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FINITENESS OF HYPERBOLIC ENTROPY FOR HOLOMORPHIC FOLIATIONS WITH
NON-DEGENERATE SINGULARITIES

FRANÇOIS BACHER

ABSTRACT. Consider F “ pM,L , Eq a Brody-hyperbolic foliation on a compact complex
surface M . Suppose that the singularities of F are all non-degenerate. We show that the
hyperbolic entropy of F is finite.

1. INTRODUCTION

There has been a lot of progress in the dynamical theory of laminations by Riemann
surfaces during the last two decades. More precisely, much of attention has been focused
on building an ergodic theory when the leaves are hyperbolic. To have such a setup,
the case of the projective spaces is very typical. Indeed, every polynomial vector field
on Cn can be compactified naturally into a holomorphic foliation on Pn. This foliation
is always singular. Let d, n P N with n ě 2, denote by FdpPnq the space of singular
holomorphic foliations of degree d on Pn. Lins Neto and Soares [14], using a work
of Jouanolou [11], show that a generic foliation F P FdpPnq has only non-degenerate
singularities. Moreover, by a result of Lins Neto [12] and Glutsyuk [9], such a foliation is
hyperbolic if d ě 2. It is even Brody-hyperbolic in the sense of [6]. Loray and Rebelo [15]
also build a non-empty open subset of these foliations, the leaves of which are all dense
in Pn. When n “ 2, Nguyên [19] uses the integrability of the holonomy cocycle in [16]
to compute the Lyapunov exponent of a generic foliation F P FdpP2q. We recall briefly
some recent studies and refer the reader to the survey articles [7, 8, 17, 18] for a more
detailed exposition.

By solving heat equations with respect to harmonic currents, Dinh, Nguyên and Sibony
are able in [4] to prove abstract ergodic theorems for laminations and foliations. This
new approach enables them to develop an effective ergodic theory for laminations and
foliations, and in particular, geometric versions of Birkhoff’s theorem in this context.
In two articles [5, 6], the three authors study a modulus of continuity for the leafwise
Poincaré metric. More precisely, they show that it is Hölder in the case of a compact reg-
ular hyperbolic foliation, and Hölder with a logarithmic slope towards the origin in the
case of linearizable singularities. Somehow, their work on the heat equation implicitly
studies the dynamics of foliations in a canonical time, which is measured by the Poincaré
distance in the universal covering. From this viewpoint, they introduce a canonical no-
tion of hyperbolic entropy and prove the following finiteness results.
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Theorem 1.1. (1) (Dinh–Nguyên–Sibony [5, Theorem 3.10]) Let F “ pX,L q be a
smooth compact lamination by hyperbolic Riemann surfaces. Then, the hyperbolic
entropy of F is finite.

(2) (Dinh–Nguyên–Sibony [6, Theorem 1.1]) Let F “ pM,L , Eq be a Brody-hyper-
bolic singular holomorphic foliation on a compact complex surface. Suppose that all
the singularities of F are linearizable. Then, the hyperbolic entropy of F is finite.

The finiteness of the hyperbolic entropy in this theorem is strongly dependent on their
previous result on the modulus of continuity of the leafwise Poincaré metric (see [5,
Theorem 2.1] and [6, Theorem 3.2]). In our previous work [1, 2], we generalize this
regularity result to foliations with non-degenerate singularities. In this article, we obtain
the following generalization of Theorem 1.1 (2).

Theorem 1.2. Let F “ pM,L , Eq be a Brody-hyperbolic singular holomorphic foliation
on a compact complex surface. Suppose that all the singularities of F are non-degenerate.
Then, the hyperbolic entropy of F is finite.

Let us explain briefly the method of our proof. We follow the general strategy of the
three authors in [6] for linearizable singularities. They are able to ensure that two points
are at small Bowen distance by solving a Beltrami equation for a map that is obtained
by gluing local orthogonal projections from a leaf to another. To control the Beltrami
coefficient that could explode near the singularities, they need to correct this function
and make it holomorphic when approaching the singular set. They use a small hyperbolic
step and holonomy mappings to carry information from a transversal to another. By a
crucial refinement lemma, they construct a covering such that they can define such an
orthogonal projection for two points in the same cell, up to a hyperbolic time R. Of
course, they need to estimate the cardinality of the covering all along the refinement
process to show that the entropy is finite.

To adapt their proof, we use a classification of non-degenerate singularities in dimen-
sion 2 in three types.

‚ The linearizable singularities.
‚ The singularities with two separatrices and real negative characteristic number.
‚ The resonant singularities.

By Poincaré linearization theorem and Briot–Bouquet theorem, every non-degenerate
singularity is of one of these types. Moreover, Poincaré–Dulac theorem enables us to
have an explicit form for resonant singularities. We show the same kind of estimates
as [6] for both cases with separatrices, and stronger ones for the resonant case. This
gives us an initial covering on which we control the behaviour of close leaves in small
hyperbolic time. To obtain such estimates, we use a generalization of Grönwall Lemma
for non-linear differential equations, due to Lins Neto and Canille Martins [13]. We also
use their estimation of the Poincaré metric near the singularities to compare the flow
time and the hyperbolic time. To correct the orthogonal projection in the neighbourhood
of singularities, we fix a point in the initial leaf, and move in the second leaf with the
same time of flow. This is what the three authors do, without naming it as such, since
everything is explicit for linearizable singularities. It remains to check and adapt each
technical element of [6]. This is easily said, but everything is more difficult than it is in
the linearizable case. Sometimes the resonant case and sometimes the two separatrices
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case need new arguments. Some of our techniques are slightly different from the three
authors’, but the main structure of our proof is very similar. Most of the time, our work
on the linearizable case is just reproving what is already there in [6] but in a slightly
different setting. This enables us to clarify our work and statements in both other cases.

The article is organised as follows. In Section 2, we introduce the hyperbolic entropy
following [5]. Moreover, we recall our previous work on local orthogonal projections
from a leaf to another and the generalization of the Grönwall Lemma. In Section 3,
we study the flow in a small step of hyperbolic time for the three types of singularities.
We obtain a first cell decomposition. In Section 4, we show a sufficient condition for
the entropy to be finite. This criterion involves the orthogonal projections and their
corrections near the singularities. In Section 5, we build a hyperbolically dense mesh
of transversals and the initial covering that is refined later to obtain the Bowen cells. In
Section 6, we study the holonomy mappings in small hyperbolic time to carry information
during the refinement process. In Section 7, we consider trees that encode the dynamics
on the universal cover D, and are compatible with our mesh of transversals. Section 8
ends the proof by exposing more precisely our refinement algorithm and building the
orthogonal projection that is needed for our criterion.

Notations. Throughout this paper, we denote by D the unit disk of C, and rD the open
disk of radius r P R˚

` for the standard Euclidean metric of C. For R P R˚
`, we denote

by DR the open disk of hyperbolic radius R in D, so that DR “ rD with r “ eR´1
eR`1

, or if
r P r0, 1q, with R “ ln 1`r

1´r
. More generally, for ρ P R˚

` and U a subset of a vector space
with a marked point z0, ρU denotes the image of U by the homothety z ÞÑ z0 ` ρpz ´ z0q.
In particular, if D Ă C is a disk of radius r, ρD is the disk of same center and radius rρ.

We consider several distances on a complex manifold M . For gM a Hermitian metric
on M , the distance induced by gM is denoted by d. Consider a singular holomorphic
foliation F “ pM,L , Eq. If L is a leaf of F , gM induces a distance on L that we denote
by dL. If L is hyperbolic, then L is endowed with the Poincaré metric denoted gP and
the induced distance denoted dP . We use the same notation for the Poincaré metric and
distance on D. If x P MzE is such that the leaf through x, denoted Lx, is hyperbolic, we
note ϕx : D Ñ Lx a uniformization of Lx such that ϕxp0q “ x. For u, v two functions from
K to M , to a leaf or to D, we denote by

dKpu, vq “ sup
xPK

dpupxq, vpxqq, dP,Kpu, vq “ sup
xPK

dP pupxq, vpxqq.

We try to make our notations different for different contexts. If z P C and r P R˚
`, we

note Dpz, rq the disk of center z and radius r. Inside a metric space, we denote by Bpx, rq
the ball of center x and radius r. We try to keep this notation for ambiant Hermitian
distances. Inside a leaf, we denote by Lxrrs “ ty P Lx; dLxpx, yq ă ru. Inside the Poincaré
disk, if ξ P D and R P R`, we note DRpξq “ tζ P D; dP pξ, ζq ă Ru.

The term “constant” means a real positive number that does not depend on a point
x P MzE, nor on the hyperbolic radius R that will go to `8. Most of our proof relies on
the fact that some constants h, h1, ℏ are sufficiently small, independently on R, given that
it is sufficiently large. We may have forgotten to say it somewhere and the reader can
suppose it is in the hypotheses of every statement. When we do not care about constants,
we simply denote them by C,C 1, C2, . . . When we want to keep track of them to clarify
our arguments, we denote them by C0, C1, C2, . . .
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Finally, we denote by ras the smallest integer k such that k ě a, for a P R. We also
denote ℜpaq (resp. ℑpaq) the real (resp. imaginary) part of a complex number a.

Acknowledgments. The author is supported by the Labex CEMPI (ANR-11-LABX-0007-
01) and by the project QuaSiDy (ANR-21-CE40-0016).

2. PRELIMINARIES

2.1. Leafwise Poincaré metric. In all this section, we let F “ pM,L , Eq be a singular
holomorphic foliation on a complex manifold M . Suppose that M is endowed with a
Hermitian metric gM and for x P MzE, consider

ηpxq “ sup
!

}α1
p0q}gM ; α : D Ñ Lx holomorphic such that αp0q “ x

)

.

Above, }v}gM is the norm of a vector v P TxLx with respect to the Hermitian metric gM .
That is, }v}gM “ pgM,xpv, vqq

1{2. The function η was introduced by Verjovsky in [20]. It is
designed to satisfy the following facts.

Proposition 2.1. (1) For x P MzE, ηpxq ă `8 if and only if the leaf Lx is hyperbolic,
that is, it is uniformized by the Poincaré disk D.

(2) If Lx is hyperbolic, we have ηpxq “ }ϕ1p0q}gM , where ϕ : D Ñ Lx is any uniformiza-
tion of Lx such that ϕp0q “ x.

(3) If Lx is hyperbolic, then 4gM
η2

induces the Poincaré metric on Lx.

In this article, we are interested in the case of hyperbolic leaves and we need to specify
our global setting. We follow [6] in our vocabulary.

Definition 2.2. If all the leaves of F are hyperbolic, we say that F is hyperbolic. If
moreover there exists a constant c0 ą 0 such that ηpxq ă c0 for all x P MzE, we say that
F is Brody-hyperbolic.

From now on, we suppose that F is hyperbolic. We also need to define the type of
singularities we deal with.

Definition 2.3. Near a singularity a P E, there exists a vector field X defining F . In
coordinates pz1, . . . , znq centered at a, we can write

Xpzq “

n
ÿ

j“1

Fjpzq
B

Bzj
.

The functions Fj can be developed as a power series Fj “
ř

αPNn cα,jz
α. The 1-jet of X at

a is defined in the chart pU, zq as X1 “
řn

j“1

ř

|α|ď1 cα,jz
α B

Bzj
. See [10, Chapter I] for more

details. If the 1-jet of X has an isolated singularity at a, we say that a is a non-degenerate
singularity of F .

We use the following estimate of η for non-degenerate singularities. It can be found
in [1, Proposition 4.2] and its proof is basically the same as Dinh, Nguyên and Sibony’s
one [6, Proposition 3.3], together with a local estimate that is due to Lins Neto and
Canille Martins [13, Theorem 2].
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Proposition 2.4. Note d the distance induced by gM . Suppose that M is compact and that
F is Brody-hyperbolic with only non-degenerate singularities. Then, there exists a constant
C ě 1 such that

C´1dpx,Eq log‹ dpx,Eq ď ηpxq ď Cdpx,Eq log‹ dpx,Eq, x P MzE,

where log‹
“ 1 ` |log| is a log-type function.

2.2. Hyperbolic entropy. For x P MzE, denote by ϕx : D Ñ Lx a uniformization of Lx

such that ϕxp0q “ x. To unify notations, set also ϕapζq “ a, for a P E and ζ P D. The
idea of Dinh, Nguyên and Sibony [5] is to consider the Poincaré distance in D to be a
canonical time. More precisely, for R ě 0, consider the Bowen distance

dRpx, yq “ inf
θPR

sup
ξPDR

dpϕxpξq, ϕypeiθξqq, x, y P M.

It measures the distance between the orbits of x and y up to time R. It is clear that it is
independent on the choice of ϕx. This enables us to define the entropy of F . For x P M ,
R, ε ą 0, denote by BRpx, εq “ ty P M ; dRpx, yq ă εu the Bowen ball of radius ε and
center x up to time R. For Y Ă M , R, ε ą 0 and F Ă Y , we say that F is pR, εq-dense in
Y if Y Ă YxPFBRpx, εq. Denote by NpY,R, εq the minimal cardinality of an pR, εq-dense
subset in Y . The hyperbolic entropy of Y is defined as

hpY q “ sup
εą0

lim sup
RÑ`8

1

R
logNpY,R, εq.

For Y “ M , we denote it by hpF q. IfM is compact, then it does not depend on the choice
of gM . A similar and equivalent definition can be made with maximal pR, εq-separated
sets, but we do not need it. The interested reader can see [5] for more details.

2.3. Local orthogonal projection. In order to show Theorem 1.2, we need to build cells
in sufficiently small cardinality, such that two points x, y P M in the same cell are close
up to time R. To ensure such a proximity, we build a smooth map ψ : DR Ñ Ly close
to ϕx, take its lifting Ψ: DR Ñ D via ϕy, slightly correct it into a close holomorphic map
v : DR Ñ D, and finally correct v into a close rotation rθ : ξ ÞÑ eiθξ. That way, we are
able to show that ϕx and ϕy ˝ rθ are close up to large time. Actually, the last two steps of
this proof are hidden behind a result of Dinh, Nguyên and Sibony [6, Proposition 3.6].
For the first step of this construction, we need to recall our previous work [1] on local
orthogonal projections from a leaf to another.

For x P MzE, the metric gM can be restricted to Lx and induces a distance dLx on it.
For x P MzE and r ą 0, denote by Lxrrs “ tx1 P Lx ; dLxpx, x1q ă ru. Suppose that M is
compact and that all the singularities of F are non-degenerate.

