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FINITENESS OF HYPERBOLIC ENTROPY FOR HOLOMORPHIC FOLIATIONS WITH
NON-DEGENERATE SINGULARITIES

FRANCOIS BACHER

ABSTRACT. Consider .# = (M,.Z, E) a Brody-hyperbolic foliation on a compact complex
surface M. Suppose that the singularities of .# are all non-degenerate. We show that the
hyperbolic entropy of .Z is finite.

1. INTRODUCTION

There has been a lot of progress in the dynamical theory of laminations by Riemann
surfaces during the last two decades. More precisely, much of attention has been focused
on building an ergodic theory when the leaves are hyperbolic. To have such a setup,
the case of the projective spaces is very typical. Indeed, every polynomial vector field
on C" can be compactified naturally into a holomorphic foliation on P". This foliation
is always singular. Let d,n € N with n > 2, denote by .%#,(P") the space of singular
holomorphic foliations of degree d on P". Lins Neto and Soares [14], using a work
of Jouanolou [[11], show that a generic foliation .# € .%,;(P") has only non-degenerate
singularities. Moreover, by a result of Lins Neto [[12] and Glutsyuk [9], such a foliation is
hyperbolic if d > 2. It is even Brody-hyperbolic in the sense of [6]. Loray and Rebelo [15]]
also build a non-empty open subset of these foliations, the leaves of which are all dense
in P". When n = 2, Nguyeén [[19] uses the integrability of the holonomy cocycle in [16]
to compute the Lyapunov exponent of a generic foliation .% € .%,(IP?). We recall briefly
some recent studies and refer the reader to the survey articles [7, [8, 17, [18] for a more
detailed exposition.

By solving heat equations with respect to harmonic currents, Dinh, Nguyén and Sibony
are able in [4] to prove abstract ergodic theorems for laminations and foliations. This
new approach enables them to develop an effective ergodic theory for laminations and
foliations, and in particular, geometric versions of Birkhoff’s theorem in this context.
In two articles [5, |6]], the three authors study a modulus of continuity for the leafwise
Poincaré metric. More precisely, they show that it is Holder in the case of a compact reg-
ular hyperbolic foliation, and Holder with a logarithmic slope towards the origin in the
case of linearizable singularities. Somehow, their work on the heat equation implicitly
studies the dynamics of foliations in a canonical time, which is measured by the Poincaré
distance in the universal covering. From this viewpoint, they introduce a canonical no-
tion of hyperbolic entropy and prove the following finiteness results.
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Theorem 1.1. (1) (Dinh-Nguyén-Sibony [5, Theorem 3.10]) Let ¥ = (X,.Z) be a
smooth compact lamination by hyperbolic Riemann surfaces. Then, the hyperbolic
entropy of .Z is finite.

(2) (Dinh-Nguyén-Sibony [6, Theorem 1.1]) Let % = (M,.Z, F) be a Brody-hyper-
bolic singular holomorphic foliation on a compact complex surface. Suppose that all
the singularities of .# are linearizable. Then, the hyperbolic entropy of .7 is finite.

The finiteness of the hyperbolic entropy in this theorem is strongly dependent on their
previous result on the modulus of continuity of the leafwise Poincaré metric (see [5,
Theorem 2.1] and [6, Theorem 3.2]). In our previous work [1, 2], we generalize this
regularity result to foliations with non-degenerate singularities. In this article, we obtain
the following generalization of Theorem @.

Theorem 1.2. Let F = (M,%, E) be a Brody-hyperbolic singular holomorphic foliation
on a compact complex surface. Suppose that all the singularities of .% are non-degenerate.
Then, the hyperbolic entropy of .% is finite.

Let us explain briefly the method of our proof. We follow the general strategy of the
three authors in [6] for linearizable singularities. They are able to ensure that two points
are at small Bowen distance by solving a Beltrami equation for a map that is obtained
by gluing local orthogonal projections from a leaf to another. To control the Beltrami
coefficient that could explode near the singularities, they need to correct this function
and make it holomorphic when approaching the singular set. They use a small hyperbolic
step and holonomy mappings to carry information from a transversal to another. By a
crucial refinement lemma, they construct a covering such that they can define such an
orthogonal projection for two points in the same cell, up to a hyperbolic time R. Of
course, they need to estimate the cardinality of the covering all along the refinement
process to show that the entropy is finite.

To adapt their proof, we use a classification of non-degenerate singularities in dimen-
sion 2 in three types.

e The linearizable singularities.
e The singularities with two separatrices and real negative characteristic number.
e The resonant singularities.

By Poincaré linearization theorem and Briot-Bouquet theorem, every non-degenerate
singularity is of one of these types. Moreover, Poincaré-Dulac theorem enables us to
have an explicit form for resonant singularities. We show the same kind of estimates
as [6] for both cases with separatrices, and stronger ones for the resonant case. This
gives us an initial covering on which we control the behaviour of close leaves in small
hyperbolic time. To obtain such estimates, we use a generalization of Gronwall Lemma
for non-linear differential equations, due to Lins Neto and Canille Martins [[13]. We also
use their estimation of the Poincaré metric near the singularities to compare the flow
time and the hyperbolic time. To correct the orthogonal projection in the neighbourhood
of singularities, we fix a point in the initial leaf, and move in the second leaf with the
same time of flow. This is what the three authors do, without naming it as such, since
everything is explicit for linearizable singularities. It remains to check and adapt each
technical element of [6]. This is easily said, but everything is more difficult than it is in
the linearizable case. Sometimes the resonant case and sometimes the two separatrices



case need new arguments. Some of our techniques are slightly different from the three
authors’, but the main structure of our proof is very similar. Most of the time, our work
on the linearizable case is just reproving what is already there in [6] but in a slightly
different setting. This enables us to clarify our work and statements in both other cases.

The article is organised as follows. In Section |2} we introduce the hyperbolic entropy
following [5]. Moreover, we recall our previous work on local orthogonal projections
from a leaf to another and the generalization of the Gronwall Lemma. In Section
we study the flow in a small step of hyperbolic time for the three types of singularities.
We obtain a first cell decomposition. In Section [4, we show a sufficient condition for
the entropy to be finite. This criterion involves the orthogonal projections and their
corrections near the singularities. In Section |5, we build a hyperbolically dense mesh
of transversals and the initial covering that is refined later to obtain the Bowen cells. In
Section|[6] we study the holonomy mappings in small hyperbolic time to carry information
during the refinement process. In Section [/, we consider trees that encode the dynamics
on the universal cover D, and are compatible with our mesh of transversals. Section
ends the proof by exposing more precisely our refinement algorithm and building the
orthogonal projection that is needed for our criterion.

Notations. Throughout this paper, we denote by D the unit disk of C, and DD the open
disk of radius € R* for the standard Euclidean metric of C. For R € R*, we denote

by Dy the open disk of hyperbolic radius R in D, so that Dy = rD with r = 22:, or if
r e [0,1), with R = In % More generally, for p € R* and U a subset of a vector space
with a marked point zy, pU denotes the image of U by the homothety z — z; + p(z — z).
In particular, if D = C is a disk of radius r, pD is the disk of same center and radius rp.

We consider several distances on a complex manifold M. For g,, a Hermitian metric
on M, the distance induced by g, is denoted by d. Consider a singular holomorphic
foliation .# = (M, .Z, E). If L is a leaf of .%, ¢,, induces a distance on L that we denote
by dy. If L is hyperbolic, then L is endowed with the Poincaré metric denoted gp and
the induced distance denoted dp. We use the same notation for the Poincaré metric and
distance on D. If x € M\F is such that the leaf through z, denoted L,, is hyperbolic, we
note ¢,: D — L, a uniformization of L, such that ¢,(0) = z. For u, v two functions from
K to M, to a leaf or to D, we denote by

di(u,v) = supd(u(z),v(x)), dpr(u,v)=supdp(u(z),v(r)).

zeK reK

We try to make our notations different for different contexts. If z € C and r € R¥, we
note D(z,r) the disk of center z and radius r. Inside a metric space, we denote by B(x,r)
the ball of center z and radius . We try to keep this notation for ambiant Hermitian
distances. Inside a leaf, we denote by L,[r| = {y € L,; dr (x,y) < r}. Inside the Poincaré
disk, if ¢ e D and R € R, we note Dg(&) = {C e D; dp(£,() < R}.

The term “constant” means a real positive number that does not depend on a point
x € M\ E, nor on the hyperbolic radius R that will go to +oo. Most of our proof relies on
the fact that some constants h, h, /i are sufficiently small, independently on R, given that
it is sufficiently large. We may have forgotten to say it somewhere and the reader can
suppose it is in the hypotheses of every statement. When we do not care about constants,
we simply denote them by C,C’, C”, ... When we want to keep track of them to clarify
our arguments, we denote them by Cy, C1,C, ...



Finally, we denote by [a]| the smallest integer k& such that £ > a, for a € R. We also
denote R(a) (resp. I(a)) the real (resp. imaginary) part of a complex number a.

Acknowledgments. The author is supported by the Labex CEMPI (ANR-11-LABX-0007-
01) and by the project QuaSiDy (ANR-21-CE40-0016).

2. PRELIMINARIES

2.1. Leafwise Poincaré metric. In all this section, we let .# = (M,.Z, E) be a singular
holomorphic foliation on a complex manifold M. Suppose that M is endowed with a
Hermitian metric g,, and for x € M\ E, consider

n(x) = sup {||o/(0)|\ . a: D — L, holomorphic such that a(0) = x} .

gm’

Above, ||| g 18 the norm of a vector v € T, L, with respect to the Hermitian metric g,,.

That is, |v], = (9a1.0(v,v))""?. The function  was introduced by Verjovsky in [20]. It is
designed to satisfy the following facts.

Proposition 2.1. (1) For x € M\FE, n(z) < +o0o if and only if the leaf L, is hyperbolic,
that is, it is uniformized by the Poincaré disk D.
(2) If L, is hyperbolic, we have n(x) = |¢'(0) where ¢: D — L, is any uniformiza-
tion of L, such that ¢(0) = z.
(3) If L, is hyperbolic, then 4;% induces the Poincaré metric on L.,.

HgAl’

In this article, we are interested in the case of hyperbolic leaves and we need to specify
our global setting. We follow [6] in our vocabulary.

Definition 2.2. If all the leaves of .# are hyperbolic, we say that .% is hyperbolic. If
moreover there exists a constant ¢, > 0 such that n(x) < ¢ for all x € M\ E, we say that
Z is Brody-hyperbolic.

From now on, we suppose that .% is hyperbolic. We also need to define the type of
singularities we deal with.

Definition 2.3. Near a singularity a € F, there exists a vector field X defining .#. In
coordinates (zi, ..., z,) centered at a, we can write

X(:) = Y F)5

0

The functions F;; can be developed as a power series F; = > _n Ca,j2%. The 1-jet of X at
a is defined in the chart (U, z) as X1 = X7 > ca,jzaaizj. See [10, Chapter I] for more
details. If the 1-jet of X has an isolated singularity at a, we say that a is a non-degenerate
singularity of 7.

We use the following estimate of n for non-degenerate singularities. It can be found
in [1, Proposition 4.2] and its proof is basically the same as Dinh, Nguyén and Sibony’s
one [6, Proposition 3.3], together with a local estimate that is due to Lins Neto and
Canille Martins [13, Theorem 2].



Proposition 2.4. Note d the distance induced by g,;. Suppose that M is compact and that
Z s Brody-hyperbolic with only non-degenerate singularities. Then, there exists a constant
C' > 1 such that

C~td(z, E)log* d(x, E) < n(z) < Cd(z, E)log* d(z, E), xr e M\FE,
where log* = 1 + |log| is a log-type function.

