in terms of level set
estimation accuracy, we propose three quality scores below:

Score Qdist: distance average
This score evaluates the symmetric distance between the estimated and

actual level sets. It is defined by :

Qdist =
1

2

(
Qactual

dist +Qest
dist

)
,

where
Qactual

dist =
1

#{L}
∑
x∈L

minx′∈L̂ d(x, x′),

is the average distance between each point of the actual level set and the
nearest point in the estimated level set (see Fig. 3a). Symmetrically,
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(a) Qactual
dist score (b) Qarea score

Figure 3: Quality scores for estimated level set

Qest
dist =

1

#{L̂}

∑
x∈L̂

minx′∈L d(x, x′),

is the average distance between each point in the estimated level set and the
nearest point in the actual level set.

Score Qvalue: values average
This score evaluates the average discrepancy between the estimated and

actual values on both the actual and estimated level sets:

Qvalue =
1

2

(
Qactual

value +Qest
value

)
,

where
Qest

value =
1

#{L̂}

∑
x∈L̂

|y(x)− T |,

and
Qactual

value =
1

#{L}
∑
x∈L

|ŷ(x)− T |.

Score Qarea: area between the two level sets
This score corresponds to the proportion of area between the actual level

set L and the estimated one L̂, (see Fig. 3b):

Qarea =
1

N2
#
{
x ∈ E :

(
ŷ(x) < T and y(x) > T

)
or

(
ŷ(x) > T and y(x) < T

)}
.

It can also be seen as the proportion of points misclassified in the sets
{x : y(x) > T} and {x : y(x) < T}.
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(a) Map for MCls. (b) Map for ICls. (c) Map for MCW . (d) Map for ICW .

Figure 4: comparison of ŷ(x) maps for 8-point designs (black dots) for Example 1. The
actual (white) and estimated (black) level sets are displayed.

Other scores
Both Qdist and Qvalue scores are defined as symmetrized average distances.

The individual components Qest
value, Qactual

value , Qest
dist and Qactual

dist and their maximal
alternatives have also been tested as quality scores. For smooth one-piece
level sets, they give similar results to those obtained with Qdist and Qvalue.
When the target level set is disconnected, they are difficult to interpret. So,
they are not considered in this paper.

4.1. Example 1: smooth level set
We consider a smooth field displayed in Fig. 2a with the smooth level set

L = {x : y(x) = T}. In this example, we choose T = 0.85. First, we perform
a 4-point space-filling minimax design to acquire information. Then, for each
criterion MCls, ICls, MCW and ICW , we construct the sequential design. The
estimated level sets L̂ = {x : ŷ(x) = T} are displayed in Fig. 4 for 8-point
designs, which correspond to four stages after the starting space-filling design.

In Fig. 5, we compare the performance of the four strategies against
the three quality scores proposed above. There is no significant difference
between the criteria, except with MCW which seems to be globally less effi-
cient. After 12 stages, all the 16-point designs have the same performance.

4.2. Example 2: complex level set
In this example, we consider a more complex field displayed in 2b. The

level set to be estimated has three irregular disconnect components. First,
we perform a 3-point minimax design. Then, for each criterion MCls, ICls,
MCW and ICW , we construct a sequential design with one additional point
at each stage.
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(a) Qvalue score (b) Qdist score (c) Qarea score

Figure 5: quality scores against the number of design points w.r.t criteria MCls (black),
ICls (blue), ICW (red) and MCW (green) for Example 1.

After 3 stages, all the 6-point designs identify the upper left level set. The
6-point design based on MCls also identifies a second level set in the right-
hand part of the area (see Fig. 6). The designs based on the two integrated
criteria need four additional stages to identify a second component (see Fig.
6) whereas the design based on MCW requires eight additional stages.

After just 7 stages, the 10-point design based on MCls is the only one ca-
pable of finding the three components of the level set (see Fig. 6). The three
components are correctly identified by the designs based on the integrated
criteria for the first time with a 14-point design (not displayed in the paper)
and by the MCW criterion with a 17-point design.

The four 20-point designs approximately identify the shape of the three
components of the level set. For the three quality scores (Fig. 7), the two
integrated criteria give slightly better results.