Lemma 2.5 ([1, Lemma 4.3]). There exist constants ε0, ε1, k and K such that for two
points x, y P MzE, if dpx, yq ď ε1dpx,Eq, then there exists a local orthogonal projection

Φxy : Lxrε0dpx,Eqs Ñ Lyrkε0dpy, Eqs,

satisfying

(1) dLypy,Φxypxqq ď kdpx, yq,
(2) for x1, x2 P Lxrε0dpx,Eqs, dLypΦxypx1q,Φxypx2qq ď kdLxpx1, x2q.
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(3) Φxy is smooth and in a finite set of charts,

}Φxy ´ id}
8

ď eKdpx,Φxypxqq, }Φxy ´ id}C 1 ď eK
dpx,Φxypxqq

dpx,Eq
,

}Φxy ´ id}C 2 ď eK
dpx,Φxypxqq

dpx,Eq2
.

(4) If x1 P Lxrε0dpx,Eqs, y1 P Lyrkε0dpx,Eqs and dpx1, y1q ď ε1dpx1, Eq, then Φx1y1 “ Φxy

on the intersection of their domains of definition.

More precisely, we build the local orthogonal projection by solving an implicit equation
on the flow. That way, in singular charts, we are able to estimate the flow time that is
needed to join y and Φxypxq, with the notations of the previous lemma.

Lemma 2.6 ([1, Lemma 3.1]). Consider X a holomorphic vector field on a neighbourhood
of D2

with a non-degenerate singularity at the origin. Suppose that D2 is endowed with the
standard Hermitian metric on C2. Let x, y P 3

4
D2zt0u be such that Φxy exists in the sense of

Lemma 2.5. Denote by φy the flow of X starting at y from an open neighbourhood of 0 in
C to Ly. Then, there exists t P C, with t “ O

`

}x ´ y} }x}
´1
˘

such that Φxypxq “ φyptq.

2.4. Variations on the Grönwall Lemma. In order to obtain thorough estimates, we use
several generalizations of the Grönwall Lemma, including some non-linear cases. First,
let us state it in a form that contains these various versions and then do some remarks.

Proposition 2.7 (Lins Neto–Canille Martins [13, Proposition 6]). Let F : R` ˆ R` Ñ R`

be a continuous function such that F pt, xq ď F pt, yq if x ď y. Suppose that for any x0 P R`,
the Cauchy problem

(2.1) x1
ptq “ F pt, xptqq, xp0q “ x0,

has a unique maximal solution in a neighbourhood of t “ 0. Let x : r0, rxq Ñ R` be a
continuous function that satisfies

xptq ď x0 `

ż t

0

F ps, xpsqqds, t P r0, rxq ,

and y : r0, ryq Ñ R` be the unique maximal solution of (2.1) starting at x0. Then, for
t P r0,minprx, ryqq, xptq ď yptq.

Remark 2.8. Actually, Lins Neto and Canille Martins prove a stronger estimate for partial
orders on Rn

`, but we only need it for n “ 1. We use this result in two contexts. The first
one is of an autonomous system, sometimes in the non-linear case and sometimes in the
linear case (i.e. F pt, xq “ Cx, which gives the classical Grönwall Lemma). The second
one is a linear but non-autonomous system. More precisely, for F pt, xq “ Cx ` fptq. In
that case, note that we have

yptq “

ˆ

x0 `

ż t

0

fpsqe´Csds

˙

eCt.
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3. LOCAL CELL DECOMPOSITION

3.1. First estimates. We begin by some local work near a non-degenerate singularity.
We want to establish estimates of the divergence of orbits in a (small) step of hyperbolic
time. More precisely, we want to decompose the singular open sets into small cells in
which we have a good control of the flow in this hyperbolic time. Of course, we need
a bound on the cardinality of this covering by cells. Our main result in this section (see
Proposition 3.11) is close to [6, Proposition 2.7].

We consider F “ pM,L , Eq a Brody-hyperbolic singular holomorphic foliation on a
compact complex surfaceM (that is dimCM “ 2) with only non-degenerate singularities.
Take a P E and Ua » D2 a neighbourhood of a on which F is generated by a vector field
X. We suppose that the coordinates of Ua and X extend to a neighbourhood of D2

. We
need to clarify our vocabulary.

Definition 3.1. For z P 1
2
D2zt0u, note φz the flow of the vector field X starting at z,

defined on a maximal open subset of C such that φzptq stays in D2.
A flow path for z and X is a C 1 map γ : r0, T s Ñ C, where T P R`, γp0q “ 0 and

φzpγptqq is well defined for all t P r0, T s and belongs to 3
4
D2. Most of the time, T is

implicit. The length of γ as a path in C will be denoted by ℓpγq. The Poincaré length ℓP pγq

of γ is by definition the Poincaré length of φz ˝ γ in Lz. The notation ℓP pγq is used only if
there is no confusion possible for the point z and the vector field X.

Let δ : r0, T s Ñ Lz X 3
4
D2 be a C 1 map such that δp0q “ z. A flow path γ : r0, T s Ñ C

for z and X is said to correspond to δ if δptq “ φzpγptqq. Fix a uniformization ϕz of Lz

such that ϕzp0q “ z. Let ξ P D be such that ϕzpr0, ξsq Ă 3
4
D2. We say that a flow path

γ : r0, 1s Ñ Lz represents ξ if φzpγptqq “ ϕzptξq. Since the flow is a local biholomorphism,
it is clear that for such a ξ, there is a unique flow path representing it. Similarly, for such
a δ, there is a unique flow path corresponding to it.

Let z, w P 1
2
D2zt0u and R, δ ą 0. We say that z and w are pR, δq-relatively close following

the flow of X if for all ξ P DR, ϕzpξq P 3
4
D2 and for γ the flow path for z and X represent-

ing ξ, φwpγptqq belongs to D2 and for all t P r0, 1s, }φzpγptqq ´ φwpγptqq}1 ď δ }φzpγptqq}1;
and if we also have the same properties when switching the roles of z and w. Here, we
have denoted by }z}1 “ maxp|z1| , |z2|q for z “ pz1, z2q P D2.

We need a classification of non-degenerate singularities in dimension 2.

Theorem 3.2 (Briot–Bouquet, Poincaré–Dulac). Let a be a non-degenerate singularity of
a foliation F on a compact complex surface. There exist local coordinates pz1, z2q P D2

centered at a, such that F is generated on D2 by one of the vector fields

X1 “ z1
B

Bz1
` λz2

B

Bz2
, λ P C˚;

X2 “ z1
B

Bz1
` pmz2 ` µzm1 q

B

Bz2
, m P N˚, µ P C˚, |µ| ă

1

2
;

X3 “ z1
B

Bz1
´ αz2

`

1 ` z1z
q`1
2 fpz1, z2q

˘ B

Bz2
, q P N, }f}

8
ă 1,

α P p0, 1s X
“

pq ` 1q
´1, q´1

˘

.

In X3, if q “ 0, then we just have α “ 1.
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Proof. Let β be a characteristic number of the singularity. If β P C˚z
`

R´ Y N˚ Y 1
N˚

˘

,
then Poincaré linearization theorem implies that the singularity is linearizable and F is
generated by some X1. If β P N˚ Y 1

N˚ , then by Poincaré–Dulac theorem (see for both [10,
Chapter I, Section 5]) gives eitherX1 orX2, whether the singularity is linearizable or not.
Finally, if α P R´, taking α´1 if necessary, we can suppose that α P p0, 1s X rpq ` 1q´1, q´1q

for some q P N. By Briot–Bouquet theorem and a refinement by Camacho–Kuiper–
Palis [3, Lemma 7], we have the form X3. The estimates on µ and f can be obtained by
homothety or transformations of the type pz1, z2q ÞÑ pAz1, z2q for some A P C˚. □

In what follows, we suppose that F is generated on a neighbourhood of D2
by one of

the vector fields X “ Xj, for j P t1, 2, 3u. If j “ 1, we talk about the linearizable case, if
j “ 2 about the Poincaré–Dulac case and if j “ 3 about the Briot–Bouquet case. For X3,
we also consider

pX3 “ ´
1

α
z1
`

1 ` z1z
q`1
2 fpz1, z2q

˘´1 B

Bz1
` z2

B

Bz2
“ ´

1

α
z1
`

1 ` z1z
q`1
2 gpz1, z2q

˘ B

Bz1
` z2

B

Bz2
.

Making an other homothety, we can still suppose that }g}
8

ă 1. Exchanging z1 and z2 if
necessary, note that both X3 and pX3 are of the form

(3.1) rX3 “ z1
B

Bz1
´ αz2

`

1 ` zk1z2fpz1, z2q
˘ B

Bz2
,

with α P R`, k P N˚ and k ě α. We often use only this hypothesis. In that case, we are
able to make a unified proof of our estimates for X3 and pX3. The Briot–Bouquet case is
basically the only one for which we specify that flow and flow paths are for X3, pX3 or rX3

(that is, for any of X3 or pX3).
Now, we want to establish some first useful results that we use uniformly in all three

cases and throughout our proof. Since 0 is a non-degenerate singularity of the vector
field X, we know that there exist constants C0, C1, C2 ą 0 such that

(3.2) C´1
0 }z}1 ď }Xpzq}1 ď C0 }z}1 , z P D2;

(3.3) C´1
1 }z ´ w}1 ď }Xpzq ´ Xpwq}1 ď C1 }z ´ w}1 , z, w P D2;

(3.4) C´1
2 }z}1 |ln }z}1| ď ηpzq ď C2 }z}1 |ln }z}1| , z P

3

4
D2.

The last inequality is a consequence of Proposition 2.4.

Lemma 3.3. Let z be a point in 1
2
D2zt0u and γ be a flow path for z. We suppose that

ℓP pγq ď R. There exists a constant C3 ą 0 such that for all t,

|γptq| ď C´1
0 |ln }z}1|

`

eC3R ´ 1
˘

.

Proof. Consider a reparametrization rγ : r0, T s Ñ C of γ such that |rγ1ptq| “ 1 for all
t P r0, T s. It is clear that T ě supuPr0,T s |rγpuq| ě |γptq| for all t. Let us translate the
bound ℓP prγq ď R in terms of an integral.

R ě 2

ż T

0

}Xpφzprγptqqq}

ηpφzprγptqqq
dt ě C

ż T

0

dt

|ln }φzprγptqq}1|
,

where we used first the relation gP “
4gM
η2

and the fact that |rγ1ptq| “ 1, and sec-
ond the equivalence of Hermitian metrics, (3.2) and (3.4). Now, by (3.2), we have
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›

›pφz ˝ rγq
1
ptq

›

›

1
ď C0 }pφz ˝ rγq ptq}. Then, Grönwall Lemma gives }φzprγptqq}1 ď }z}1 e

C0t

and the same argument on the reverse path ensures that }φzprγptqq}1 ě }z}1 e
´C0t. Hence,

R ě C

ż T

0

dt

|ln }z}1| ` C0t
“

C

C0

ln

ˆ

1 `
C0T

|ln }z}1|

˙

.

Thus, |γptq| ď T ď C´1
0 |ln }z}1|

´

eC0C´1R ´ 1
¯

. □

The next result describes the Bowen ball of a singularity. It is close to [6, Lemma 2.5].

Lemma 3.4. Let R ą 0 and ε P
`

0, 1
2

˘

. If 0 ă }z}1 ă exp
`

lnpεqeC3R
˘

, then ϕzpDRq Ă εD2.

Proof. The proof is by contradiction. Take z1 P ϕzpDRq such that 1
2

ą }z1}1 ą ε. Let
γ : r0, 1s Ñ C be a flow path with respect to z1, of Poincaré length less than R and such
that φz1pγp1qq “ z. By Lemma 3.3, |γp1q| ď C´1

0 |ln }z1}1|
`

eC3R ´ 1
˘

. On the other hand,
using the same arguments as the previous lemma, we have the contradiction

}z}1 ě }z1
}1 e

´C0|γp1q|
ě }z1

}1 exp
`

ln }z1
}1

`

eC3R ´ 1
˘˘

ě exp
`

lnpεqeC3R
˘

. □

Fix ε P
`

0, 1
2

˘

and denote by rsingpRq “ exp
`

ln
`

ε
4

˘

eC3R
˘

and UsingpRq “ rsingpRqD2, for
R sufficiently large. The next paragraphs are devoted to prove our cell decomposition.
We need to distinguish three cases for the three vector fields Xj, for j P t1, 2, 3u.

3.2. Linearizable case. What we show in this subsection is quite easy, but it clarifies
our wishes, methods and notations for the two following subsections. Indeed, our idea
for the Briot–Bouquet and Poincaré–Dulac cases is to compare them to the corresponding
linearizable cases with λ “ ´α or λ “ m.

Take the vector field X “ X1, with the notations of Theorem 3.2. For z, w P 1
2
D2zt0u,

denote by zptq “ pz1ptq, z2ptqq “ φzptq and wptq “ pw1ptq, w2ptqq “ φwptq the coordinates
of the flow trajectories. Set λ1 “ 1 and λ2 “ λ. We have

zjptq “ zje
λjt, wjptq “ wje

λjt.

The cell decomposition is a consequence of the following estimate, together with anal-
ogous ones in both non-linearizable cases. In that case, it is somehow a weaker version
of [6, Proposition 2.7]. However, for the other two cases, we would not have something
as strong as what Dinh, Nguyên and Sibony obtain in the linearizable case.

Lemma 3.5. Let h, δ P p0, 1q be sufficiently small. For z, w P 1
2
D2z

`

1
2
UsingpRq

˘

, if for each
j P t1, 2u we are in one of the following configurations,

(C1) |zj| , |wj| ď δrsingpRq2,
(C2) wj, zj ‰ 0,

ˇ

ˇ

ˇ
1 ´

zj
wj

ˇ

ˇ

ˇ
ď δ and

ˇ

ˇ

ˇ
1 ´

wj

zj

ˇ

ˇ

ˇ
ď δ,

then z and w are ph, δq-relatively close following the flow.

Proof. Since our hypotheses are symmetric in z and w, it is sufficient to prove only the
assertions about flow paths with respect to z. Fix ξ P Dh, γ a flow path representing ξ
and j P t1, 2u. If zj and wj are in configuration (C2), then

|zjpγptqq ´ wjpγptqq| “

ˇ

ˇ

ˇ

ˇ

1 ´
wj

zj

ˇ

ˇ

ˇ

ˇ

|zjpγptqq| ď δ }zpγptqq}1 .
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Next, suppose that zj and wj are in configuration (C1). By Lemma 3.3 and since h
is small, we have |γptq| ď Ch |ln }z}1|. It follows by Grönwall Lemma and (3.2) that
}zpγptqq}1 ě rsingpRq1`Ch. On the other hand, if h is sufficiently small,

|zjpγptqq ´ wjpγptqq| ď p|zj| ` |wj|q e
|λj ||γptq|

ď 2δrsingpRq
2´Ch

ď δ }zpγptqq}1 . □

3.3. Poincaré–Dulac case. Now, suppose that X “ X2, with the notations of Theo-
rem 3.2. With the same notations as before, we have the explicit flow

z1ptq “ z1e
t, z2ptq “ pz2 ` µtzm1 q emt, w1ptq “ w1e

t, w2ptq “ pw2 ` µtwm
1 q emt.

The analogous of Lemma 3.5 is the following.