2.2. Hyperbolic entropy. For x € M\F, denote by ¢,: D — L, a uniformization of L,
such that ¢,(0) = z. To unify notations, set also ¢,(¢) = a, for a € E and { € D. The
idea of Dinh, Nguyén and Sibony [5] is to consider the Poincaré distance in D to be a
canonical time. More precisely, for R > 0, consider the Bowen distance

dp(x,y) = inf sup d(¢(€), 6,(e"€)), @,y e M.
eR ¢eDp
It measures the distance between the orbits of 2 and y up to time R. It is clear that it is
independent on the choice of ¢,. This enables us to define the entropy of .%. For x € M,
R,e > 0, denote by Br(x,e) = {y € M ; dg(z,y) < e} the Bowen ball of radius ¢ and
center x up to time R. For Y < M, R,e > 0 and F' c Y, we say that I is (R, ¢)-dense in
Y if Y < U,erBg(z,¢). Denote by N(Y, R, ¢) the minimal cardinality of an (R, ¢)-dense
subset in Y. The hyperbolic entropy of Y is defined as

1

h(Y) = suplimsup — log N(Y, R, ¢).
e>0 R—+w R

For Y = M, we denote it by h(.%). If M is compact, then it does not depend on the choice

of gys. A similar and equivalent definition can be made with maximal (R, ¢)-separated

sets, but we do not need it. The interested reader can see [5] for more details.

2.3. Local orthogonal projection. In order to show Theorem|[1.2] we need to build cells
in sufficiently small cardinality, such that two points z,y € M in the same cell are close
up to time R. To ensure such a proximity, we build a smooth map ¢: D — L, close
to ¢, take its lifting U: Dy — D via ¢,, slightly correct it into a close holomorphic map
v: Dr — D, and finally correct v into a close rotation ry: £ — €¢. That way, we are
able to show that ¢, and ¢, oy are close up to large time. Actually, the last two steps of
this proof are hidden behind a result of Dinh, Nguyén and Sibony [6), Proposition 3.6].
For the first step of this construction, we need to recall our previous work [[1]] on local
orthogonal projections from a leaf to another.

For x € M\ F, the metric g), can be restricted to L, and induces a distance d;_ on it.
For x € M\E and r > 0, denote by L,[r] = {2/ € L, ; dr,(z,2") < r}. Suppose that M is
compact and that all the singularities of .# are non-degenerate.

Lemma 2.5 ([1, Lemma 4.3]). There exist constants ¢y, €1, k and K such that for two
points x,y € M\FE, if d(x,y) < e1d(x, E), then there exists a local orthogonal projection

O, 0 Lyleod(z, E)| — Lylkeod(y, E)],
satisfying

(1) dp,(y, Pay(z)) < kd(z,y),
(2) fOT' xT1,x9 € L$[€0d<x, )], dLy<(I)xy<x1)7 (I)wy<l’2)) < deT (ZI}17 IQ).



(3) @,, is smooth and in a finite set of charts,

|Pry —id], < e¥d(w, @py (), [ Puy —id]r < €Kd(x—7yE)7

K 4@, Pay (7))
d(xz, E)?

(4) If ' € L,|eod(x, E)), y' € Ly|keod(x, E)| and d(2',y') < e1d(2’, E), then 1y = Py,
on the intersection of their domains of definition.

More precisely, we build the local orthogonal projection by solving an implicit equation
on the flow. That way, in singular charts, we are able to estimate the flow time that is
needed to join y and ®,,(z), with the notations of the previous lemma.

Lemma 2.6 ([1, Lemma 3.1]). Consider X a holomorphic vector field on a neighbourhood
of D’ with a non-degenerate singularity at the origin. Suppose that D? is endowed with the
standard Hermitian metric on C% Let z,y € 3D*\{0} be such that ®,, exists in the sense of
Lemma Denote by ¢, the flow of X starting at y from an open neighbourhood of 0 in
C to L,. Then, there exists t € C, with t = O (|x — y| |z| ") such that ®,,(z) = ¢, (t).

2.4. Variations on the Gronwall Lemma. In order to obtain thorough estimates, we use
several generalizations of the Gronwall Lemma, including some non-linear cases. First,
let us state it in a form that contains these various versions and then do some remarks.

Proposition 2.7 (Lins Neto—Canille Martins [13], Proposition 6]). Let F': R, x R, — R,
be a continuous function such that F(t,z) < F(t,y) if + < y. Suppose that for any z; € R,
the Cauchy problem

(2.1) 2 (t) = F(t,z(t)), z(0) = o,

has a unique maximal solution in a neighbourhood of t = 0. Let z: [0,7,) — R, be a
continuous function that satisfies

t
x(t) <z + f F(s,xz(s))ds, te[0,r:),
0
and y: [0,7,) — R, be the unique maximal solution of (2.1) starting at xo. Then, for
t € [0, min(ry, 1)), z(t) < y(t).

Remark 2.8. Actually, Lins Neto and Canille Martins prove a stronger estimate for partial
orders on R, but we only need it for n = 1. We use this result in two contexts. The first
one is of an autonomous system, sometimes in the non-linear case and sometimes in the
linear case (i.e. F(t,x) = Cz, which gives the classical Gronwall Lemma). The second
one is a linear but non-autonomous system. More precisely, for F'(¢,z) = Cz + f(t). In
that case, note that we have

y(t) = (:1:0 + Lt f(s)e_csds) e“t.



3. LOCAL CELL DECOMPOSITION

3.1. First estimates. We begin by some local work near a non-degenerate singularity.
We want to establish estimates of the divergence of orbits in a (small) step of hyperbolic
time. More precisely, we want to decompose the singular open sets into small cells in
which we have a good control of the flow in this hyperbolic time. Of course, we need
a bound on the cardinality of this covering by cells. Our main result in this section (see
Proposition |3.11)) is close to [6, Proposition 2.7].

We consider . = (M,.Z, FE) a Brody-hyperbolic singular holomorphic foliation on a
compact complex surface M (thatis dim¢ M = 2) with only non-degenerate singularities.
Take a € F and U, ~ D? a neighbourhood of @ on which .# is generated by a vector field
X. We suppose that the coordinates of U, and X extend to a neighbourhood of D’. We
need to clarify our vocabulary.

Definition 3.1. For z € ;D*\{0}, note ¢, the flow of the vector field X starting at z,
defined on a maximal open subset of C such that ,(t) stays in D?.

A flow path for » and X is a ¢! map ~: [0,T] — C, where T' € R,, v(0) = 0 and
¢-(v(t)) is well defined for all ¢ € [0,7] and belongs to 2D?. Most of the time, T is
implicit. The length of  as a path in C will be denoted by ¢(~y). The Poincaré length (p(~)
of v is by definition the Poincaré length of ¢, oy in L,. The notation /p(v) is used only if
there is no confusion possible for the point z and the vector field X.

Let 6: [0,T] — L. n 3D? be a ¢ map such that §(0) = z. A flow path v: [0,7] — C
for z and X is said to correspond to § if §(t) = ¢.(v(t)). Fix a uniformization ¢, of L,
such that ¢.(0) = z. Let £ € D be such that ¢.([0,£]) < 2D?. We say that a flow path
~v: [0,1] — L, represents & if p,(y(t)) = ¢.(t€). Since the flow is a local biholomorphism,
it is clear that for such a &, there is a unique flow path representing it. Similarly, for such
a 0, there is a unique flow path corresponding to it.

Let z,w € $D?\{0} and R, § > 0. We say that z and w are (R, §)-relatively close following
the flow of X if for all £ € Dy, ¢.(£) € 2D? and for v the flow path for = and X represent-
ing €, ., (7(¢)) belongs to D? and for all ¢ & [0, 1], . (¥(£)) — pu(v(®)]; < & [ (v(D)];
and if we also have the same properties when switching the roles of z and w. Here, we
have denoted by |z||;, = max(|z1],|22|) for z = (21, 20) € D2

We need a classification of non-degenerate singularities in dimension 2.

Theorem 3.2 (Briot-Bouquet, Poincaré-Dulac). Let a be a non-degenerate singularity of
a foliation .# on a compact complex surface. There exist local coordinates (z1,z;) € D?
centered at a, such that .7 is generated on D? by one of the vector fields

0 0 .
Xi=2z + Azg—, e C*;
821 (922
X ‘ + ( + pz1") d e N* pueC* |ul < L
=z mz 27—, m , , -
2 1&21 2 H= 522 H H 2
0 3
X3 = — 1+ 2028 f (2, — eN, <1,
3= A5 azy (1+ 21257 (21, 22)) 7 q 1f 1o

ae (0,1] n [(q + 1)_1,q_1) )

In X3, if ¢ = 0, then we just have o = 1.



Proof. Let 3 be a characteristic number of the singularity. If 8 € C*\ (R_ U N* U &),
then Poincaré linearization theorem implies that the singularity is linearizable and .# is
generated by some X;. If 3 € N* U o, then by Poincaré-Dulac theorem (see for both [10,
Chapter I, Section 5]) gives either X; or X,, whether the singularity is linearizable or not.
Finally, if « € R_, taking o ! if necessary, we can suppose that a € (0, 1] n[(¢+ 1)1, ¢ 1)
for some ¢ € N. By Briot-Bouquet theorem and a refinement by Camacho-Kuiper—
Palis [3, Lemma 7], we have the form X3. The estimates on i and f can be obtained by
homothety or transformations of the type (21, 22) — (Az1, 22) for some A € C*. O

In what follows, we suppose that .% is generated on a neighbourhood of D by one of
the vector fields X = X, for j € {1,2,3}. If j = 1, we talk about the linearizable case, if
j = 2 about the Poincaré-Dulac case and if j = 3 about the Briot-Bouquet case. For X3,
we also consider

~ 1 -1 0 ‘ ! : a
X3 = A (1+ legﬂf(Zl?Z?)) 1

— =—z 1+ g+l , — +z
o7 0/«’1( 21z g(21 22)) o7 022

Making an other homothety, we can still suppose that |¢|, < 1. Exchanging z; and 2 if
necessary, note that both X3 and X are of the form
0

622 ’
with o € R, k € N* and k > a. We often use only this hypothe31s In that case, we are
able to make a unified proof of our estimates for X3 and X;. The Briot-Bouquet case is
basically the only one for which we specify that flow and flow paths are for Xj, X, or X,
(that is, for any of X3 or X3)

Now, we want to establish some first useful results that we use uniformly in all three
cases and throughout our proof. Since 0 is a non-degenerate singularity of the vector
field X, we know that there exist constants Cy, C;, Cy > 0 such that

~ 0
(3.1 X5 = Zlg — azy (1 + 252 f (21, 22))
1

3.2) o el < IX @)y < Collzly, 2D

(3.3) Oyt z —wl, < |X(2) = X(w)|, <Gz —wly,  zweD*
_ 3

(3.4) Gy zly Mzl | < m(z) < Ca 2l [Infz]], 2e JD"

The last inequality is a consequence of Proposition

Lemma 3.3. Let z be a point in ;D*\{0} and ~ be a flow path for . We suppose that
¢p(y) < R. There exists a constant C5 > 0 such that for all t,

(O] < G 2]y (e —1).

Proof. Consider a reparametrization 5: [0,7] — C of v such that |3/(¢)] = 1 for all
€ [0,T]. It is clear that ' > sup,cpo 7y [Y(u)| = [y(t)| for all t. Let us translate the
bound /p(¥) < R in terms of an integral.

T 1X (0. GO T g
R>2L 1. (1(0))) ‘“”L oGO

where we used first the relation gp = 45—21” and the fact that |3/(¢)] = 1, and sec-
ond the equivalence of Hermitian metrics, (3.2) and (3.4). Now, by (3.2), we have




|02 07) (®)], < Co (- 07) (t)]. Then, Gronwall Lemma gives |p.(3(t))], < |z, e

and the same argument on the reverse path ensures that |, (Y(¢))||, = |z, e °'. Hence,

T dt C C,T
] A R—E (P |
o |Inzlly] +Cot  Co In ||z,

Thus, |y(t)| < T < C;' I 2], (eCoG*R . 1). O

The next result describes the Bowen ball of a singularity. It is close to [[6, Lemma 2.5].
Lemma 3.4. Let R > 0and c € (0,1). If 0 < | z[, < exp (In(e)e“*?), then ¢.(Dg) < D>

Proof. The proof is by contradiction. Take 2’ € ¢.(Dg) such that > ||z/|, > . Let
~v: [0,1] — C be a flow path with respect to 2/, of Poincaré length less than R and such
that ¢./(y(1)) = z. By Lemma 3.3} [y(1)| < C; " [In||2/],| (¢®*% — 1). On the other hand,
using the same arguments as the previous lemma, we have the contradiction

21, = [, RO > /], exp (In ][], (7 ~ 1)) > exp (n(e)e™™). O

Fix ¢ € (0, 1) and denote by ry,,(R) = exp (In (£) e“*®) and Usng(R) = ryng(R)D?, for
R sufficiently large. The next paragraphs are devoted to prove our cell decomposition.
We need to distinguish three cases for the three vector fields X, for j € {1, 2, 3}.

