
HAL Id: hal-04453306
https://hal.science/hal-04453306v1

Submitted on 12 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Morpho-Logic from a Topos Perspective – Application
to Symbolic AI

Marc Aiguier, Isabelle Bloch, Salim Nibouche, Ramón Pino Pérez

To cite this version:
Marc Aiguier, Isabelle Bloch, Salim Nibouche, Ramón Pino Pérez. Morpho-Logic from a Topos
Perspective – Application to Symbolic AI. International Journal of Approximate Reasoning, 2023,
161, pp.109011. �10.1016/J.IJAR.2023.109011�. �hal-04453306�

https://hal.science/hal-04453306v1
https://hal.archives-ouvertes.fr


Morpho-Logic from a Topos Perspective –

Application to Symbolic AI

Marc Aiguier1, Isabelle Bloch2, Salim Nibouche1 and Ramón Pino Pérez3
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pinoperez@cril.fr

Abstract

Modal logics have proved useful for many reasoning tasks in symbolic artificial intel-
ligence (AI), such as belief revision, spatial reasoning, among others. On the other
hand, mathematical morphology (MM) is a theory for non-linear analysis of struc-
tures, that was widely developed and applied in image analysis. Its mathematical
bases rely on algebra, complete lattices, topology. Strong links have been estab-
lished between MM and mathematical logics, mostly modal logics. In this paper, we
propose to further develop and generalize this link between mathematical morphol-
ogy and modal logic from a topos perspective, i.e. categorial structures generalizing
space, and connecting logics, sets and topology. Furthermore, we rely on the in-
ternal language and logic of a topos. We define structuring elements, dilations and
erosions as morphisms. Then we introduce the notion of structuring neighborhoods,
and show that the dilations and erosions based on them lead to a constructive modal
logic, for which a sound and complete proof system is proposed. We then show that
the modal logic thus defined (called morpho-logic here), is well adapted to define
concrete and efficient operators for revision, merging, and abduction of new knowl-
edge, or even spatial reasoning.

Key words: Mathematical morphology, Topos, Constructive modal logic,
Neighborhood semantics, Symbolic reasoning.

1 Introduction

Modal logics have proved useful for many reasoning tasks in symbolic artifi-
cial intelligence (AI), such as belief revision, spatial reasoning, among others.
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On the other hand, mathematical morphology (MM) is a theory for non-
linear analysis of structures, that was widely developed and applied in image
analysis. In its deterministic setting, its mathematical bases rely on algebra,
complete lattices, topology. Strong links have been established between MM
and mathematical logics, mostly modal logics. Necessity ◻ and possibility ◇
modalities are then interpreted by the two basic MM operators, namely ero-
sion and dilation [19,47,37]. This interpretation allows for easy formulations
of non-classical reasoning, including revision, merging, abduction [3,4,20,33],
and spatial reasoning [2,5,13].

Erosion ε and dilation δ are the two basic operations of MM often defined
from a structuring element B used to probe spatial structures to either dilate
or erode them. More formally, in the set theoretical case, let E be a Euclidean
space (often Rd or Zd where d is the space dimension). Let B (the structuring
element) be a subset of E, and let Bx = {x + b ∣ b ∈ B} be its translation at
a point x ∈ E. The dilation of a set X by a structuring element B is then
defined as δ[B](X) = {x ∈ E ∣ B̌x ∩ X ≠ ∅}, where B̌ is the symmetric of
B with respect to the origin of space, and the erosion of X is defined as
ε[B](X) = {x ∈ E ∣ Bx ⊆ X}. The structuring element B can be equivalently
defined as a binary relation on E, i.e. B(x, y) iff y ∈ Bx. In this setting, the
following properties hold 1 :

● erosion commutes with intersection and preserves E,
● dilation commutes with union and preserves the empty set, and
● erosion and dilation defined from the same structuring element are dual
operators with respect to complementation.

All this means that erosion and dilation are modal operators, that is the
tuple (℘(E),∩,∪, c,∅,E, ε[B], δ[B]), where ℘(E) is the powerset of E, is
a modal algebra. Hence, under this interpretation, modal logic is a tool for
talking about spatial transformation, and in this setting, modal logic has been
applied efficiently to symbolic artificial intelligence [5,13,16].

Until now, this link between MM and logic has been studied in the set frame-
work (with extensions to fuzzy sets). Since then MM has been extended to
a large family of algebraic structures such as graphs [27,28,45,61], hyper-
graphs [17,18], simplicial complexes [29], various logics, etc. All these exten-
sions proved useful for knowledge representation and reasoning, taking into
account low level information (points or neighborhood of points), structural
information (e.g. based on spatial relations between regions or objects), prior

1 Note that, more generally in MM, algebraic erosions and dilations on lattices
are actually defined as operations that commute with the infimum and supremum,
respectively (i.e. intersection and union in (P(E),⊆)). These more general forms of
operators do not necessarily involve structuring elements. The two first properties
are then rather definitions in a more general setting.
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knowledge, semantics, etc.

To take into account all of these extensions abstractly, we now propose to
deepen this link between binary MM and modal logic from a topos perspec-
tive 2 . Hence, paraphrasing a remark by O. Caramello in [25], every topos
embodies a certain domain of reality, susceptible of becoming an object of
knowledge (i.e. the idealized instantiations of this reality are the points of that
topos). Toposes constitute a categorical structure defined by A. Grothendieck
in the early sixties [35], which generalizes the notions of space, mathemati-
cal universe, and for what concerns us here, knowledge representation. The
reason why the choice of toposes is natural is as follows. It remains in the
spirit of toposes, as developed in [60], which establish a correspondence be-
tween logics, sets and topology 3 . Hence, the classical logic can be handled
by considering sorts as objects, functional symbols and terms as morphisms,
predicates as subobjects. The setting we propose in this paper is based on
this view of toposes, by considering objects X as collections of states and
morphisms X → PX as transitions, and by interpreting modal formulas as
subobjects (and then as collections of states which satisfy them).

The proposed definitions and operations will then enhance the reasoning abil-
ity of MM, extending previous work on morphological modal logic [5,13]. They
will allow, among others, giving morphological semantics to modalities with a
topological flavor [59] conventionally used for spatial reasoning [1], and which
could not be obtained directly from erosions and dilations; actually, the prop-
erties of these modalities are closer to the morphological operators of opening
and closing (in their particular form of composition of erosion and dilation)
due to a double quantification ∀/∃ in their definition. In [34], MM has been
extended to structuring elements based on a notion of neighborhood close to
a similar topological notion. We then propose to extend this first work to
the framework of toposes. To obtain the usual expected properties of erosion
and dilation in this new framework, we will have to impose a supplementary
condition on these new structuring neigbhorhoods which will be an adapta-
tion of the notion of filter, standard in topology and logic, to the framework
of toposes. From all this, we will then have an internal CS4-modal algebra
according to the meaning given to this notion in [7] (i.e. an internal inte-
rior algebra for erosions and a weaker version of internal closure algebra for
dilations because dilations will not distribute over upper bounds (therefore,

2 All the previous mentioned extensions can be represented by presheaves whose
categories are toposes.
3 In this correspondence, we can find [60]:
space ∼ logical theory
point ∼ model of the theory
open set ∼ propositional formula
sheaf ∼ predicate formula
continuous map ∼ transformation of models that is definable within geometric logic
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there are not dilations in strict sense) 4 ). This will then allow us to give a
neighborhood semantics to constructive modal logic from a topos perspective.

Related extensions can be found, on the logical side, in the context of insti-
tutions [5] and satisfaction systems [3,4], thus encompassing many different
logics in a federative framework. Applications to typical reasoning problems
(revision, abduction, spatial reasoning) were instantiated in this framework.

The interpretation of modal logic in toposes has already been approached by
others. We can cite [8,56]. To obtain modal operators possessing the right
properties (commutativity with the upper and lower bounds, and preserva-
tion of the maximum and minimum elements), these works consider adjoints
between internal Heyting algebras which therefore have the good properties of
preservation and commutation [44]. Here, we propose a less general but more
constructive definition of modal operators by defining them from erosion and
dilation.

Some preliminaries on toposes are given in Section 2. We review some concepts,
notations and terminology about toposes, more specifically about elementary
toposes of Lawvere and Tierney [41]. One important contribution of this paper
is to rely on the internal language of toposes, based on their logical account,
which allows reasoning on them in a way close to reasoning on sets and func-
tions. This is even more relevant in the scope of this paper where the algebraic
setting of MM is considered. In Section 3, we formulate the notion of structur-
ing element and two basic operators, dilation and erosion, in the framework
of elementary toposes. In Section 4, we further extend the notion of struc-
turing element to the notion of structuring neighborhood system. This notion
was first introduced in [34], and is now generalized in toposes, with the aim of
applying MM to logic for reasoning. In Section 5, we propose a new way of con-
sidering modalities in propositional modal logic, inspired by the interpretation
of these modalities as dilation and erosion with a structuring neighborhood
modeling an accessibility relation (useful for instance for spatial reasoning,
among others). The proposed extension formalizes constructive modal logic
via MM in toposes. This also extends the neighborhood semantics, usually
considered on sets [49], to toposes. Syntax and semantics are defined, as well
as a sound and complete proof system. Finally, in Section 6, we illustrate the
proposed approach on typical examples in symbolic AI and knowledge repre-
sentation, namely belief revision, merging, abduction, and spatial reasoning.
Useful notations are summarized in Appendix.