Lemma 3.6. Let h, δ P p0, 1q be sufficiently small. For z, w P 1
2
D2z

`

1
2
UsingpRq

˘

, if
(C1.1) |z1| , |w1| ď δrsingpRq2 or
(C1.2) w1, z1 ‰ 0,

ˇ

ˇ

ˇ
1 ´ z1

w1

ˇ

ˇ

ˇ
ď |ln }w}1|

´1 δ
4

and
ˇ

ˇ

ˇ
1 ´ w1

z1

ˇ

ˇ

ˇ
ď |ln }z}1|

´1 δ
4
,

and
(C2.1) |z2 ´ w2| ď δ

2
max p|z1|

m , |w1|
m

q or

(C2.2) z2, w2 ‰ 0,
ˇ

ˇ

ˇ
1 ´ z2

w2

ˇ

ˇ

ˇ
ď |ln }w}1|

´1 δ
4

and
ˇ

ˇ

ˇ
1 ´ w2

z2

ˇ

ˇ

ˇ
ď |ln }z}1|

´1 δ
4
,

then z and w are ph, δq-relatively close following the flow.

Proof. Similarly to Lemma 3.5, it is sufficient to prove the assertions concerning flow
paths for z. Take also the same notations for ξ, γ. By the same arguments as in the
linearizable case, we have |z1pγptqq ´ w1pγptqq| ď δ

4
}zpγptqq}1. Next, consider

(3.5) |z2pγptqq ´ w2pγptqq| ď |z2 ´ w2| e
mℜpγptqq

` |µγptq pzm1 ´ wm
1 q| emℜpγptqq.

First, focus on the second term in the right hand side. If z1 and w1 are in configura-
tion (C1.1), the same arguments as in the linearizable case show that it is bounded
above by δ

2
}zpγptqq}1. On the other hand, if z1 and w1 are in configuration (C1.2), we get

|µγptq| |zm1 ´ wm
1 | emℜpγptqq

ď Ch |ln }z}1|

ˇ

ˇ

ˇ

ˇ

1 ´
wm

1

zm1

ˇ

ˇ

ˇ

ˇ

|z1pγptqq|
m

ď |ln }z}1|

ˇ

ˇ

ˇ

ˇ

1 ´
w1

z1

ˇ

ˇ

ˇ

ˇ

|z1pγptqq| ,

if h is sufficiently small. In any case, the second term of (3.5) is bounded above by
δ
2

}zpγptqq}1. Now, consider the first term. If z2 and w2 are in configuration (C2.1), then

|z2 ´ w2| e
mℜpγptqq

ď
|z2 ´ w2|

|z1|
m |z1pγptqq|

m
ď
δ

2
}zpγptqq}1 .

Next, suppose that z2 and w2 are in configuration (C2.2). We distinguish two cases.

(i) |z2 ` µγptqzm1 | ď
|z2|

2
. In particular, z1 ‰ 0 and |µγptqzm1 | ě

|z2|

2
. Hence,

|z2 ´ w2| e
mℜpγptqq

“ |z2 ´ w2|
|z1pγptqq|

m

|z1|
m ď 2

ˇ

ˇ

ˇ

ˇ

1 ´
w2

z2

ˇ

ˇ

ˇ

ˇ

|µγptq| |z1pγptqq|
m

ď
δ

2
|z1pγptqq| ,

if h is sufficiently small, using Lemma 3.3 and |z1pγptqq| ď 3
4
.

(ii) |z2 ` µγptqzm1 | ą
|z2|

2
. In particular, |z2pγptqq| ě

|z2|

2
emℜpγptqq. Thus,

|z2 ´ w2| e
mℜpγptqq

ď 2

ˇ

ˇ

ˇ

ˇ

1 ´
w2

z2

ˇ

ˇ

ˇ

ˇ

|z2pγptqq| .

In any case, we get |z2pγptqq ´ w2pγptqq| ď δ }zpγptqq}1. □
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3.4. Briot–Bouquet case. This is the most delicate one. With the notations of (3.1),
consider X “ rX3, i.e. both X3 and pX3. Note zptq “ pz1ptq, z2ptqq “ φzptq, and also
rz2ptq “ z2ptqe

αt to compare it with the corresponding linearizable case, where we would
have rz2ptq being constant equal to z2. Take also the same notations for w. We begin by
some study of z alone.

Lemma 3.7. With the notations above, if |z1ptq| ď 3
4
,

|rz1
2ptq| ď α

ˆ

3

4

˙k´α

|z1|
α

|rz2ptq|
2 .

Proof. By a simple computation, we get

(3.6) rz1
2ptq “ ´αrz2ptqz1ptq

kz2ptqfpz1ptq, z2ptqq “ ´αrz2ptq
2zk1e

pk´αqtfpz1ptq, z2ptqq.

Now, since k ě α and 3
4

ě |z1ptq| “ |z1| e
ℜptq, we obtain our result. □

Lemma 3.8. If h ą 0 is sufficiently small, then for any z P 1
2
D2zt0u and any flow path γ

such that ℓP pγq ď h, 1
2

|z2| ď |rz2pγptqq| ď 2 |z2|.

Proof. Since h is small and by Lemma 3.3, |γptq| ď Ch |ln }z}1|. Integrating the inequality
of Lemma 3.7 along a radius gives for t ‰ 0,

|rz2ptq| ď |z2| ` C

ż |t|

0

|z1|
α

ˇ

ˇ

ˇ

ˇ

rz2

ˆ

s
t

|t|

˙ˇ

ˇ

ˇ

ˇ

2

ds.

We want to apply Proposition 2.7. With its notations, F ps, xq “ C |z1|
α x2 and the unique

solution ypsq is given by x0

1´C|z1|
αx0s

. Hence,

|rz2pγptqq| ď
|z2|

1 ´ C |z1|
α

|z2| |γptq|
ď

|z2|

1 ´ Ch |ln }z}1| |z1|
α

|z2|
.

Since x ÞÑ x lnx is bounded on
“

0, 3
4

‰

, we get |rz2pγptqq| ď 2 |z2| for h small enough. We
argue the same on the reverse path from z2pγptqq to z2 to obtain the other inequality. □

We can control the distance between z2pγptqq and w2pγptqq in small hyperbolic time.

Lemma 3.9. Let h ą 0 be sufficiently small and z, w P 1
2
D2zt0u be such that }z}1 ď 2 }w}1.

Let γ : r0, T s Ñ C be a flow path for z with ℓP pγq ď h. Then,

|rz2pγptqq ´ rw2pγptqq| ď 2 |z2 ´ w2| ` |z2| sup
uPr0,T s

|z1pγpuqq ´ w1pγpuqq| .

Proof. Let us bound |rz1
2ptq ´ rw1

2ptq| by (3.6).

|rz1
2ptq ´ rw1

2ptq| “ αeαℜptq
ˇ

ˇz1ptq
kz2ptq2fpz1ptq, z2ptqq ´ w1ptqkw2ptq

2fpw1ptq, w2ptqq
ˇ

ˇ .

Name gpa, bq “ akb2fpa, bq. It is clear that there exists a constant C ą 0 such that
ˇ

ˇ

Bg
Ba

ˇ

ˇ ď C |a|
k´1

|b|2 and
ˇ

ˇ

Bg
Bb

ˇ

ˇ ď C |a|
k

|b|. Integrating along direction a and then b, we get

|rz1
2ptq ´ rw1

2ptq| ďCeαℜptq
p|z2ptq|

2max p|z1ptq| , |w1ptq|q
k´1

|z1ptq ´ w1ptq|

` |w1ptq|
k max p|z2ptq| , |w2ptq|q |z2ptq ´ w2ptq|q,

ďC p|z2ptq| |rz2ptq| |z1ptq ´ w1ptq| ` |w1|
α max p|z2| , |w2|q |rz2ptq ´ rw2ptq|q ,

if |t| ď Ch |ln }z}1| and h is sufficiently small. Here, we used first that φzptq, φwptq stay
in 3

4
D2 if h is sufficiently small, since ln }z}1 and ln }w}1 have bounded quotient; and the
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same trick as in Lemma 3.7. Furthermore, by Grönwall Lemma, |z2ptq| ď |z2|
1
2 and by

Lemma 3.8, |rz2ptq| ď 2 |z2| if h is sufficiently small. Thus,

(3.7) |rz1
2ptq ´ rw1

2ptq| ď C
´

|z2|
3
2 |z1ptq ´ w1ptq| ` |w1|

α max p|z2| , |w2|q |rz2ptq ´ rw2ptq|

¯

.

Applying the last inequality to a reparametrization rγ of γ such that |rγ1puq| “ 1, integrating
along rγ and applying Proposition 2.7, we obtain for β “ C |w1|

α max p|z2| , |w2|q,

|rz2pγptqq ´ rw2pγptqq| ď

˜

|z2 ´ w2| ` C |z2|
3
2 sup

γ
|z1p¨q ´ w1p¨q|

ż |γptq|

0

e´βsds

¸

eβ|γptq|.

Now, since }w}1 ď 2 }z}1, we have β |γptq| ď Ch |w1|
α. Hence, if h is sufficiently small,

eβ|t| ď 2. For I “ eβ|γptq|
ş|γptq|

0
e´βsds, we also deduce that I ď C |γptq|. Finally, it is quite

clear that |z2|
1
2 |γptq| ď Ch so we conclude by putting together all these observations. □

This enables us to prove a similar result to the other cases.

Lemma 3.10. Let h, δ P p0, 1q be sufficiently small. For z, w P 1
2
D2z

`

1
2
UsingpRq

˘

, if for each
j P t1, 2u we are in one of the following configurations,

(C1) |zj| , |wj| ď δrsingpRq2,
(C2) wj, zj ‰ 0,

ˇ

ˇ

ˇ
1 ´

zj
wj

ˇ

ˇ

ˇ
ď δ

8
and

ˇ

ˇ

ˇ
1 ´

wj

zj

ˇ

ˇ

ˇ
ď δ

8
,

then z and w are ph, δq-relatively close following the flow of rX3.

Proof. As usual, we only deal with flow paths for z. We also keep the same notations as
Lemmas 3.5 and 3.6. By the same arguments as in the linearizable case, we still have
|z1pγptqq ´ w1pγptqq| ď δ

4
}zpγptqq}1, and |z2pγptqq ´ w2pγptqq| ď δ }zpγptqq}1 if z2 and w2

are in configuration (C1). Now, suppose that z2 and w2 are in configuration (C2). By
Lemmas 3.8 and 3.9,

ˇ

ˇ

ˇ

ˇ

z2pγptqq ´ w2pγptqq

z2pγptqq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

rz2pγptqq ´ rw2pγptqq

rz2pγptqq

ˇ

ˇ

ˇ

ˇ

ď 4

ˇ

ˇ

ˇ

ˇ

1 ´
w2

z2

ˇ

ˇ

ˇ

ˇ

`
δ

2
ď δ. □

3.5. Cell decomposition. Now, we wish to cover the bidisk by smaller bidisks such that
we have a good control of the divergence of the flow in small hyperbolic time of two
points in a cell. Let us take any j P t1, 2, 3u and X “ Xj if j ‰ 3, X “ rX3 if j “ 3.
Fix ε ą 0 and let R ą 0 be sufficiently large (depending on ε). Let C4 be a strictly
positive constant that is specified by our further computations. Name r0 “ e´ exppC4Rq,
rn “ r0e

n expp´C4Rq, for n P J1, NK, N “
P

e2C4R
T

, and θk “ 2kπ
N

, for k P J1, N 1K, and
N 1 “

P

4πeC4R
T

. Let D0 “ r0D and Dnk “ D
`

rn´1e
iθk , rn ´ rn´1

˘

, for n P J1, NK and
k P J1, N 1K. Define also the collection D “ tD0u Y tDnk;n P J1, NK , k P J1, N 1Ku. It is easy
to see that D is a covering of the disk if R is sufficiently large. This is actually about the
same covering as [6, p. 602].

Proposition 3.11. Let h be sufficiently small and R sufficiently large. For Dp1q, Dp2q P D,
let U “ Dp1q ˆ Dp2q and z, w P 2U X

`

1
2
D2zt0u

˘

. If C4 is well chosen,
(1) If z and w belong to UsingpRq, then z and w are pR, εq-close;
(2) If z or w does not belong to UsingpRq, then z and w are ph, e´2Rq-relatively close

following the flow.
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Proof. Point (1) is a direct consequence of Lemma 3.4 and the definition of UsingpRq.
Let us suppose by symmetry that z R UsingpRq. It is clear that if C4 ą C3 ` 2 and R is
sufficiently large, then w R 1

2
UsingpRq. Similarly, if C4 ą C3 and Dpjq “ D0, zj and wj are

in configuration (C1) of Lemmas 3.5, 3.6 and 3.10. On the other hand, ifDpjq isDnk, then
ˇ

ˇ

ˇ
1 ´

zj
wj

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
1 ´

wj

zj

ˇ

ˇ

ˇ
ď Ce´C4R. Since z, w R 1

2
UsingpRq, zj and wj are in configuration (C2)

of the three lemmas. We conclude by applying them. □

Remark 3.12. Actually, configuration (C2.1) in the Poincaré–Dulac case is most of the
time far weaker than the configurations corresponding to separatrices in any other cases.
On some sublevel t|z2| ď C |z1|

m
u, we can replace the disks in the second coordinate by

disks of radius e´2R |z1|
m. We do so later.

4. GENERAL STRATEGY AND REDUCTIONS

4.1. Geometric setup. First, let us describe the general geometric assumptions we make
to simplify our arguments. Since the entropy hpF q does not depend on the choice
of the Hermitian metric gM , we build one that satisfies some suitable conditions. Let
pUr, UaqrPR,aPE be a finite open covering of M by

‚ Singular flow boxes Ua » D2 such that F is generated on a neighbourhood of Ua

by one of the vector fields Xj, for j P t1, 2, 3u. We also suppose that the Hermitian
metric gM is given on Ua by }dz}

2.
‚ Regular flow boxes Ur » DˆTr such that 2Ur is still a flow box and 2U r XE “ H.

We often identify Tr with t0u ˆ Tr. We also suppose that the regular flow boxes
cover Mz pYaPEρUaq. Here, ρ ą 0 is fixed below. For this section, we need ρ ă 1

4
.

4.2. Reduction to studying orthogonal projections. We want to do some reductions
to a criterion involving an orthogonal projection. Let us begin by the following.

Proposition 4.1 (Dinh–Nguyên–Sibony [6, Proposition 4.1]). Denote by T “ YrPRTr. If
hpTq ă 8, then hpF q ă 8.

Whereas the three authors prove it in the setup of linearizable singularities, it is im-
plicit in [6] that it is enough to prove the following lemma.

Lemma 4.2. Let R, ε ą 0 and x P MzE be such that ϕx pD2Rq Ă 1
2
Ua. If R is sufficiently

large, then ϕx pDRq Ă ε
2
Ua.