3.2. Linearizable case. What we show in this subsection is quite easy, but it clarifies
our wishes, methods and notations for the two following subsections. Indeed, our idea
for the Briot—-Bouquet and Poincaré-Dulac cases is to compare them to the corresponding
linearizable cases with A = —a or A = m.

Take the vector field X = X;, with the notations of Theorem For z,w € sD?\{0},
denote by z(t) = (21(t), 22(t)) = ¢.(t) and w(t) = (wy(t), wa(t)) = pw(t) the coordinates
of the flow trajectories. Set \; = 1 and A\, = A\. We have

Ajt

zi(t) = z;e", w;(t) = wieM’.

The cell decomposition is a consequence of the following estimate, together with anal-
ogous ones in both non-linearizable cases. In that case, it is somehow a weaker version
of [6, Proposition 2.7]. However, for the other two cases, we would not have something
as strong as what Dinh, Nguyén and Sibony obtain in the linearizable case.

Lemma 3.5. Let h,d € (0, 1) be sufficiently small. For z,w € 1D*\ (1Usng(R)), if for each
j € {1,2} we are in one of the following configurations,

(CD) |z, |wj| < Orsing(R)?,

(C2) w2 #0, 1~ 2| <band |

then z and w are (h, ¢)-relatively close following the flow.

W
_Z_j <5’

Proof. Since our hypotheses are symmetric in z and w, it is sufficient to prove only the
assertions about flow paths with respect to z. Fix £ € Dy, v a flow path representing ¢
and j € {1, 2}. If z; and w; are in configuration (C2), then

[25(7(8)) = w;(v(1))] = ‘ |2 (v ()] < & [2(v(#))] -

wj

J



Next, suppose that z; and w; are in configuration (CI). By Lemma and since h
is small, we have |y(t)| < Ch/|ln|z[,|. It follows by Gronwall Lemma and (3.2) that
|2(v()]; = Tsing(R)1TE". On the other hand, if h is sufficiently small,

|2 (v(1) = wi(v ()] < (I25] + Jwy]) VN < 2076, (R < 6 z(v(1))],. O

3.3. Poincaré-Dulac case. Now, suppose that X = X,, with the notations of Theo-
rem With the same notations as before, we have the explicit flow

21(t) = z1€', z(t) = (20 + pt2") ™, wi(t) = wiet, wo(t) = (wy + ptwi®) ™.
The analogous of Lemma is the following.
Lemma 3.6. Let h, 6 € (0, 1) be sufficiently small. For z,w € D\ ($Using(R)), if

(C1.1) |z, |w1| < 0rging(R)? or

(C1.2) w1,z # 0, )1— ‘ In w,| ™" £ and ‘1 < [z, "2
and

(C2.1) |z —wy| < %max(|zl| |w|™) or

(C2.2) 2wz # 0, < [In|w|,|* £ and ‘1 < |z,

then z and w are (h, ¢)- relatlvely close followmg the ﬂow.

Proof. Similarly to Lemma it is sufficient to prove the assertions concerning flow
paths for z. Take also the same notations for £, v. By the same arguments as in the
linearizable case, we have |z (v(t)) — w; (7(t))| <? ||z( (t))],- Next, consider

(3.5) |20(Y(t)) — wa((1))] < |20 — wo|e™ ®) 4 Ly (t) (27 — wi™)| MR(()

First, focus on the second term in the right hand side. If z; and w; are in configura-
tion (CI.I), the same arguments as in the linearizable case show that it is bounded
above by 2 [z(v(t))[,. On the other hand, if z; and w; are in configuration (CI.2), we get

T 2 (y ()" < [In [ (v(#)]

if h is sufficiently small. In any case, the second term of (3.5) is bounded above by
8| z(~(t))],- Now, consider the first term. If 2, and w, are in configuration (C2.I), then

m ’2’2 —wg‘ m 5
|20 — wa| ™M) < o [z (VD™ < 5 (@), -

Next, suppose that z, and w, are in configuration (C2.2]). We distinguish two cases.

m m w
ey ()] |21 — wi| e —

w1
1 - =
21

(1) |22 + py(t)2"] < @. In particular, z; # 0 and |uy(t)27"| = % Hence,

22 =l 800 = o ) IO <ot = 22 el )" < a0,
if h is sufficiently small, using Lemma [3.3|and |2 (7(2))| < 2.
(i) |z + py(t)2"| > 2L In particular, |25(~(1))| = 2lemR0®), Thus,
|20 — wo| ™R < 9 ‘1 - 2—2 |zo(y(2))] -
In any case, we get [23(7(t)) — w2(7(1))] < 0 2(v(1))];- O
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3.4. Briot-Bouquet case. This is the most delicate one. With the notations of (3.1J),
consider X = X;, i.e. both X5 and X;. Note z(t) = (z(t), 2(t)) = ¢.(t), and also
Zo(t) = 2z3(t)e™ to compare it with the corresponding linearizable case, where we would
have Z,(t) being constant equal to z,. Take also the same notations for w. We begin by
some study of z alone.

Lemma 3.7. With the notations above, if |21 (t)| < 2,
3 k—a
~ |~ 2
pi<a(}) el Eor
Proof. By a simple computation, we get
(3.6) (1) = —aZ(t) 21 (1) 2 (t) f(21(1), 22(t) = —aZy(t)22Fe®=D £ (21 (1), 2a(t)).
Now, since k > a and 2 > |z (t)| = |z| ™", we obtain our result. O

Lemma 3.8. If hh > 0 is sufficiently small, then for any z € ;D*\{0} and any flow path ~
such that {p(vy) < h, L |2| < |Z(7(1))| < 22|

Proof. Since h is small and by Lemma 3.3} |y(t)| < Ch|ln|z|,|. Integrating the inequality
of Lemma [3.7| along a radius gives for ¢ # 0,
()
29 | S
2

We want to apply Proposition With its notations, F'(s,z) = C'|z;|" 2* and the unique
solution y(s) is given by T 072 s+ HeENCE,

zos”®

2

[t]
3(t)] < 2] + CJ " s,
0

~ \22\ ‘22‘
[Z2(v(1)] < - < S
1= Cla|” [z [v(#)] 1= Chilnlz]||z1]" |22

Since  — zInz is bounded on [0, 2], we get [22(7(t))| < 2|20/ for i small enough. We
argue the same on the reverse path from zy(7(¢)) to 2z, to obtain the other inequality. [

We can control the distance between z,(y(¢)) and ws(7y(¢)) in small hyperbolic time.

Lemma 3.9. Let h > 0 be sufficiently small and z,w € 3D*\{0} be such that |z|; < 2 |w];.
Let v: [0,7] — C be a flow path for z with {p(vy) < h. Then,

22(v(t)) — W2 (7(B))] < 2[22 — w2 + [ 2] sup, [21(7(w)) — wi(y(w))]-

Proof. Let us bound |Z(¢) — wy(¢)| by (3.6).
125(t) — @h(1)] = ae™ O |21 (1) 2 () f (21(8), 22(8)) — wi(8)*wa(£)* f (wi (£), wa(8))] -

Name g(a,b) = a*b>f(a,b). It is clear that there exists a constant C' > 0 such that
12| < C'|a/*" |b* and | 2| < C'|a|" |b|. Integrating along direction a and then b, we get

125(t) — @4 (1) <Ce™™O(|25()* max (|z1(6)] s [wr (8)])" [21(8) — wi(B)]
+ [wn (8)]" max (|25(8)] , [wa(t)]) [22(t) — wa (D)),
<C (|22(t)| [Z2(8)] |21(t) — wi(t)] + [wi]" max (|zo] , [wa]) [Z2(t) — @a(2)])

if [t| < Ch|ln|z|,| and h is sufficiently small. Here, we used first that ¢,(t), ¢, (t) stay
in 3D? if h is sufficiently small, since In |z|, and In |w|; have bounded quotient; and the
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same trick as in Lemma Furthermore, by Grénwall Lemma, |z5(t)| < \zg\% and by
Lemma [3.8] |2:(¢)| < 2|zo| if h is sufficiently small. Thus,

37) 3(1) - @51)] < C (|2l [1(8) = wi(B)] + [wn | max (|2, Jwal) [22(8) = @2()])

Applying the last inequality to a reparametrization 5 of -y such that |5/(u)| = 1, integrating
along ¥ and applying Proposition we obtain for 3 = C |w;|" max (|22| , Jwal),

%W@%ﬂ%W@N<<% wl + Clafswla0) - w0l [ &@>Mww

Now, since |w|, < 2|z|,, we have 3 |y(t)] < Ch|w;|". Hence, if h is sufficiently small,
et < 2. For I = #h® Sgﬂt)l e~ Pds, we also deduce that I < C'|y(t)|. Finally, it is quite
clear that |22|% |7(t)| < Ch so we conclude by putting together all these observations. [

This enables us to prove a similar result to the other cases.

Lemma 3.10. Let h,é € (0,1) be sufficiently small. For z,w € 1D*\ (Usne(R)), if for each
j € {1,2} we are in one of the following configurations,

(CD) |z, |w;] < 07ging(R)?,
(C2) wj,z; # 0, ’1 — 21 < g

and‘l—ﬁ <!
Zj

8)

then = and w are (h, §)-relatively close following the flow of X

Proof. As usual, we only deal with flow paths for 2. We also keep the same notations as
Lemmas [3.5 and By the same arguments as in the linearizable case, we still have

1 (v(1) —wi(y ()] < §2(3(1)]1, and [z2(y(8)) —wa(v())] < [2(v(t))], if 22 and wy
are in configuration (CI). Now, suppose that z; and w, are in configuration (C2)). By

Lemmas (3.8 and
2((t) - wg(v(t))‘ _ [20(1) — @2 (y(1))
2(7(t)) 2((1))

3.5. Cell decomposition. Now, we wish to cover the bidisk by smaller bidisks such that
we have a good control of the divergence of the flow in small hyperbolic time of two
points in a cell. Let us take any j € {1,2,3} and X = X, if j # 3, X = X; if j = 3.
Fix ¢ > 0 and let R > 0 be sufficiently large (depending on ¢). Let C, be a strictly
positive constant that is specified by our further computations. Name r, = e~ P(C4f),
rp = roe" PR for n e [1,N], N = [e*%f], and 6, = 2=, for k € [1,N’], and
N = [47reC4R]. Let Dy = roD and D, = D (Tn_lewk,rn —Tn—1) for n € [1, N] and
k € [1, N']. Define also the collection D = {Dy} U {D,x;n € [1, N],k € [1, N']}. It is easy
to see that D is a covering of the disk if R is sufficiently large. This is actually about the
same covering as [6, p. 602].

w2l 0 s 0

Z9 2

<

Proposition 3.11. Let h be sufficiently small and R sufficiently large. For DV, D e D,
let U = DW x D@ and z,w € 2U n (3D?\{0}). If Cy is well chosen,

(1) If z and w belong to Ugne(R), then z and w are (R, €)-close;
(2) If z or w does not belong to Ugye(R), then z and w are (h, e *%)-relatively close
following the flow.