4 In [7], the authors have shown that in the intuitionistic setting, this last property
could be rejected, motivated by computer applications [32,51,62].
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2 Preliminaries: elementary toposes

This paper relies on many terms and notations from the categorical theory of
elementary toposes. The notions introduced here use basic notions of category
theory (category, functor, natural transformation, limits, colimits, Cartesian
closed) which are not recalled here, but interested readers may refer to text-
books such as [12,42].

2.1 Notations

In the whole paper, C denotes a generic category, X, Y , and Z denote objects
of C. When C is Cartesian closed, we denote by XY the exponential object of
X and Y . The symbols f , g, and h denote morphisms, and given a morphism
f ∶ X → Y , we denote by dom(f) = X the domain of f and by cod(f) = Y
the co-domain of f ; F,G,H ∶ C → C denote functors, and α,β ∶ F ⇒ G denote
natural transformations. Identity morphisms are denoted by Id, and initial
and terminal objects by ∅ and 1, respectively. Finally, monomorphisms are
denoted by ↣, that is if m is a monomorphism from X into Y , then we denote
it by m ∶X ↣ Y .

2.2 Basic definitions

A topos C is a finitely complete Cartesian closed category with a subobject
classifier Ω. Having a subobject classifier means that there is a morphism
out of the terminal object true ∶ 1 → Ω such that for every monomorphism
m ∶ Y ↣ X there is a unique morphism χm ∶ X → Ω (called the characteristic
morphism of m) such that the following diagram is a pullback:

Y ! //��

m
��

1

true
��

X χm
//Ω

Let X ∈ ∣C∣ be an object, its set of subobjects is defined as:

Sub(X) = {[m] ∣ cod(m) =X andm is a monomorphism}

where [m] is the equivalence class of m according to the equivalence relation

m ≃m′ iff cod(m) = cod(m′) and dom(m) is isomorphic to dom(m′)
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that is, we have: dom(m)

≃

��

$$
m

$$
dom(m′) //

m′
//X

If there is no ambiguity, we may write simply m instead of [m] in the sequel.

Obviously, we have the bijection Sub(X) ≃ Hom(X,Ω) by the mapping m ↦
χm.

Let us define the partial order ⪯X on Sub(X) as follows: for all f ∶ Y ↣X and
g ∶ Z ↣X

[f] ⪯X [g]⇐⇒ ∃h ∶ Y ↣ Z, f = g ○ h

As usual, ⪰X denotes the reverse order. It is known that Sub(X) is a Heyting
algebra [38], that is (Sub(X),⪯X) is a distributive bounded lattice with [IdX]
and [∅↣X] as the largest and the smallest elements, respectively, and which
admits an implication→ right-adjoint to the meet operation ∧ (see Appendix A
for a presentation of these results).

As C is finitely complete, subobjects give rise to the contravariant functor
Sub ∶ Cop → Pos, where Pos is the category of posets, which to every X ∈ ∣C∣
(object of C) associates Sub(X) and to every morphism f ∶X →X ′ associates
the mapping Sub(f) ∶ Sub(X ′)→ Sub(X) which to every [Y ′ ↣X ′] associates
[Y ↣X] making the diagram

Y //��

��

Y ′��

��
X //X ′

a pullback.

Every topos has further the following properties [11,38]:

● It has also finite colimits, and then it has an initial object ∅ and a termi-
nal object 1 which are respectively the colimit and the limit of the empty
diagram.

● Every morphism f can be factorized uniquely as mf ○ ef where ef is an
epimorphism and mf is a monomorphism. The codomain of ef is often

denoted by Im(f) and is called the image of f , and then (A
f
→ B) = (A

ef
→

Im(f)
mf

↣ B).
● Every object X ∈ C has a power object defined by ΩX and denoted by PX.
As a power object, it satisfies the following adjunction property:

HomC(X × Y,Ω) ≃ HomC(X,PY )

Given a morphism f ∈ HomC(X × Y,Ω) (respectively f ∈ HomC(X,PY ))
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we denote by f# its equivalent by the above bijection. The morphism f# is
called the transpose of f . Note that by construction, we have (f#)# = f .
In particular, the transpose of the identity IdPX ∶ PX → PX is the

characteristic morphism of a subobject ∈X↣ X × PX such that for every
object Y ∈ C and every monomorphism R ↣ X × Y , there exists a unique
morphism R → ∈X making the following diagram a pullback:

R //

��

∈X

��
X × Y

IdX×χ
#
R

//X × PX

Similarly to the category Set, the power object function which maps every
object X ∈ ∣C∣ to its power object PX can be extended both into a covariant
functor ∃ ∶ C → C and a contravariant functor P ∶ Cop → C. The covariant
functor ∃ associates to every morphism f ∶ X → Y ∈ C the morphism ∃f ∶
PX → PY whose transpose classifies the image of the morphism g ∶ ∋X↣

PX ×X
Id×f
ÐÐ→ PX × Y , i.e. ∃f = χ#

Im(g)↣PX×Y
.

Likewise, the contravariant functor P associates to every morphism f ∶ X →
Y , the morphism Pf ∶ PY → PX whose transpose classifies the morphism
R ↣ PY ×X where R is the pullback of the diagram

R //

��

∋Y

��
PY ×X

Id×f
//PY × Y

Toposes are sufficiently set-behaved to internalize a logic in which one may
reason as if they were picking elements in sets, and accomodate internally
constructive proofs, i.e. using neither the law of excluded middle nor the axiom
of choice. We will use this internal language of toposes extensively in the paper.
Now, in order not to overburden the presentation of the paper, we refer the
reader to the details of this internal language in Appendix B.

2.3 Example: the category of presheaves SetC
op

An interesting feature of this family of categories is that it subsumes most
of algebraic structures (e.g. sets, graphs, hypergraphs, etc.). Let C be a small
category, i.e. both collections of objects and arrows are sets. Let us denote
by SetC

op

the category of contravariant functors F ∶ Cop → Set (presheaves)
where Set is the category of sets. When the category C is a small category, it
is known that the category SetC

op

is complete and co-complete (i.e. it has all
limits and colimits). Let us recall why it is also a topos.
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First of all, observe that the functor Sub ∶ SetC
op

→ Set, which maps every
presheaf F to its set of subobjects Sub(F ), is naturally isomorphic to the
functor which maps each presheaf F to the set of its sub-presheaves. Therefore,
we can assume that G(C) ⊆ F (C) for all G ∈ Sub(F ) and C ∈ ∣C∣, and then
such a subobject will be denoted by G ⊆ F .

SetC
op

is Cartesian closed. The product of two functors F,G ∶ Cop → Set is
the functor H ∶ Cop → Set defined for every C ∈ ∣C∣ by H(C) = F (C) ×G(C),
and for every f ∶ A→ B ∈ C by the mapping H(f) ∶H(B)→H(A) defined by
(a, b)↦ (F (f)(a),G(f)(b)).

By the Yoneda Lemma, the exponential of functors F,G ∶ Cop → Set to the
object C ∈ ∣C∣ should give an isomorphism GF (C) ≃ Nat(Hom( ,C),GF ).
But, the definition of “Cartesian closed” requires that Nat(Hom( ,C),GF ) ≃
Nat(Hom( ,C)×F,G). This leads naturally to define the exponential of F and
G by the functor GF which associates to any object C ∈ ∣C∣ the set of natural
transformations from Hom( ,C) × F to G. For every f ∶ A → B ∈ C, GF (f) ∶
GF (B)→ GF (A) is the mapping which associates to any natural transforma-
tion α ∶ Hom( ,B)×F ⇒ G the natural transformation β ∶ Hom( ,A)×F ⇒ G
defined for every object C ∈ ∣C∣ by βC(g ∶ C → A, c ∈ F (C)) = αC(f ○ g, c).

SetC
op

has a subobject classifier. For every A ∈ ∣C∣, a set S of arrows f in
C is said to be a sieve on A if:

(1) For all arrows f ∈ S we have cod(f) = A, and
(2) For all arrows f ∈ S and g ∈ Hom(C) such that cod(g) = dom(f), we

have f ○ g ∈ S.

We denote by Sieve(A) the set of sieves on A. Moreover, the map Sieve ∶ C →
Set is naturally extended to a contravariant functor Ω ∶ C → Set, i.e. a presheaf
Ω ∈ SetC

op

, as follows:

Ω ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C Ð→ Set

A z→ Sieve(A)

f ∶ A→ B z→ Ω(f) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Sieve(B) Ð→ Sieve(A)

S z→ {g ∶ C → A ∣ f ○ g ∈ S}

In fact, Ω is the subobject classifier; indeed, let us consider:
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● the natural transformation true ∶ 1 ⇒ Ω which 5 for every A ∈ C associates
to the unique element in 1(A) the maximal sieve on A (i.e. the unique sieve
which contains IdA);

● for every presheaf F ∈ ∣SetC
op

∣, the bijection:

χ ∶

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Sub(F ) Ð→ Hom(F,Ω)

G ⊆ F z→ χ(G)A ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

F (A) Ð→ Sieve(A)

x z→ {f ∶ B → A ∣ F (f)(x) ∈ G(B)}

whose inverse is:

χ−1 ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Hom(F,Ω) Ð→ Sub(F )

ξ z→ A↦ {x ∈ F (A) ∣ IdA ∈ ξ(A)(x)}

Then we clearly have a correspondence between subobjects of F ∈ ∣SetC
op

∣ and
morphisms F → Ω, via the following pullback:

G 1

F Ω

!

i true

χ(G)

This makes Ω a subobject classifier in SetC
op

.