Proof. We prove that for ε ą 0, there exists Kε ą 0 such that for any z P Ua with }z}1 ě ε,
there is z1 P

`

Uaz1
2
Ua

˘

XLz with dP pz, z1q ď Kε. It is easy to see that it implies the lemma.
We have to distinguish the vector field we are dealing with.

Briot–Bouquet or linearizable case. Note z “ pz1, z2q. Let j P t1, 2u be the coordinate
such that |zj| “ }z}1. By symmetry, considering pX3 if necessary, we can suppose that
j “ 1. Then, φzptq, for t P R`, stays in Lz. On the other hand, it reaches Uaz1

2
Ua in flow

time less than ln 1
4ε

and in hyperbolic time less than C
ε
, for some C ą 0.

Poincaré–Dulac case. With the same notations, if |z1| ě |z2|
2, then |z1| ě ε2

2
and we

argue similarly. If |z2|
2

ą |z1|, then 1
m

|ln |z2|| |µ| |z1|
m

ď 1
2

|z2|. In particular, φzptq escapes
1
2
Ua in positive real time 1

m
|ln |z2|| ď 1

m
|ln ε|. We conclude by the same observations. □

Let us recall a notion of [5] that clarifies our work on the orthogonal projection.

13



Definition 4.3. Let R, δ ą 0 be such that δ ď e´2R. Two points x, y P MzE are said to be
pR, δq-conformally close if the following properties, and the same when exchanging the
roles of x and y, are satisfied.

(a) There exists a smooth function ψ : DR Ñ Ly without critical points such that
dLypψp0q, yq ď δ and dDR

pψ, ϕxq ď δ.
(b) }dψ}

8
ď 2A for a constant A such that η ď A on M , and the norm is considered

for the Poincaré metric at the source DR and gM on the goal Ly.
(c) Denote by y1 “ ψp0q. There exists a map Ψ: DR Ñ D such that Ψp0q “ 0,

ϕy1 ˝ Ψ “ ψ and the Beltrami coefficient µΨ satisfies }µΨ}C 1 ď δ.
Recall that the Beltrami coefficient is defined to have BΨ

Bt
“ µΨ

BΨ
Bt

.

What interests us with this notion is the following lemma. What is hidden behind is
that we correct Ψ into a close holomorphic map by solving a Beltrami equation, and then
correct this holomorphic map into a rotation.

Lemma 4.4 (Dinh–Nguyên–Sibony [6, Proposition 3.6]). There exists a constant C ą 0
such that if R is large enough and x, y P T are pR, e´2Rq-conformally close, then they are
`

R{3, Ce´R{3
˘

-close, i.e. dR{3px, yq ď Ce´R{3.

Now, let us state the criterion we apply to show the finiteness of the entropy. Its proof
occupies most of the end of the section.

Proposition 4.5. Let h1 ą 0 be sufficiently small, R ą 0 be sufficiently large and pViqiPI be
a covering of T such that cardpIq ď egR and satisfying the following. Let i P I and x, y P Vi.

(1) There exists a subset F Ă D with DR Ă Dh1pF q “ YξPFDh1pξq,
(2) There exists a map ψ : Dh1pF q Ñ Ly without critical points, that is locally near

ξ P Dh1pF q given as the orthogonal projection from Lx near ϕxpξq to Ly near ψpyq,
(3) If ξ P F is such that ϕxpξq P 2ρUa, then ϕxpξq and ψpξq are

`

3h1, e
´2R

˘

-relatively
close following the flow, for rX3 in the Briot–Bouquet case.

Then, hpTq ď 3g.

Take α ą 0 and an open covering pViqiPI that satisfies the hypotheses of Proposition 4.5
for Rp1 ` αq. It is enough to show that for ε ą 0, if x, y P Vi for some i P I, and R is
sufficiently large, then dR{3px, yq ď ε. By Lemma 4.4, it is even enough to show that x, y
are pR, e´2Rq-conformally close. We fix x, y P Vi and R ą 0. Let us also take F and ψ
given by the hypotheses of Proposition 4.5. We need to control paths in singular flow
boxes and therefore need to meet F often enough. We use the two following lemmas.

Lemma 4.6. Let a P E and Va be a connected component of DRp1`αq X ϕ´1
x pρUaq. For

ζ1, ζ2 P Va, there exist paths λ1, . . . , λN : r0, 1s Ñ Dh1pF q X ϕ´1
x p2ρUaq with λ1p0q “ ζ1,

λNp1q “ ζ2, λjp1q “ λj`1p0q P F , for j P J1, N ´ 1K and ℓP pλjq ď 3h1, j P J1, NK.

Proof. Since F is Brody-hyperbolic and h1 is sufficiently small, if ϕxpξq P ρUa, then
ϕx pDh1pξqq Ă 2ρUa. Since Va is connected, there exists a path connecting ζ1 and ζ2.
Since F is h1-dense, one can correct this path into λ1, . . . , λN asked by the lemma. □

Lemma 4.7. Keep the notations of Lemma 4.6. Let λ be the concatenation of λ1, . . . , λN ,
z “ ϕxpζ1q and w “ ψpζ1q. There is a flow path γ (resp. δ) for z (resp. w) such that
ϕxpλptqq “ φzpγptqq (resp. ψpλptqq “ φwpδptqq) and |γptq ´ δptq| ď e´p2`αqR.
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Proof. The existence of the flow paths is a consequence of the fact that the flow is a local
biholomorphism. We need to show the estimate |γptq ´ δptq| ď e´p2`αqR. Note that λ
meets F at the ends of each λj and that they satisfy ℓP pλjq ď 3h1. Hence, we can show
by induction and using Lemma 2.6 that

|γptq ´ δptq| ď C }φwpγptqq ´ φzpγptqq}1 }φzpγptqq}
´1
1 ď Ce´2Rp1`αq

ď e´p2`αqR,

since ϕxpξq and ψpξq are p3h1, e
´2pR`αqq-relatively close following the flow. Here, we prove

by induction and use that the orthogonal projection from Lx near φzpγptqq onto Ly near
φwpδptqq coincide with the one from Lx near φzpγptqq onto Ly near φwpγptqq. □

We need to control some monodromy phenomena for the flow by the next result.

Lemma 4.8. There exists ε2 ą 0 such that if z, w P D2zt0u, for Ua » D2 a linearizable or
Poincaré–Dulac singular flow box, are such that }z ´ w}1 ď 1

2
}z}1, then the following holds.

If t1, t2, u1, u2 satisfy φzpt1q “ φzpt2q, φwpu1q “ φwpu2q and |pt1 ´ t2q ´ pu1 ´ u2q| ď ε2,
then t1 ´ t2 “ u1 ´ u2.

For a Briot–Bouquet singularity, we have the same result for at least one of the vector
fields X3 or pX3, depending on z, w (but not on t1, t2, u1, u2).

Proof. Name z “ pz1, z2q and w “ pw1, w2q. Note that the hypothesis }z ´ w}1 ď 1
2

}z}1
implies that there is a coordinate j P t1, 2u with zj, wj ‰ 0. Without loss of generality, we
suppose in the linearizable case that j “ 1. Since we can chooseX3 or pX3, we do the same
in the Briot–Bouquet case. The explicit form of the flow shows that t1 ´ t2, u1 ´u2 P 2iπZ.
We conclude for ε2 ă 2π. We argue similarly in the Poincaré–Dulac case. □

End of proof of Proposition 4.5. We correct the orthogonal projection ψ into a function rψ,
which coincides with ψ far from the singular set, is holomorphic near the singularities,
and still satisfies (a) and (b) of being pR, e´2Rq-conformally close. Then, condition (c)
is clear and it is sufficient to conclude. It is enough to construct this rψ on Va such that
it coincides with ψ on Va X ϕ´1

x

`

ρUaz
ρ
2
Ua

˘

and make this correction for each a and each
connected component Va. We can also do so only if Va X ϕ´1

x

`

ρ
2
Ua

˘

‰ H.
Fix any ξ P F X ϕ´1

x pρUaq. Such a ξ exists because F is supposed to be Brody-
hyperbolic, Va X ϕ´1

x

`

ρ
2
Ua

˘

‰ H and h1 is small. Set z “ ϕxpξq and w “ ψpξq. Let ζ P Va
and take paths λ : r0, 1s Ñ D given by Lemma 4.6 and γ, δ given by Lemma 4.7. For the
Briot–Bouquet case, we choose flow paths for the vector field that satisfies Lemma 4.8
for z and w. Let χ : r0, 1s Ñ r0, 1s be a smooth function such that χ “ 0 on

“

ρ
2
, 1
‰

and
χ “ 1 on

“

0, ρ
4

‰

. Define

rψpζq “ φw pχ p}φzpγp1qq}q pγp1q ´ δp1qq ` δp1qq .

Lemmas 4.8 and 4.7 imply that this definition does not depend on the choice of λ. The
correction rψ is holomorphic on VaXϕ´1

x

`

ρ
4
Ua

˘

and we conclude with the first remarks. □

Above, the correction process for ψ is close to [6, Lemma 2.12], but its proof is more
difficult in our context, because it is less explicit. To ensure that a h1-dense subset F
has its image in an appropriate cell, we use the following refinement result, due to Dinh,
Nguyên and Sibony, on holonomy mappings.

Lemma 4.9 (Dinh–Nguyên–Sibony [6, Lemma 4.4]). Let Ω be a subset of a finite union
of copies of C. Let V1, . . . ,Vn be coverings of Ω by disks, all satisfying cardVi ď K, for some
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uniform K ą 0. Then, there exists a covering V of Ω by disks, with cardV ď 200nK such
that for any D P V, there are Di P Vi, i P J1, nK, satisfying 2D Ă 2D1 X ¨ ¨ ¨ X 2Dn.

5. MESH OF TRANSVERSALS AND INITIAL COVERING

5.1. Mesh of transversals. At the end of our argument, we wish to apply Proposi-
tion 4.5. Hence, we need to build a covering of T, the union of some regular transver-
sals. However, to build such a covering, we also need to control how leaves from these
transversals behave when approaching the singular set. Therefore, we also build a mesh
of transversals, covering almost all the manifold, which is in some sense hyperbolically
dense in the foliation. That way, we are able to control at the beginning what happens to
leaves in small hyperbolic time near all of these transversals, and then refine to control
what happens all along the orbit in large hyperbolic time.

Let us fix some constant h1 ą 0 which is sufficiently small to have all the results of
Section 3 for h “ 3h1. We also take a constant K P p0, 1q and name ℏ “ Kh1. The
constant K is fixed in the following sections. Note that since we are only concerned in
what happens to points in T in timeR, we let ε “ dpT, Eq and rsingpRq “ exp

`

ln
`

ε
4

˘

eC3R
˘

.
Hence, ϕx pDRq X B pa, rsingpRqq “ H, for a P E and x P T, by Lemma 3.4. First, let us
state what we ask of our mesh of transversals.

Proposition 5.1. There exists a constant K 1 ą 0 such that for all R ą 0 sufficiently large,
there exists a mesh of transversals rT “ pTiqiPIT satisfying
(HT1) For x P MzE, if dpx,Eq ě rsingpRq, there is y P pYiPITTiq X Lx with dP px, yq ď ℏ;
(HT2) For i P IT, there are at mostK 1 elements j P IT such that there are x P Ti, y P LxXTj

with dP px, yq ď 2h1.

This is a difference in the structure of our argument and the one of the three authors
of [6]. They build transversals for each of the singular cells and have to consider some
multiplicity of transversals. The property (HT2) enables us to avoid this because the
refinement Lemma 4.9 applies to a bounded number of transversals.

In regular flow boxes Ur » D ˆ Tr, the Poincaré metric is equivalent to the standard
Hermitian metric. Then, we consider a lattice Λ “ Bℏ pZ ` iZq X D and Tr,λ “ tλu ˆ Tr.
The union of these transversals clearly satisfy (HT1) and (HT2) if B is sufficiently small.

So, the difficulty of Proposition 5.1 is for the singular flow boxes. We have to dis-
tinguish different cases for the different types of singularities. First, let a P E be a
singularity of linearizable or Briot–Bouquet type. Define rT0 “ rsingpRq and for j P N,

rTj “
`

rT0
˘p1´C5ℏq

j

, for some C5 P
`

0, 1ℏ
˘

that our further computation specifies. Let also

θT1 , . . . , θ
T
P be some angles that are C5ℏ-dense in r0, 2πs, for P “

Q

π
C5ℏ

U

. Define

Ta,j,k,u “

"

z “ pz1, z2q P D2
» Ua; zu “ rTj e

iθTk , }z}1 ď
3

2
rTj

*

,

for j P J0, NapRqK, k P J1, P K, u P t1, 2u and NapRq “ max
␣

j P N; rTj ď 2ρ
(

. Here, we
need ρ ă 1

4
so that the biggest transversal is still contained in 3

4
D2. Let us prove (HT1)

and (HT2) for these transversals. This is what is done in the following statements.

Lemma 5.2. Let a P E be a singularity as above. If C5 is sufficiently small, then for
any z P D2 with }z}1 P

“

rTj´1, r
T
j

‰

, for some j P r1, NapRqs, there exists z1 P Lz satisfying
}z1}1 “ rTj and dP pz, z1q ď ℏ

2
.
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Proof. Considering pX3 if necessary, we may assume that }z}1 “ |z1| without loss of gen-
erality. For the flow φzptq starting from z in time t P R`, let

T “ inf
␣

t P R`; }φzptq}1 “ rTj
(

.

It is clear that T ď ln
rTj

rTj´1
. Moreover, the path γ : r0, T s Ñ Lz defined by γptq “ φzptq

satisfies }γptq}1 ď rTj and }γpT q}1 “ rTj . Then, its Poincaré length is bounded by

ℓP pγq “ 2

ż T

0

}γ1ptq}

ηpγptqq
dt ď

CT
ˇ

ˇln rTj
ˇ

ˇ

ď C

˜

ln rTj´1

ln rTj
´ 1

¸

“
CC5ℏ
1 ´ C5ℏ

ď
ℏ
2
,

by (3.2) and (3.4) and if C5 is sufficiently small. □

Once we have reached the right norm, we need to turn around to a transversal angle.

Lemma 5.3. Let a P E be a singularity as above. If C5 is sufficiently small, z P D2 and
j P J1, NapRqK are such that }z}1 “ rTj , then there exist k P J1, P K, u P t1, 2u and a
z1 P Lz X Ta,j,k,u with dP pz, z1q ď ℏ

2
.

Proof. Similarly to the previous lemma, we can assume that }z}1 “ |z1|. Note z1 “ rTj e
iθ

and let k P J1, P K be such that
ˇ

ˇθ ´ θTk
ˇ

ˇ ď C5ℏ. Consider the path γptq “ φz

`

it
`

θTk ´ θ
˘˘

.