12



Proof. Point is a direct consequence of Lemma and the definition of Ugye(R).
Let us suppose by symmetry that z ¢ Ug,,(R). It is clear that if Cy > C5 + 2 and R is
sufficiently large, then w ¢ U (R). Similarly, if Cy > C5 and DY) = Dy, z; and w; are
in configuration of Lemmas|3.5} [3.6{and [3.10, On the other hand, if D) is D, then

) — 21— 2] < Ce R, Since z,w ¢ 1Ugng(R), z; and w; are in configuration (C2)
of the three lemmas. We conclude by applying them. O

Remark 3.12. Actually, configuration (C2.1)) in the Poincaré-Dulac case is most of the
time far weaker than the configurations corresponding to separatrices in any other cases.
On some sublevel {|z5| < C'|2,]™}, we can replace the disks in the second coordinate by
disks of radius e~2# |2 |™. We do so later.

4. GENERAL STRATEGY AND REDUCTIONS

4.1. Geometric setup. First, let us describe the general geometric assumptions we make
to simplify our arguments. Since the entropy h(.%#) does not depend on the choice
of the Hermitian metric g,;, we build one that satisfies some suitable conditions. Let
(U, Ua)rer acr be a finite open covering of M by

e Singular flow boxes U, ~ D? such that .% is generated on a neighbourhood of U,
by one of the vector fields X, for j € {1, 2, 3}. We also suppose that the Hermitian
metric gy, is given on U, by |dz|>.

e Regular flow boxes U, ~ D x T, such that 20, is still a flow box and 2U, n E = (.
We often identify T, with {0} x T,. We also suppose that the regular flow boxes
cover M\ (U.eppU,). Here, p > 0 is fixed below. For this section, we need p < }l.

4.2. Reduction to studying orthogonal projections. We want to do some reductions
to a criterion involving an orthogonal projection. Let us begin by the following.

Proposition 4.1 (Dinh—-Nguyén-Sibony [6), Proposition 4.1]). Denote by T = U,gT,. If
h(T) < oo, then h(.%) < .

Whereas the three authors prove it in the setup of linearizable singularities, it is im-
plicit in [6] that it is enough to prove the following lemma.

Lemma 4.2. Let R,e > 0 and x € M\FE be such that ¢, (Dog) < 1U,. If R is sufficiently
large, then ¢, (Dg) < $U.,.

Proof. We prove that for ¢ > 0, there exists K. > 0 such that for any z € U, with |z||, > e,
thereis 2’ € (U,\3U,) n L. with dp(z,2') < K.. It is easy to see that it implies the lemma.
We have to distinguish the vector field we are dealing with.

Briot—Bouquet or linearizable case. Note z = (z1, z;). Let j € {1,2} be the coordinate
such that |z;| = |z|,. By symmetry, considering X, if necessary, we can suppose that
j = 1. Then, ¢.(t), for t € R,, stays in L,. On the other hand, it reaches Ua\%Ua in flow
time less than In - and in hyperbolic time less than g, for some C' > 0.

Poincaré-Dulac case. With the same notations, if || > |2|°, then |z ]| > % and we
argue similarly. If |2,]> > |2/, then < |In |z|| [u| |21|™ < 5 |22|. In particular, ¢.(t) escapes
:U, in positive real time L |In|z|| < = |Ine|. We conclude by the same observations. [

Let us recall a notion of [[5] that clarifies our work on the orthogonal projection.
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Definition 4.3. Let R, § > 0 be such that § < e~2£. Two points z,y € M\E are said to be
(R, d)-conformally close if the following properties, and the same when exchanging the
roles of x and y, are satisfied.

(a) There exists a smooth function 1: D — L, without critical points such that
dp, (¥(0),y) < 6 and dg (¢, ¢z) < 0.

(b) ||dv||,, < 2A for a constant A such that » < A on A, and the norm is considered
for the Poincaré metric at the source Dy and gy, on the goal L,.

(c) Denote by y' = (0). There exists a map ¥: Drz — D such that ¥(0) = 0,
¢y © ¥ = 1) and the Beltrami coefficient /iy satisfies |pw |, < 9.

Recall that the Beltrami coefficient is defined to have & = 457

What interests us with this notion is the following lemma. What is hidden behind is
that we correct ¥ into a close holomorphic map by solving a Beltrami equation, and then
correct this holomorphic map into a rotation.

Lemma 4.4 (Dinh—-Nguyén-Sibony [6l, Proposition 3.6]). There exists a constant C' > 0
such that if R is large enough and =,y € T are (R, e 2%)-conformally close, then they are
(R/3,Ce"/3)-close, i.e. dpss(z,y) < Ce F/3.

Now, let us state the criterion we apply to show the finiteness of the entropy. Its proof
occupies most of the end of the section.

Proposition 4.5. Let h; > 0 be sufficiently small, R > 0 be sufficiently large and (V;);c; be
a covering of T such that card(I) < e9® and satisfying the following. Let i € I and x,y € V;.

(1) There exists a subset F' = D with Dg < Dy, (F) = UgepDp, (§),

(2) There exists a map : Dy, (F) — L, without critical points, that is locally near
¢ € Dy, (F) given as the orthogonal projection from L, near ¢,(§) to L, near ¢(y),

(3) If € € F is such that ¢,(§) € 2pU,, then ¢,(&) and ¢(€) are (3hy, e~*F)-relatively
close following the flow, for X; in the Briot—Bouquet case.

Then, h(T) < 3g.

Take o > 0 and an open covering (V;)c; that satisfies the hypotheses of Proposition 4.5]
for R(1 + «). It is enough to show that for ¢ > 0, if x,y € V; for some i € I, and R is
sufficiently large, then dr/3(z,y) < e. By Lemma it is even enough to show that x, y
are (R,e 2f)-conformally close. We fix z,y € V; and R > 0. Let us also take F and 1
given by the hypotheses of Proposition We need to control paths in singular flow
boxes and therefore need to meet F' often enough. We use the two following lemmas.

Lemma 4.6. Let a € E and V, be a connected component of Dr(11a) N ¢, (pU,). For
(1,( €V, there exist paths \y,..., An: [0,1] — Dy, (F) n ¢t (20U,) with X\;(0) = (i,
An(1) = G, Nj(1) = A\j11(0) € F, for j e [1, N — 1] and ¢{p();) < 3hy, j € [1, N].

Proof. Since .# is Brody-hyperbolic and h; is sufficiently small, if ¢.(¢) € pU,, then
¢ (Dp, (§)) < 2pU,. Since V, is connected, there exists a path connecting (; and (.
Since F'is hi-dense, one can correct this path into \;, ..., Ay asked by the lemma. O

Lemma 4.7. Keep the notations of Lemma Let \ be the concatenation of A1, ..., Ay,
z = ¢.(¢1) and w = ((;). There is a flow path v (resp. o) for z (resp. w) such that
G(A(1)) = = (7(1)) (resp. Y(A(1)) = pu(8(1))) and |y(t) = 3(t)] < e +R,
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Proof. The existence of the flow paths is a consequence of the fact that the flow is a local
biholomorphism. We need to show the estimate |y(t) — §(t)| < e"+*%, Note that A
meets F at the ends of each \; and that they satisfy /p();) < 3h;. Hence, we can show
by induction and using Lemma that

y(t) — 6(t)] < Cllew(Y(1) — (v |l; [l (7)) [ * < Cem2R0+e) < o= ra)R

since ¢, (¢) and (&) are (3hy, e~ 2F+)) relatively close following the flow. Here, we prove
by induction and use that the orthogonal projection from L, near ¢.(v(t)) onto L, near
¢ ((t)) coincide with the one from L, near ¢,(v(t)) onto L, near ¢, (y(t)). O

We need to control some monodromy phenomena for the flow by the next result.

Lemma 4.8. There exists ¢, > 0 such that if z,w € D*\{0}, for U, ~ D? a linearizable or
Poincaré-Dulac singular flow box, are such that |z — w|, < 1 ||z||,, then the following holds.
If tl,tg, U1, Ug SCltiSfy sz(tl) = QOZ(tQ), ng(Ul) = @w<u2) and |(t1 — tg) — (Ul - UQ)‘ < €9,
then t1 — to = U1 — Uo.

For a Briot-Bouquet singularity, we have the same result for at least one of the vector
fields X5 or )A(g, depending on z,w (but not on ty,ts, uy, us).

Proof. Name z = (21,22) and w = (wy, w,). Note that the hypothesis ||z — w|, < 1|z|,
implies that there is a coordinate j € {1, 2} with z;, w; # 0. Without loss of generality, we
suppose in the linearizable case that j = 1. Since we can choose X3 or X 3, we do the same
in the Briot—-Bouquet case. The explicit form of the flow shows that ¢; — 5, u; — uy € 2inZ.
We conclude for 5 < 2. We argue similarly in the Poincaré-Dulac case. O

End of proof of Proposition We correct the orthogonal projection ¢ into a function 1;,
which coincides with ¢ far from the singular set, is holomorphic near the singularities,
and still satisfies (a) and (b) of being (R, e~?%)-conformally close. Then, condition
is clear and it is sufficient to conclude. It is enough to construct this zZ on V, such that
it coincides with ¢ on V, n ¢! (pUa\gUa) and make this correction for each a and each
connected component V,. We can also do so only if V, n ¢! (gUa) # .

Fix any £ € F n ¢! (pU,). Such a ¢ exists because .# is supposed to be Brody-
hyperbolic, V, n ¢, (5U,) # & and hy is small. Set z = ¢,(£) and w = ¢(€). Let ( €V,
and take paths \: [0,1] — D given by Lemma [4.6 and v, § given by Lemma For the
Briot-Bouquet case, we choose flow paths for the vector field that satisfies Lemma 4.8
for z and w. Let x: [0,1] — [0, 1] be a smooth function such that x = 0 on [£,1] and
x = 1on [0, £]. Define

D(¢) = u (x (= (D) (7(1) = 6(1)) +6(1)).

Lemmas [4.8|and [4.7]imply that this definition does not depend on the choice of A. The
correction v is holomorphic on V,n¢* ( gUa) and we conclude with the first remarks. [J

Above, the correction process for v is close to [6, Lemma 2.12], but its proof is more
difficult in our context, because it is less explicit. To ensure that a h;-dense subset F
has its image in an appropriate cell, we use the following refinement result, due to Dinh,
Nguyén and Sibony, on holonomy mappings.

Lemma 4.9 (Dinh—Nguyén-Sibony [6, Lemma 4.4]). Let ) be a subset of a finite union
of copies of C. Let V1, ..., V), be coverings of 2 by disks, all satisfying card V; < K, for some
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uniform K > 0. Then, there exists a covering V of ) by disks, with cardV < 200" K such
that for any D €V, there are D; € V,, i € [1,n], satisfying 2D < 2Dy n -+ " 2D,,.

5. MESH OF TRANSVERSALS AND INITIAL COVERING

5.1. Mesh of transversals. At the end of our argument, we wish to apply Proposi-
tion Hence, we need to build a covering of T, the union of some regular transver-
sals. However, to build such a covering, we also need to control how leaves from these
transversals behave when approaching the singular set. Therefore, we also build a mesh
of transversals, covering almost all the manifold, which is in some sense hyperbolically
dense in the foliation. That way, we are able to control at the beginning what happens to
leaves in small hyperbolic time near all of these transversals, and then refine to control
what happens all along the orbit in large hyperbolic time.

Let us fix some constant h; > 0 which is sufficiently small to have all the results of
Section |3| for h = 3h;. We also take a constant K € (0,1) and name A = Kh,. The
constant K is fixed in the following sections. Note that since we are only concerned in
what happens to points in T in time R, we lete = d(T, E) and ryng(R) = exp (In (£) e“5).
Hence, ¢, (Dg) n B (a,7sing(R)) = &, for a € E and = € T, by Lemma First, let us
state what we ask of our mesh of transversals.

Proposition 5.1. There exists a constant K’ > 0 such that for all R > 0 sufficiently large,

there exists a mesh of transversals T = (Ti);ep, satisfying

(HT1) For x € M\E, if d(x, E) = rsing(R), there is y € (Uier, T;) N L, with dp(z,y) < ks

(HT2) For i € I, there are at most K’ elements j € Iy such that thereare x € T;, y € L,NT;
with dp(z,y) < 2h;.

