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Introduction

The unconditional upper bounds of the least primitive root u ̸ = ±1, v 2 in the prime finite field F p seem to be exponential u ≪ p 1/4+ε , see [2, Theorem 3], and the conditional upper bounds are of the forms u ≪ (log p) 6+ε , see [7, Theorem 1.3], [START_REF] Bach | Comments on search procedures for primitive roots[END_REF]. This note proposes a new result on the theory of primitive roots in finite fields.

Theorem 1.1. Let p > 1 be a large prime number and let 1 ≤ a < q be a pair of small integers with q = O(log log p). Then there exists a primitive root u ̸ = ±1, v 2 in the prime finite field F p such that (i) u ≤ (log p) 2+ε , (ii) u ≡ a mod q, where ε > 0 is a small real number.

This innovation is made possible by a new characteristic function for primitive root described in Section 2. The proof of Theorem 1.1 appears in Section 3. Given the prime factorization of the totient p -1 an easy application of this result leads to a polynomial time algorithm for determining primitive root in the prime finite field F p . The most recent algorithm for searching for primitive roots and a survey of the literature appears in [START_REF] Shparlinski | On Constructing Primitive Roots in Finite Fields With Advice[END_REF].

Representations of the Characteristic Function

The characteristic function Ψ : G -→ {0, 1} of primitive elements is one of the standard analytic tools employed to investigate the various properties of primitive roots in cyclic groups G. Many equivalent representations of the characteristic function Ψ of primitive elements are possible, see [5, p. 258].

A new divisors-free representation of the characteristic function of primitive element is developed here. It detects the order ord p (u) ≥ 1 of the element u ∈ F p by means of the solutions of the equation τ n -u = 0 in F p , where u, τ are constants, and n is a variable such that 1 ≤ n < p -1, gcd(n, p -1) = 1. The order of an element in a finite field is defined by ord p (v) = min{k : v k ≡ 1 mod p}.

Lemma 2.1. Let p ≥ 2 be a prime and let τ be a primitive root mod p and let ψ ̸ = 1 be a nonprincipal additive character of order ord ψ = p. If u ∈ F p is a nonzero element, then

Ψ(u) = gcd(n,p-1)=1 1 p 0≤s≤p-1 ψ ((τ n -u)s) = 1 if ord p (u) = p -1, 0 if ord p (u) ̸ = p -1.
Proof. As the index n ≥ 1 ranges over the integers relatively prime to p -1, the element τ n ∈ F p ranges over the primitive roots modulo p. Ergo, the equation τ n -u = 0 has a solution if and only if the fixed element u ∈ F p is a primitive root.

Next, replace ψ(s) = e i2πks/p , where k ∈ {0, 1, 2, . . . , p}, to obtain

gcd(n,p-1)=1 1 p 0≤s≤p-1 e i2π(τ n -u)s/p = 1 if ord p (u) = p -1, 0 if ord p (u) ̸ = p -1. (2.1)
This follows from the geometric series 0≤n≤N -1 w n = (w N -1)(w -1), w ̸ = 1 applied to the inner sum. ■

Least Primitive Roots

The determination of an upper bound for the smallest primitive root in arithmetic modulo p is based on a new characteristic function for primitive roots in finite field F p developed in Section 2.

Proof. (Theorem 1.1) Let p > 2 be a large prime number and let z = (log p) 2+ε and ε > 0. Suppose the least primitive root u ∈ (z, p) and consider the sum of the characteristic function over the short interval [2, z], that is, 0 = 2≤u≤z u≡a mod q Ψ(u).

(3.1)

Replacing the characteristic function, Lemma 2.1, and expanding the nonexistence equation (3.1) yield 0 =

2≤u≤z u≡a mod q Ψ(u) (3.2) = 2≤u≤z u≡a mod q   1 p gcd(n,p-1)=1, 0≤s≤p-1 ψ ((τ n -u)s)   = c 2≤u≤z p≡a mod q 1 p gcd(n,p-1)=1 1 + 2≤u≤z u≡a mod q 1 p gcd(n,p-1)=1, 0<s≤p-1 ψ ((τ n -u)s) = M 0 (z, q, a) + E 0 (z, q, a),
where c = c(q, a) ≥ 0 is a constant depending on the integers 1 ≤ a < q.

The main term M (z, q, a) is determined by a finite sum over the trivial additive character ψ(s) = 1 is computed in Lemma 4.1, and the error term E(z, q, a) is determined by a finite sum over the nontrivial additive characters ψ(s) = e i2πks/p ̸ = 1 is computed in Lemma 5.1.

Substituting these values yield

N (z, q, a) = 2≤u≤z u≡a mod q Ψ(u) (3.3) = M (z, q, a) + E(z, q, a) = c • φ(p -1) p • (log p) 2+ε q + O(1) + [O ((log p)(log log p))] = c • φ(p -1) p • (log p) 2+ε q + O ((log p)(log log p)) .
For any prime p, the totient function is bounded away from zero, that is,

p -1 p • φ(p -1) p -1 = p -1 p r|p-1 1 - 1 r (3.4) ≫ 1 log p > 0,
where r ≥ 2 ranges over the prime divisor of p -1, see [4, Theorem 6.12]. Consequently, for small parameter q = O(log log p) the main term in (3.3) dominates the error term: The first ten least primitive roots in in each arithmetic progression modulo 3 are these.