Hence, given a presheaf X ∶ Cop → Set, the power object PX ∶ Cop → Set is the
presheaf which, given an object C ∈ ∣C∣, gives the set

PX(C) = Nat(HomC(−,C) ×X,Ω) ≃ Sub(HomC(−,C) ×X)

Examples of categories C. Sets, undirected graphs, directed graphs,
rooted trees and hypergraphs can be defined as presheaves. Indeed, for each
of them, the (base) category C can be graphically defined as:

●
��

V
s ))

t
55E

inv

��
V

s ))

t
55E (N,≤) V

a
→ R

h
← E

The category C for undirected graphs satisfies in addition the two equations:
s ○ inv = t and t ○ inv = s.

5 1 ∶ Cop → Set is the presheaf which associates to any A ∈ ∣C∣ the terminal object 1
in Set.
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As an example, let us develop more precisely the case of directed graphs in its
three aspects:

(1) object classifier,
(2) power object, and
(3) object PX where X is a directed graph.

Object classifier. Let G ∶ Cop → Set be a directed graph. We have seen
that Ω(V ) and Ω(E) are respectively Sieve(V ) and Sieve(E), i.e. Ω(V ) =
{∅,{idV }} and Ω(E) = {∅,{s},{t},{s, t},{s, t, idE}}. For any presheaf cate-
gory SetC

op

, given a morphism f ∶ X → Y in C, there is a straightforward way
to compute Ω(f) ∶ Ω(Y )→ Ω(X): it is defined for every sieve S on Y by:

Ω(f)(S) = {g ∶ Z →X ∣ Z ∈ C and f ○ g ∈ S}

Hence, we have that:

Ω(s)(∅) = ∅ Ω(t)(∅) = ∅

Ω(s)({s}) = {IdV } Ω(t)({s}) = ∅

Ω(s)({t}) = ∅ Ω(t)({t}) = {IdV }

Ω(s)({s, t}) = {IdV } Ω(t)({s, t}) = {IdV }

Ω(s)({s, t, IdE}) = {IdV } Ω(t)({s, t, IdE}) = {IdV }

Therefore, the subobject classifier is the directed graph:

F

∅

�� t ((
T

s
hh

{s,t}

��

{s,t,idE}

ZZ

where we denote by F the vertex ∅ and by T the vertex {IdV }.

The true arrow true ∶ 1 → Ω maps the unique vertex to T and the unique
arrow to {s, t, idE}.

Hence, given a subgraph m ∶ G′ ↪ G, the characteristic mapping χm works as
follows:

● all vertices which are not in G′ are mapped to F ;
● all vertices which are in G′ are mapped to T ;
● if an edge is not in G′, we have 4 possibilities:
(1) edges whose source and target are not in G′ are mapped to ∅;

10



(2) edges whose source is in G′ but the target is not are mapped to s;
(3) edges whose target is in G′ but the source is not are mapped to t;
(4) edges whose source and target are in G′ are mapped to {s, t};
● edges in G′ are mapped to {s, t, IdE}.

Power object. Let us consider two graphs X,Y ∈ ∣SetC
op

∣. Then XY is a
graph defined as follows:

● Vertex set: the vertices of XY are in correspondence with the maps fV ∶
Y (V )→X(V ).

XY (V ) = Nat(HomC(−, V ) × Y,X)

≅X(V )Y (V )

● Edge set: The edges of XY are in correspondence with the triples of maps
(fE ∶ Y (E) → X(E), f sE ∶ Y (V ) → X(V ), f tE ∶ Y (V ) → X(V )) that make
the following diagrams commutative:

Y (E) X(E)

Y (V ) X(V )

fE

Y (s) X(s)

fsE

Y (E) X(E)

Y (V ) X(V )

fE

Y (t) X(t)

f tE

XY (E) = Nat(HomC(−,E) × Y,X)

≅ {(fE, f
s
E, f

t
E) ∈X(E)

Y (E) ×X(V )Y (V ) ×X(V )Y (V ) ∣

X(s) ○ fE = f
s
E ○ Y (s) and X(t) ○ fE = f

t
E ○ Y (t)}

● Source and target maps:

XY (s) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

XY (E) Ð→ XY (V )

(fE, f sE, f
t
E) z→ f sE

XY (t) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

XY (E) Ð→ XY (V )

(fE, f sE, f
t
E) z→ f tE

Note that the graph morphisms HomSetC
op(Y,X) correspond to the morphisms

1→XY , i.e. the loops in the graph XY .

Object PX. In particular, the graph PX = ΩX is characterized by :

11



● Vertex set: the vertices of PX are in correspondence with the subsets of
X(V ).

PX(V ) ≅ Sub(HomC(−, V ) ×X)

≅ ℘(X(V ))

(℘(X(V )) denotes here the powerset of X(V ))
● Edge set: The edges of PX correspond to the triples (χE ⊆ X(E), SE ⊆
X(V ), TE ⊆X(V )) such that X(s)(χE) ⊆ SE and X(t)(χE) ⊆ TE.

● Source and target maps:

PX(s) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

PX(E) Ð→ PX(V )

(χE, SE, TE) z→ SE

PX(t) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

PX(E) Ð→ PX(V )

(χE, SE, TE) z→ TE

Intuitively, PX is the graph whose vertices are the subsets of X(V ), and
edges between two vertices σ, τ ⊆ X(V ) are the subsets χ ⊆ X(E) such that
s(χE) ⊆ σ and t(χE) ⊆ τ .

3 Mathematical Morphology in Topos

3.1 Definitions

MM based on structuring elements extends fairly simply to toposes. Let C be
a topos.
Definition 1 (Structuring element). A structuring element is a morphism
b ∶X → PX for X ∈ C.

By the bijections HomC(X,PX) ≃ Sub(X ×X) ≃ HomC(X ×X,Ω), given a
structuring element b ∶ X → PX, there exists a unique subobject rb∶Rb ↣
X ×X ∈ Sub(X ×X) such that b = χ#

rb , i.e.

Rb
//

��

1

��
X ×X χrb

//Ω

is a pullback diagram.

Let us denote by b̆ ∶ X → PX the transpose of the morphism which classifies

the image of the morphism Rb ↣X ×X
∆X×X
ÐÐÐ→ (X ×X)×(X ×X)

p2×p1
ÐÐÐ→X ×X,
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where ∆ denotes the diagonal morphism, and pi the projection on the ith
space. Its description in the internal language of the topos C is the following:

b̆(y) = {x ∶X ∣ y ∈X b(x)}

Definition 2 (Erosion). Let b ∶ X → PX be a structuring element. The ero-
sion by b is the morphism ε[b] ∶ PX → PX whose transpose classifies the
morphism r ∶ R ↣ PX × X (i.e. ε[b] = χ#

r ) where R is the pullback of the
diagram:

R //

��

⪰X

��
PX ×X

Id×b
//PX × PX

In the internal logic of the topos C, this is expressed as follows:

ε[b](Y ) = {x ∶X ∣ b(x) ⪯X Y }

Definition 3 (Dilation). Let b ∶ X → PX be a structuring element. The
dilation by b is the morphism δ[b] ∶ PX → PX which classifies the image
of the morphism R ↣ X ×X × PX → PX ×X where the second morphism is
the projection in the last and the first arguments, and R is the pullback of the
diagram:

R //

��

Rb̆× ∈X

��
X ×X × PX

Id×∆X×Id
//X ×X ×X × PX

In the internal logic of the topos C, this leads to:

δ[b](Y ) = {x ∶X ∣ ∃y. y ∈X b̆(x) ∧ y ∈X Y }

Remark 1. We could easily have extended erosions and dilations to any
structuring element of the form b ∶ X → PY , and then defining morphisms
ε[b], δ[b] ∶ PY → PX. All the results given in Section 3.2 are easily adaptable
to such structuring elements.

Given a structuring object b ∶ X → PX, we have the two mappings
ε[b]X , δ[b]X ∶ Sub(X)→ Sub(X) given by the two commuting diagrams:

Hom(1, PX) ≃ //

Hom(Id1,ε[b])
��

Sub(X)

ε[b]X
��

Hom(1, PX) ≃ // Sub(X)

Hom(1, PX) ≃ //

Hom(Id1,δ[b])
��

Sub(X)

δ[b]X
��

Hom(1, PX) ≃ // Sub(X)

We will see in the next section that ε[b] and δ[b] are monotonous. Hence,
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ε[b]X , δ[b]X ∶ Sub(X)→ Sub(X) are functorial when Sub(X) is considered as
a category.

We will also see in the next section that when the structuring element b satisfies
the formula:

∀x.x ∈X b(x)

then, δ[b]X is a Ĉech closure operator.

3.2 Results

We find all the results of MM in the set framework. The proofs of these different
results mimic in the internal logic of the topos C the classical proofs that we
can find in the setting of MM on sets. The reason is that these classical proofs
are constructive intuitionistic proofs, i.e. they use neither the axiom of choice
nor the law of excluded middle. The proofs being quite simple but very formal,
we refer the reader to the details of the proofs given in Appendix C, so as not
to overload the presentation.
Proposition 1 (Adjunction). The following formula in the internal logic is
valid:

∀Y. ∀Z. δ[b](Y ) ⪯X Z ⇐⇒ Y ⪯X ε[b](Z)

By Proposition 1, (PX,∧,∨,⇒, ε[b], δ[b],�,⊺) is an internal HGC-algebra, i.e.
a Heyting algebra equipped with an order-preserving Galois connection [30],
and then can be used to give a semantic to the intuitionistic propositonal logic
with Galois connections (IntGC) introduced in [30] from a topos perspective.
Proposition 2. Erosion and dilation are monotonous for ⪯X and preserve
least upper bound and greater lower bound, respectively. Moreover, we have
that:

● ε[b](X) =X, and
● δ[b](∅) = ∅.