This is a difference in the structure of our argument and the one of the three authors
of [6]. They build transversals for each of the singular cells and have to consider some
multiplicity of transversals. The property enables us to avoid this because the
refinement Lemma applies to a bounded number of transversals.

In regular flow boxes U, ~ D x T,, the Poincaré metric is equivalent to the standard
Hermitian metric. Then, we consider a lattice A = Bh(Z +iZ) nD and T, , = {\} x T,.
The union of these transversals clearly satisfy and if B is sufficiently small.

So, the difficulty of Proposition is for the singular flow boxes. We have to dis-
tinguish different cases for the different types of singularities. First, let « € E be a
singularity of linearizable or Briot-Bouquet type. Define r} = r4,,(R) and for j € N,

1-C5h)? ) .
ri = (rg )( ", for some Cj € (0,1) that our further computation specifies. Let also

0T, ..., 07 be some angles that are Cshi-dense in [0, 27], for P = [CLA Define

- 3
I’]I‘a,j,k,u = {Z = (21,22) € D2 = Ua; By = r}l‘ezﬁg’ HzHl < §T;E} )
for j € [0,Nu(R)], k € [1,P], u € {1,2} and N,(R) = max{j € N; r] <2p}. Here, we
need p < 1 so that the biggest transversal is still contained in 2D?. Let us prove (HTI)
and (HT2) for these transversals. This is what is done in the following statements.
Lemma 5.2. Let a € E be a singularity as above. If Cs is sufficiently small, then for
any z € D? with |z|, € [r]_,,7]], for some j € [1,N,(R)], there exists 2’ € L. satisfying
|'|, = 7] and dp(z,2') < §.
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Proof Considering X; if necessary, we may assume that |z|l; = |z1| without loss of gen-
erality. For the flow ¢, (¢) starting from z in time ¢ € R, let

T = inf {t eRy; [e-(t)];, = Tg'r} :

It is clear that T' < ln

. Moreover, the path v: [0,7] — L, defined by v(t) = ¢.(t)
satisfies |y(t)|, <7} and I(T)[, = r}. Then, its Poincaré length is bounded by

T
(@)l Inrj, CCsh I
( =2f dt < <o) = <,
P o n(y(t)) ‘ln rT] Inry 1-Csh 2

by and (3.4) and if Cj is sufficiently small. O

Once we have reached the right norm, we need to turn around to a transversal angle.

Lemma 5.3. Let a € E be a singularity as above. If Cs is sufficiently small, = € D? and
j € [1,N4(R)] are such that |z, = r], then there exist k € [1,P], u € {1,2} and a
2 e L, nTy g withdp(z,2') < %

Proof. Similarly to the previous lemma, we can assume that | 2|, = |z|. Note z; = r}e”
and let k € [1, P] be such that |§ — 6| < Csh. Consider the path »(t) = . (it (6} — 0)).

We have v(0) = z and (1) = (rj etk z2>. By Gronwall Lemma, it is easy to see that

|29] < %r}r. Thus, 2’ € T, ;1. On the other hand, if C5 is sufficiently small,
C'6 — 07| h
< —
T =10 — 67
For these singularities, the condition (HT1) is clear, and we need to prove (HTZ2).

lp(y) <

Lemma 5.4. Let a € F be a singularity as above. There is a constant K’ > 0, independent
on R such that for any j € [0, N,(R)], k € [1, P], u € {1,2}, there are at most K' elements
(7, k' u') € [0, No(R)] x [1, P] x {1,2} such that there exist x € T, jju Y € Tojrprw N Ly
with dp(z,y) < 2h;.

Proof. Note that |z[, € [r],2rT]. On the other hand, |y|, € [(r;y)ucm , (ér?r)l_m”]

] 127 2°)
by Gronwall Lemma. A direct computation implies that there is a bounded number of
possible j' if j is given. The integers &', v’ are also in bounded quantity. O

We finish building the singular transversals, with a singularity a € £ of Poincaré-Dulac
type. We take the same radii r} = (rsing(R))(1 “m’ but this time for j € Z. We also keep
the same angles 07, for k € [1, P]. Consider the transversals

Tajk1= {(21,22) eD?*~U,; » = 7’35927 29| < g (7’ ) llnr ‘}

1/m
Tojk2 = {(21722) eD? ~ Uy 20 = (7“ )" |1an‘ %, |z| < (g) r;.r};

for j € Z such that rg,,(R) < max (1], (7‘) ‘lnr D and min (7], (7“) ‘lnr ) < 2p. We
denote the maximal j by N,(R) and the minimal j by N/(R). For a unification purpose,
denote by N!(R) = 0 for the other singularities. Now, we need p so that

2 max (TJTV&(R), (r}\r[a(R))m ‘ln T%Q(R)‘) <1
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That way, the biggest transversal is contained in 2D?. The next results are analogous to
Lemmas|5.2] [5.3]and [5.4]

Lemma 5.5. Let a € E be as above and C5 be small enough. If j € [N.(R) + 1, N,(R)] and
z = (21, 29) € D? are such that we are in one of the following configurations,
(1) Either |z1] € [r]_y,r]] and |2| < (r])" [Inr]|,
(2) Or |z| <r]_,and |z| e [(r}r_l) ‘lan (] )" !lnr ).
then, there is 2’ = (2}, 2}) € L., with dp(z,2') < } and one of the following configurations.
(i) Either |z1| = r] and |z,| < (r;r)m In7}

J
(i) Or |z| <r] and 22 = (r])™ [In7]).

)

Proof. The situation is similar to Lemma the proof of which we keep some notations.
Consider the flow ¢, (t) starting at z in positive real time. Note ¢, (t) = (z1(¢), 22(t)). Set

—inf {teR,; |z(t)] = rTor |z2(t>! = ()" [nrj}-

-

. Indeed, for t < T, |%(t)| < (r])®. In
j—l
configuration (IJ), the same arguments still work. Let us suppose the setup of configura-

tion (2). Denote by t = 21n — T . We prove that ¢t > T by ensuring that [z (t)| > (rT)"

1 J

2m m
_ WI”‘) ry Y™ | T (/i) y
|22(t)] = |2 <1 2] g > (rj)" mrjyf | 1 T | )

Here, we have used both hypotheses of configuration (2)). Now, the right hand side is
’]I‘
equal to (r])™ [Inr] \(T

Jj—1

Similarly, it is enough to show that 7' < C'ln —

> and we conclude. OJ

Again, once the right radius found, we have to turn to the right angle.

Lemma 5.6. Let a € E be as above. If Cs is small enough and z € D? is in configuration ({)
or (), then there are k € [1, P, j € {1,2} and 2’ € L, N Ty j 1, with dp(z,2') < &,

Proof. In configuration (i), the proof is the same as for other singularities. Let us suppose
we are in configuration (). Note z, = (r])"™ |In+7| ¢ and k € [1, P] with |§ — 0} | < Csh
We search a small ¢ such that

.1 f(t) = <1 +e Ppat (r}F) o ’hl rr‘_l t) emt — (i(0i-0).

It is easy to see that |f/(0)| = m — |y |1nr \ > 1, shrinking again p if necessary. It is
also clear that | f(t) — f(0) — tf’( )| < C |t|* for |t| < 1 and some uniform constant C' > 0.
Hence, f is injective on a small uniform disk and by Koebe }L-Theorem, (5.1) admits a
solution t = O (C5sh), if C5 is small enough. We conclude the same as in Lernrna O

So, (HT1) is also true for this type of singularity. The following statement finishes the
proof of Proposition by showing (HT2)) for Poincaré-Dulac singularities.

Lemma 5.7. Let a € E be a singularity as above. There is a constant K’ > 0, independent
on R such that for any j € [0, N,(R)], k € [1, P], u € {1,2}, there are at most K’ elements
(7, K u') € [0, No(R)] x [1, P] x {1,2} such that there exist v € T jju Y € Tajiprw N Ly
with dp(x,y) < 2h;.
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Proof. The arguments are similar to those of Lemma |5.4} using that

(5)" ol e [ ()"0 ()] s

Actually, we correct a bit the movement that makes us end on a transversal to control
monodromy processes below. For u € {1,2}, we consider a vector field X}, for j € {1,2, 3}.
For the linearizable case, we put X| = a—il + /\226—2, X? = )\*121% + 226_2' For the
Poincaré-Dulac case, we just put X4 = X7 = X,. For the Briot-Bouquet case, we put
X} = X; and X2 = X3. When the j € {1, 2, 3} is implicitly determined by a singularity a,
we simply denote the vector field by X“. This enables to have the following. We use
it below to obtain Lemma Somehow, this is a way to deal with the movement to
reach a transversal. Since it is not so standard (compared with what we do in Section ,
we need to control the behaviour in both coordinates. Hence, we need it not to be too
neutral, and avoid turning around inside a transversal level {|z,| = 7} }.

Lemma 5.8. Let z € 2pU, be such that d(x, E) > rene(R). There are a transversal T, ; j..,
and flow paths 7°: [0,1] — C for X", v € {1,2}, such that ¢! (v'(t)) = p?(+v*(t)), where ©*
denotes the flow of X*, ©2(v"(1)) € Tojkw Lp(y) < hand

e In the linearizable case, there is a constant ¢ > 0 such that
S < RO+ O(Csh),  ve{l, 2}

e In the Briot-Bouquet and Poincaré-Dulac cases, |3(v"(1))| = O(Csh).

Proof. We change slightly the processes of Lemmas 5.2} (5.3} |5.5/and [5.6] Note that they
already give us a flow path ~, with v(1) = ¢; + ¢, where ¢, is given by Lemma5.2]or[5.5]
and ¢, by Lemma or[5.6] In any case, |t;| = O (Csh) so it is enough to show that
e We can choose |R(t1)| = ¢|S(t1)] and [R(At1)| = ¢|S(At1)| in the linearizable case.
e J(t}) = O(Csh), where t7 is the flow time corresponding to X and Lemma
for the Briot—-Bouquet or Poincaré-Dulac case.

For the Poincaré—Dulac case, t; is real. For the linearizable case, we consider a complex
number w of modulus 1 such that R(w) > 0 and R(A\w) # 0. For ¢, (wt) and with notations

of Lemma|5.2) T <

'JI'
%( ) In . We obtain our result if C is small enough. For the Briot—
j 1

Bouquet case, our process is in real flow time for X'. We have

p.(v' (1) = <21€71(t),22('71<t))> = P2y () = <21(72(t))7z2672(t)> .

Note Z5(t) = 29(t)e® and Zy(t) = Z3(t) — 2o. Locally, it is clear that

> 1
¥ (t) = —ay'(t) + In <1 + —ZQ(Z (t))) .
2
Since Zzi(t) = Z5(t), by Lemmas and we get |2(t)] < C|z1]"|2|*. It follows that
|Z5(t)| = O (C’5h|z2|2) and since Csh is small, that |3 (v (t))] = O (Csh). O

5.2. Initial covering. Now, we want to build an initial covering of T on which we control
the orthogonal projection and the flow in hyperbolic time 3h;. This is the covering that
we progessively refine by Lemma in order to apply Proposition As we did for the
transversals, let us begin by stating what we wish for our covering.
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Proposition 5.9. There exists a constant Cs > 0 such that for R sufficiently large we have
the following. For each i € I, there exists a covering by disks V; of T, such that

(HD1) If T, is a regular transversal, D € V; and x,y € 2D, the orthogonal projection ®,,
exists on ¢, (Dsy,,) and satisfies d(z', ®,,(2")) < e 2.

(HD2) If T, is a singular transversal, D € V; and z,y € 2D\Ugyg(R), then the orthogonal
projection ®,, exists in a neighbourhood of = and satisfies d(z,®,,(z)) < e *L.
Moreover, z and ®,,(z) are (3hy,e~2%)-relatively close following the flow.

(HD3) max;cy, card V; < e®oft,

In the regular case, we can simply cover T, 5 by Ce*? disks of radius Be 2%, for B
sufficiently small. The difficulty is again the singular case and we address particularly
different types of singularities. For a linearizable or Briot-Bouquet singularity, we con-
sider the covering D of Subsection[3.5|of a transversal T,, ; ... More precisely, we consider
only the disks of D that intersect T, ; ..

