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HEAT DIFFUSIONS ON HOLOMORPHIC FOLIATIONS WITH NON-DEGENERATE
SINGULARITIES

FRANÇOIS BACHER

ABSTRACT. Consider a Brody hyperbolic foliation with non-degenerate singularities on a
compact complex manifold. We show that the leafwise heat diffusions and the abstract
heat diffusions coincide. In particular, this will imply that the abstract heat diffusions are
unique.

1. INTRODUCTION

The global dynamics of Riemann surface laminations have recently received much at-
tention. Much progress has been focused on developing an adapted ergodic theory. This
could be a powerful tool to understand the global behaviour of Riemann surface lamina-
tions. The case of the projective space is maybe the most typical, since polynomial vector
fields can be compactified naturally into foliations on Pn. Lins Neto and Soares in [17]
and Jouanolou in [14] have shown that a generic foliation F of a given degree d ě 2
on Pn has only non-degenerate singularities. By a result of Lins Neto [15] and Glut-
syuk [12], a foliation having only non-degenerate singularities is necessarily hyperbolic,
and even Brody hyperbolic in the sense of [7]. Therefore, many authors have studied
hyperbolic Riemann surface laminations with singularities and in particular hyperbolic
singular holomorphic foliations. We present briefly the results of some recent work and
refer the reader to the surveys [9, 10, 19, 20] for more details.

To set up an ergodic theory, one needs at least some notions of time, time average,
space average (i.e. measure), invariant and ergodic measure. It turns out that for folia-
tions, it will also be convenient to use currents instead of measures and forms instead of
functions. In the case of hyperbolic foliations, the Poincaré distance in a universal cover-
ing can be seen as a canonical time. As an analogue to invariant measures, it is natural to
consider directed closed currents. This has led to various results and dynamical methods
(see for example Rebelo [22]), but a large class of foliations do not have any. That is
why Garnett has considered the weaker notions of harmonic currents and harmonic mea-
sures in [11]. This approach has led to strong results, see for example the survey [10] of
Fornæss and Sibony or the unique ergodicity result of Dinh, Nguyên, Sibony in [8]. The
notion of quasi-harmonic measure was also introduced by Nguyên in [18] to establish
an Oseledec multiplicative ergodic theorem for laminations. Then, the natural processes
to take the average of a function on the leaves (that is, on the orbits) becomes the heat
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diffusions. Two approaches to define such diffusions have been tried and both have given
a series of ergodic theorems. It is natural to wonder whether these two approaches lead
to the same object, that is, whether both heat diffusions coincide. Though the equations
they satisfy look similar, it is not clear and not proven if this is true in general. In his
survey [20], Nguyên has worked on this question. His result is the following.

Theorem 1.1 ([20, Corollary 5.23]). Let F “ pM,L , Eq be a Brody hyperbolic compact
singular holomorphic foliation. Suppose that all the singularities of F are linearizable
and hyperbolic. Then, for every harmonic measure that does not give mass to any leaf, the
abstract heat diffusions and the leafwise heat diffusions coincide. In particular, the abstract
heat diffusions are unique, i.e., they do not depend on the considered harmonic measures.

He mentions as a question (see [20, Problem 5.24]) to find better sufficient condi-
tions for the two heat diffusions to coincide. Our main result gives an improvement of
Theorem 1.1.

Theorem 1.2. Let F “ pM,L , Eq be a Brody hyperbolic compact singular holomorphic
foliation. Suppose that all the singularities of F are non-degenerate. Then, for every har-
monic measure, the abstract heat diffusions coincide with the leafwise heat diffusions. In
particular, the abstract heat diffusions are unique, i.e., they are independent of the har-
monic measures.

Let us explain the method of our proof. When we study non-degenerate singularities,
we encounter more singular objects than in the case of linearizable weakly hyperbolic
singularities. In our context, the current associated to the harmonic measure may have
non-vanishing Lelong numbers on the singularities. Indeed, Chen has shown in [5] that
the Lelong number of a directed harmonic current on a non-hyperbolic singularity may
be positive. On the other hand, Nguyên has shown in [21] that it cannot if the singularity
is linearizable and weakly hyperbolic. To deal with this new difficulty, we have to control
the heat diffusions near the singularities. More precisely, given an initial heat distribution
far from the singular set, we show that it essentially does not reach the neighbourhoods
of a non-degenerate singularity in finite time (see Lemma 6.3). This result relies on
estimates of the Poincaré metric near the singularities.