Finally, ε[b] and δ[b] are, respectively, anti-extensive and extensive for ⪯X iff
the formula ∀x. x ∈X b(x) is valid. More formally, these last two properties
mean that both statements are valid:

(1) ⊢ (∀x. x ∈X b(x))⇔ (∀Y. ε[b](Y ) ⪯X Y )
(2) ⊢ (∀x. x ∈X b(x))⇔ (∀Y. Y ⪯X δ[b](Y ))

When C is complete (e.g. topos of presheaves), if we update our syntax to
include set-indexed limits and colimits on any power object PX, then the
preservation properties can be extended as follows:

ε[b](⋀i∈I Yi) = ⋀i∈I(ε[b](Yi)) ; δ[b](⋁i∈I Yi) = ⋁i∈I(δ[b](Yi))
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for any index set I. This implies the monotonicity of ε[b], δ[b].
Proposition 3. ε[b](¬XY ) = ¬Xδ[b̆](Y ) and δ[b̆](¬XY ) ⪯X ¬Xε[b](Y )where
¬X is the pseudo-complement of the internal Heyting algebra PX.

Proof. This directly results from the fact that the underlying internal logic
for C is intuitionistic.

If C is a Boolean topos, we further have that ¬Xε[b](Y ) ⪯X δ[b̆](¬XY ), and
hence the equality.

As usual, the composition of erosion and dilation is not equal to the iden-
tity, but produces two other operators, called opening (defined as δ[b] ○ ε[b])
and closing (defined as ε[b] ○ δ[b]). Opening and closing have the following
properties.
Proposition 4. ε[b] ○ δ[b] (closing) and δ[b] ○ ε[b] (opening) satisfy the fol-
lowing properties:

● ε[b] ○ δ[b] and δ[b] ○ ε[b] are monotonous;
● ε[b] ○ δ[b] is extensive;
● δ[b] ○ ε[b] is anti-extensive;
● ε[b] ○ δ[b] ○ ε[b] = ε[b];
● δ[b] ○ ε[b] ○ δ[b] = δ[b];
● ε[b] ○ δ[b] and δ[b] ○ ε[b] are idempotent.

3.3 Mathematical morphology in presheaves

In toposes SetC
op

, given a presheaf F ∶ Cop → Set, a structuring element is a
natural transformation b ∶ F ⇒ PF , and then for every C ∈ ∣C∣ and every
c ∈ F (C), bC(c) is a sub-presheaf of Hom( ,C) × F .

Then, given a structuring element b ∶ F ⇒ PF , ε[b] ∶ PF ⇒ PF is defined as
follows: for every C ∈ ∣C∣

ε[b]C ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

PF (C) → PF (C)

X ↦ ε[b]C(X)

where X and ε[b]C(X) are sub-presheaves of Hom( ,C) × F , and ε[b]C(X) ∶
Cop → Set is defined as follows:

● For every D ∈ ∣C∣, we have:

ε[b]C(X)(D) = {(f ∶D → C, d) ∣ bD(d) ⊆ PF (f)(X)}
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● For every f ∶D → E, we have:

ε[b]C(X)(f) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ε[b]C(X)(E) → ε[b]C(X)(D)

(g∶E → C, e) ↦ (g ○ f,F (f)(e))

Note that (g ○ f,F (f)(e)) belongs indeed to ε[b]C(X)(D) as we can see in
the following commutative diagram:

D F (D) PF (D)

E e F (E) PF (E) PF (g)(X)

f

bD

∈

F (f)

bE

PF (f)

∋

More precisely, knowing that bE(e) ⊆ PF (g)(X) and PF (f) being isotone,
we also have bD(F (f)(e)) = PF (f)(bE(e)) ⊆ PF (f)(PF (g)(X)) = PF (g ○
f)(X).

Likewise, δ[b] ∶ PF ⇒ PF is defined as follows: for every C ∈ ∣C∣

δ[b]C ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

PF (C) → PF (C)

X ↦ δ[b]C(X)

where X and δ[b]C(X) are sub-presheaves of Hom( ,C) × F , and δ[b]C(X) ∶
Cop → Set is defined at all D ∈ C by:

δ[b]C(X)(D) = {(f ∶D → C,d) ∣ ∃d′ ∈X(D), (IdD, d
′) ∈ b̆D(d)(D)∩PF (f)(X)(D)}

where b̆ ∶ F ⇒ PF is defined for all C ∈ C by:

b̆C ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

F (C) → PF (C)

c ↦ (D ↦ {(f ∶D → C, d) ∣ (IdD, F (f)(c)) ∈ bD(d)(D)})

Example 1 (Set). Due to the structure of the base category, presheaves can
be directly represented by sets, and power objects by the power set operator
X ↦ 2X . Then, let S be a set. A structuring element is a map b ∶ S → 2S,
corresponding by transposition to the subset Rb = {(x, y) ∣ y ∈ b(x)} ⊆ S × S.

When MM is applied in image processing, S is equipped with an additive law +
(i.e. (S,+) is an Abelian group), and then given a point x ∈ S, b(x) = {x + b ∣
b ∈ B} where B ⊆ S. So, given a set X ⊆ S, ε[b](X) = {x ∈ S ∣ b(x) ⊆ X}, and
δ[b](X) = {x ∈ S ∣ b̆(x) ∩X ≠ ∅}.

The proposed definitions indeed include the classical definitions on sets.
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Example 2 (Directed graph). Let G ∶ Cop → Set be a graph (C is the base
category given in Section 2.3). Many examples of structuring elements can be
defined. Here, we provide three examples:

(1) Star of a vertex. Given a vertex v ∈ G(V ), we consider the subgraph com-
posed of vertices with an edge with v. This defines the following structur-
ing element b ∶ G⇒ PG:

bV ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

G(V ) → PG(V )

v ↦ {v′ ∣ ∃e ∈ G(E), G(s)(e) = v, G(t)(e) = v′}

bE ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(E) → PG(E)

e ↦

⎛
⎜
⎜
⎜
⎜
⎝

{e′ ∣ G(t)(e) = G(s)(e′)}

bV (G(s)(e))

bV (G(t)(e))

⎞
⎟
⎟
⎟
⎟
⎠

(2) Path from a vertex. Given a vertex v ∈ G(V ), we extend the previous
structuring element to paths from v of length n ∈ N∗. This defines the
following structuring element b ∶ G⇒ PG:

bV ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

G(V ) → PG(V )

v ↦ Y

where Y ⊆ G(V ) is the set defined by:

v′ ∈ Y ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃e1, . . . , ek ∈ G(E), k ≤ n

∃v0, . . . , vk ∈ G(V ),

∀i,1 ≤ i ≤ k,G(s)(ei) = vi−1 and G(t)(ei) = vi

v = v0 and v′ = vk

bE ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(E) → PG(E)

e ↦

⎛
⎜
⎜
⎜
⎜
⎝

Y

bV (G(s)(e))

bV (G(t)(e))

⎞
⎟
⎟
⎟
⎟
⎠
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where Y ⊆ G(E) is the set defined by:

e′ ∈ Y ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃e1, . . . , ek ∈ G(E), k ≤ n + 1

∃v0, . . . , vk ∈ G(V ),

∀i,1 ≤ i ≤ k,G(s)(ei) = vi−1 and G(t)(ei) = vi

e = e1 and e′ = ek

(3) Star of an edge. Given an edge e ∈ G(E), we consider the subgraph
composed of edges sharing a vertex with e. Here, the structuring ele-
ment b ∶ G ⇒ PG is defined by: given an edge e ∈ G(E), we denote
Se = {G(s)(e),G(t)(e)}

bV ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

G(V ) → PG(V )

v ↦ {v′ ∣ ∃(e, e′) ∈ G(E), v ∈ Se, G(s)(e′) = v and G(t)(e′) = v′}

bE ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(E) → PG(E)

e ↦

⎛
⎜
⎜
⎜
⎜
⎝

{e′ ∣ G(s)(e) = G(s)(e′) or G(t)(e) = G(s)(e′)}

bV (G(s)(e))

bV (G(t)(e))

⎞
⎟
⎟
⎟
⎟
⎠

Then, ε[b] ∶ PG ⇒ PG is composed of the mappings ε[b]V and ε[b]E defined
respectively by:

ε[b]V ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

PG(V ) Ð→ PG(V )

X z→ {v ∈ G(V ) ∣ bV (v) ⊆X}

ε[b]E ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PG(E) Ð→ PG(E)

(Y,S, T ) z→

⎛
⎜
⎜
⎜
⎜
⎝

{e ∈ G(E) ∣ bE(e) ⊆ Y }

{v ∈ G(V ) ∣ bV (v) ⊆ S}

{v ∈ G(V ) ∣ bV (v) ⊆ T}

⎞
⎟
⎟
⎟
⎟
⎠

Likewise, δ[b] ∶ PG ⇒ PG is composed of the mappings δ[b]V and δ[b]E
defined respectively by:

δ[b]V ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

PG(V ) Ð→ PG(V )

X z→ {v ∈ G(V ) ∣∃w ∈X, w ∈ bV (v)}

18



δ[b]E ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PG(E) Ð→ PG(E)

(Y,S, T ) z→

⎛
⎜
⎜
⎜
⎜
⎝

{e ∈ G(E) ∣ b̆E(e) ∩ Y ≠ ∅}

{v ∈ G(V ) ∣∃w ∈ S, w ∈ b̆V (v)}

{v ∈ G(V ) ∣∃w ∈ T, w ∈ b̆V (v)}

⎞
⎟
⎟
⎟
⎟
⎠

Example 3 (Hypergraphs). Here also, many examples of structuring elements
can be provided. For example, we can adapt the structuring element defined as
the “star of a vertex” to hypergraphs.