For a Poincaré-Dulac singularity, we consider the same covering if v = 2. On the
other hand, if v = 1, we consider a covering of T, by O (¢*“#) disks of radius
(rD)™ Inr}| =%, Note that |InrT| e~“# < ¢72F because Cy > Cj + 2. Actually, we need
something stronger and need to enlarge again Cj.

Proof of Proposition [5.9} Points and are clear. We have to prove (HD2).
For a transversal T; = Ty 5w, D € V; and © = (21, 22),y = (w1, ws) € 2D\Uging(R), We
have z, = w,. In any case, it is then clear that % = O (Inz],]e ") = O (e72#).
Thus, the orthogonal projection exists and y' = (w},w}) = ®,,(x) = ¢,(t), for some
t = O(|In|z|,| e~“*®). To show that x and ¢/ are (3hy, e~2%)-relatively close following the
flow, we have to consider different cases. Note v € {1,2} such that v # u, so that the
coordinate on the transversal is z,,.

D = D, for a linearizable, Briot—-Bouquet or Poincaré—Dulac singularity with u = 2. Note
that d(z,y’) < Cry. Since Cy > C5 and |z,| = (rsng(R))"™, it is easy to check that z, and w],
are in configuration and z,, w) in configuration of Lemmas (3.5} [3.6{and [3.10}

D = D, with the same singularities. Here, we have 22 — 0O (e=@%) and t is a

(e
@] (e*C4R). Since {z, = 0} is a separatrix, Gronwall Lemma implies that z, and w) are in

configuration (C2)). For a linearizable or Briot-Bouquet singularity, this is the same for
z, and w),. For the Poincaré-Dulac case,

! t
29 — Why = 29 — (22 + ptwi) ™.

The condition |w;|™ < C'|z||In|z|,| ™" and t = O (e~“) give us that 2, and w} are in
configuration if Cy > C3 + 2.

A Poincaré-Dulac singularity with u = 1. Since ¢ = O (|In||z||,|e
configuration if C;, > 2C3 + 2. On the other hand,

Zg — Wh = 29 — (wo + pt2]") ™.

~CaR) | 2 and w) are in

This time, |25 — w| = O (21" [In |[z[,| e~ %) and again t = O (e"*#). Hence, |z — w}| is
a O (|z1]™ e %) and 2z, w) are in configuration (C2.1)). O

6. HOLONOMY AND FLOW IN HYPERBOLIC TIME

6.1. Comparison of three motion processes. We need to control the behaviour of an
orthogonal projection. Since we work on a universal cover, it will be very convenient
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to have processes that are invariant under homotopy and that is why we study holo-
nomy. Moreover, this motion enables us to carry information step by step from far away
transversals to the regular transversals where we want to build orthogonal projections.
Still, we need it to be well defined on an initial disk and a way to keep disks in the pro-
cess. Here, estimating the flow is crucial to guarantee these technical elements. The end
of the proof relies deeply on comparing these three motions. We need some preparation.

Lemma 6.1. Let a € E be some singularity of .%. There exists a constant 5 > 0 such that
for any zy € 3U,, there exists a regular flow box U ~ D x T with B (z0,¢3]2,) < U.

Proof If z € U, satisfies |z — 2|, < 200;01 |zo0];, then | X(2) — X(z0)l;, < 31X (20l
by (3.2) and (3.3). Write X = X 1% + XQ&. Without loss of generality, we can suppose
that | X (20)||; = |X1(20)|. Considering the exponential map of 11, we conclude. O

This preparation enables us to ensure that the holonomy maps we consider are not
only germs, but are defined on the whole disks of the initial covering.

Proposition 6.2. Let T;, T; € T, z € T; and A: [0,1] — L. be such that A\(0) = z, A(1) € T,
and (p(\) < 2hy. Let D € V; be a disk of the initial covering containing z. If R is sufficiently
large, the holonomy map Hol, along X from T; to T; is well defined on 2D.

If w € 2D, there exists a unique map &)zw: Dy, — Ly, such that near ( € Doy, if
2 =¢,(¢)and w' = CTDZU,(C ), then D, = By 0 ¢., where .., is the orthogonal projection
from L. near z' onto L,, near w'; and moreover CTDM = &, 0 ¢, in a neighbourhood of 0.

Finally, if w” = Holy(w) and ¢ € Dy, is such that ¢.,(¢) = 2’ = \(1), then (T)w = O,n00,
in a neighbourhood of (.

Proof. Since .%# is Brody-hyperbolic and h; is small, the conclusions are clear for T; a
regular transversal. If T, is a singular transversal, then note that z and w are (3h, e~2%)-
relatively close following the flow by Proposition Considering a flow path v for z
representing A\ and using Lemma we can cut v in parts where \(¢) and ¢, (v(t)) are
in the same flow box to ensure that the holonomy is well defined. The existence of &)w
and its link with ®.,,,» can be addressed similarly using Lemma 2.6 O

6.2. Image of disks by holonomy. Now that we know the holonomy maps are well
defined on the disks of the covering, we need a method to keep disks to apply Lemma 4.9
We need the following notion, which is close to one that may be found in [6, p. 617].

Definition 6.3. Let U be an open subset of C and ¢ > 1. We call U o-quasi-round if there
exists a disk D with o™'D < U < o D.

Given a o-quasi-round open set, we use the following to make it round.

Lemma 6.4. There exists og > 1 such that for o € (1,00) and U o-quasi-round, there exist
four disks Dy, Dy, D3, Dy with U < U}_, Dy, and 2Dy, < 2U, for k € [1,4].

Proof. Let D be a disk with 07'!D = U < oD. By an affine transformation of C, one
can suppose that D = D. Il is enough to build the D, satisfying 2D, < 20~ 'D and

oD < u{_,Dy. Easy computations show that for 0 < 05 = V16 —+2 ~ 1.02 and
D, =D <<4\/?3 — 2) oLk, <2 — 2\?) a*1>, we have the result. O
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Fix oy € (0,00). We want to prove the following. Note that this is where being in di-
mension 2 is crucial for the case of linearizable singularities [6]. Indeed, for transversals
of higher dimension, one would have polydisks of the form A = D x --- x r,D, with
possibly very degenerate quotients ;’— and no refinement lemma would be available.

Proposition 6.5. We keep the notations of Proposition |6.2} If h, is sufficiently small, R is
sufficiently large and D' < 2D is a disk, then Holy(D’) is o,-quasi-round.

Let us begin with the easiest cases.

Proposition [6.5[s beginning of proof. First, suppose that T; or T; is a regular transversal.
Note that Hol, is holomorphic without critical points. Hence, it is close to homotheties on
small disks and we conclude. Here, we study a bounded number of maps, independently
of R. Moreover, these arguments still work if we consider singular transversals that do
not approach too much (independently of R) the singularities.

Now, suppose that T; and T, are singular transversals, for a linearizable singularity.
Let us introduce many notations, that we keep for the other types of singularities. Note
20 = (29, 29) the center of the disk D', and 2! = (z{, z3) = Hol,(2°). Let y: [0,1] — L.o
be a flow path corresponding to \. Here, we can suppose that \ is a path on Lo, since
we have a sequence of flow boxes that contain the image of )\ and corresponding plaques

for 2. Note w’ = (v, wd) € D', w' = (wi,w3) = Holy(w"), which is well defined by
Proposition Let w! = (w) ,wQ) = Pyo (fy(l)) Finally, denote T; = T, jy.kou, and
T; = Taji krui- By definition, note that ) = w) and z, = w, . Let us go back to the

linearizable case. For j € {1,2}, \;, = 1 and \, = )\, we have wil — 2} = (W — 29)er ),

Hence, if uy = uy, Hol\(D’) is actually a disk. On the other hand, if uy # u4,

1 2} 1 20

1 u u
=0 4| —1 Ll =p [ —1 L.
w ng1 ()\ul ngl) Q0w1 ()\ul nwo )

Denote by t,, = 1~ In %
uy

. We keep this notation such that w' = ¢,/ (t,) in the other

))

Finally, since uq # uq, it is easy to see that we can not come from a separatrix disk, i.e.
0 720

D # D,. Therefore, |41 | < Ce~“® and we conclude because wgl

disk D’ of center 2,

Next, consider a Poincaré—Dulac type singularity. We need to distinguish all four cases
for starting and arrival transversals.

uy = u; = 1. As in the linearizable case, w'’ = w' and wi — 2z} = (w§ — 29)e™ D), It
follows that Hol, (D’) is a disk.

up = 2 and u; = 1. Here, we have t,, = In - zl and D # D,. As before, it follows that

thzl “’1<1+O< ))and
0_ .0

w = (25 + pr (L") 0 = 2 — mpy(1)" L (140 (7))
1

“1

2y, —wy
cases. Here, we have t,, = 7~ =% + O (
uq uq

2
L > This implies that

“1

A 20 —w? wd — 20
1 1 0 JAupgy(1) (L Augtw _ uo 00 Ayyy(1) Tua U1 U1 uy
wh — 2t = 20 gt etuolw — 1) = 200 pAur(D 2 (] 4 o (|
uo uo uo ( ) Aul uo Zgl 81

runs through the

ul

0
21 wl 31 wl

< Ce~ C4R Let us compute.

1 1
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By the estimate on ¢,, and since w' = ¢, (t,), we get

1 1 "im (1)* w? ~C4R
Wy — Wy =<mw2 + pwy ) oy (1+0 (e )
1

0_ .0
= (m2j + pz") Lt (14 0 (7).
1

because 2° and w" are (3h,, e~2F)-relatively close following the flow. Here, we used that
since uy = 2, we still have [2}|" = O <|1n 1290, |~ |z%|> Putting together the last two
equations, we conclude if R is sufficiently large by

11 _ m 1 1y 21— WY —2R
wy — 2y = (mpy(1) 1™ — mzy + pz™) 0 (1+0(eM).
1

ug = 1 and u; = 2. Since u; = 2,

1 . .
5+ Arguing as in Lemma 5.6, we get

1 1

21 — w/l —w 21 _ w/l
6.1) tw:2—2qm(1+0< 12)>=—2 2 (140 (e?),
mwy' + paw 2y mzy + pz
since w}' = 2] and
it =5 = 18— e < Bl — 0 e2n g
Hence, we conclude with the estimate
Z% — w% B em'y(l) 0

B “9R
i = S T (g w2) (1 +0 ( )) )

ug = u; = 2. This time, z) = w). Thus,
s = () —wi™) and 2wl = oW (0 - uf),
Moreover, the following bound and a similar for z}™ — w'™ show that still holds.

2 = | = Iy ()] 4 = wl] < C a1 e < C |24 e,

if h, is sufficiently small, because u; = 2. Here, we have considered the case D # D, but
D = D, is even simpler. It follows that

Ll = M0 0y [ HY) ( >_ 140 (e 2R .
zp —wy = eV (z) —wy) < mzl + Mz1m Z Zl Wy ( (e ))
Since u; = 2, note that [z}| >  |uy(1)] |21|™ if hy is sufficiently small. Therefore,

Aol Al om0 " ey

4 20 mzg + pzi™
We have our result for R sufficiently large. O

It leaves us with the Briot-Bouquet case, for which we still need some preparation.
We need to ensharpen the estimates of Subsection Let us reintroduce some of its
notations. Consider the flow in X3, for z € sD?, denote by ¢.(t) = (z1(t), z2(t)), with
z1(t) = z1€'. Denote by 2(t) = z»(t)e® and 2,(t) = Z»(t) — 20, as in Lemma/5.8
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Lemma 6.6. Take the notations above for z° and w° in the proof of Proposition IfRis
sufficiently large and h, is sufficiently small, then

@ If 2 = wf, then |25(v(1)) — @2(v(1))] = O (|23] |25 — wy)).
(i) If 25 = wj, then [2Z)(y(1)) — @5(v(1))] = O (|23] |27 — wy).
Proof Note that 29 (t) = 29 (t) and by (3.7),
(62) [2(t) — a8 (1] < € (J=8]% [=0(6) — wh(t)] + Juf]" max (|=8], [w]) [28(¢) — @8(1)])

Now, consider the two cases of our statement. In the first one, 2%(¢) = w{(¢) and using
Lemma [3.9] |29(t) — @9(t)| < 2|29 — wI|. Hence,

129((1)) — @3(v(1))] < C|In HzOH |[29] 23] |25 — w3] .
Then, our result is a consequence of the fact that ]21] In ||z°],| is bounded.