The article is organized as follows. In Section 2, we introduce the leafwise Poincaré
metric gP . We specify the type of singularities we will consider. In the case where a
foliation F “ pM,L , Eq is also endowed with a Riemannian metric gM , we define the
function η. It is a quantitative way to compare gP and gM so that η2gP “ 4gM . This
is the main tool we use to estimate the diffusions near the singularities. In Section 3,
we describe the heat kernel and the leafwise heat diffusions, as well as their behaviours
with respect to a uniformization of a leaf. In Section 4, we explain the link between
harmonic measures and harmonic currents. In our context, we show that the Poincaré
mass of a directed harmonic current is finite. In Section 5, we recall the construction
of the abstract heat diffusions. We state some intermediate lemmas of [6] to show its
existence, because we will need them for our proof. Section 6 is devoted to the proof of
Theorem 1.2. We state and prove an abstract criterion, analogous to [20, Theorem 5.17]
in Theorem 6.1. In most of the article, we follow the method and notations of [20].

Notations. Throughout this paper, we will denote by D the unit disk of C and B the unit
ball in Ck. We denote by rD the disk of radius r in C and rB the ball of radius r in Ck.
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When we consider the hyperbolic distance in D, we denote by DR the disk of hyperbolic
radius R in D, so that rD “ DR for r “ eR´1

eR`1
or R “ ln 1`r

1´r
.

If F “ pM,L , Eq is a singular holomorphic foliation and x P MzE, we denote by
Lx the leaf of F through x. Moreover, if Lx is hyperbolic, we denote by ϕx : D Ñ Lx a
uniformization of Lx such that ϕxp0q “ x.

Given a Hermitian metric gM on a complex manifold M , we denote by dMp¨, ¨q the
distance induced by gM . Similarly, we denote by dP p¨, ¨q the Poincaré distance if one is
given a Poincaré metric denoted gP .

Recall that dc “ i
2π

`

B ´ B
˘

so that ddc “ i
π

BB.

Acknowledgments. The author is supported by the Labex CEMPI (ANR-11-LABX-0007-
01) and by the project QuaSiDy (ANR-21-CE40-0016).

2. LEAFWISE POINCARÉ METRIC

Let F “ pM,L , Eq be a singular holomorphic foliation. Fix gM a Hermitian metric on
M . Define

(2.1) ηpxq “ sup
!

}α1
p0q}gM | α : D Ñ Lx holomorphic such that αp0q “ x

)

,

where }v}gM is the norm of v P TxLx with respect to the Hermitian metric gM . That is,
}v}gM “

a

gM,xpv, vq.

Definition 2.1. A leaf L of F is called hyperbolic if it is uniformized by the Poincaré disk
D. The foliation F is called hyperbolic if all the leaves of F are hyperbolic.

We will be mostly interested in the case of hyperbolic foliations. Using Schwarz’
Lemma, it is quite clear that Lx is hyperbolic iff ηpxq ă 8. In that case, ηpxq “ }ϕ1

xp0q}gM ,
where ϕx : D Ñ Lx is a uniformization of Lx such that ϕxp0q “ x. By pushing forward
the Poincaré metric on D by ϕx, we obtain the so-called Poincaré metric gP on the leaf Lx.
Since ϕx can be chosen up to pre-composition by a rotation, and since the biholomor-
phisms of D are isometries of pD, gP q, the Poincaré metric is intrinsically defined. It is
quite clear that we have

(2.2) η2gP “ 4gM .

We recall from [7, Definition 3.1] the following.

Definition 2.2. We say that F is Brody hyperbolic if there exists a positive constant c0
such that η ă c0 on MzE.

Let us define the type of singularities we will study.