We have γp0q “ z and γp1q “

´

rTj e
iθTk , z1

2

¯

. By Grönwall Lemma, it is easy to see that

|z2| ď 3
2
rTj . Thus, z1 P Ta,j,k,1. On the other hand, if C5 is sufficiently small,

ℓP pγq ď
C 1

ˇ

ˇθ ´ θTk
ˇ

ˇ

ˇ

ˇln rTj
ˇ

ˇ ´ C |θ ´ θTk |
ď

ℏ
2
. □

For these singularities, the condition (HT1) is clear, and we need to prove (HT2).

Lemma 5.4. Let a P E be a singularity as above. There is a constant K 1 ą 0, independent
on R such that for any j P J0, NapRqK, k P J1, P K, u P t1, 2u, there are at most K 1 elements
pj1, k1, u1q P J0, NapRqK ˆ J1, P K ˆ t1, 2u such that there exist x P Ta,j,k,u, y P Ta,j1,k1,u1 X Lx

with dP px, yq ď 2h1.

Proof. Note that }x}1 P
“

rTj ,
3
2
rTj
‰

. On the other hand, }y}1 P

”

`

rTj
˘1`Ch1 ,

`

3
2
rTj
˘1´Ch1

ı

by Grönwall Lemma. A direct computation implies that there is a bounded number of
possible j1 if j is given. The integers k1, u1 are also in bounded quantity. □

We finish building the singular transversals, with a singularity a P E of Poincaré–Dulac
type. We take the same radii rTj “ prsingpRqq

p1´C5ℏqj , but this time for j P Z. We also keep
the same angles θTk , for k P J1, P K. Consider the transversals

Ta,j,k,1 “

"

pz1, z2q P D2
» Ua; z1 “ rTj e

iθTk , |z2| ď
3

2

`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ

*

;

Ta,j,k,2 “

#

pz1, z2q P D2
» Ua; z2 “

`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ eiθ
T
k , |z1| ď

ˆ

3

2

˙1{m

rTj

+

;

for j P Z such that rsingpRq ď max
`

rTj ,
`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ

˘

and min
`

rTj ,
`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ

˘

ď 2ρ. We
denote the maximal j by NapRq and the minimal j by N 1

apRq. For a unification purpose,
denote by N 1

apRq “ 0 for the other singularities. Now, we need ρ so that

2max
`

rTNapRq,
`

rTNapRq

˘m ˇ

ˇln rTNapRq

ˇ

ˇ

˘

ď 1.
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That way, the biggest transversal is contained in 3
4
D2. The next results are analogous to

Lemmas 5.2, 5.3 and 5.4.

Lemma 5.5. Let a P E be as above and C5 be small enough. If j P JN 1
apRq ` 1, NapRqK and

z “ pz1, z2q P D2 are such that we are in one of the following configurations,
(1) Either |z1| P

“

rTj´1, r
T
j

‰

and |z2| ď
`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ,
(2) Or |z1| ď rTj´1 and |z2| P

“`

rTj´1

˘m ˇ

ˇln rTj´1

ˇ

ˇ ,
`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ

‰

.

then, there is z1 “ pz1
1, z

1
2q P Lz, with dP pz, z1q ď ℏ

2
and one of the following configurations.

(i) Either |z1| “ rTj and |z2| ď
`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ,
(ii) Or |z1| ď rTj and |z2| “

`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ.

Proof. The situation is similar to Lemma 5.2, the proof of which we keep some notations.
Consider the flow φzptq starting at z in positive real time. Note φzptq “ pz1ptq, z2ptqq. Set

T “ inf
␣

t P R`; |z1ptq| “ rTj or |z2ptq| “
`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ

(

.

Similarly, it is enough to show that T ď C ln
rTj

rTj´1
. Indeed, for t ď T , |z2ptq| ď

`

rTj
˘

1
2 . In

configuration (1), the same arguments still work. Let us suppose the setup of configura-

tion (2). Denote by t “ 2 ln
rTj

rTj´1
. We prove that t ě T by ensuring that |z2ptq| ě

`

rTj
˘m.

|z2ptq| ě |z2|

ˆ

1 ´
|µtzm1 |

|z2|

˙

˜

rTj
rTj´1

¸2m

ě
`

rTj
˘m ˇ

ˇln rTj´1

ˇ

ˇ

˜

1 ´
ln
`

rTj {rTj´1

˘

ˇ

ˇln rTj´1

ˇ

ˇ

¸˜

rTj
rTj´1

¸m

.

Here, we have used both hypotheses of configuration (2). Now, the right hand side is

equal to
`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ

´

rTj
rTj´1

¯m

and we conclude. □

Again, once the right radius found, we have to turn to the right angle.

Lemma 5.6. Let a P E be as above. If C5 is small enough and z P D2 is in configuration (i)
or (ii), then there are k P J1, P K, j P t1, 2u and z1 P Lz X Ta,j,k,u with dP pz, z1q ď ℏ

2
.

Proof. In configuration (i), the proof is the same as for other singularities. Let us suppose
we are in configuration (ii). Note z2 “

`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ eiθ and k P J1, P K with
ˇ

ˇθ ´ θTk
ˇ

ˇ ď C5ℏ.
We search a small t such that

(5.1) fptq “

´

1 ` e´iθµzm1
`

rTj
˘´m ˇ

ˇln rTj
ˇ

ˇ

´1
t
¯

emt
“ eipθ

T
k´θq.

It is easy to see that |f 1p0q| ě m ´ |µ|
ˇ

ˇln rTj
ˇ

ˇ

´1
ě 1

2
, shrinking again ρ if necessary. It is

also clear that |fptq ´ fp0q ´ tf 1p0q| ď C |t|2 for |t| ď 1 and some uniform constant C ą 0.
Hence, f is injective on a small uniform disk and by Koebe 1

4
-Theorem, (5.1) admits a

solution t “ O pC5ℏq, if C5 is small enough. We conclude the same as in Lemma 5.3. □

So, (HT1) is also true for this type of singularity. The following statement finishes the
proof of Proposition 5.1, by showing (HT2) for Poincaré–Dulac singularities.

Lemma 5.7. Let a P E be a singularity as above. There is a constant K 1 ą 0, independent
on R such that for any j P J0, NapRqK, k P J1, P K, u P t1, 2u, there are at most K 1 elements
pj1, k1, u1q P J0, NapRqK ˆ J1, P K ˆ t1, 2u such that there exist x P Ta,j,k,u, y P Ta,j1,k1,u1 X Lx

with dP px, yq ď 2h1.
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Proof. The arguments are similar to those of Lemma 5.4, using that
`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ P

”

C´1
`

rTj
˘m

, C
`

rTj
˘

1
2

ı

. □

Actually, we correct a bit the movement that makes us end on a transversal to control
monodromy processes below. For u P t1, 2u, we consider a vector fieldXu

j , for j P t1, 2, 3u.
For the linearizable case, we put X1

1 “ B

Bz1
` λz2

B

Bz2
, X2

1 “ λ´1z1
B

Bz1
` z2

B

Bz2
. For the

Poincaré–Dulac case, we just put X1
2 “ X2

2 “ X2. For the Briot–Bouquet case, we put
X1

3 “ X3 and X2
3 “ pX3. When the j P t1, 2, 3u is implicitly determined by a singularity a,

we simply denote the vector field by Xu. This enables to have the following. We use
it below to obtain Lemma 7.8. Somehow, this is a way to deal with the movement to
reach a transversal. Since it is not so standard (compared with what we do in Section 7),
we need to control the behaviour in both coordinates. Hence, we need it not to be too
neutral, and avoid turning around inside a transversal level t|zu| “ rTj u.

Lemma 5.8. Let z P 2ρUa be such that dpx,Eq ě rsingpRq. There are a transversal Ta,j,k,u

and flow paths γv : r0, 1s Ñ C for Xv, v P t1, 2u, such that φ1
zpγ1ptqq “ φ2

zpγ2ptqq, where φv
z

denotes the flow of Xv, φv
zpγvp1qq P Ta,j,k,u, ℓP pγq ď ℏ and

‚ In the linearizable case, there is a constant c ą 0 such that

|ℑpγvp1qq| ď c |ℜpγvp1qq| ` O pC5ℏq , v P t1, 2u.

‚ In the Briot–Bouquet and Poincaré–Dulac cases, |ℑpγvp1qq| “ OpC5ℏq.

Proof. We change slightly the processes of Lemmas 5.2, 5.3, 5.5 and 5.6. Note that they
already give us a flow path γ, with γp1q “ t1 ` t2, where t1 is given by Lemma 5.2 or 5.5,
and t2 by Lemma 5.3 or 5.6. In any case, |t2| “ O pC5ℏq so it is enough to show that

‚ We can choose |ℜpt1q| ě c |ℑpt1q| and |ℜpλt1q| ě c |ℑpλt1q| in the linearizable case.
‚ ℑptv1q “ OpC5ℏq, where tv1 is the flow time corresponding to Xv and Lemma 5.3

for the Briot–Bouquet or Poincaré–Dulac case.

For the Poincaré–Dulac case, t1 is real. For the linearizable case, we consider a complex
number ω of modulus 1 such that ℜpωq ą 0 and ℜpλωq ‰ 0. For φzpωtq and with notations

of Lemma 5.2, T ď 1
ℜpωq

ln
rTj

rTj´1
. We obtain our result if C5 is small enough. For the Briot–

Bouquet case, our process is in real flow time for X1. We have

φ1
zpγ1ptqq “

´

z1e
γ1ptq, z2pγ1ptqq

¯

“ φ2
zpγ2ptqq “

´

z1pγ
2
ptqq, z2e

γ2ptq
¯

.

Note rz2ptq “ z2ptqe
αt and pz2ptq “ rz2ptq ´ z2. Locally, it is clear that

γ2ptq “ ´αγ1ptq ` ln

ˆ

1 `
pz2pγ

1ptqq

z2

˙

.

Since pz1
2ptq “ rz1

2ptq, by Lemmas 3.7 and 3.8, we get |pz1
2ptq| ď C |z1|

α
|z2|

2. It follows that
|pz2ptq| “ O

`

C5ℏ |z2|
2
˘

and since C5ℏ is small, that |ℑ pγ1ptqq| “ O pC5ℏq. □

5.2. Initial covering. Now, we want to build an initial covering of rT on which we control
the orthogonal projection and the flow in hyperbolic time 3h1. This is the covering that
we progessively refine by Lemma 4.9 in order to apply Proposition 4.5. As we did for the
transversals, let us begin by stating what we wish for our covering.
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Proposition 5.9. There exists a constant C6 ą 0 such that for R sufficiently large we have
the following. For each i P IT, there exists a covering by disks Vi of Ti such that
(HD1) If Ti is a regular transversal, D P Vi and x, y P 2D, the orthogonal projection Φxy

exists on ϕx pD3h1q and satisfies dpx1,Φxypx1qq ď e´2R.
(HD2) If Ti is a singular transversal, D P Vi and x, y P 2DzUsingpRq, then the orthogonal

projection Φxy exists in a neighbourhood of x and satisfies dpx,Φxypxqq ď e´2R.
Moreover, x and Φxypxq are p3h1, e

´2Rq-relatively close following the flow.
(HD3) maxiPIT cardVi ď eC6R.

In the regular case, we can simply cover Tr,Λ by Ce4R disks of radius Be´2R, for B
sufficiently small. The difficulty is again the singular case and we address particularly
different types of singularities. For a linearizable or Briot–Bouquet singularity, we con-
sider the covering D of Subsection 3.5 of a transversal Ta,j,k,u. More precisely, we consider
only the disks of D that intersect Ta,j,k,u.

For a Poincaré–Dulac singularity, we consider the same covering if u “ 2. On the
other hand, if u “ 1, we consider a covering of Ta,j,k,1 by O

`

e2C4R
˘

disks of radius
`

rTj
˘m ˇ

ˇln rTj
ˇ

ˇ e´C4R. Note that
ˇ

ˇln rTj
ˇ

ˇ e´C4R ď e´2R because C4 ą C3 ` 2. Actually, we need
something stronger and need to enlarge again C4.

Proof of Proposition 5.9. Points (HD1) and (HD3) are clear. We have to prove (HD2).
For a transversal Ti “ Ta,j,k,u, D P Vi and x “ pz1, z2q, y “ pw1, w2q P 2DzUsingpRq, we
have zu “ wu. In any case, it is then clear that }z´w}1

}z}1
“ O

`

|ln }z}1| e
´C4R

˘

“ O
`

e´2R
˘

.
Thus, the orthogonal projection exists and y1 “ pw1

1, w
1
2q “ Φxypxq “ φyptq, for some

t “ Op|ln }z}1| e
´C4Rq. To show that x and y1 are p3h1, e

´2Rq-relatively close following the
flow, we have to consider different cases. Note v P t1, 2u such that v ‰ u, so that the
coordinate on the transversal is zv.
D “ D0 for a linearizable, Briot–Bouquet or Poincaré–Dulac singularity with u “ 2. Note

that dpx, y1q ď Cr0. Since C4 ą C3 and |zu| ě prsingpRqq
m, it is easy to check that zu and w1

u

are in configuration (C2) and zv, w1
v in configuration (C1) of Lemmas 3.5, 3.6 and 3.10.

D “ Dnk with the same singularities. Here, we have }z´w}1
}z}1

“ O
`

e´C4R
˘

and t is a
O
`

e´C4R
˘

. Since tzv “ 0u is a separatrix, Grönwall Lemma implies that zv and w1
v are in

configuration (C2). For a linearizable or Briot–Bouquet singularity, this is the same for
zu and w1

u. For the Poincaré–Dulac case,

z2 ´ w1
2 “ z2 ´ pz2 ` µtwm

1 q emt.

The condition |w1|
m

ď C |z2| |ln }z}1|
´1 and t “ O

`

e´C4R
˘

give us that z2 and w1
2 are in

configuration (C2.2) if C4 ą C3 ` 2.
A Poincaré–Dulac singularity with u “ 1. Since t “ O

`

|ln }z}1| e
´C4R

˘

, z1 and w1
1 are in

configuration (C1.2) if C4 ą 2C3 ` 2. On the other hand,

z2 ´ w1
2 “ z2 ´ pw2 ` µtzm1 q emt.

This time, |z2 ´ w2| “ O
`

|z1|
m

|ln }z}1| e
´C4R

˘

and again t “ O
`

e´2R
˘

. Hence, |z2 ´ w1
2| is

a O
`

|z1|
m e´2R

˘

and z2, w1
2 are in configuration (C2.1). □

6. HOLONOMY AND FLOW IN HYPERBOLIC TIME

6.1. Comparison of three motion processes. We need to control the behaviour of an
orthogonal projection. Since we work on a universal cover, it will be very convenient
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to have processes that are invariant under homotopy and that is why we study holo-
nomy. Moreover, this motion enables us to carry information step by step from far away
transversals to the regular transversals where we want to build orthogonal projections.
Still, we need it to be well defined on an initial disk and a way to keep disks in the pro-
cess. Here, estimating the flow is crucial to guarantee these technical elements. The end
of the proof relies deeply on comparing these three motions. We need some preparation.