In the second case, we have 29(¢) — w3 (t) = 29(¢) —wJ(t). Applying the refined Gronwall
Lemma 2.7 to (6-2), denoting by 3 = C |[w?|” max ( \zz\ |wY|), we obtain

129(1(1)) — @(1(1))] < O3] el |20 - O\J BA(D =9 7.

Since 3 |y(1)] is uniformly bounded, the last integral is bounded above by C'|y(1)|. On
the other hand eI < |29|7 2 if h, is sufficiently small. The result follows. O

Proposition [6.5[s end of proof. We just have to consider a Briot-Bouquet case and with
our arguments in the regular case, we can suppose that ||2°|, is sufficiently small (inde-
pendently of R). Considering X, if necessary, we can suppose that u; = 1. We have to
distinguish whether ug = 1 or ug = 2.

Case uy = 1. In that case, t,, = 0. It follows that

zy —wy = e~ W (25 —wd + 29 (y(1)) — @3(4(1))) = e~V (25 —w)) (1+ O (|23])) -
For O (|29]) < o1 — 1, we have our result.
Case ug = 2. As for other singularities, t,, = 1nz—% = Z?Z_wl (1+ O (e “F)), since
l

1

D # Dy. On the other hand, 2} — wy' = e~ "W (29(y(1)) — @9(y(1))). We get

w . 29— wf _
4w = e (30(0) - 8800 - 030+ LA TS (140 () ),
1
because 2§ and w§ are (3h, e %f)-relatively close following the flow. Here, we have
denoted by 2z} = 29(v(1)). By Lemma[6.6/and Lemma [3.§]
L0 yf
2 —wy = —ae” W1 + 2i2) f(21, 22)) 2 o L1400 (e +0(21))-
1

Choosing |2?| sufficiently small and R sufficiently large, we conclude. OJ

7. HYPERBOLIC MOTION TREES

7.1. Covering the Poincaré disk. We still face some serious problems. Whereas a
transversal can only interact with a finite number of others by (HT2), it can do so in many
ways. Indeed, a transversal that is close to the singularity has around e“*® monodromy
paths of Poincaré length lower than 2/,. To tackle this, we consider some standard flow
motion. We need a refinement of Lemma the proof of which is the same.
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Lemma 7.1. Let z € 1U,\{a}, v: [0,1] — C be a flow path for = and h, be sufficiently
small. We denote by {p(~y) the Poincaré length of v, o~ and {(~y) the length of v for the usual
Hermitian metric of C. If {p(y) < hy, then there exists a constant C7 > 1 with

CoH(y) < p(vy) In|z],| < Cr(7).

Fix i = 1>y and an integer p > 0, for Cs > C; that our further computation specifies.
8
For z € T, ., in a singular transversal, denote by

or(2) = @, <C’8_1h1 |ln7°;r‘e%> , kel0,p—1].
These maps are standart flows. In what follows, we use criteria close to [6, Lemma 4.6].

Lemma 7.2. Let z € T, ;. be in a singular transversal. If p is sufficiently large, hy is
sufficiently small and Cs is well chosen, there exist (o, ...,(,—1 € Dy, with ¢.((x) = vi(2)
for k € [0, p — 1]. Moreover,

p—1
Dhﬁ-ﬁ = Dhl v U Dhl—ﬁ(ck)'
k=0

In particular, if &, ..., &y—1 € Dy, 4y and satisfy dp(Cx, &) < b, k € [0,p — 1], then

p—1

Dh1+h (= Dhl U U Dhl (fk)

k=0

Proof. The second statement is indeed a direct consequence of the first one. Note that by
definition of our transversals, we have ¢! |In+]| < |In||z|,| < ¢|Inr]|. Define Cs = ¢C;.
If h; is sufficiently small, Gronwall Lemma implies that the flow is defined on the whole
disk Cshy |In+| D. Consider the paths A;: [0,1] — L. defined by

M(t) = . (Ot [ %57

Take the lifting Xk in D via ¢, such that Xk(O) = 0 and define ¢, = Xk(l). Thus, we have
((\e) = Cy 'hy [Inr]], 50 £p(Ax) < hy by Lemma|7.1]and by definition of Cs. Consequently,
(i € Dy,. Let & € Dy, 5. If € € Dy, there is nothing to prove. If dp(0,&) > hy, define the

radius r; = :Zi—ﬂ and & = rlé—|. Let v: [0,]¢|] — C be the flow path representing £ and
A(t) = ¢.(ty(r1)), which is homotopic to the path ¢, o vy, ;- Hence, its lifting via ¢,

with A(0) = 0 satisfies A\(1) = &;. By definition, we have ¢(\) = |y(r1)| and £p(\) > hy.

Thus, |y(r1)| = Cg 'y [Inr] | and there exists | € [0, r1] with [y(r})| = C5"'hy [Inr]|. Note
1
1

¢ = 11§ and the hyperbolic radius 7} = In J_rfi Applying Lemma 7.1}, we get

=t (o) 2 G Il € (o) > G IS o)l = 31

Hence, dp(£, &) < hy — 2h. It follows that it is enough to find & € [0,p — 1] with
dp(&], (k) < h. It is clear that we can find % such that

‘ 2ikm

y(r) = (e

T - T 1 T
< » v(r)| = 508 h ‘lnrj |

Denote by z, = ¢i(2), uj = y(r}) and t;, = Cg'hy [Inr]| ¢“»". Consider the flow path
which goes straight from 0 to ) and then travels the arc from v/ to ¢;. It is homotopic to
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the straight line from 0 to tr. Thus, ¢,(&)) = ., (u] — t;). Gronwall Lemma implies that

I [[zf,| = & [In 2], | = 5 [Inr]| if £y is sufficiently small. By Lemmal7.1]
_ 2mh
dp(&1, Gr) < —C7C§1h1 [In 2], |7 | < =
For p > 2™ = 67C%, we have our result. O

Far from the singular set, we use a shghtly different criterion.

Lemma 7.3. Note r; = Land ¢, = rle = , for k € [0,p — 1]. If hy is sufficiently small,

hl +1

p—1
Dpy+n < Dpy U U Dy 1 (Ck)-
k=0

In particular, if &, .. .,&y—1 € Dy, 4y and satisfy dp(Cx, &) < b, k € [0,p — 1], then

p—1

Dhy 5 € Dy L U D, (&)
k=0

Proof. Let & € Dy, . If dp(0,€) < hy, then £ € Dy,. Next, suppose that dp(0,£) = h

Define ¢ = ¢ so that dp({, &) < h. Note that (p(dDy,) = m(eM —e M) < drhy if by is
sufficiently small. So, there exists k € [0,p — 1] with dp(&1, (k) < % < h. Since Cyg > 1,
dp(&,¢r) < 2h < hy — h. 0O

7.2. Encoding the hyperbolic dynamics. Here, the notion we introduce is something
that exists but is not precisely defined in [6, p. 619-623]. It encodes the transversals
through which a leaf L, goes in time R, and ensures that we get a h;-dense subset.

Definition 7.4. For H € N, we define
H

AH: |_||Io>p_1]]ja

J=0

where by convention [0,p — 1]° = {@}. We see Ay as a tree, the directed edges of
which are (iy,...,i) — (i1,...,1k41), for k € [0, H — 1] and iy, ...,ix1 € [0,p—1]. A
hyperbolic motion tree of deepness H is a map ©: Ay — D with ©(¢) = 0 and for any
vertex i, . ..,i; € [0,p — 1],

Dy e (O (i, i) & Py (O (i, k) U U D (O (i, iks)),

and

O(it, . irt1) € Dy 4n(OGi, ... ix)), dre1 € [0,p—1].
The cut-off definition tree of © is defined as the subset A9 = Ay, made of elements
(i1,...,1) € Ap, for k € [0, H] such that for all j € [0, k], ©(41,...,%;) € Dop, 4+ e

These trees are designed to get hi-covering subsets.

Lemma 7.5. Let ©: Ay — D be a hyperbolic motion tree of deepness H € N. Then,

Dh1+HhC U Dhl(@(s))'
SeA$
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Proof. The proof is by induction on H. If H = 0, this is a definition. Suppose that the
lemma is true for deepness up to H, let © be a hyperbolic motion tree of deepness H + 1
and = = O|4,. Note D, (©) = USE,A(;DMDM(@(S))- Let ¢ € Dy, (m+1)n- If ¢ belongs
to Dy, un, then the induction hypothesis applies on = and gives ( € D, (©). Next,
suppose that dp(0,¢) = h, + Hh, define ry; = %, ¢ = re? and (g = rye®. The
induction hypothesis on (y and the condition dp((, (y) < h give us & = O(iy, ..., i), with
(i1,...,ix) € A% such that dp((,€) < hy + h. By definition, there exists i, € [0,p — 1]
such that ¢’ = ©(iy, ..., i, 1) satisfies dp(&, ) < hy. Since (iy,. .., i) € A5 and

dP(g/v O) < dP(C7£,) + dP(C? O) < 2h’l + (H + 1)h’7
(i1, ... ir1) € A, and the induction is finished. O
These trees emerge from our work on the mesh of transversals.

Lemma 7.6. Let v € T and H = [25"4]. If hy is small enough, then there is a hyperbolic
motion tree ©,: Ay — D such that for S € A9, there exists Tg € T with ¢:(0,(9)) € Ts.
Moreover; if ¢,.(S) € 2pU, for S € .A%”, then Ty is a singular transversal T, j j. ...

Proof. The proof is by induction on H. If Ty is regular, then we apply Lemma to first
find ¢, for k € [0,p—1]. If Tg is singular, we find similar ¢, by Lemma To find
& = O,(S - k), we distinguish whether ||¢,(¢x)|, < 2p or not. In the first case, we apply
Lemma In the second case, we choose & in a transversal such that |¢,(&)]l, > 2p.
Note also that if dp(0,(x) = 2h; + Hh, we can keep the & = (;. In order to apply the
lemmas, we need to check that |¢,((x)|; = rsng(R). If by is sufficiently small, since we
have dp(0, () < 2hy + Hh < R + 2h;, we get this condition using Lemma O

With the notations of the previous proof, we want to make the choice of &, in the
singular case in some sense uniform on a disk of the initial covering. Let us introduce
some notations. Let T; be a singular transversal, D € V; and z,w € 2D. Note z, = p(z)
and ¢}, . the corresponding point in the disk that we obtain in Lemma Suppose that
2z, € 2pU, and follow the procedure of Lemma to find a corresponding z; € L., and
& € Dy, s, with 2z}, on a transversal and ¢.(¢..) = 2;. Denote by %(glg the geodesic
from 0 to (., %QZ) the geodesic from ¢}, , to &, and 3y , = %(3 . ﬁ,(flz) the concatenation of
the two paths. For each of these, denote without tildas the projection on L., that is, for
* € {(1)7 (2)7 @}, 7]:,,3 = ¢, o0 ’71:,2

On the other hand, consider )\S;(t) = ¢. (tC5 ' hy |InrT]), for t € [0,1]. That way,
(

we have )\,(:;(O) = 2, )\g’i(l) = z;,. Since it is how we have built ¢ ., 'yklz) and )\,(ji are
homotopic. Consider then the lifting XSZ of )\,(cli via ¢, such that XSL(O) = 0. It follows
that X,(Cli(l) = (k.. Finally, the procedure of Lemma |5.8| gives us a flow path and then

a path )\,(2 on L, joining z; and z;, by definition of & . . Its lifting X,(fi via ¢, such that
X;j;(o) = (. clearly satisfies X,(j;(l) — &... Let us also denote ), — X,(fi : XS; and
A,z = )\fi : )\g; the concatenation of these paths.