Definition 2.3. Let F “ pM,L , Eq be a singular holomorphic foliation. Near a singu-
larity a P E, there exists a vector field X defining F . In coordinates pz1, . . . , znq centered
at a, we can write

Xpzq “

n
ÿ

j“1

Fjpzq
B

Bzj
.

The functions Fj can be developed as a power series Fj “
ř

αPNn cα,jz
α. The 1-jet of X

at a is defined in the chart pU, zq as X1 “
řn

j“1

ř

|α|ď1 cα,jz
α B

Bzj
. See for example [13,

Chapter I] for more details. If the 1-jet of X has an isolated singularity at a, we say that
a is a non-degenerate singularity of F .
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The following result is a direct consequence of a local study of non-degenerate vector
fields in [16]. We denote by log‹

“ 1 ` |log| a log-type function and by dMpx,Eq the
distance from x P M to the singular set E with respect to the Hermitian metric gM .

Proposition 2.4 (Dinh-Nguyên-Sibony). Let F “ pM,L , Eq be a Brody hyperbolic com-
pact singular holomorphic foliation. Suppose that all the singularities of F are non-
degenerate. Then, there exists a constant c ą 1 such that the Poincaré metric of F satisfies

c´1dMpx,Eq log‹ dMpx,Eq ď ηpxq ď cdMpx,Eq log‹ dMpx,Eq, x P MzE.

See [2, Proposition 4.1] for a proof, which is inspired by [7, Proposition 3.3].

3. LEAFWISE HEAT DIFFUSION OPERATORS

We will now define one of the two heat diffusion operators we are interested in. Let
F “ pM,L , Eq be a hyperbolic singular holomorphic foliation. The leafwise Poincaré
metric gP gives rise to its associated Laplacian ∆P on leaves. More precisely, for f P

C 2 pDq or for f P C 2 pLxq, ∆P is defined by the following formula.

p∆Pfq gP “ πddcf “ iBBf on D or Lx.

For any fixed x P MzE, we study the heat equation on Lx

(3.1)
Bppx, y, tq

Bt
“ ∆P,yppx, y, tq, lim

tÑ0`
ppx, y, tq “ δxpyq, y P Lx, t P R`.

Here, we have denoted by δx the Dirac mass in x and by ∆P,y the Laplacian ∆P with
respect to the variable y. The limit is taken in the sense of distribution.

The heat kernel on Lx, denoted by ppx, y, tq, is defined as the smallest positive solution
of the heat equation (3.1) (see Chavel [4]). By diffusing ppx, y, tq, we get a one-parameter
family of operators tDt | t P R`u defined by

(3.2) Dtfpxq “

ż

Lx

ppx, y, tqfpyqgP pyq, x P MzE, f P L8
pMzEq .

This family is a semi-group of positive contractions of L8 pMzEq (see (3.3)). Its elements
are called the leafwise heat diffusion operators.

(3.3) D0 “ id; Dt1 “ 1 and Dt`s “ Dt ˝ Ds, for t, s P R`,

where 1 is the function identically equal to 1.
The same results hold on D itself. We denote by pDpθ, ζ, tq the heat kernel on D. The

heat diffusions on a leaf Lx are then related to the one on D by the formula

(3.4) Dt pf ˝ ϕxq “ pDtfq ˝ ϕx, on D, for t P R`, f P L8
pLxq .

See [18, Proposition 2.7] for a proof.

4. DIRECTED CURRENTS AND HARMONIC MEASURES

We suppose that the reader is already familiar with the notion of currents, positive cur-
rents, harmonic currents. For a more detailed exposition, see [20]. For a new example,
see [1]. Let F “ pM,L , Eq be a hyperbolic singular holomorphic foliation. A directed
harmonic current on F can be decomposed leafwise and transversally using the follow-
ing lemma. Its proof was done in [6, Proposition 2.3] (see also [20, Proposition 2.5]).
We will need it to define the abstract heat diffusions.
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Lemma 4.1. Let T be a directed harmonic current on F . Consider U » D ˆ T a flow box
the coordinates of which can be extended to a neighbourhood of its closure in M . Then,
there is a positive Radon measure ν on T and for ν-almost every t P T a harmonic function
ht on D such that

‚ The mass
ş

T }ht}L1pDq
dνptq is finite;

‚ For α P D1,1 pF q compactly supported in U,

T pαq “

ż

T

ˆ
ż

D
htpyqαpy, tq

˙

dνptq.