Let us consider a hypergraph H ∶ Cop → Set, and define more precisely the
structure of PH. According to the same construction process as that for di-
rected graphs, we can set:

● Vertex set: PH(V ) = P(H(V ))
● Edge set: PH(E) = P(H(E))
● Relation set: PH(R) = {(χR,AR,HR) ∣ χR ⊆ H(R),AR ⊆ H(V ),HR ⊆
H(E)} such that H(a)(χR) ⊆ AR and H(h)(R) ⊆HR.

● Maps PH(a) and PH(h):

PH(a) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

PH(R) → PH(V )

(χR,AR,HR) ↦ AR

PH(h) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

PH(R) → PH(V )

(χR,AR,HR) ↦ AH

Then, we may define the structuring element b ∶H ⇒ PH as:

bV ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(V ) → PH(V )

v ↦

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∣ ∃r1, r2 ∈H(R),H(a)(r1) = v,

v′ ∣ H(a)(r2) = v′,

∣ H(h)(r1) =H(h)(r2)

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

bE ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(E) → PH(E)

e ↦

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∣ ∃r1, r2 ∈H(R),H(h)(r1) = e,

e′∣ H(h)(r2) = e′,

∣ H(a)(r1) =H(a)(r2)

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

bR ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H(R) → PH(R)

r ↦ ({r′ ∣H(a)(r) =H(a)(r′)}, bV (H(a)(e)), bE(H(h)(e)))
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All examples of Example 2 can be extended to hypergraphs similarly.

Likewise, the definitions of erosion and dilation are easily adaptable from those
for directed graphs.

4 Structuring Neighborhoods: Internal Topology

In [34], MM based on sets has been generalized to a new setting called struc-
turing neighborhood systems. Here, we propose to extend this generalization
to the topos framework. Hence, we propose to generalize all the notions of
Section 3 using a lax notion of structuring element, called structuring neigh-
borhood. The motivation of this extension is mainly logical. Indeed, the mo-
tivations of the paper is to apply MM to logic, so-called morpho-logic (see
Section 5), which has been proved useful to model knowledge, beliefs or pref-
erences, and to model classical reasoning methods such as revision, fusion,
abduction or spatial reasoning [3–5,13,21,24].

4.1 Structuring Neighborhood: Definitions and Results

In the proposed framework of structuring neighborhoods, many properties of
classical erosion and dilation can be recovered, but at the price of supplemen-
tary conditions on structuring neighborhoods. These supplementary condi-
tions led to a mathematical construction which is very important in topology
and logic, namely filters.

Let us consider an object X in a topos C.
Definition 4 (Filter). We formalize the notion of filter in X by the following
axioms on the variable F ∶ PPX:

● Closed under finite intersections:

∀A. ∀B. A ∈PXF ∧ B ∈PXF ⇒ A ∧B ∈PXF

● Upward closed:

∀A. ∀B. A ∈PXF ∧ A ⪯XB ⇒ B ∈PXF

● Non-empty:

X ∈X F

● Strict:

∀A. A ∈PXF ⇒ (∃x. x ∈XA)
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The conjunction of the formulas above is again a formula, hence a morphism
F ∶ PPX → Ω.

Filters will allow us to internally define a topology over a given topos, based
on the notion of topological neighborhood (see Definition 7).
Definition 5 (Structuring neighborhood). A structuring neighborhood is
a morphism N ∶X → PPX which validates both formulas:

(1) ∀x. F(N(x)), where F is the morphism introduced in Definition 4
(2) ∀x.∀A.A ∈PX N(x)⇒ x ∈X A

Intuitively, Definition 5 means that neighborhoods of x have a structure of
filter, and therefore makes the notion of structuring neighborhood similar to
the notion of neighborhood in topology (the set of neighborhoods of a point
x in a topology is a filter), and all neighborhoods of x contain x. This last
point will allow us to have erosions and dilations verifying the property of
anti-extensivity and extensivity, respectively.
Definition 6 (Erosion and dilation). Let us consider a structuring neighbor-
hood N ∶ X → PPX. Let us define the morphism ε[N] ∶ PX → PX by the
formula:

∀Y. ε[N](Y ) = {x ∶X ∣ Y ∈PX N(x)}

and the morphism δ[N] ∶ PX → PX by the formula:

∀Y. δ[N](Y ) = {x ∶X ∣ ∃F. F(F ) ∧ Y ∈PX F ∧ N(x) ⪯PX F}

= {x ∶X ∣ ∀A. A ∈PX N(x) ⇒ ∃y. y ∈X A ∧ Y }

Hence, the erosion of Y contains all the elements x which have Y as neighbor-
hood, and the dilation of Y contains all elements x whose all neighborhoods
intersect with Y .

Given a structuring neighborhood N ∶X → PPX, we also have two mappings
ε[N]X , δ[N]X ∶ Sub(X)→ Sub(X) given by the two commuting diagrams:

Hom(1, PX) ≃ //

Hom(Id1,ε[b])
��

Sub(X)

ε[N]X
��

Hom(1, PX) ≃ // Sub(X)

Hom(1, PX) ≃ //

Hom(Id1,δ[b])
��

Sub(X)

δ[N]X
��

Hom(1, PX) ≃ // Sub(X)

By Proposition 5 just below, ε[N] and δ[N] are monotonous, and then ε[N]X
and δ[N]X are functorial when Sub(X) is considered as a category.
Proposition 5. ε[N] and δ[N] are monotonous. Moreover:

● ε[N] verifies:
⋅ ∀A. ∀B. ε[N](A ∧B) = ε[N](A) ∧ ε[N](B).
⋅ ε[N](X) =X.
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⋅ ∀Y.ε[N](Y ) ⪯X Y .
● δ[N] verifies:
⋅ ∀A. ∀B. δ[N](A ∨B) ⪰X δ[N](A) ∨ δ[N](B).
⋅ δ[N](∅) = ∅.
⋅ ∀Y.Y ⪯X δ[N](Y ).

● ∀Y. ε[N](¬XY ) ⪯X ¬Xδ[N](Y )

Proof. ● Monotonicity: Considering variables x ∶ X, Y ∶ PX, Z ∶ PX, let
Y ⪯X Z. Since N(x) is a filter, Y ∈PX N(x) implies Z ∈PX N(x) (filters are
upward closed by definition). It follows that

Y ⪯X Z ⊢ ε[N](Y ) ⪯X ε[N](Z)

● Distributivity of ε[N] with ∧: Let us consider variables A ∶ PX and B ∶
PX. By monotonicity (increasingness) we already have ε[N](A ∧ B) ⪯X
ε[N](A) ∧ ε[N](B). Let us prove the other inclusion.
For a variable x ∶X, we have:

x ∈X (ε[N](A) ∧ ε[N](B)) ⇒ A ∈PX N(x) ∧ B ∈PX N(x)

⇒ (A ∧B) ∈PX N(x)

⇒ x ∈X ε[N](A ∧B)

● Identity element: For a variable x ∶X, we have:

x ∈X ε[N](X) ⇔ X ∈PX N(x)

⇔ x ∈X X

● Anti-extensivity: For a variable x ∶X, we have:

x ∈X ε[N](Y ) ⇔ Y ∈PX N(x)

⇒ x ∈X Y

● For dilation δ[N], the proofs of monotonicity, commutativity and preserva-
tion of lower bound are similar (monotonicity argument and definition of ∅).
Let us prove the extensivity property: Let x ∶ X be a variable. Let x ∈X Y .
Let us assume that ∀A.A ∈PX N(x). Then x ∈X A. And since x ∈X Y , we
have x ∈X A∧Y . Therefore x ∈X δ[N](Y ) (by taking y = x in the definition
of the dilation).
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● Duality: For variables Y ∶ PX and x ∶X, we have ¬XY ∧ Y = ∅ and then:

x ∈X ε[N](¬XY ) ⇒ ¬XY ∈PX N(x)

⇒ ¬XY ∈PX N(x) ∧ (∀y. ¬(y ∈X ¬XY ∧ Y ))

⇒ ∃A. A ∈PX N(x) ∧ (∀y. ¬(y ∈X A ∧ Y ))

⇒ ∃A. A ∈PX N(x) ∧ ¬(∃y. y ∈X A ∧ Y )

⇒ ∃A. ¬(A ∈PX N(x) ⇒ ∃y. y ∈X A ∧ Y )

⇒ ¬(∀A. A ∈PX N(x) ⇒ ∃y. y ∈X A ∧ Y )

⇒ ¬(x ∈ δ[N](Y ))

⇒ x ∈ ¬Xδ[N](Y )

which concludes the proof.

The definitions of ε[N] and δ[N] have a topological flavor. However, they
do not satisfy some properties required for interior and closure operators,
respectively (they are not idempotent). In Section 4.2, we will restrict the set
of structuring neighborhoods to topological neighborhoods (see Definition 7).
Whereas structuring neighborhoods are sufficient to give semantics to the
modal logic IT, this new family of structuring neighborhoods will allow us
to define erosions and dilations so that they will form an internal CS4-modal
algebra over PX.
Example 4 (From structuring element to neighborhood). Each structuring
element b ∶ X → PX provides a natural structuring neighborhood Nb ∶ X →
PPX defined by:

∀x. Nb(x) = {Y ∶ PX ∣ Y ⪰X b(x)}

Proposition 6. ε[Nb] = ε[b] and δ[Nb] = δ[b̆].