At any stage, the three quality scores consistently show that MCW provide
poor designs. The integrated criteria ICW and ICls provide the best designs
w.r.t. the quality scores Qdist and Qarea for more than 14 points. Up to 13
points, our criterion MCls provides the best designs w.r.t. Qvalue and Qdist.

4.3. Comments
The examples presented above show that all four criteria provide highly

relevant models for finding smooth level sets. For irregular and disconnected
level sets, the models behave very differently, depending on the criterion.

Sequential designs based on the max-criterion MCls appear to be more
efficient in detecting disconnected components of the target level set more
quickly, especially when they are located close to the domain boundary. Con-
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6-point designs

(a) Map for MCls. (b) Map for ICls. (c) Map for MCW . (d) Map for ICW .

10-point designs

(e) Map for MCls. (f) Map for ICls. (g) Map for MCW . (h) Map for ICW .

13-point designs

(i) Map for MCls. (j) Map for ICls. (k) Map for MCW . (l) Map for ICW .

17-point designs

(m) Map for MCls. (n) Map for ICls. (o) Map for MCW . (p) Map for ICW .

20-point designs

(q) Map for MCls. (r) Map for ICls. (s) Map for MCW . (t) Map for ICW .

Figure 6: comparison of ŷ(x) maps for several n-point designs (black dots) for Example
2. The actual (white) and estimated (black) level sets are displayed.
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(a) Qvalue score (b) Qdist score (c) Qarea score

Figure 7: quality scores against the number of design points w.r.t criteria MCls (black),
ICls (blue), ICW (red) and MCW (green) for Example 2.

sequently, MCls seems to be the best option in the early stages of sequential
design. Conversely, the maximum criterion MCW usually gives poor results.

Designs based on the integrated criteria ICls and ICW give, in average,
similar results. Overall, the integrated criteria lead to designs that are more
space filling designs than those based on maximal criteria: they efficiently
control uncertainty over the whole area.

For both examples several initial designs were tested, including 3/4/5/6-
point space-filling designs and random designs. When all the space-filling
design points are located on the same side of the level set, results similar to
those presented here were obtained. When the points are located on either
sides of the level set, each criterion has resulted in equivalent designs in terms
of quality scores.

5. Simulation studies for non-sequential designs

In this section, we propose some simulation studies that show how our
criterion influence the location of the designs points. We consider here a
Gaussian random field y ∼ N (µ,Σ) on a 50 × 50 grid E over [0, 1]2, where
Σ is defined, as in Section 4 by

cov(xi, xj) = 21−νσ2(d
√
2ν/κ)νKν(d

√
2ν/κ)/Γ(ν) (12)

with σ = 0.7, ν = 0.7 and κ = 0.2, where d = d(xi, xj) is the Euclidean
distance between xi and xj, Γ is the Gamma function and K the modified
Bessel function. The mean function is given by the following formula µ(x) =
2 × exp

(
−{(x1 − 1)2 + 3(x2 − 0.5)2}1/2/3

)
, with x = (x1, x2), see Fig. 8.
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(a) 10-point designs w.r.t.
MCexc (black) and ICexc (white)

(b) 10-point designs w.r.t.
MCls (black) and ICls (white)

Figure 8: Map of µ(x), level set {x : µ(x) = 0.85} (black line) and 10-point designs.

Mean and variance functions can be interpreted as a prior knowledge on y(x)
based, for example, on previous observations or on forecasting models.

5.1. Efficient design for area exceeding a given threshold
We aim to construct a 10-point design that focuses on the area where

the expected values exceed a given threshold T . In our example, we choose
T = 0.85.

We consider two criteria, MCexc
T and ICexc

T , obtained from (5) and (6) by
choosing the weight function wexc

T (x). For each criterion, we start with the
design d† obtained by Algorithm 1. Then, we apply the exchange algorithm
with 10 000 iterations to obtain the design d∗. The resulting designs are
displayed in Fig. 8a.

In Fig. 9a, we compare the efficiency factors (10) of the designs d†, d∗
and usual space filling designs. Space filling designs are obtained from the R
packages randtoolbox, minimaxdesign and maximin. As these packages use
optimization algorithm which include a degree of randomness, we ran times
each package several. For each type of space filling designs, we display the
box plots of the efficiency factors.