If moreover T is positive, then for ν-almost every t P T, ht is positive on D.

We have a notion of harmonicity for measures, characterizing their behaviour with
respect to the Laplacians on the leaves.

Definition 4.2. Let ∆P be the aggregate of the leafwise Laplacians on the leaves of F .
A finite positive Borel measure µ on MzE is called harmonic if

ż

M

∆Pfdµ “ 0, f P D pF q ,

where D pF q “ D0,0 pF q denotes the space of test functions.

Harmonic measures and directed harmonic currents are strongly linked. More pre-
cisely, if T is a directed harmonic current and if the measure

(4.1) µ “ T ^ gP on MzE,

is finite, then µ is harmonic. Conversely, if µ is a harmonic measure, then there exists a
directed harmonic current T such that (4.1). See [6] for an implicit proof. In any case,
we call the total mass of µ defined by (4.1) the Poincaré mass of T . It may be infinite
near singularities. We will need the following results. The first one is a weak version of
a theorem by Skoda in [23]. The second is due to Dinh, Nguyên and Sibony in [6].

Proposition 4.3. Let T be a positive ddc-closed p0, 0q-current on a ball r0B and β “ ddc }z}
2

be the standard Kähler form. Then, the quantity r´2 }T ^ β}rB is bounded for r P p0, r1s,
r1 ă r0.

Here, }T ^ β}A denotes the mass of T ^ β as a positive measure on a measurable set
A.

Proposition 4.4. Let F “ pM,L , Eq be a singular holomorphic foliation with isolated
singularities and T be a directed positive harmonic current on MzE. Then, T has locally
finite mass near any singularity a P E and can be extended through a into a positive ddc-
closed current.

The following criterion for the Poincaré mass of a ddc-closed current to be finite will
be very important to prove Theroem 1.2.

Proposition 4.5. Let F “ pM,L , Eq be a singular holomorphic foliation such that E is
composed of isolated singularities. Suppose that in a neighbourhood of a P E, the Poincaré
metric of F satisfies ηpxq ě cdMpx, aq log‹ dMpx, aq for a constant c ą 0. Then, any directed
positive harmonic current on F has locally finite Poincaré mass near a.
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Proof. The proof was implicitly done in [6, Proposition 4.2]. Basically, we work in coor-
dinates and with the standard Kähler form β “ ddc }z}

2 of Ck. Propositions 4.4 and 4.3
ensure that }T ^ β}rB ď Cr2. Then, we use (2.2) and the proof ends with the following
integration by parts.

ż

rB
T ^ gP “ 4

ż

rB

1

η2pzq
T ^ β ď

4

c2

ż

rB

1

}z}
2 ln2

}z}
T ^ β

ż

rB
T ^ gP ď

4

c2

„

}T ^ β}rB

r2 ln2
prq

`

ż r

0

}T ^ β}ρB

ˆ

2

ρ3 ln2 ρ
`

2

ρ3 ln3 ρ

˙

dρ

ȷ

ď
8C

c2 |ln r|
ă `8.

□

5. ABSTRACT HEAT DIFFUSION

Let F “ pM,L , Eq be a hyperbolic singular holomorphic foliation and µ be a har-
monic measure on F . We want to have a solution for an abstract heat equation. It
will be given by Hille-Yosida’s theorem. First recall some notions and facts of functional
analysis. The reader can find proofs and exposition in Brezis [3].

Let L be a Hilbert space and x¨, ¨y be its scalar product. A linear operator A : DompAq Ñ

L, for DompAq Ă L, is called monotone if xAu, uy ě 0, u P DompAq. It is called maximal
monotone if moreover for f P L, there exists u P DompAq such that Au ` u “ f . If
A is maximal monotone, then DompAq is dense in L and the graph of A is closed. A
semi-group of contractions is a family Sptq : L Ñ L, t P R` satisfying

‚ Spt ` t1q “ Sptq ˝ Spt1q, t, t1 P R`,
‚ }Sptq} ď 1, t P R`.