Proof.

x ∈X ε[Nb](Y )⇔ Y ∈PX Nb(x)

⇔ Y ⪰X b(x)

⇔ x ∈X ε[b](Y )

x ∈X δ[Nb](Y )⇒ ∃F. F(F ) ∧ Y ∈PX F ∧ Nb(x) ⪯PX F

⇒ ∃F. F(F ) ∧ Y ∈PX F ∧ b(x) ∈PX F

⇒ ∃F. F(F ) ∧ (Y ∧ b(x)) ∈PX F

⇒ ∃y. y ∈X (Y ∧ b(x))

⇒ x ∈ δ[b̆](Y )
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x ∈ δ[b̆](Y )⇒ ∃y. y ∈X (Y ∧ b(x))

⇒ ∃F. F = {Z ∶ PX ∣ Z ⪰X (Y ∧ b(x))}

∧ F(F ) ∧ Y ∈PX F ∧ Nb(x) ⪯PX F

⇒ x ∈X δ[Nb](Y )

In the second implication, we use the fact that if Z ⪰X Y ∧ b(x) and ∃y. y ∈X
Y ∧b(x) then ∃y. y ∈X Z, which gives us the last axiom of F . The other axioms
are obviously satisfied.

Hence, we proved that dilation and erosion based on structuring neighbor-
hoods actually generalize those based on structuring elements, through the
identification of each structuring element b ∶ X → PX such that x ∈X b(x)
with its corresponding structuring neighborhood Nb ∶X → PPX.
Proposition 7. For all structuring neighborhoods M,N ∶ X → PPX, the
following assertions are equivalent:

(1) Adjunction: ∀Y. ∀Z. δ[N](Y ) ⪯X Z ⇔ Y ⪯X ε[M](Z).
(2) Dual structuring elements: there exists a structuring element b ∶X → PX

such that M = Nb and δ[N] = δ[Nb̆].

Proof. We already proved 2⇒ 1. Let us prove 1⇒ 2.

If we have the adjunction property between δ[N] and ε[M], then by consid-
ering Y = {x} for any variable x ∶X, we have in particular:

∀x. ∀Z. δ[N]({x}) ⪯X Z ⇔ {x} ⪯X ε[M](Z) ⇔ Z ∈M(x)

Hence, we have necessarily:

∀x. M(x) = {Z ∶ PX ∣ δ[N]({x}) ⪯X Z} = Nb(x)

where b ∶X → PX is the structuring element defined by:

∀x. b(x) = δ[N]({x})

We have therefore constructed a structuring element b satisfying M = Nb. Let
us now prove that we have necessarily δ[N] = δ[Nb̆].

By Proposition 6, we have δ[Nb̆] = δ[b] and ε[M] = ε[Nb] = ε[b]. Therefore,
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Theorem 1, combined with our adjunction hypothesis on N andM , results in:

∀Y. ∀Z. δ[Nb̆](Y ) ⪯X Z ⇔ δ[b](Y ) ⪯X Z

⇔ Y ⪯X ε[b](Z)

⇔ Y ⪯X ε[M](Z)

⇔ δ[N](Y ) ⪯X Z

In particular, by considering respectively Z = δ[Nb̆](Y ) and Z = δ[N](Y ):

∀Y. δ[N](Y ) ⪯X δ[Nb̆](Y ) ; ∀Y. δ[Nb̆](Y ) ⪯X δ[N](Y )

which concludes the proof.

Remark 2. When C is a Boolean topos, then the assumption ¬¬φ = φ holds,
we have moreover N = Nb̆. Indeed, we have ε[N](Y ) = ¬Xδ[N](¬XY ) =

¬Xδ[b](¬XY ) = ε[b̆](Y ), i.e. Y ∈ N(x) ⇔ b̆(x) ⪯X Y .

4.2 Topological Neighborhood

Definition 7 (Topological neighborhood). A topological neighborhood is
a structuring neighborhood N ∶X → PPX such that:

∀x. ∀A. A ∈PXN(x)⇒
⎛
⎜
⎝

∃B. B ∈PX N(x) ∧

(∀y. y ∈XB ⇒ A ∈PXN(y))

⎞
⎟
⎠

Proposition 8 (Interior operator). If N ∶ X → PPX is a topological neigh-
borhood, then ε[N] is an internal interior operator in PX, i.e. it satisfies the
following properties:

(1) ∀Y. ε[N](Y ) ⪯X Y .
(2) ε[N](X) =X.
(3) ∀Y. ∀Z. ε[N](Y ∧Z) = ε[N](Y ) ∧ ε[N](Z).
(4) ∀Y. ε[N](ε[N](Y )) = ε[N](Y ).

Proof. The first three properties have been proved in Proposition 5. Let us
prove the last property. Let us consider a variable Y ∶ PX. We already have
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ε[N](ε[N](Y )) ⪯X ε[N](Y ). Conversely, for a variable x ∶X, we have:

x ∈X ε[N](Y ) ⇒ Y ∈PX N(x)

⇒ ∃B. B ∈PX N(x) ∧ (∀y. y ∈X B ⇒ Y ∈PX N(y))

⇒ ∃B. B ∈PX N(x) ∧ (∀y. y ∈X B ⇒ y ∈X ε[N](Y ))

⇒ ∃B. B ∈PX N(x) ∧ B ⪯X ε[N](Y )

⇒ ε[N](Y ) ∈PX N(x)

⇒ x ∈X ε[N](ε[N](Y ))

Proposition 9. If N ∶ X → PPX is a topological neighborhood, then δ[N]
satisfies the following properties:

(1) ∀Y. Y ⪯X δ[N](Y ).
(2) δ[N](∅) = ∅.
(3) ∀Y. δ[N](δ[N](Y )) = δ[N](Y ).

Proof. The first two properties have already been proved in Proposition 5.
Let us prove the last one. Let us consider a variable x ∶X. Then, we have the
following implications :

x ∈X δ[N](δ[N](Y ))⇒ (∀A.A ∈PX N(x)⇒ ∃y.y ∈X δ[N](Y ) ∧A) (1)

But

A ∈PX N(x)⇒
⎛
⎜
⎝

∃B.B ∈PX N(x)∧

(∀y ∈X B ⇒ A ∈PX N(y))

⎞
⎟
⎠

(2)

Moreover, as B ∈PX N(x), we have that

∃y.y ∈X δ[N](Y ) ∧B (3)

Now,

y ∈X δ[N](Y )⇒ ∀C.C ∈PX N(y)⇒ ∃z.z ∈X Y ∧C (4)

From Implications 2 and 4, we have that A ∈PX N(y), and then

∃z.z ∈X Y ∧A

from which we can conclude that x ∈ δ[N](Y ), and hence δ[N](δ[N](Y )) ⪯X
δ[N](Y ).

Finally, δ[N](Y ) ⪯X δ[N](δ[N](Y )) is a direct consequence of the first prop-
erty, and then we have ∀Y. δ[N](δ[N](Y )) = δ[N](Y ).
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Hence, for any topological neighborhood N , δ[N]X is a closure operator to

which we can associate the two natural transformations η ∶ IdSub(X)⇒ δ[N]X
and µ ∶ δ[N]X ○ δ[N]X ⇒ δ[N]X , and then (δ[N]X , η, µ) is a monad 6 .

By Propositions 8 and 9, as δ[N] does not distribute over ∨, we have that the
tuple (PX,⪯X ,∧,∨,¬X ,∅, ε[N], δ[N]) is an internal CS4-modal algebra [7],
and then is well adapted to give a semantic to the constructive modal logic
CS4 from a topos perspective (which we will do in Section 5). Actually, we can
easily show that δ[N] distributes over ∧. Hence, δ[N] is a Lawvere-Tierney
topology [43]. Now, we are not far from obtaining a closure algebra. For this
purpose, we must impose the supplementary condition:

∀A. ∀B. δ[N](A ∨B) ⪯X δ[N](A) ∨ δ[N](B)

Note that there are actually some δ[N] for which this inequality holds (and
then this condition combined with extensivity makes δ[N] commute with ∨).
An example of N for which δ[N] distributes over ∨ is Nb for a structuring
element b satisfying: ∀x.x ∈X b(x). When this holds, we have defined a no-
tion of internal topology over X ∈ ∣C∣, and ε[N] and δ[N] are interpreted as
topological notions of interior and closure, respectively.

In this context, we can define the two morphisms open, closed ∶ PX → Ω as the
equalizers of ε[N] and IdPX , and δ[N] and IdPX , respectively, which gives in
the internal language of the topos C the following characterizations:

● open(Y )⇔ ε[N](Y ) = Y
● closed(Y )⇔ δ[N](Y ) = Y

We then recover the following result, which is standard for topological spaces
(and also proved in a previous paper [5]).
Proposition 10. Adjunction holds if and only if opening is equivalent to
closing, that is the following statement is valid: for every N ∶X → PPX

Adjunction(ε[N], δ[N])⇔ (∀W, open(W )⇔ closed(W ))

where Adjunction(ε[N], δ[N]) is defined as:

Adjunction(ε[N], δ[N]) ≡ (∀Y. ∀Z. δ[N](Y ) ⪯X Z⇔ Y ⪯X ε[N](Z))

Proof. (⇒) Let us assume adjunction. Let us suppose that Y is closed, that
is δ[N](Y ) = Y , and then δ[N](Y ) ⪯X Y . By adjunction, we then have that
Y ⪯X ε[N](Y ). But, we also know that ε[N](Y ) ⪯X Y , and then ε[N](Y ) =
Y . Therefore Y is also open. Applying this to the complement allows us to
conclude that all opens are closed.