We use analogous notations for w, with slight subtelty. To be more precise, let us
denote by wy = ¢i(w), (k.. its preimage by ¢,, obtained by Lemma 7.2} %EIZU the geodesic

joining 0 and Cx s, Vew = Pw © Ty,szj, A,(:’zu(t) = ¢ (tC5 'hy |In7]|) and X,(CLZU its lifting via ¢,
such that XS}U(O) = 0. We stop here with the strict analogy. Indeed, we wish to show that
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the construction for z also holds for w to have a uniform choice. Note w; = Hol,, (w),

which is well defined by Proposition 6.2, We want to find a path )\l(fzu joining wy, and wy,

with peculiar properties (see below). Once we have it, define ngﬂ its lifting via ¢,, such

that XECQZU(O) = (i and denote by &, its endpoint. Then, take analogous notations with

5,930 the geodesic joining (j, ,, with & ., 7,% = (b © 71(3” and M\ ., Xk,w, Ve.ws Tk the usual

concatenations. See the diagramm below for a summary of all these notations.

~(1) ~(2) ~(1) (2
P)/k,z r)/k,z fYk,w ’yk,w ~(2
0 ~ Ck,z ~ ‘fk,z 0 ~:{Ck7w:::i::::; gk:;w = )\k,w(1>
Y Aol Ao New
¢z ¢z ¢z ¢w ¢w ¢w :
1 2 1 2 !
Yo Yoo Vo Tow
A Zk (Z;g w:‘wk::::ng:H017kz(w>
)\(1) )\(2) )\(1) )\(2) 7
k,z k,z k,aw kaw

Lemma 7.7. With the notations above, there exists a path )\gfzv with the following properties.
() If Cj is sufficiently small, {p </\,E:2ZU> < h
(i) Hol,, . = Hol,, , on 2D.
Proof. Note 0y . the flow path for z corresponding to \;., that we cut in two parts
6,2?; [0,1] — C, for j € {1,2} corresponding to /\,(ji Note that w;, = ¢, (5,5,2(1)). We
build )\,(fzv by concatenating the two following parts.
(a) )\,(jj)(t) = Pu, <(5,(f;(t)), for ¢t € [0, 1]. Note wy}, its endpoint.

(b) )\,(j;f) (t) = puy(tty), for t € [0, 1] and the notations of the proof of Proposition 6.5
Its endpoint is wj, by definition of ¢,,.

Since t,, = O(e™2f) and % = O (e7“f), the second part is of length smaller than 2
if R is sufficiently large. Moreover, using Lemma (7.1, we can compare the Poincaré
length of the second part as a flow path for z; or wy in L, or L,. Choosing C5 small
enough, the four lemmas when we had not fixed & show that ({i)) holds.

To prove (ii), note that ), is the same flow path as the one for z, just completed by
adding ¢,,. Hence, we can cut \; . and ), into parts on which they stay in the same flow
box. This implies that Hol,, , = Hol,, . on 2D. Note that on the one hand ;. and ), .
and on the other hand ~;, and \; , have same starting and ending point in their lifting

in D. Therefore, they are homotopic and we also have Hol,, . = Hol,, A on 2D. O

In practice, to determine a hyperbolic motion tree for a point x, we do not follow
exactly the proof of Lemma|7.6] Instead, we fix a point in the cell (say the center), follow
the proof for this point and apply Lemma to all points in the same cell. Lemma
implies that we do not break any symmetry with this choice because we could have done
the same with any point by (i), with the same holonomy map by (i). We need to check
the following. This plays a similar role to [6, Lemma 2.9] in our refinement process.
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Lemma 7.8. Let z,w € T, j, kou, and k € [0,p — 1] be such that z,,w}, € Ty j, ky.uy arrive
on the same transversal, with the notations above. Here, we do not suppose that z,w are
in the same disk, so wj, is indeed obtained by exactly the same process as z,. Suppose that
21, Wy, € 2D € YV, j, k1 .4y belong to a same disk of the initial covering. Then, Hol}klz = Holy!
on 2D, with X ., A\, defined before. ’ ’

Proof. Note that both holonomies are defined on 2D by Proposition[6.2] Let us introduce
some notations. Denote by 2/ = Holgklw(z,’c). Note 0. (resp. 0,,) the flow time for X“o
such that z;, = ¢,(d,) (resp. wj = gpw’(éw)). It is clear that 2/ = ¢,(d, — J,, + t), with
lt| = O(e 2%). Moreover, §, and §,, can be written as a sum of two terms: 6, = #;, + .,
bw = ti + tu, where ¢, = Cg 'hy |In7]| ¢™", and L., t,, are defined by Lemma |5.8] In the
linearizable case, since z and 2’ belong to the same transversal, we have R(¢, —t,,+t) = 0.
It follows that |3(¢, — ¢, + t)| < 27 and hence is 0. So, ¢, = t,, — t and the condition on ¢
imply that we have the same holonomy, by the same argument as Proposition[6.2] For the
Briot-Bouquet case or the Poincaré-Dulac case with u, = 1, we argue the same. Consider
a Poincaré-Dulac singularity with ug = 2. Note z = (z1, 23). It is enough to show that

2 = (29 + pt2") e™,
with S(t) = O(C5h) and Csh small enough implies that ¢ = 0. If R(¢) > |S(¢)|, we have

R <1_ 35 O (3 lL]) )

‘ln IrT], ‘ , since u, = 2. Studying the function

1= ‘1+uti
Z9

lz1]™
|z2]

z — (1—3z/(2|Inr]|)) em™, it is easy to see that it is not possible if h, is sufficiently

Here, we have used that

small. Using similarly that )1 + ut%

<1+ ‘,ut%‘, one can show that R(¢) < — [J(t)] is
not possible either. Finally, we argue as in Lemma to show that ¢ = 0. O

8. END OF PROOF OF THEOREM [1.2]

8.1. Refining the initial covering. We are ready to finish the proof by exposing the
refinement algorithm. Our different setting makes it slightly different to the one of the
three authors [6, p. 617-619] but the ideas are close. Consider the initial covering V; of
each transversal T; € T, for i € Iy. We denote it by V?, because we refine it by induction.
Name also H = [£="1]. For H’ € [0, H], we build a covering V' by disks that satisfies
properties to ensure the existence of the orthogonal projection. What follows is the
induction process, and contains some peremptory assertions to define the construction
that we prove just after. Suppose that V¥’ is already built.

DIT, n (M\uaeE g ) # 5,

(1) For each D € V?, we denote by Jp the set of indices j € It such that there
exists v € D, ' € T; n L, with dp(z,2") < 2hy. If hy is sufficiently small, the
holonomy map along the geodesic from = to 2’ only depends on T, and T;
and not on = and 2. We denote it by 7;;, which is well defined on D.

(2) For all disk D’ € V' such that mj(D) N D' # @, (D) is 01-quasi-round,
for o, fixed below Lemma We cover it by four disks Dj,..., D} using
Lemma Denote by V! {D je[1,4], my(D) n D' # &}
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(3) Define J}, as the set of indices j € Jp such that VI i D is a covering of D.
Let J' = UpeywJp, and VI = Upoo VI . Let VH'+1 be the covering of T;
obtained by applying Lemma (4.9 to V¥ and (V! )je - Note that each V!
does not necessarily cover entirely T;, but we apply successively Lemma
on the subset each covers.

I IfT; c £U,, for some a € E,

(1) For each D € V?, fix one z € D. For k € [0,p — 1], name by 2z, = ()
and zj, € Ty p the point obtained by Lemma if we have ||z[; > 7sing(R).
Consider the path 7, p defined before Lemma and note 7, p = Hol,, ,,
which is well defined on D. The holonomy map w,;}:, only depends on T;,
Tk,p and k, but not on D. Name Jp = {k € [0,p — 1] ; |2k]; = reme(R)}.

(2) Foralldisk D’ € Vk,D such that 7, p(D) " D" # &, m, . b (D’) is o1-quasi-round
and we cover it by four disks D, ..., D) using Lemma We denote by
VA 5 =A{Dj; je[1,4], m.p(D) n D' # &} and Vi = Upeyo Vi .

(3) For each k € Jp, VZI,J,D is a covering of D. Note VH'“ the covering of T;

obtained by applying Lemma [4.9/to V" and (V! ,C)ke[[0 ;- Note that V/

covers at least the disks D for which | z;||; = 7gng(R).

Lemma 8.1. This algorithm works well. That is, the peremptory assertions used to define it
hold. Moreover, there exists a constant Cy > 0 such that max card VT < e@F,
el

Proof. Let us shortly list our assertions: in and (II.1I)), the holonomy does not depend
on z and 2’ or on D; in (I.I) and (II.I), the holonomy is well deﬁned on D; in ([.2)
and (IL2), the inverse images of D’ are o-quasi-round; in (IL3), V/i , is a covering
of D. Note that by Lemma and by induction, we always have 2D’ < 2D°, for some
D° € V9. By Propositions and it follows that the holonomies are well defined
on 2D and that the inverse images of D’ are o;-quasi-round. The fact that the holonomy
does not depend on x and 2’ in follows from the following observation. Since in
case (), we have d(z,E) > c for some ¢ > 0 and all z € T;, we can cover T; by a
finite number of flow boxes. Reducing h; if necessary, we can suppose that Dy, is still
contained in these flow boxes. The uniqueness of a point of a plaque belonging to a
transversal gives us that the holonomy only depends on T; and T,. In (IL.I)), the similar
result follows from Lemma [7.8 Finally, note that Lemmas[5.3] and [5.6) make us end far
from the boundary of T, p. Hence, 7 p is fully contained in T}, , and VLk’ p 1s a covering
of D if R is sufficiently large. Therefore, the algorithm works well.

It remains to prove the control of the cardinality. Note Ky = max;c, card ViH’. By
Proposition Ky < %%, Note that card J' < K’, by (HT2). Since the holonomy
maps only depend on the transversals, we have by construction card Vfg < 4Ky and
card Vi < AK'Ky. By Lemma[4.9) we obtain for C' = max (4 x 200%*1, 4K’ x 2007+1),

card VZH 1 < CKpyr. By definition of H, we get Ky < CF/heColt, O

8.2. Proof of the existence of an orthogonal projection. The construction of the cov-
ering V# and of the hyperbolic motion tree clearly imply the following result.

Lemma 8.2. Let T; € T be a regular transversal, D € V¥ and x € 2D. Then, there exists
a hyperbolic motion tree O,: Ay — D satisfying the conditions of Lemma [7.6| and the
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following. If Sy = (i1, ..., ix) € A%y, for j € [0,k — 1], we denote by S; = (i1, ...,i;). Let
£ = 0,(5;), 7, be the geodesic from & to &1, A\j = ¢, 07; and Ag, = Aj—1... . Then,
Holy, is well defined on 2D, with image in 2Dy, for some Dy, € V,.

This enables us to conclude the proof of Theorem [1.2] by checking our criterion.

Proposition 8.3. The covering (V}'). . satisfies the hypotheses of Proposition (4.5

iEI'[r

Proof The cardinality condition is an immediate consequence of Lemma Let D be
in V¥ with T; € T and x,y € D. Let ©,: Ay — D be the hyperbolic motion tree of
Lemmaand F = {0,(S); S e AS}. The set F is h;-dense by LemmaE For S e A%,
note zg = ¢,(0,(5)), ys = Holy,(y), with the notations of Lemma [8.2, We build ) by
gluing all the &)zsys of Proposition @ If we can do so, Lemma @ and
imply points and of Proposition By Proposition and Lemma these
maps patch up well on a branch of ©,. On the other hand, if given two S; and S, such
that Dy, (©,(S1)) N Dy, (0.(52)) # &, we can build homotopic paths from z to the image
of a point on the intersection because they have the same starting and ending point
in D. The corresponding holonomies coincide as germs and coincide on 2D by analytic
continuation. Hence, it is clear that d and & coincide. O

5198, TSoYSy
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