Lemma 6.1. Let a P E be some singularity of F . There exists a constant ε3 ą 0 such that
for any z0 P 3

4
Ua, there exists a regular flow box U » D ˆ T with B pz0, ε3 }z0}1q Ă U .

Proof. If z P Ua satisfies }z ´ z0}1 ď 1
2C0C1

}z0}1, then }Xpzq ´ Xpz0q}1 ď 1
4

}Xpz0q}1

by (3.2) and (3.3). Write X “ X1
B

Bz1
`X2

B

Bz2
. Without loss of generality, we can suppose

that }Xpz0q}1 “ |X1pz0q|. Considering the exponential map of X
X1

, we conclude. □

This preparation enables us to ensure that the holonomy maps we consider are not
only germs, but are defined on the whole disks of the initial covering.

Proposition 6.2. Let Ti,Tj P rT, z P Ti and λ : r0, 1s Ñ Lz be such that λp0q “ z, λp1q P Tj

and ℓP pλq ă 2h1. Let D P Vi be a disk of the initial covering containing z. If R is sufficiently
large, the holonomy map Holλ along λ from Ti to Tj is well defined on 2D.

If w P 2D, there exists a unique map rΦzw : D2h1 Ñ Lw such that near ζ P D2h1, if
z1 “ ϕzpζq and w1 “ rΦzwpζq, then rΦzw “ Φz1w1 ˝ ϕz, where Φz1w1 is the orthogonal projection
from Lz1 near z1 onto Lw1 near w1; and moreover rΦzw “ Φzw ˝ ϕz in a neighbourhood of 0.

Finally, if w2 “ Holλpwq and ζ P D2h1 is such that ϕzpζq “ z1 “ λp1q, then rΦzw “ Φz1w2 ˝ϕz

in a neighbourhood of ζ.

Proof. Since F is Brody-hyperbolic and h1 is small, the conclusions are clear for Ti a
regular transversal. If Ti is a singular transversal, then note that z and w are p3h1, e

´2Rq-
relatively close following the flow by Proposition 5.9. Considering a flow path γ for z
representing λ and using Lemma 6.1, we can cut γ in parts where λptq and φwpγptqq are
in the same flow box to ensure that the holonomy is well defined. The existence of rΦzw

and its link with Φz1w2 can be addressed similarly using Lemma 2.6. □

6.2. Image of disks by holonomy. Now that we know the holonomy maps are well
defined on the disks of the covering, we need a method to keep disks to apply Lemma 4.9.
We need the following notion, which is close to one that may be found in [6, p. 617].

Definition 6.3. Let U be an open subset of C and σ ą 1. We call U σ-quasi-round if there
exists a disk D with σ´1D Ă U Ă σD.

Given a σ-quasi-round open set, we use the following to make it round.

Lemma 6.4. There exists σ0 ą 1 such that for σ P p1, σ0q and U σ-quasi-round, there exist
four disks D1, D2, D3, D4 with U Ă Y4

k“1Dk and 2Dk Ă 2U , for k P J1, 4K.

Proof. Let D be a disk with σ´1D Ă U Ă σD. By an affine transformation of C, one
can suppose that D “ D. Il is enough to build the Dk satisfying 2Dk Ă 2σ´1D and
σD Ă Y4

k“1Dk. Easy computations show that for σ ă σ0 “
a?

6 ´
?
2 « 1.02 and

Dk “ D
´´

4
?
3
3

´ 2
¯

σ´1ik,
´

2 ´ 2
?
3
3

¯

σ´1
¯

, we have the result. □
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Fix σ1 P p0, σ0q. We want to prove the following. Note that this is where being in di-
mension 2 is crucial for the case of linearizable singularities [6]. Indeed, for transversals
of higher dimension, one would have polydisks of the form ∆ “ r1D ˆ ¨ ¨ ¨ ˆ rnD, with
possibly very degenerate quotients ri

rj
and no refinement lemma would be available.

Proposition 6.5. We keep the notations of Proposition 6.2. If h1 is sufficiently small, R is
sufficiently large and D1 Ă 2D is a disk, then HolλpD1q is σ1-quasi-round.

Let us begin with the easiest cases.

Proposition 6.5’s beginning of proof. First, suppose that Ti or Tj is a regular transversal.
Note that Holλ is holomorphic without critical points. Hence, it is close to homotheties on
small disks and we conclude. Here, we study a bounded number of maps, independently
of R. Moreover, these arguments still work if we consider singular transversals that do
not approach too much (independently of R) the singularities.

Now, suppose that Ti and Tj are singular transversals, for a linearizable singularity.
Let us introduce many notations, that we keep for the other types of singularities. Note
z0 “ pz01 , z

0
2q the center of the disk D1, and z1 “ pz11 , z

1
2q “ Holλpz0q. Let γ : r0, 1s Ñ Lz0

be a flow path corresponding to λ. Here, we can suppose that λ is a path on Lz0, since
we have a sequence of flow boxes that contain the image of λ and corresponding plaques
for z0. Note w0 “ pw0

1, w
0
2q P D1, w1 “ pw1

1, w
1
2q “ Holλpw0q, which is well defined by

Proposition 6.2. Let w11 “ pw
11
1 , w

11
2 q “ φw0pγp1qq. Finally, denote Ti “ Ta,j0,k0,u0 and

Tj “ Ta,j1,k1,u1. By definition, note that z0u0
“ w0

u0
and z1u1

“ w1
u1

. Let us go back to the
linearizable case. For j P t1, 2u, λ1 “ 1 and λ2 “ λ, we have w11

j ´ z1j “ pw0
j ´ z0j qeλjγp1q.

Hence, if u0 “ u1, HolλpD1q is actually a disk. On the other hand, if u0 ‰ u1,

w1
“ φw11

ˆ

1

λu1

ln
z1u1

w11
u1

˙

“ φw11

ˆ

1

λu1

ln
z0u1

w0
u1

˙

.

Denote by tw “ 1
λu1

ln
z0u1
w0

u1

. We keep this notation such that w1 “ φw11ptwq in the other

cases. Here, we have tw “ 1
λu1

z0u1´w0
u1

z0u1
` O

ˆ

ˇ

ˇ

ˇ

z0u1´w0
u1

z0u1

ˇ

ˇ

ˇ

2
˙

. This implies that

w1
u0

´ z1u0
“ z0u0

eλu0γp1q
`

eλu0 tw ´ 1
˘

“
λu0

λu1

z0u0
eλu0γp1q

z0u1
´ w0

u1

z0u1

ˆ

1 ` O

ˆˇ

ˇ

ˇ

ˇ

w0
u1

´ z0u1

z0u1

ˇ

ˇ

ˇ

ˇ

˙˙

.

Finally, since u0 ‰ u1, it is easy to see that we can not come from a separatrix disk, i.e.
D ‰ D0. Therefore,

ˇ

ˇ

ˇ

w0
u1

´z0u1
z0u1

ˇ

ˇ

ˇ
ď Ce´C4R and we conclude because w0

u1
runs through the

disk D1 of center z0u1
.

Next, consider a Poincaré–Dulac type singularity. We need to distinguish all four cases
for starting and arrival transversals.
u0 “ u1 “ 1. As in the linearizable case, w11 “ w1 and w1

2 ´ z12 “ pw0
2 ´ z02qemγp1q. It

follows that HolλpD1q is a disk.
u0 “ 2 and u1 “ 1. Here, we have tw “ ln

z01
w0

1
and D ‰ D0. As before, it follows that

tw “
z01´w0

1

z01

´

1 ` O
´
ˇ

ˇ

ˇ

z01´w0
1

z01

ˇ

ˇ

ˇ

¯¯

and
ˇ

ˇ

ˇ

z01´w0
1

z01

ˇ

ˇ

ˇ
ď Ce´C4R. Let us compute.

w
11
2 “

`

z02 ` µγp1qw0m
1

˘

emγp1q
“ z12 ´ mµγp1qz1m1

z01 ´ w0
1

z01

`

1 ` O
`

e´C4R
˘˘

.
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By the estimate on tw and since w1 “ φw11ptwq, we get

w1
2 ´ w

11
2 “

´

mw
11
2 ` µw

11m
1

¯ z01 ´ w0
1

z01

`

1 ` O
`

e´C4R
˘˘

“
`

mz12 ` µz1m1
˘ z01 ´ w0

1

z01

`

1 ` O
`

e´2R
˘˘

,

because z0 and w0 are p3h1, e
´2Rq-relatively close following the flow. Here, we used that

since u0 “ 2, we still have |z11 |
m

“ O
´

|ln }z0}1|
´1

|z12 |

¯

. Putting together the last two
equations, we conclude if R is sufficiently large by

w1
2 ´ z12 “

`

mµγp1qz1m1 ´ mz12 ` µz1m1
˘ z01 ´ w0

1

z01

`

1 ` O
`

e´2R
˘˘

.

u0 “ 1 and u1 “ 2. Since u1 “ 2,
ˇ

ˇ

ˇ
m ´ µ

z1m1
z12

ˇ

ˇ

ˇ
ą 1

2
. Arguing as in Lemma 5.6, we get

(6.1) tw “
z12 ´ w

11
2

mw
11
2 ` µw

11m
1

ˆ

1 ` O

ˆˇ

ˇ

ˇ

ˇ

z12 ´ w
11
2

z12

ˇ

ˇ

ˇ

ˇ

˙˙

“
z12 ´ w

11
2

mz12 ` µz1m1

`

1 ` O
`

e´2R
˘˘

,

since w11
1 “ z11 and

ˇ

ˇ

ˇ
w

11
2 ´ z12

ˇ

ˇ

ˇ
“
ˇ

ˇz02 ´ w0
2

ˇ

ˇ emℜpγp1qq
ď

|z02 ´ w0
2|

|z01 |
m

ˇ

ˇz11
ˇ

ˇ

m
“ O

`

e´2R
ˇ

ˇz12
ˇ

ˇ

˘

.

Hence, we conclude with the estimate

z11 ´ w1
1

z11
“

emγp1q

mz12 ` µz1m1
pz02 ´ w0

2q
`

1 ` O
`

e´2R
˘˘

.

u0 “ u1 “ 2. This time, z02 “ w0
2. Thus,

z12 ´ w
11
2 “ µγp1qpz1m1 ´ w

11m
1 q and z11 ´ w

11
1 “ eγp1q

pz01 ´ w0
1q.

Moreover, the following bound and a similar for z1m1 ´ w
11m
1 show that (6.1) still holds.

ˇ

ˇ

ˇ
z12 ´ w

11
2

ˇ

ˇ

ˇ
“ |µγp1q|

ˇ

ˇz1m1 ´ w1m
1

ˇ

ˇ ď C |µγp1q|
ˇ

ˇz11
ˇ

ˇ

m
e´C4R ď C

ˇ

ˇz12
ˇ

ˇ e´C4R,

if h1 is sufficiently small, because u1 “ 2. Here, we have considered the case D ‰ D0 but
D “ D0 is even simpler. It follows that

z11 ´ w1
1 “ eγp1q

pz01 ´ w0
1q

˜

1 ´
µγp1q

mz12 ` µz1m1

m´1
ÿ

k“0

`

z11
˘k
´

w
11
1

¯m´k
`

1 ` O
`

e´2R
˘˘

¸

.

Since u1 “ 2, note that |z12 | ě 1
3

|µγp1q| |z11 |
m if h1 is sufficiently small. Therefore,

z11 ´ w1
1

z11
“
z01 ´ w0

1

z01
ˆ
mz12 ` µp1 ´ γp1qqz1m1

mz12 ` µz1m1

`

1 ` O
`

e´2R
˘˘

.

We have our result for R sufficiently large. □

It leaves us with the Briot–Bouquet case, for which we still need some preparation.
We need to ensharpen the estimates of Subsection 3.4. Let us reintroduce some of its
notations. Consider the flow in rX3, for z P 1

2
D2, denote by φzptq “ pz1ptq, z2ptqq, with

z1ptq “ z1e
t. Denote by rz2ptq “ z2ptqeαt and pz2ptq “ rz2ptq ´ z2, as in Lemma 5.8.
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Lemma 6.6. Take the notations above for z0 and w0 in the proof of Proposition 6.5. If R is
sufficiently large and h1 is sufficiently small, then

(i) If z01 “ w0
1, then |pz02pγp1qq ´ pw2pγp1qq| “ O p|z02 | |z02 ´ w0

2|q.
(ii) If z02 “ w0

2, then |pz02pγp1qq ´ pw0
2pγp1qq| “ O p|z02 | |z01 ´ w0

1|q.

Proof. Note that pz01

2 ptq “ rz0
1

2 ptq and by (3.7),

(6.2)
ˇ

ˇ

ˇ
pz0

1

2 ptq ´ pw01

2 ptq
ˇ

ˇ

ˇ
ď C

´

ˇ

ˇz02
ˇ

ˇ

3
2
ˇ

ˇz01ptq ´ w0
1ptq

ˇ

ˇ `
ˇ

ˇw0
1

ˇ

ˇ

α
max

`ˇ

ˇz02
ˇ

ˇ ,
ˇ

ˇw0
2

ˇ

ˇ

˘
ˇ

ˇ

rz02ptq ´ rw0
2ptq

ˇ

ˇ

¯

.

Now, consider the two cases of our statement. In the first one, z01ptq “ w0
1ptq and using

Lemma 3.9, |rz02ptq ´ rw0
2ptq| ď 2 |z02 ´ w0

2|. Hence,
ˇ

ˇ

pz02pγp1qq ´ pw0
2pγp1qq

ˇ

ˇ ď C
ˇ

ˇln
›

›z0
›

›

1

ˇ

ˇ

ˇ

ˇz01
ˇ

ˇ

α ˇ
ˇz02

ˇ

ˇ

ˇ

ˇz02 ´ w0
2

ˇ

ˇ .

Then, our result is a consequence of the fact that |z01 |
α

|ln }z0}1| is bounded.
In the second case, we have pz02ptq´ pw0

2ptq “ rz02ptq´ rw0
2ptq. Applying the refined Grönwall

Lemma 2.7 to (6.2), denoting by β “ C |w0
1|

α
max p|z02 | , |w0

2|q, we obtain

ˇ

ˇ

pz02pγp1qq ´ pw0
2pγp1qq

ˇ

ˇ ď C
ˇ

ˇz02
ˇ

ˇ

3
2 e|γp1q|

ˇ

ˇz01 ´ w0
1

ˇ

ˇ

ż |γp1q|

0

eβp|γp1q|´sqds.

Since β |γp1q| is uniformly bounded, the last integral is bounded above by C |γp1q|. On
the other hand e|γp1q| ď |z02 |

´ 1
2 if h1 is sufficiently small. The result follows. □

Proposition 6.5’s end of proof. We just have to consider a Briot–Bouquet case and with
our arguments in the regular case, we can suppose that }z0}1 is sufficiently small (inde-
pendently of R). Considering pX3 if necessary, we can suppose that u1 “ 1. We have to
distinguish whether u0 “ 1 or u0 “ 2.