We can see that the starting design d† is highly efficient w.r.t. both MCexc
T

and ICexc
T . We can also observe on our example that space filling designs are

less efficient against MCexc
T than w.r.t. ICexc

T . As it will be seen in Section
4, this illustrates the fact that integrated criteria lead to more space filling
designs than max-criteria.
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(a) for MCexc
T . (b) for ICexc

T .

Figure 9: Efficiency factors of usual designs w.r.t. MCexc
T and ICexc

T . The purple line
corresponds to the efficiency of d†.

(a) for MCls
T . (b) for ICls

T .

Figure 10: Efficiency factors of usual designs w.r.t. MCLS
T and ICLS

T . The purple line
corresponds to the efficiency of d†.

5.2. Efficient design to detect level sets
We aim to estimate the level set y(x) = T with T = 0.85. We use the

same meta-model as in Section 5.1 with the same parameters. So, we seek
the optimal 10-point design w.r.t. the MCls

T and ICls
T criterion, where

ICls =
∑
x∈E

wls
T (x)× Var (y(x)|d)

or
MCls = max

x∈E
{wls

T (x)× Var (y(x)|d)}.

Clearly, a sequential design is far more appropriate to this situation, since
observations are needed to estimate the level set (see Section 4). However,
a non-sequential design can be seen as a stage of a group-sequential design
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based on the meta-model updated with the previous observation.

The resulting designs are displayed in Fig. 8b. In Fig. 10, we compare
their efficiency factors with usual space filling designs. Similarly to Section
5.1, designs d† obtained by Algorithm 1 are highly efficient with an efficiency
factor 0.993 for MCls and 0.94 for ICls. In this example, space-filling designs
are highly efficient for ICls, but not for the MCls criterion.

Further experiments were carried out by alternately considering 3-point
designs and 20-point designs. As with 10-point designs, d† is more rele-
vant than space-filling designs (in particular for the MCls criterion) and is
slightly improved by the exchange algorithm. However, as the number of
design points increases, the differences of efficiencies between the designs are
reduced.

6. Conclusion

We proposed new criteria to build optimal designs that aim to accurately
estimate the response over a given target area when the response is modelled
by a Gaussian field. From a Bayesian point of view, these criteria are based
on the faith the a point belong or not to the are of interest. From a frequentist
point of view, they are based on the test of whether the point belongs to the
target area or not.

When the aim of the experiment is to estimate a level set, we have pro-
posed three quality scores to evaluate and compare the performance of the
designs. In the case of sequential designs, the max-criterion MCls

T appears to
be more effective than the other criteria in exploring areas of high uncertainty
and therefore to detect disconnected areas. Integrated criteria are more space
filling and attempt to control overall uncertainty, with larger weights on the
already explored areas. This suggests a hybrid strategy for investigating a
target area using sequential designs: first, use the max-criterion MCls to
quickly identify areas of interests. Then, after several stages, use the inte-
grated criterion ICls or to accurately control the overall uncertainty on that
area. The evaluation of the performance of this approach is left for future
research.

For non-sequential designs, optimal designs are highly dependent on prior
information, so there is no natural way of comparing designs with each other.
For this situation, we proposed a non-optimal but efficient design, d†, based
on a computationally-cheap algorithm.

18



Acknowledgment
This research was financed by the French government IDEX-ISITE ini-

tiative 16-IDEX-0001 (CAP 20-25).

References

[1] H. Niederreiter, Point sets and sequences with small discrepancy, Monat-
shefte für Mathematik 104 (1987) 273–337.

[2] M. Johnson, L. Moore, D. Ylvisaker, Minimax and maximin distance
designs, Journal of Statistical Planning and Inference 26 (1990) 131–
148.

[3] M. Stein, Large sample properties of simulations using latin hypercube
sampling, Technometrics 29 (1987) 143–151.

[4] A. B. Owen, Randomly orthogonal arrays for computer experiments,
integration and visualization, Statistica Sinica 36 (1992) 439–452.

[5] M. C. Shewry, H. P. Wynn, Maximum entropy sampling, Journal of
Applied Statistics 14 (1987) 165–170.

