

Optimisation de la bioproduction d'astaxanthine à partir de culture de microalgues psychrophiles

Optimization of carotenoids bioaccumulation by psychrophilic microalgae culture

<u>Adila Gherabli^{1,2}</u>, Madeleine Charbonnier², Fanny Duval², Julien Lemaire², Nabil Grimi¹ adila.gherabli@utc.fr

¹Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu - CS 60319 -60203 Compiègne, Cedex, France.

²Chair of Biotechnology, LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges-Terres, 51110, Pomacle, France.

1. Thesis Context

Astaxanthin: properties, sources, and applications

Astaxanthin represents one of the key carotenoids with the highest antioxidant activity and monetary value of the

natural form (2500 to 10,000 USD per kg). It offers a wide range of applications in various industries.

2. Materials and methods

Culture of psychrophilic microalgae via the two-step approach

3. Results

Culture pigmentation and cells observation

Sphaerocystis sp. Pleurastreum sp. Image: After 14days Image: After 14days Image: After 21days Image: Afte

Figure 2. *Sphaerocystis sp.* and *Pleurastreum sp.* in flasks and optical microscope pictures (400X).

Table 2. Pigment content of *Sphaerocystis sp.* extracts, depending on culture conditions (green and red-phase)

Experimental conditions	<i>Sphaerocystis sp.</i> CCCryo 100-99	<i>Pleurastrum sp.</i> CCCryo 006-99	Sphaerocystis sp.	Pigment content (µg/mg DW)	
					Results
Green-phase	14°C BBM-Medium 1% CO ₂	12°C BBM-Medium 1 g/L NaHCO ₃	Green Phase	Chlorophyll a	10.0
				Chlorophyll b	6.9
				Total carotenoids	1.5
Red-phase	 Luminous stress : 500-600 µmol photons/m²/s Saline stress : 6g/L Azote and Phosphore deprivation 			Chlorophyll a	0.9
			Red Phase	Chlorophyll b	0.8
				Total carotenoids	2.7

4. Conclusion

The psychrophilic strains selected *Sphaerocystis sp.* and *Pleurastreum sp.* were succefully acclimated to our laborotary conditions for growth and for accumulation of carotenoids during a stress period. Results are promising because both microalgae can accumulate secondary carotenoids of high interest like *Haematococcus pluvialis*. Work is still in progress on the production of green and reddish biomass, microalgae pretraitement and

pigments extraction in order to optimize their productivity and recovery yield.

Leya T, Rahn A, Lütz C and Remias D (2009). Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. *FEMS Microbiology Ecology* 67(3), 432–443
 Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007). On the relative efficiency of two- vs. one-stage production of astaxanthin by the green algae *Haematococcus pluvialis*. *Biotechnology and Bioengineering* 98(1), 300–5