6 Here, Sub(X) is seen as a category.
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(⇐) Let us suppose that δ[N](Y ) ⪯X Z. By Theorem 5, we have that

ε[N](δ[N](Y )) ⪯X ε[N](Z)

We know that δ[N](Y ) is closed, and then it is open by hypothesis. We can
then conclude that ε[N](δ[N](Y )) = δ[N](Y ). But, δ[N] is extensive, and
then Y ⪯X δ[N](Y ), whence we can conclude that Y ⪯X ε[N](Z).

The other direction of the implication of adjunction is proved similarly.

5 Morpho-Logic: Interpretation of Modalities in Topos

Taking advantage of the fact that the tuple (PX,∧,∨,¬X ,∅, ε[N], δ[N]) is an
internal modal algebra for the family of structuring neighborhoods N defined
in Definition 7, we will give in this section a neighborhood semantics of the
constructive modal logic from a topos perspective. As is customary in categor-
ical logic, we propose an entailment system formulated as a sequent calculus
for which we prove a completeness result.

Syntax. Let PV be a countable set whose elements are called proposi-
tional variables and denoted by letters p, q . . . The set Φ of formulas is
defined by the following grammar:

φ,ψ ∶∶= ⊺ ∣ � ∣ p ∣ ¬φ ∣ φ ∧ ψ ∣ φ ∨ ψ ∣ φ⇒ ψ ∣ ◻ φ ∣ ◇ φ

where p runs through PV .

Semantics. As structuring neighborhoods subsume structuring elements b ∶
X → PX such that ∀x.x ∈X b(x) (cf. Example 4), we interpret the modal

operators ◻ and ◇ respectively by the morphological operators ε[N]X and

δ[N]X for N ∶X → PPX with X ∈ ∣C∣ where C is a topos.

Given a set of propositional variables PV , a PV -model, or simply a model,
M is a triple (X,N, ν) where:

● X is an object of a topos C,
● N ∶X → PPX is a structuring neighborhood, and
● ν ∶ PV → Sub(X) is a mapping called valuation.

If we want to give semantics to CS4-modal logic, we restrict ourselves to
models (X,N, ν) where N is a topological neighborhood.
We use Mod to denote the class of PV -models.
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The semantics of formulas in a modelM is a mapping [[M]]( ) ∶ Φ→ Sub(X)
defined by structural induction on formulas as follows:

● [[M]](⊺) = IdX ,
● [[M]](�) = ∅↣X (∅↣X is the least subobject of Sub(X)),
● [[M]](p) = ν(p),
● [[M]](¬φ) = [[M]](φ)→ [[M]](�)
● [[M]](φ∧ψ) = [[M]](φ)∧[[M]](ψ) (the infimum of [[M]](φ) and [[M]](ψ)),
● [[M]](φ ∨ ψ) = [[M]](φ) ∨ [[M]](ψ) (the supremum of [[M]](φ) and
[[M]](ψ)),

● [[M]](φ⇒ ψ) = [[M]](φ)→ [[M]](ψ)

● [[M]](◻φ) = ε[N]X([[M]](φ))

● [[M]](◇φ) = δ[N]X([[M]](φ))

We writeM ⊧ φ if and only if [[M]](φ) = IdX , and then for every ι ∈ Sub(X),
we writeM ⊧ι φ to mean that ι ⪯X [[M]](φ)) (⪯X is the ordering on Sub(X)).
Let us denote by Mod(φ) the class of models M such that M ⊧ φ. Finally,
given a set of formulas Γ and a formula φ, we write Γ ⊧ φ to mean that for
every model M which verifies M ⊧ ψ for every formula ψ ∈ Γ, we have that
M ⊧ φ.

By the properties of implication, the Kripke schema holds. Indeed, let M =
(X,N, ν) be a model. By definition of implication in Heyting algebra, we have:

[[M]](φ) ∧ [[M]](φ⇒ ψ) ⪯X [[M]](ψ)

Then, we have:

[[M]](◻φ) ∧ [[M]](◻(φ⇒ ψ)) ⪯X [[M]](◻ψ)

Now, we have that ( ∧ [[M]](◻φ)) ⊣ ([[M]](◻φ) → ), from which we can
conclude that [[M]](◻(φ⇒ ψ)) ⪯X [[M]](◻φ⇒ ◻ψ).

Lemma 1. For any model M = (X,N, ν), and any formulas φ,ψ, we have:

M ⊧ φ⇒ ψ iff [[M]](φ) ⪯X [[M]](ψ)

Proof. Sub(X) is a Heyting algebra, and then it satisfies the following prop-
erty:

[[M]](φ) ⪯X [[M]](ψ)⇐⇒ ([[M]](φ)→ [[M]](ψ) = IdX)

A sound and complete entailment system. As is customary in categor-
ical logic, we propose an entailment system formulated as a sequent calculus.
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Definition 8 (Sequent). Given two formulas φ,ψ ∈ Φ, a sequent is an ex-
pression of the form φ ⊢ ψ. It is valid for a model M = (X,N, ν), denoted
φ ⊧M ψ, if we have that: [[M]](φ) ⪯X [[M]](ψ). It is valid, denoted φ ⊧ ψ,
if for every model M, φ ⊧M ψ.

The sequent calculus will consist of inference rules enabling us to derive a
sequent (or a collection of sequents) from a collection of others, which will be
written:

Γ
σ

to mean that the sequent σ can be inferred from a collection of sequents Γ.
Note that the axioms will be rules in which Γ, the premises, is the empty set.
In such a case we write simply σ.

Consider the following rules, where φ ⊣⊢ ψ is a shortened notation for φ ⊢ ψ
and ψ ⊢ φ:

● Identity rule:
φ ⊢ φ

● Axioms:
⋅ Preservation. ◻⊺ ⊣⊢ ⊺, and ◇� ⊣⊢ �
⋅ Duality. ◻¬φ ⊢ ¬◇ φ
⋅ Distributivity. ◻(φ ∧ ψ) ⊣⊢ ◻φ ∧ ◻ψ and ◇φ ∨◇ψ ⊢◇(φ ∨ ψ)
⋅ Axiome K. ◻(φ⇒ ψ) ⊢ ◻φ⇒ ◻ψ
⋅ Axiom T. ◻φ ⊢ φ, and φ ⊢◇φ
⋅ Axiom S4. ◻φ ⊢ ◻ ◻ φ, and ◇◇ φ ⊢ ◇φ (when models are restricted to
topological neighborhoods)

⋅ Classical. ¬¬φ ⊢ φ (When C is a Boolean topos)
● Inconsistency:

� ⊢ ψ

● Tautology:
φ ⊢ ⊺

● Cut rule:
φ ⊢ ψ ψ ⊢ χ

φ ⊢ χ

● Rules for conjunction:

φ ∧ ψ ⊢ φ φ ∧ ψ ⊢ ψ φ ∧ φ ⊣⊢ φ φ ∧ ψ ⊣⊢ ψ ∧ φ

φ ⊢ ψ φ ⊢ χ

φ ⊢ ψ ∧ χ

● Rules for disjunction:

φ ⊢ φ ∨ ψ ψ ⊢ φ ∨ ψ φ ∨ ψ ⊣⊢ ψ ∨ φ
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φ ⊢ χ ψ ⊢ χ

φ ∨ ψ ⊢ χ

φ ∨ ψ ⊢ χ

φ ⊢ χ

φ ∨ ψ ⊢ χ

ψ ⊢ χ

● Distributivity:
φ ∧ (ψ ∨ χ) ⊣⊢ (φ ∧ ψ) ∨ (φ ∧ χ)

● Rules for implication:

φ ∧ ψ ⊢ χ

φ ⊢ ψ⇒ χ

φ ⊢ ψ⇒ χ

φ ∧ ψ ⊢ χ

● Rule for negation:
¬φ ⊣⊢ φ⇒ �

● Rules for modalities:

φ ⊢ ψ

◻φ ⊢ ◻ψ

φ ⊢ ψ

◇φ ⊢◇ψ

A sequent φ ⊢ ψ is provable if there exists a finite sequence of sequents
(φ1 ⊢ ψ1, . . . , φn ⊢ ψn) such that φn ⊢ ψn = φ ⊢ ψ, and each sequent of the
sequence is either an axiom or is obtained by applying inference rules from
sequents that precede it in the sequence.

Theorem 1 (Soundness). If φ ⊢ ψ is a sequent which is provable, then φ ⊧ ψ.

Proof. This is proved by structural induction on derivation. This is trivial
in almost every case from the way in which semantics has been defined. For
instance, the rules for modalities are a direct consequence of the fact that for
every modelM = (X,N, ν), ε[N]X and δ[N]X are monotonic.

In the following, we call interior modal algebra any tuple (A,∧A,∨A,→A

,1,0,◻A,◇A) where (A,∧A,∨A,→,1,0) is a Heyting algebra, and ◻A and ◇A

are respectively, interior and closure operators. Let us define the binary rela-
tion ⊩ on Φ/⊣⊢ (where Φ/⊣⊢ is the quotient of Φ by the equivalence relation
⊣⊢, and given a formula φ, [φ]⊣⊢ is its equivalence class) by:

[φ]⊣⊢ ⊩ [ψ]⊣⊢ iff φ ⊢ ψ is provable

Proposition 11. (Φ/⊣⊢ ,⊩) is a Heyting algebra.