A maximal monotone operator A gives rise to a semi-group of contractions having A
as infinitesimal generator by the following result.

Theorem 5.1 (Hille-Yosida). Let A be a maximal monotone operator on a Hilbert space L.
The equation

(5.1)
Bupt, ¨q

Bt
` Aupt, ¨q “ 0, and up0, ¨q “ u0,

for

(5.2) u P C 1
pR`, Lq X C 0

pR`,DompAqq

and u0 P DompAq, has a unique solution u. Moreover, u is given by a semi-group of contrac-
tions Sptq : L Ñ L, t P R` acting on u0, i.e. upt, ¨q “ Sptqu0.

So, one will be able to solve the heat equation if one can show that the operator
´∆P is maximal monotone. This work was done in [6, Proposition 5.6] (see also [20,
Proposition 5.8]) and has led to the following result.

Proposition 5.2. Let F “ pM,L , Eq be a singular holomorphic foliation endowed with
its Poincaré metric gP . If µ is a harmonic measure on F , then ´∆P is maximal monotone
on L2pµq.
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In particular, there exists a semi-group of contractions Sptq, t P R` such that for u0 P

Dom p´∆P q, upt, ¨q “ Sptqu0 satisfies (5.2) and (5.1). The Sptq are called the abstract heat
diffusion operators.

The proof of [6] relies on the study of bilinear forms defined through the operator
∆P and another Laplace type operator ∆̃P . We recall the definition of these bilinear
forms and some of their properties we will need. Let T be a directed harmonic current
associated to µ by (4.1). By Lemma 4.1, we can write in a given flow box U » D ˆ T

T pαq “

ż

T

ˆ
ż

D
htpyqαpy, tq

˙

dνptq,

where the ht, for t P T, are positive harmonic functions on D and ν is a Radon measure.
Define

∆̃Pu “ ∆Pu `
@

h´1
t ∇ht,∇u

D

gP
.

Here, the gradient is defined with respect to the Poincaré metric so that x∇u, ξygP “

dupξq, for u P D pF q and ξ tangent to the leaf. Note that |∇u| “ |du|P . The gradient
can be extended to an operator of domain H1pµq onto L2pµq. The space H1pµq is the
completion of D pF q for the norm

}u}H1pµq
“

´

}u}
2
L2pµq

` }∇u}
2
L2pµq

¯
1
2
.

We have Dom p´∆P q Ă H1pµq. A priori, the definition of ∆̃P depends on the choice of
flow boxes, but the uniqueness of the functions ht and the current T ensure that it is a
global operator. Define the bilinear forms

qpu, vq “ ´

ż

p∆Puqv dµ, q̃pu, vq “ ´

ż

p∆̃Puqv dµ,

for u, v P D pF q . We summarize the properties of q and q̃ we will need in Section 6 in
the following statement. The reader can find proofs in [6, Lemmas 5.4 and 5.5] (see
also [20, Lemmas 5.4 and 5.5, Remark 5.7]).

Proposition 5.3. Let µ be a harmonic measure. The bilinear forms q and q̃ can be extended
continuously to H1pµq ˆ H1pµq. Moreover,

(1) For u P H1pµq, qpu, uq “ q̃pu, uq.
(2) For u P Dom p´∆P q and v P H1pµq, we have

q̃pu, vq “

ż

x∇u,∇vygP dµ “

ż

iBu ^ Bv ^ T.

6. COINCIDENCE OF THE HEAT DIFFUSIONS : PROOF OF THEOREM 1.2

The aim of this section is to compare the diffusion operators Sptq defined in Section 5
and Dt defined in Section 3, for any t P R`. We begin by stating a very abstract criterion
for both heat diffusions to be equal.