[6] C. Currin, T. Mitchell, M. Morris, D. Ylvisaker, Bayesian prediction of
deterministic functions, with applications to the design and analysis of
computer experiments, Journal of the American Statistical Association
86 (1991) 953–963.

[7] M. C. Bueso, J. M. Angulo, F. J. Alonso, A state-space-model approach
to optimal spatial sampling design based on entropy., Environmental
and Ecological Statistics 5 (1998) 29–44.

[8] J. M. Angulo, M. C. Bueso, F. J. Alonso, Space-time adaptive sampling
and data transformations, in: Spatio-temporal design, Statist. Practice,
Wiley, Chichester, 2013, pp. 231–248.

[9] J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn, Design and analysis
of computer experiments, Statistical Science 4 (1989) 409–435.

[10] J. Villemonteix, E. Vazquez, E. Walter, An informational approach to
the global optimization of expensive-to-evaluate functions, Journal of
Global Optimization 44 (2009) 509–534.

19



[11] F. J. Alonso, M. C. Bueso, J. M. Angulo, Dependence assessment based
on generalized relative complexity: application to sampling network de-
sign, Methodol. Comput. Appl. Probab. 18 (2016) 921–933.

[12] D. Jones, M. Schonlau, W. Welch, Efficient global optimization of ex-
pensive black-box functions, Journal of Global Optimization 13 (1998)
455–492.

[13] K. Ryan, Estimating expected information gains for experimental de-
signs with application to the random fatigue-limit model, Journal of
Computational and Graphical Statistics 12 (2003) 585–603.

[14] J. Mateu, W. G. Müller, Spatio-temporal Design: Advances in Efficient
Data Acquisition, John Wiley, 2013.

[15] B. Bichon, M. Eldred, L. Swiler, S. Mahadevan, J. McFarland, Efficient
global reliability analysis for nonlinear implicit performance functions,
AIAA Journal 46 (2008) 2459–2468.

[16] P. Ranjan, D. Bingham, G. Michailidis, Sequential experiment design
for contour estimation from complex computer codes, Technometrics 50
(2008) 527–541.

[17] C. Chevalier, D. Ginsbourger, Fast computation of the multi-points ex-
pected improvement with applications in batch selection, 2012. <hal-
00732512v2>.

[18] V. Picheny, D. Ginsbourger, O. Roustant, R. Haftka, N.-H. Kim, Adap-
tive designs of experiments for accurate approximation of a target region,
Journal of Mechanical Design (2010) 1–12.

[19] D. V. Lindley, Introduction to probability and statistics from a Bayesian
viewpoint. Part II: Inference, Cambridge University Press, New York,
1965.

[20] M. n. Thulin, Decision-theoretic justifications for Bayesian hypothesis
testing using credible sets, J. Statist. Plann. Inference 146 (2014) 133–
138.

[21] R. Jin, W. Chen, A. Sudjianto, An efficient algorithm for constructing
optimal design of computer experiments, Journal of Statistical Planning
and Inference 134 (2005) 268–287.

20



[22] R. W. Kennard, L. A. Stone, Computer aided design of experiments,
Technometrics 11 (1969) 137–148.

[23] T. Mitchell, An algorithm for the construction of "d-optimal" experi-
mental designs, Technometrics 16 (1974) 203–210.

[24] M. D. Morris, T. J. Mitchell, Exploratory designs for computational
experiments, Journal of Statistical Planning and Inference 43 (1995)
381–402.

[25] B. Williams, T. Santner, W. Notz, Sequential design of computer ex-
periments to minimize integrated response functions, Statistica Sinica
10 (2000) 1133–1152.

[26] J. Bect, D. Ginsbourger, L. Li, V. Picheny, E. Vazquez, Sequential
design of computer experiments for the estimation of a probability of
failure, Statistics and Computing 22 (2012) 773–793.

[27] D. Villanueva, B. Smarslok, R. Perez, Sequential experimental de-
sign and model calibration for targeted events, in: 18th AIAA Non-
Deterministic Approaches Conference, American Institute of Aeronau-
tics and Astronautics, San Diego, California, USA, 2016, pp. 1–25.

21