Case u0 “ 1. In that case, tw “ 0. It follows that

z12 ´ w1
2 “ e´αγp1q

`

z02 ´ w0
2 ` pz02pγp1qq ´ pw0

2pγp1qq
˘

“ e´αγp1q
`

z02 ´ w0
2

˘ `

1 ` O
`
ˇ

ˇz02
ˇ

ˇ

˘˘

.

For O p|z02 |q ď σ1 ´ 1, we have our result.
Case u0 “ 2. As for other singularities, tw “ ln

z01
w0

1
“

z01´w0
1

z01

`

1 ` O
`

e´C4R
˘˘

, since

D ‰ D0. On the other hand, z12 ´ w
11
2 “ e´αγp1qppz02pγp1qq ´ pw0

2pγp1qqq. We get

z12 ´ w1
2 “ e´αγp1q

ˆ

pz02pγp1qq ´ pw0
2pγp1qq ´ αrz12p1 ` z11z

1
2fpz11 , z

1
2qq

z01 ´ w0
1

z01

`

1 ` O
`

e´2R
˘˘

˙

,

because z02 and w0
2 are p3h1, e

´2Rq-relatively close following the flow. Here, we have
denoted by rz12 “ rz02pγp1qq. By Lemma 6.6 and Lemma 3.8,

z12 ´ w1
2 “ ´αe´αγp1q

rz12p1 ` z11z
1
2fpz11 , z

1
2qq

z01 ´ w0
1

z01

`

1 ` O
`

e´2R
˘

` O
`ˇ

ˇz01
ˇ

ˇ

˘˘

.

Choosing |z01 | sufficiently small and R sufficiently large, we conclude. □

7. HYPERBOLIC MOTION TREES

7.1. Covering the Poincaré disk. We still face some serious problems. Whereas a
transversal can only interact with a finite number of others by (HT2), it can do so in many
ways. Indeed, a transversal that is close to the singularity has around eC3R monodromy
paths of Poincaré length lower than 2h1. To tackle this, we consider some standard flow
motion. We need a refinement of Lemma 3.3, the proof of which is the same.
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Lemma 7.1. Let z P 1
2
Uaztau, γ : r0, 1s Ñ C be a flow path for z and h1 be sufficiently

small. We denote by ℓP pγq the Poincaré length of φz ˝γ and ℓpγq the length of γ for the usual
Hermitian metric of C. If ℓP pγq ď h1, then there exists a constant C7 ą 1 with

C´1
7 ℓpγq ď ℓP pγq |ln }z}1| ď C7ℓpγq.

Fix ℏ “ 1
3C2

8
h1 and an integer p ą 0, for C8 ą C7 that our further computation specifies.

For z P Ta,j,k,u in a singular transversal, denote by

φkpzq “ φz

´

C´1
8 h1

ˇ

ˇln rTj
ˇ

ˇ e
2ikπ
p

¯

, k P J0, p ´ 1K .

These maps are standart flows. In what follows, we use criteria close to [6, Lemma 4.6].

Lemma 7.2. Let z P Ta,j,k,u be in a singular transversal. If p is sufficiently large, h1 is
sufficiently small and C8 is well chosen, there exist ζ0, . . . , ζp´1 P Dh1 with ϕzpζkq “ φkpzq

for k P J0, p ´ 1K. Moreover,

Dh1`ℏ Ă Dh1 Y

p´1
ď

k“0

Dh1´ℏpζkq.

In particular, if ξ0, . . . , ξp´1 P Dh1`ℏ and satisfy dP pζk, ξkq ď ℏ, k P J0, p ´ 1K, then

Dh1`ℏ Ă Dh1 Y

p´1
ď

k“0

Dh1pξkq.

Proof. The second statement is indeed a direct consequence of the first one. Note that by
definition of our transversals, we have c´1

ˇ

ˇln rTj
ˇ

ˇ ď |ln }z}1| ď c
ˇ

ˇln rTj
ˇ

ˇ. Define C8 “ cC7.
If h1 is sufficiently small, Grönwall Lemma implies that the flow is defined on the whole
disk C8h1

ˇ

ˇln rTj
ˇ

ˇD. Consider the paths λk : r0, 1s Ñ Lz defined by

λkptq “ φz

´

C´1
8 th1

ˇ

ˇln rTj
ˇ

ˇ e
2ikπ
p

¯

.

Take the lifting rλk in D via ϕz such that rλkp0q “ 0 and define ζk “ rλkp1q. Thus, we have
ℓpλkq “ C´1

8 h1
ˇ

ˇln rTj
ˇ

ˇ, so ℓP pλkq ď h1 by Lemma 7.1 and by definition of C8. Consequently,
ζk P Dh1. Let ξ P Dh1`ℏ. If ξ P Dh1, there is nothing to prove. If dP p0, ξq ě h1, define the
radius r1 “ eh1´1

eh1`1
and ξ1 “ r1

ξ
|ξ|

. Let γ : r0, |ξ|s Ñ C be the flow path representing ξ and
λptq “ φzptγpr1qq, which is homotopic to the path φz ˝ γ r0,r1s. Hence, its lifting via ϕz

with rλp0q “ 0 satisfies rλp1q “ ξ1. By definition, we have ℓpλq “ |γpr1q| and ℓP pλq ě h1.
Thus, |γpr1q| ě C´1

8 h1
ˇ

ˇln rTj
ˇ

ˇ and there exists r1
1 P r0, r1s with |γpr1

1q| “ C´1
8 h1

ˇ

ˇln rTj
ˇ

ˇ. Note
ξ1
1 “ r1

1
ξ

|ξ|
and the hyperbolic radius h1

1 “ ln
1`r1

1

1´r1
1
. Applying Lemma 7.1, we get

h1
1 “ ℓP

´

γ r0,r1
1s

¯

ě C´1
8

ˇ

ˇln rTj
ˇ

ˇ

´1
ℓ
´

γ r0,r1
1s

¯

ě C´1
8

ˇ

ˇln rTj
ˇ

ˇ

´1
|γpr1

1q| “ 3ℏ.

Hence, dP pξ, ξ1
1q ă h1 ´ 2ℏ. It follows that it is enough to find k P J0, p ´ 1K with

dP pξ1
1, ζkq ď ℏ. It is clear that we can find k such that

ˇ

ˇ

ˇ
γpr1

1q ´ |γpr1
1q| e

2ikπ
p

ˇ

ˇ

ˇ
ď
π

p
|γpr1

1q| “
π

p
C´1

8 h1
ˇ

ˇln rTj
ˇ

ˇ .

Denote by zk “ φkpzq, u1
1 “ γpr1

1q and tk “ C´1
8 h1

ˇ

ˇln rTj
ˇ

ˇ e
2ikπ
p . Consider the flow path

which goes straight from 0 to u1
1 and then travels the arc from u1

1 to tk. It is homotopic to
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the straight line from 0 to tk. Thus, ϕzpξ1
1q “ φzkpu1

1 ´ tkq. Grönwall Lemma implies that
|ln }zk}1| ě 1

2
|ln }z}1| ě 1

2c

ˇ

ˇln rTj
ˇ

ˇ if h1 is sufficiently small. By Lemma 7.1,

dP pξ1
1, ζkq ď

π

p
C7C

´1
8 h1 |ln }zk}1|

´1
ˇ

ˇln rTj
ˇ

ˇ ď
2πh1
p

.

For p ě 2πh1

ℏ “ 6πC2
8 , we have our result. □

Far from the singular set, we use a slightly different criterion.

Lemma 7.3. Note r1 “ eh1´1
eh1`1

and ζk “ r1e
2ikπ
p , for k P J0, p ´ 1K. If h1 is sufficiently small,

Dh1`ℏ Ă Dh1 Y

p´1
ď

k“0

Dh1´ℏpζkq.

In particular, if ξ0, . . . , ξp´1 P Dh1`ℏ and satisfy dP pζk, ξkq ď ℏ, k P J0, p ´ 1K, then

Dh1`ℏ Ă Dh1 Y

p´1
ď

k“0

Dh1pξkq.

Proof. Let ξ P Dh1`ℏ. If dP p0, ξq ă h1, then ξ P Dh1. Next, suppose that dP p0, ξq ě h1.
Define ξ “ r1

|ξ|
ξ so that dP pξ, ξ1q ă ℏ. Note that ℓP pBDh1q “ πpeh1 ´ e´h1q ď 4πh1 if h1 is

sufficiently small. So, there exists k P J0, p ´ 1K with dP pξ1, ζkq ď 2πh1

p
ă ℏ. Since C8 ą 1,

dP pξ, ζkq ă 2ℏ ď h1 ´ ℏ. □

7.2. Encoding the hyperbolic dynamics. Here, the notion we introduce is something
that exists but is not precisely defined in [6, p. 619–623]. It encodes the transversals
through which a leaf Lx goes in time R, and ensures that we get a h1-dense subset.

Definition 7.4. For H P N, we define

AH “

H
ğ

j“0

J0, p ´ 1Kj ,

where by convention J0, p ´ 1K0 “ tHu. We see AH as a tree, the directed edges of
which are pi1, . . . , ikq Ñ pi1, . . . , ik`1q, for k P J0, H ´ 1K and i1, . . . , ik`1 P J0, p ´ 1K. A
hyperbolic motion tree of deepness H is a map Θ: AH Ñ D with ΘpHq “ 0 and for any
vertex i1, . . . , ik P J0, p ´ 1K,

Dh1`ℏ pΘ pi1, . . . , ikqq Ă Dh1 pΘ pi1, . . . , ikqq Y

p´1
ď

ik`1“0

Dh1 pΘ pi1, . . . , ik`1qq ,

and
Θpi1, . . . , ik`1q P Dh1`ℏpΘpi1, . . . , ikqq, ik`1 P J0, p ´ 1K .

The cut-off definition tree of Θ is defined as the subset AΘ
H Ă AH , made of elements

pi1, . . . , ikq P AH , for k P J0, HK such that for all j P J0, kK, Θpi1, . . . , ijq P D2h1`Hℏ.

These trees are designed to get h1-covering subsets.

Lemma 7.5. Let Θ: AH Ñ D be a hyperbolic motion tree of deepness H P N. Then,

Dh1`Hℏ Ă
ď

SPAΘ
H

Dh1pΘpSqq.
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Proof. The proof is by induction on H. If H “ 0, this is a definition. Suppose that the
lemma is true for deepness up to H, let Θ be a hyperbolic motion tree of deepness H ` 1
and Ξ “ Θ AH

. Note Dh1pΘq “ YSPAΘ
H`1

Dh1pΘpSqq. Let ζ P Dh1`pH`1qℏ. If ζ belongs
to Dh1`Hℏ, then the induction hypothesis applies on Ξ and gives ζ P Dh1pΘq. Next,
suppose that dP p0, ζq ě h1 ` Hℏ, define rH “ eh1`Hℏ´1

eh1`Hℏ`1
, ζ “ reiθ and ζH “ rHe

iθ. The
induction hypothesis on ζH and the condition dP pζ, ζHq ă ℏ give us ξ “ Θpi1, . . . , ikq, with
pi1, . . . , ikq P AΞ

H such that dP pζ, ξq ď h1 ` ℏ. By definition, there exists ik`1 P J0, p ´ 1K
such that ξ1 “ Θpi1, . . . , ik`1q satisfies dP pξ, ζq ă h1. Since pi1, . . . , ikq P AΞ

H and

dP pξ1, 0q ď dP pζ, ξ1
q ` dP pζ, 0q ă 2h1 ` pH ` 1qℏ,

pi1, . . . , ik`1q P AΘ
H`1 and the induction is finished. □

These trees emerge from our work on the mesh of transversals.

Lemma 7.6. Let x P T and H “
P

R´h1

ℏ

T

. If h1 is small enough, then there is a hyperbolic
motion tree Θx : AH Ñ D such that for S P AΘx

H , there exists TS P rT with ϕxpΘxpSqq P TS.
Moreover, if ϕxpSq P 2ρUa for S P AΘx

H , then TS is a singular transversal Ta,j,k,u.

Proof. The proof is by induction on H. If TS is regular, then we apply Lemma 7.3 to first
find ζk for k P J0, p ´ 1K. If TS is singular, we find similar ζk by Lemma 7.2. To find
ξk “ ΘxpS ¨ kq, we distinguish whether }ϕxpζkq}1 ď 2ρ or not. In the first case, we apply
Lemma 5.8. In the second case, we choose ξk in a transversal such that }ϕxpξkq}1 ą 2ρ.
Note also that if dP p0, ζkq ě 2h1 ` Hℏ, we can keep the ξk “ ζk. In order to apply the
lemmas, we need to check that }ϕxpζkq}1 ě rsingpRq. If h1 is sufficiently small, since we
have dP p0, ζkq ă 2h1 ` Hℏ ă R ` 2h1, we get this condition using Lemma 3.4. □

With the notations of the previous proof, we want to make the choice of ξk in the
singular case in some sense uniform on a disk of the initial covering. Let us introduce
some notations. Let Ti be a singular transversal, D P Vi and z, w P 2D. Note zk “ φkpzq

and ζk,z the corresponding point in the disk that we obtain in Lemma 7.2. Suppose that
zk P 2ρUa and follow the procedure of Lemma 5.8 to find a corresponding z1

k P Lzk and
ξk,z P Dh1`ℏ, with z1

k on a transversal and ϕzpξk,zq “ z1
k. Denote by rγ

p1q

k,z the geodesic

from 0 to ζk,z, rγ
p2q

k,z the geodesic from ζk,z to ξk,z and rγk,z “ rγ
p2q

k,z ¨ rγ
p1q

k,z the concatenation of
the two paths. For each of these, denote without tildas the projection on Lz, that is, for
‹ P tp1q, p2q,Hu, γ‹

k,z “ ϕz ˝ rγ‹
k,z.