Theorem 6.1. Let F “ pM,L , Eq be a singular holomorphic foliation with isolated singu-
larities. Consider on M the leafwise Poincaré metric gP and a Hermitian metric gM . Denote
by η the ratio function defined by (2.1). Let µ be a harmonic measure on F . Assume that

7



(H1) η is locally bounded from above on MzE and in the neighbourhood of any a P E,
ηpxq ď Fa pdMpx, aqq for some function Fa : R˚

` Ñ R˚
` such that Fa is continuous

and 1
Fa

is not integrable near 0;
(H2) Any measurable function u on MzE satisfying

(a) }u}L8 ă 8,
(b) }|du|P }L8 ă 8,
(c) }∆Pu}L8 ă 8,
(d) for every a P E, lim

εÑ0

›

›u tdM px,aqăεu

›

›

L8 “ 0,

belongs to H1pµq.
Then, the abstract heat diffusions operators and the leafwise heat diffusions operators

coincide.

Remark 6.2. This theorem is analogous to a result by Nguyên [20, Theorem 5.17]. In
comparison, our hypothesis (H1) is stronger than his, and our hypothesis (H2) is weaker
than his. Actually, he uses the first one in a context where he has far better. Therefore,
he is forced to suppose quite specific singularities and currents in order to satisfy the
second one. Namely, he has to work with hyperbolic singularities and a current that does
not give mass to any leaf to have a vanishing Lelong number. Here, we have relaxed the
second hypothesis to apply the theorem to more singular measures, and strengthened
the first one in consequence. In particular, our assumption (H1) allows us to obtain the
result of Lemma 6.3 below.

Before proving Theorem 6.1, we will need two lemmas. The first one is new and will
be a crucial ingredient of our proof. The second one can be found in [20].

Lemma 6.3. We keep the notations of Theorem 6.1 and suppose hypothesis (H1). Let
u0 P D pF q and upt, ¨q “ Dtu0. Then, for t ą 0 and a P E, lim

εÑ0

›

›u tdM px,aqăεupt, ¨q
›

›

L8 “ 0.

Proof. Let a P E and δ be such that there exists a Hermitian chart U around a of radius
δ. Without loss of generality, we can assume that gM is the standard Kähler metric on
U » δB. Shrinking the chart if necessary, we also suppose that δ ă dMpsuppu0, aq. Fix
t ą 0, take ε ă δ and x P εB. For y P Lx X suppu0, we have by (2.2),

dP px, yq ě 2

ż δ

ε

dt

Faptq
“ Rε Ñ

εÑ0
`8,

since Fa is not integrable near 0. It follows that ϕ´1
x psuppu0q Ă DzDRε. In other words,

in the uniformization of Lx centered at x, the support of u0 is sent uniformly to the
boundary when x goes to the singularity. By (3.4) and (3.2), we get

Dtu0pxq “ upt, xq “

ż

D
pDp0, y, tqu0 pϕxpyqq gP pyq,

|upt, xq| ď }u0}L8

ż

D
1DzDRε

pyqpDp0, y, tqgP pyq,

where 1DzDRε
denotes the characteristic function of DzDRε. This bound is independent

on x such that dMpx, aq ă ε. By Lebesgue’s dominated convergence theorem and the fact
that Rε Ñ

εÑ0
`8, the right hand side tends to 0 when ε goes to 0. This implies the desired

conclusion. □
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Lemma 6.4. We keep the notations and hypothesis of Lemma 6.3. Suppose moreover that
u0 is positive. Then u is measurable and satisfies

(1) (a) }up¨, ¨q}L8 ă 8,
(b) For t ą 0, }|dupt, ¨q|P }L8 ă 8,
(c) For t ą 0, }∆Pupt, ¨q}L8 ă 8;

(2) u P C 1
`

R˚
`, L

2pµq
˘

and for t P R˚
`, Bupt,¨q

Bt
´ ∆Pupt, ¨q “ 0;

(3) lim
tÑ0

upt, ¨q “ u0 in L2pµq.

See [20, Facts (5.15), (5.16) and (5.17)] for a proof relying on a precise estimate of
the heat kernel.

Proof of Theorem 6.1. We follow the proof of [20, Theorem 5.17]. Let u0 P Dom p´∆P q

and t P R`. We have to show that

(6.1) Dtu0 “ Sptqu0.