N (z, q, a) = 2≤u≤z u≡a mod q Ψ(u) (3.5) = c • φ(p -1) p • (log p) 2+ε q + O ((log p)(log log p)) ≫ 1 log p • ( log 
1. 

A 1 = {u = 3n + 1 ≤ z :} = {46,

Evaluation of the Main Term

The main term defined in Section 3 is evaluated in this Section.

Lemma 4.1. Let 1 ≤ a < q be a pair of small integers and let ε > 0 be a small real number. If p ≥ 2 is a large prime and z = (log p) 2+ε , then

2≤u≤z u≡a mod q 1 p gcd(n,p-1)=1 1 = φ(p -1) p • (log p) 2+ε q + O(1),
where φ(n) is the Euler totient function.

Proof. The number of relatively integers n < p coincides with the values of the totient function. A routine rearrangement gives

2≤u≤z u≡a mod q 1 p gcd(n,p-1)=1 1 = 2≤u≤z u≡a mod q φ(p -1) p (4.1) = φ(p -1) p • (log p) 2+ε q + O(1)
.

■ 5 Estimate For The Error Term

The upper bound for the error term defined in Section 3 is estimated in this Section.

Lemma 5.1. Let p ≥ 2 be a large prime, let z = (log p) 2+ε and let q = log log p. Suppose 1 ≤ a < q is a pair of small fixed integers and ε > 0. If there is no primitive root u ≤ z = (log p) 2+ε then 2≤u≤z u≡a mod q 1 p gcd(n,p-1)=1, 0<s≤p-1 ψ ((τ n -u)s) ≪ (log p)(log log p), where ψ(s) = e i2πks/p with 0 < k < p, is an additive character.

Proof. To compute an upper bound consider the symmetric partition the triple finite sum

E(z) = 2≤u≤z p≡a mod q 1 p gcd(n,p-1)=1, 0<s≤p-1 e i2π (τ n -u)s p (5.1) = 2≤u≤z p≡a mod q 1 p gcd(n,p-1)=1,   0<s≤p/2 e i2π (τ n -u)s p + p/2<s≤p-1 e i2π (τ n -u)s p   = E 1 (x) + E 2 (x).
A geometric series summation of the inner finite sum in the first term yields This completes the verification. ■

E 1 (z) = 2≤u≤z p≡a mod q 1 p gcd(n,p-1)=1, 0<s≤p/2 e i2π (τ n -u)s p (5.2) = 1 p 2≤u≤z p≡a mod q gcd(n,p-1)=1, e i2π( τ n -u p )( p+1 2 ) -1 1 -e i2π (τ n -u) p ≤ 1 p 2≤u≤z p≡a mod q gcd(n,p-1)=1 2 | sin π(τ n -u)/

  p) 2+ε log log p + O ((log p)(log log p)) ≫ (log p) 1+ε log log p + O ((log p)(log log p)) > 0 as x → ∞. Clearly, this contradicts the hypothesis (3.1) for all sufficiently large prime numbers p ≥ p 0 . Therefore, there exists a small primitive root u = qn + a ≤ z = (log p) 2+ε . ■ Example 3.1. For the closest prime to 10 12 , the parameters are these: (a) p = 1000000000039, prime, (b) z = (log p) 2 = 763.47, range with ε = 0, (c) q ≤ log log p = 3.32, modulo, (d) N ≫ (log p)/ log log p = 8.33, predicted number N in (3.5).

1 (≪

 1 p| , see [3, p. 136] for similar geometric series calculation and estimation. The last line in (5.2) follows from the hypothesis that u is not a primitive root. Specifically, u ̸ = τ n ∈ F p for any n ≥ 1 such that gcd(n, p -1) = 1 and any u ≤ z = (log p) 2+ε . Define the sets of integersA = {(τ n -u) mod p : 1 ≤ n < p and gcd(n, p -1)} (5.3) and B = {m = ab : 1 ≤ a ≤ z and ≤ b ≤ p/z}.(5.4)The set relation A ⊂ B is utilized to obtain the next inequalityE (log z)(log p/z) ≪ (log p/z)(log log z).Similarly, the second term has the upper boundE 2 (z) = 2≤u≤z p≡a mod q 1 p gcd(n,p-1)=1, p/2<s≤p-1 e i2π (τ n -u)s p π(τ n -u)/p| ≪ (log p/z)(log log z).Adding (5.5) and (5.6) and substituting z = (log p) 2+ε yieldE(z) = E 1 (z) + E 2 (z) (5.7) ≪ (log p/z)(log log z) + (log p/z)(log log z) ≪ (log p)(log log p).