On the other hand, consider λp1q

k,zptq “ φz

`

tC´1
8 h1

ˇ

ˇln rTj
ˇ

ˇ

˘

, for t P r0, 1s. That way,

we have λp1q

k,zp0q “ z, λp1q

k,zp1q “ zk. Since it is how we have built ζk,z, γ
p1q

k,z and λ
p1q

k,z are

homotopic. Consider then the lifting rλ
p1q

k,z of λp1q

k,z via ϕz such that rλp1q

k,zp0q “ 0. It follows

that rλp1q

k,zp1q “ ζk,z. Finally, the procedure of Lemma 5.8 gives us a flow path and then

a path λ
p2q

k,z on Lz joining zk and z1
k, by definition of ξk,z . Its lifting rλ

p2q

k,z via ϕz such that
rλ

p2q

k,zp0q “ ζk,z clearly satisfies rλ
p2q

k,zp1q “ ξk,z. Let us also denote rλk,z “ rλ
p2q

k,z ¨ rλ
p1q

k,z and

λk,z “ λ
p2q

k,z ¨ λ
p1q

k,z the concatenation of these paths.
We use analogous notations for w, with slight subtelty. To be more precise, let us

denote by wk “ φkpwq, ζk,w its preimage by ϕw obtained by Lemma 7.2, rγp1q

k,w the geodesic

joining 0 and ζk,w, γk,w “ ϕw ˝ rγ
p1q

k,w, λp1q

k,wptq “ φw

`

tC´1
8 h1

ˇ

ˇln rTj
ˇ

ˇ

˘

and rλ
p1q

k,w its lifting via ϕw

such that rλp1q

k,wp0q “ 0. We stop here with the strict analogy. Indeed, we wish to show that
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the construction for z also holds for w to have a uniform choice. Note w1
k “ Holγk,zpwq,

which is well defined by Proposition 6.2. We want to find a path λp2q

k,w joining wk and w1
k

with peculiar properties (see below). Once we have it, define rλ
p2q

k,w its lifting via ϕw such

that rλp2q

k,wp0q “ ζk,w and denote by ξk,w its endpoint. Then, take analogous notations with

rγ
p2q

k,w the geodesic joining ζk,w with ξk,w, γp2q

k,w “ ϕw ˝ rγ
p2q

k,w and λk,w, rλk,w, γk,w, rγk,w the usual
concatenations. See the diagramm below for a summary of all these notations.

0

z

ζk,z

zk

ξk,z

z1
k

rγ
p1q

k,z

rλ
p1q

k,z

γ
p1q

k,z

λ
p1q

k,z

rγ
p2q

k,z

rλ
p2q

k,z

γ
p2q

k,z

λ
p2q

k,z

ϕz ϕz ϕz

0

w

ζk,w

wk

ξk,w “ rλ
p2q

k,wp1q

w1
k “ Holγk,zpwq

rγ
p1q

k,w

rλ
p1q

k,w

γ
p1q

k,w

λ
p1q

k,w

rγ
p2q

k,w

rλ
p2q

k,w

γ
p2q

k,w

λ
p2q

k,w

ϕw ϕw ϕw

Lemma 7.7. With the notations above, there exists a path λp2q

k,w with the following properties.

(i) If C5 is sufficiently small, ℓP
´

λ
p2q

k,w

¯

ď ℏ.
(ii) Holγk,z “ Holγk,w on 2D.

Proof. Note δk,z the flow path for z corresponding to λk,z, that we cut in two parts

δ
pjq

k,z : r0, 1s Ñ C, for j P t1, 2u corresponding to λ
pjq

k,z. Note that wk “ φw

´

δ
p1q

k,zp1q

¯

. We

build λp2q

k,w by concatenating the two following parts.

(a) λp2,1q

k,w ptq “ φwk

´

δ
p2q

k,zptq
¯

, for t P r0, 1s. Note w2
k its endpoint.

(b) λp2,2q

k,w ptq “ φw2
k
pttwq, for t P r0, 1s and the notations of the proof of Proposition 6.5.

Its endpoint is w1
k by definition of tw.

Since tw “ Ope´2Rq and }z}1´}w}1
}z}1

“ O
`

e´C4R
˘

, the second part is of length smaller than ℏ
2

if R is sufficiently large. Moreover, using Lemma 7.1, we can compare the Poincaré
length of the second part as a flow path for zk or wk in Lz or Lw. Choosing C5 small
enough, the four lemmas when we had not fixed ℏ show that (i) holds.

To prove (ii), note that λk,w is the same flow path as the one for z, just completed by
adding tw. Hence, we can cut λk,z and λk,w into parts on which they stay in the same flow
box. This implies that Holλk,w

“ Holλk,z
on 2D. Note that on the one hand γk,z and λk,z

and on the other hand γk,w and λk,w have same starting and ending point in their lifting
in D. Therefore, they are homotopic and we also have Holγk,z “ Holγk,w on 2D. □

In practice, to determine a hyperbolic motion tree for a point x, we do not follow
exactly the proof of Lemma 7.6. Instead, we fix a point in the cell (say the center), follow
the proof for this point and apply Lemma 7.7 to all points in the same cell. Lemma 7.7
implies that we do not break any symmetry with this choice because we could have done
the same with any point by (i), with the same holonomy map by (ii). We need to check
the following. This plays a similar role to [6, Lemma 2.9] in our refinement process.
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Lemma 7.8. Let z, w P Ta,j0,k0,u0 and k P J0, p ´ 1K be such that z1
k, w

1
k P Ta,j1,k1,u1 arrive

on the same transversal, with the notations above. Here, we do not suppose that z, w are
in the same disk, so w1

k is indeed obtained by exactly the same process as z1
k. Suppose that

z1
k, w

1
k P 2D P Va,j1,k1,u1 belong to a same disk of the initial covering. Then, Hol´1

λk,z
“ Hol´1

λk,w

on 2D, with λk,z, λk,w defined before.

Proof. Note that both holonomies are defined on 2D by Proposition 6.2. Let us introduce
some notations. Denote by z1 “ Hol´1

λk,w
pz1

kq. Note δz (resp. δw) the flow time for Xu0

such that z1
k “ φzpδzq (resp. w1

k “ φwpδwq). It is clear that z1 “ φzpδz ´ δw ` tq, with
|t| “ Ope´2Rq. Moreover, δz and δw can be written as a sum of two terms: δz “ tk ` tz,
δw “ tk ` tw, where tk “ C´1

8 h1
ˇ

ˇln rTj
ˇ

ˇ e
2ikπ
p , and tz, tw are defined by Lemma 5.8. In the

linearizable case, since z and z1 belong to the same transversal, we have ℜptz´tw`tq “ 0.
It follows that |ℑptz ´ tw ` tq| ă 2π and hence is 0. So, tz “ tw ´ t and the condition on t
imply that we have the same holonomy, by the same argument as Proposition 6.2. For the
Briot–Bouquet case or the Poincaré–Dulac case with u0 “ 1, we argue the same. Consider
a Poincaré–Dulac singularity with u0 “ 2. Note z “ pz1, z2q. It is enough to show that

z2 “ pz2 ` µtzm1 q emt,

with ℑptq “ OpC5ℏq and C5ℏ small enough implies that t “ 0. If ℜptq ě |ℑptq|, we have

1 “

ˇ

ˇ

ˇ

ˇ

1 ` µt
zm1
z2

ˇ

ˇ

ˇ

ˇ

emℜptq
ě

ˆ

1 ´
3

2
ℜptq

´
ˇ

ˇ

ˇ
ln
›

›rTj0
›

›

1

ˇ

ˇ

ˇ

¯´1
˙

emℜptq.

Here, we have used that |z1|
m

|z2|
ď 3

2

ˇ

ˇ

ˇ
ln
›

›rTj0
›

›

1

ˇ

ˇ

ˇ

´1

, since u0 “ 2. Studying the function

x ÞÑ
`

1 ´ 3x{
`

2
ˇ

ˇln rTj0
ˇ

ˇ

˘˘

emx, it is easy to see that it is not possible if h1 is sufficiently

small. Using similarly that
ˇ

ˇ

ˇ
1 ` µt

zm1
z2

ˇ

ˇ

ˇ
ď 1 `

ˇ

ˇ

ˇ
µt

zm1
z2

ˇ

ˇ

ˇ
, one can show that ℜptq ď ´ |ℑptq| is

not possible either. Finally, we argue as in Lemma 5.6 to show that t “ 0. □

8. END OF PROOF OF THEOREM 1.2

8.1. Refining the initial covering. We are ready to finish the proof by exposing the
refinement algorithm. Our different setting makes it slightly different to the one of the
three authors [6, p. 617–619] but the ideas are close. Consider the initial covering Vi of
each transversal Ti P rT, for i P IT. We denote it by V0

i , because we refine it by induction.
Name also H “

P

R´h1

ℏ

T

. For H 1 P J0, HK, we build a covering VH 1

i by disks that satisfies
properties to ensure the existence of the orthogonal projection. What follows is the
induction process, and contains some peremptory assertions to define the construction
that we prove just after. Suppose that VH 1

i is already built.

I) If Ti X
`

Mz YaPE
ρ
2
Ua

˘

‰ H,
(1) For each D P V0

i , we denote by JD the set of indices j P IT such that there
exists x P D, x1 P Tj X Lx with dP px, x1q ď 2h1. If h1 is sufficiently small, the
holonomy map along the geodesic from x to x1 only depends on Ti and Tj

and not on x and x1. We denote it by πij, which is well defined on D.
(2) For all disk D1 P VH 1

j such that πijpDq X D1 ‰ H, π´1
ij pD1q is σ1-quasi-round,

for σ1 fixed below Lemma 6.4. We cover it by four disks D1
1, . . . , D

1
4 using

Lemma 6.4. Denote by VH 1

i,j,D “
␣

D1
j; j P J1, 4K , πijpDq X D1 ‰ H

(

.
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(3) Define J 1
D as the set of indices j P JD such that VH 1

i,j,D is a covering of D.
Let J 1 “ YDPV0

i
J 1
D and VH 1

i,j “ YDPV0
i
VH 1

i,j,D. Let VH 1`1
i be the covering of Ti

obtained by applying Lemma 4.9 to VH 1

i and
`

VH 1

i,j

˘

jPJ 1
. Note that each VH 1

i,j

does not necessarily cover entirely Ti, but we apply successively Lemma 4.9
on the subset each covers.

II) If Ti Ă
ρ
2
Ua, for some a P E,

(1) For each D P V0
i , fix one z P D. For k P J0, p ´ 1K, name by zk “ φkpzq

and z1
k P Tk,D the point obtained by Lemma 5.8 if we have }zk}1 ě rsingpRq.

Consider the path γk,D defined before Lemma 7.7 and note πk,D “ Holγk,D ,
which is well defined on D. The holonomy map π´1

k,D only depends on Ti,
Tk,D and k, but not on D. Name JD “ tk P J0, p ´ 1K ; }zk}1 ě rsingpRqu.

(2) For all disk D1 P VH 1

k,D such that πk,DpDqXD1 ‰ H, π´1
k,DpD1q is σ1-quasi-round

and we cover it by four disks D1
1, . . . , D

1
4 using Lemma 6.4. We denote by

VH 1

i,k,D “
␣

D1
j; j P J1, 4K , πk,DpDq X D1 ‰ H

(

and VH 1

i,k “ YDPV0
i
VH 1

i,k,D.
(3) For each k P JD, VH 1

i,k,D is a covering of D. Note VH 1`1
i the covering of Ti

obtained by applying Lemma 4.9 to VH 1

i and
`

VH 1

i,k

˘

kPJ0,p´1K
. Note that VH 1

i,k

covers at least the disks D for which }zk}1 ě rsingpRq.

Lemma 8.1. This algorithm works well. That is, the peremptory assertions used to define it
hold. Moreover, there exists a constant C9 ą 0 such that max

iPIT
cardVH

i ď eC9R.

Proof. Let us shortly list our assertions: in (I.1) and (II.1), the holonomy does not depend
on x and x1 or on D; in (I.1) and (II.1), the holonomy is well defined on D; in (I.2)
and (II.2), the inverse images of D1 are σ1-quasi-round; in (II.3), VH 1

i,k,D is a covering
of D. Note that by Lemma 4.9 and by induction, we always have 2D1 Ă 2D0, for some
D0 P V0

i . By Propositions 6.2 and 6.5, it follows that the holonomies are well defined
on 2D and that the inverse images of D1 are σ1-quasi-round. The fact that the holonomy
does not depend on x and x1 in (I.1) follows from the following observation. Since in
case (I), we have dpx,Eq ą c for some c ą 0 and all x P Ti, we can cover Ti by a
finite number of flow boxes. Reducing h1 if necessary, we can suppose that D2h1 is still
contained in these flow boxes. The uniqueness of a point of a plaque belonging to a
transversal gives us that the holonomy only depends on Ti and Tj. In (II.1), the similar
result follows from Lemma 7.8. Finally, note that Lemmas 5.3 and 5.6 make us end far
from the boundary of Tk,D. Hence, πk,D is fully contained in Tk,D and VH 1

i,k,D is a covering
of D if R is sufficiently large. Therefore, the algorithm works well.

It remains to prove the control of the cardinality. Note KH 1 “ maxiPIT cardVH 1

i . By
Proposition 5.9, K0 ď eC6R. Note that card J 1 ď K 1, by (HT2). Since the holonomy
maps only depend on the transversals, we have by construction cardVH 1

i,j ď 4KH 1 and
cardVH 1

i,k ď 4K 1KH 1. By Lemma 4.9, we obtain for C “ max
`

4 ˆ 200K
1`1, 4K 1 ˆ 200p`1

˘

,
cardVH 1`1

i ď CKH 1. By definition of H, we get KH ď CR{ℏeC6R. □

8.2. Proof of the existence of an orthogonal projection. The construction of the cov-
ering VH

i and of the hyperbolic motion tree clearly imply the following result.

Lemma 8.2. Let Ti P T be a regular transversal, D P VH
i and x P 2D. Then, there exists

a hyperbolic motion tree Θx : AH Ñ D satisfying the conditions of Lemma 7.6 and the
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following. If Sk “ pi1, . . . , ikq P AΘx
H , for j P J0, k ´ 1K, we denote by Sj “ pi1, . . . , ijq. Let

ξj “ ΘxpSjq, γj be the geodesic from ξj to ξj`1, λj “ ϕx ˝ γj and λSk
“ λk´1 . . . λ0. Then,

HolλSk
is well defined on 2D, with image in 2Dk, for some Dk P VSk

.

This enables us to conclude the proof of Theorem 1.2 by checking our criterion.

Proposition 8.3. The covering
`

VH
i

˘

iPIT
satisfies the hypotheses of Proposition 4.5.

Proof. The cardinality condition is an immediate consequence of Lemma 8.1. Let D be
in VH

i with Ti P T and x, y P D. Let Θx : AH Ñ D be the hyperbolic motion tree of
Lemma 8.2 and F “ tΘxpSq; S P AΘx

H u. The set F is h1-dense by Lemma 7.5. For S P AΘx
H ,

note xS “ ϕxpΘxpSqq, yS “ HolλS
pyq, with the notations of Lemma 8.2. We build ψ by

gluing all the rΦxSyS of Proposition 6.2. If we can do so, Lemma 8.2, (HD1) and (HD2)
imply points (2) and (3) of Proposition 4.5. By Proposition 6.2 and Lemma 8.2, these
maps patch up well on a branch of Θx. On the other hand, if given two S1 and S2 such
that Dh1pΘxpS1qq X Dh1pΘxpS2qq ‰ H, we can build homotopic paths from x to the image
of a point on the intersection because they have the same starting and ending point
in D. The corresponding holonomies coincide as germs and coincide on 2D by analytic
continuation. Hence, it is clear that rΦxS1

yS1
and rΦxS2

yS2
coincide. □
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