Since the operators Dt and Sptq are positive contractions and D pF q is dense in
Dom p´∆P q, it is enough to show (6.1) for a non-negative u0 P D pF q . Take such a
u0. Denote by upt, ¨q “ Dtu0 and Upt, ¨q “ Sptqu0. By Lemmas 6.3 and 6.4 and hypothe-
sis (H2), upt, ¨q, Upt, ¨q and ũpt, ¨q “ Upt, ¨q´upt, ¨q belong to H1pµq for a fixed t. Morevoer,
they are C 1

`

R˚
`, L

2pµq
˘

. The heat equations (5.1) and (2) in Lemma 6.4 satisfied by Sptq
and Dt imply that

1

2

B

Bt

´

}ũpt, ¨q}
2
L2pµq

¯

“ x∆P ũpt, ¨q, ũpt, ¨qy “ ´q pũpt, ¨q, ũpt, ¨qq .

By an approximation of ũpt, ¨q by elements of D pF q and Proposition 5.3, we get
q pũpt, ¨q, ũpt, ¨qq “ q̃ pũpt, ¨q, ũpt, ¨qq ě 0 (see [20, p. 50-51]). Hence, }ũpt, ¨q}

2
L2pµq

is de-
creasing and goes to 0 for t Ñ 0 by the boundary conditions. This implies that it is
identically zero and Upt, ¨q “ upt, ¨q. □

Proof of Theorem 1.2. We are inspired by the proof of [20, Proposition 5.22]. Let T be
a directed positive harmonic current on F . By Proposition 2.4, we have

(6.2) c´1dMpx,Eq log‹ dMpx,Eq ď ηpxq ď cdMpx,Eq log‹ dMpx,Eq, x P MzE.

Then, Proposition 4.5 ensures that the measure µ associated to T by (4.1) is finite. Hence,
it is a harmonic measure. We want to apply Theorem 6.1. Hypothesis (H1) is clear
by (6.2). It remains to check hypothesis (H2). Let u be a measurable function on MzE
such that

(6.3) }u}L8 ă 8, }|du|P }L8 ă 8, }∆Pu}L8 ă 8, lim
εÑ0

›

›u tdM px,aqăεu

›

›

L8 “ 0, a P E.

We need to show that u belongs to H1pµq. Using the compactness of M , we can find a
finite open covering U “ pUpqpPI by

(1) flow boxes Up » D ˆ T such that dMpUp, Eq ą 0,
(2) Hermitian charts Ua » B for a P E with Ua X E “ tau.

Since µ is finite, using a partition of the unity, we can suppose that u is compactly
supported in a single Up or Ua.

Case (1). We need to find uε P D pF q such that }u ´ uε}H1pµq
ă ε. We will follow the

three following steps.
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(i) Let χp1q : C Ñ r0, 1s be a smooth function supported in D such that
ş

C χ
p1qdLeb “

1. Define χ
p1q

δ pzq “ δ´2χpδzq for δ P p0, 1q. Let u1 be the leafwise convolution of u
with χ

p1q

δ .
(ii) Let v be a bounded continuous function such that }du1 ´ v}L2pmq

ă ε and w be a
bounded continuous function such that }u1p0, tq ´ wptq}L2pν1q

ă ε. Here, m and
ν 1 are measures respectively on D ˆ T and T that our computation will specify.
Recall that we can find such v and w if m and ν 1 are Radon measures by Luzin’s
Theorem. Define

u2pz, tq “ wptq `

ż 1

0

vpτz, tq ¨ zdτ.

(iii) Let uε “ u3 be the leafwise convolution of u2 with χ
p1q

δ .

Note first that by (6.2) and (2.2), there is a constant C ą 1 such that C´1 }dz}
2

ď

gP ď C }dz}
2 on Up. It follows that the first and third steps will give }u1 ´ u}H1pµq

ă ε
3

and }u3 ´ u2}H1pµq
ă ε

3
, for sufficiently small δ. Moreover, it is clear that u2 is continuous.

Thus, u3 P D pF q . So, it remains to prove that }u1 ´ u2}H1pµq
ă ε

3
. Since u1 is leafwise

smooth, we have

u1pz, tq “ u1p0, tq `

ż 1

0

du1pτz, tq ¨ zdτ

everywhere on pz, tq P D ˆ T. Recall that µ is given by T ^ gP and T by Lemma 4.1.
Decompose u1 ´ u2 into the transversal to 0 part and the integral part, and apply the
Cauchy-Schwarz inequality to the second part. We get

}u1 ´ u2}L2pµq
ď }w ´ u1p0, ¨q}L2pν1q

` }v ´ du1}L2pm1q
,

where ν 1ptq “ }ht}L1pgP q
νptq and m1 “ λ˚ pLebˆµq with λ : pτ, z, tq ÞÑ pτz, tq. Moreover,

du2 “ v and since C´1 }dz}
2

ď gP ď C }dz} , we have

}∇u1 ´ ∇u2}L2pµq
ď C }v ´ du1}L2pµq

.

It is clear that m “ m1 ` µ is finite, hence is a Radon measure. So is ν 1 by Lemma 4.1.
Choose v a bounded continuous function such that }du1 ´ v}L2pmq

ă αε and w a bounded

continuous function such that }u1p0, ¨q ´ w}L2pν1q
ă αε, for α ď 1

3
p4 ` C2q

´1{2. Then
}u2 ´ u1}H1pµq

ă ε
3

and therefore, }u ´ uε}H1pµq
ă ε. This concludes Case (1).

Case (2). We work in coordinates Ua » B Ă Ck centered at a. Let χ : Ck Ñ r0, 1s be a
smooth function such that χpzq “ 1 on 1

2
B and χpzq “ 0 on CkzB. For ε P p0, 1q, consider

the function

vεpzq “
`

1 ´ χ
`

ε´1z
˘˘

upzq, z P B.

By construction, we have vε “ 0 on ε
2
B and vε satisfies (6.3). By the same argu-

ments as in Case (1), we get that vε P H1pµq. So, it will be sufficient to prove that
limεÑ0 }u ´ vε}H1pµq

“ 0. Moreover, u ´ vε is supported in εB and |u ´ vε| ď |u| every-
where. Since µ ptauq “ 0,

ż

M

|u ´ vε|
2 dµ ď }u}

2
L8

ż

εB
dµ Ñ

εÑ0
0.
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Next, we adress the gradient-part of the H1pµq-norm. We have
ż

M

|∇ pu ´ vεq|
2 dµ “

ż

εB
iB

`

upzqχ
`

ε´1z
˘˘

^ B
`

upzqχ
`

ε´1z
˘˘

^ T pzq.

Up to multiplying by constants, the right hand side is lower than the sum of these three
terms

I1 “

ż

εB
iBu ^ Bu ^ T, I2 “ ε´1

ż

εBz ε
2
B

|u| |du|T ^ β, I3 “ ε´2

ż

εBz ε
2
B

|u|
2 T ^ β,

where β “ ddc }z}
2 is the standard Kähler metric. Since µ ptauq “ 0, we obtain

I1 “

ż

εB
|∇u|

2 dµ ď }|du|P }
2 µ pεBq Ñ

εÑ0
0.

Recall that |du| “
|du|P
η

“
|∇u|

η
. By (6.2) and the equivalence of gM and the standard

norm, we get

I2 ď
C }u}L8

log‹
pcεq

}|du|P }L8 ε´2
}T ^ β}εB .

Then, Proposition 4.3 implies that I2 Ñ 0 when ε Ñ 0. Finally,

I3 ď
›

›u tdM px,aqăεu

›

›

2

L8 ε´2
}T ^ β}εB .

Thus, Proposition 4.3 and (6.3) ensure that I3 Ñ 0 when ε Ñ 0. It follows that
}u ´ vε}H1pµq

goes to 0 when ε Ñ 0. Hence, u P H1pµq and Theorem 1.2 is a conse-
quence of Theorem 6.1. □

Remark 6.5. In fact, I1 is estimated exactly the same way as [20, p. 56-57] and I2
similarly. The new point here is the estimate on I3 which is based on Lemma 6.3.

REFERENCES

[1] Alkateeb, Mohamad; Rebelo, Julio: Examples of harmonic foliated currents and singular Levi-flats
on the projective plane. arXiv:2304.03744, (2023).
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