Proof. By the identity rule and the definition of ⊣⊢, ⊩ is reflexive and anti-
symmetric. Now, by the cut rule, it is further transitive, and then ⊩ is a partial
ordering.
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Let us now show that (Φ/⊣⊢ ,⊩) is a Heyting algebra. It is a bounded lattice
where the least and the greatest elements in Φ/⊣⊢ are, respectively, [�]⊣⊢ and
[⊺]⊣⊢.
Let [φ]⊣⊢ and [ψ]⊣⊢ be two elements of Φ/⊣⊢ . Then, we have:

[φ]⊣⊢ ∧ [ψ]⊣⊢ = [φ ∧ ψ]⊣⊢

[φ]⊣⊢ ∨ [ψ]⊣⊢ = [φ ∨ ψ]⊣⊢

[φ]⊣⊢ → [ψ]⊣⊢ = [φ⇒ ψ]⊣⊢

By the rules of conjunction and disjunction,, ∧ and ∨ clearly define the lower
and upper bound operators.
It remains to prove the following equivalence:

[φ]⊣⊢ ∧ [ψ]⊣⊢ ⊩ [χ]⊣⊢⇐⇒ [φ]⊣⊢ ⊩ [ψ]⊣⊢ → [χ]⊣⊢

This amounts to show

φ ∧ ψ ⊢ χ⇐⇒ φ ⊢ ψ⇒ χ

which is the rule for implication.

Hence, if we define the two operators ◻,◇ ∶ Φ/⊣⊢ → Φ/⊣⊢ by:

◻ ∶ [φ]⊣⊢ ↦ [◻φ]⊣⊢

and

◇ ∶ [φ]⊣⊢ ↦ [◇φ]⊣⊢

then we have that the tuple

(Φ/⊣⊢ ,∧,∨,→, [⊺]⊣⊢, [�]⊣⊢,◻,◇)

is an interior modal algebra.

Given an interior modal algebra A = (A,∧A,∨A,→A,0,1,◻A,◇A) and a map-
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ping νA ∶ PV → A, we can define the mapping:

[[A]]νA ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ → A

⊺ ↦ 1

� ↦ 0

p ↦ νA(p)

φ @ ψ ↦ [[A]]νA(φ) @A [[A]]νA(ψ) where @ ∈ {∧,∨,→}

◻ φ ↦ ◻A[[A]]νA(φ)

◇ φ ↦ ◇A[[A]]νA(φ)

Let us set:

φ⊫ ψ iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

for every interior modal algebra A, and every νA ∶ PV → A,

[[A]]νA(φ) ⪯A [[A]]νA(ψ)

Let us denote IntAlg the category whose objects are couples (A, νA) where A
is an interior modal algebra and νA ∶ PV → A is a valuation, and morphisms
µ ∶ (A, νA)→ (B, νB) are interior modal algebra morphisms (i.e. µ is a Heyting
algebra morphism which preserves modal operators) such that for every p ∈
PV , νB(p) = µ(νA(p)).
Proposition 12. (Φ⊣⊢, ν ∶ p↦ [p]⊣⊢) is initial in IntAlg.

Proof. Let µA ∶ (Φ⊣⊢, ν)→ (A, νA) be the mapping defined by:

µA ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ/⊣⊢ → A

[⊺]⊣⊢ ↦ 1

[�]⊣⊢ ↦ 0

[p]⊣⊢ ↦ νA(p)

[φ @ ψ]⊣⊢ ↦ µA([φ]⊣⊢) @A µA([ψ]⊣⊢) where @ ∈ {∧,∨,→}

[◻φ]⊣⊢ ↦ ◻AµA([φ]⊣⊢)

[◇φ]⊣⊢ ↦ ◇AµA([φ]⊣⊢)

By construction, µA defines an interior modal algebra morphism which is
unique.

Corollary 1. If φ ⊢ ψ is provable, then for every (A, νA) ∈ ∣IntAlg∣,
[[A]]νA(φ) ⪯A [[A]]νA.
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Proof. From the hypothesis, we have that [φ]⊣⊢ ⊩ [ψ]⊣⊢. As µA is a Heyting
morphism, we have that µA([φ]⊣⊢) ⪯A µA([ψ]⊣⊢). It is quite direct to show
that µA(φ) = [[A]]νA(φ).

Theorem 2. φ ⊢ ψ is provable iff φ⊫ ψ

Proof. The Only-if part is a direct consequence of Corollary 1.
The If part is a direct consequence of the fact that (Φ/⊣⊢ , ν ∶ p ↦ [p]⊣⊢) is in

IntAlg.

Theorem 3 (Completeness). φ⊫ ψ iff φ ⊧ ψ.

Proof. The Only-if part is obvious because for every model M = (X,N, ν),
(Sub(X),∧,∨,→, [IdX], [∅ ↣ X], ε[N]X , δ[N]X) is an interior modal alge-
bra, and then (Sub(X), ν) ∈ ∣IntAlg∣.
To prove the If part, let us start by introducing some notions. Let A =

(A,∧A,∨A,→A,0,1,◻A,◇A) be an interior modal algebra. Let Γ ⊆ A be a
subset of A. Γ is said consistent if for all finite subsets ∆ ⊆ Γ, ⋀A∆ ≠ 0. Like-
wise, Γ is said maximally consistent if Γ is consistent and there does not exist
a consistent subset Θ ⊆ A such that Γ ⊆ Θ. By Zorn’s lemma, given a subset
Γ ⊆ A, there exists a maximally consistent set ∆ that contains Γ. 7 Now, add
to A a mapping νA ∶ PV → A, and define the model MA = (X,N, ν) in the
topos Set as follows:

● X is the set of all maximal consistent sets of A;
● Nb ∶X → ℘(℘(X)) is the structuring neighborhood obtained from the struc-
turing element b ∶X → ℘(X) (see Example 4) defined by:

Γ′ ∈ b(Γ) iff

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

◻Aa ∈ Γ⇒ a ∈ Γ′

a ∈ Γ⇒◇Aa ∈ Γ′

● ν ∶ {Γ ∈X ∣ νA(p) ∈ Γ}

Lemma 2.

◻Aa ∈ Γ iff ∀Γ′ ∈ b(Γ), a ∈ Γ′

7 The inductive set to which Zorn’s lemma is applied is S = {Γ′ ⊆ A ∣

Γ′ is consistent and Γ ⊆ Γ′}. And then, by Zorn’s lemma, ∆ is the maximal element
of S. It is quite direct to show that it is maximally consistent.
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Proof. The Only-if part is a direct consequence of Definition of b. To show the
If-part, let us suppose that for every Γ′ ∈ b(Γ), we have that a ∈ Γ′. Hence,
the set {b ∈ A ∣ ◻Ab ∈ Γ} ∪ {a} is consistent. Hence, for all finite subsets
∆ ⊆ {b ∈ A ∣ ◻Ab ∈ Γ}, 0 ⪯A ⋀A∆ ∧A a, and then 0 ⪯A ⋀A◻A∆ ∧A ◻Aa, from
which we can conclude that ◻Aa ∈ Γ.

Lemma 3. For every formula φ, and every Γ ∈X, we have:

Γ ∈ [[MA]](φ) iff [[A]]νA(φ) ∈ Γ

Proof. By structural induction on φ. The basic case is obvious by definition.
The cases of propositional operators are not difficult. Let us prove the property
for modalities.

● φ is ◻ψ. We have the following equivalences:

Γ ∈ [[MA]](◻ψ) ⇔ [[MA]](ψ) ⊆ b(Γ)

⇔ ∀Γ′ ∈ [[MA]](ψ),Γ′ ∈ b(Γ)

⇔ ∀Γ′ ∈ b(Γ), [[A]]νA(ψ) ∈ Γ
′ (Induction hypothesis)

⇔ [[A]]νA(◻ψ) ∈ Γ (Lemma 2)

● φ is ◇ψ. We have the following equivalences:

Γ ∈ [[MA]](◇ψ) ⇔ ∃Γ′ ∈X,Γ ∈ b(Γ′) ∧ Γ′ ∈ [[MA]](ψ)

⇔ ∃Γ′ ∈X,Γ ∈ b(Γ′) ∧ [[A]]νA(ψ) ∈ Γ
′ (Induction hypothesis)

⇔ [[A]]νA(◇ψ) ∈ Γ (definition of b)

Let us suppose that for every model M, φ ⊧M ψ. This is equivalent to M ⊧
φ ⇒ ψ. Hence, for every interior modal algebra A and every νA ∶ PV → A,
we have that [[MA]](φ ⇒ ψ) = X, and then by Lemma 3, for every Γ ∈ X,
[[A]]νA(φ⇒ ψ) ∈ Γ, from which we can conclude that [[A]]νA(φ⇒ ψ) = 1.

In the previous proof, we showed completeness independently of a given topos,
hence the definition of the set model MA for an interior modal algebra A is
similar to the canonical model. Let us now propose a proof of completeness
for a model class reduced to all models defined on a same topos C. To show
this result, we assume a topos C which is non-degenerate (i.e. ∅ ≠ 1, and then
true ≠ false), and therefore Mod is restricted to modelsM = (X,N, ν) where
X ∈ ∣C∣. Hence, in the remaining of this section, a sequent φ ⊢ ψ is valid if it
is valid for all modelsM in Mod.
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Let Γ ⊆ Φ be a set of formulas. For every φ ∈ Φ, we write Γ ⊢ φ to mean
that the sequent φ ⊣⊢ ⊺ can be obtained by using the inference rules from all
sequents ψ ⊣⊢ ⊺ where ψ ∈ Γ. Γ is said consistent if Γ /⊢ � (i.e. � ⊣⊢ ⊺ cannot
be obtained from Γ).

By Zorn’s lemma, there exists a maximally consistent set of formulas Γ which
contains Γ when Γ is consistent. 8

Proposition 13. Let ∆ be a maximally consistent set of formulas. There
exists a model M∆ such that, for every φ ∈ Φ:

[[M∆]](φ) = IdX iff φ ∈∆

Proof. M∆ = (X,N, ν) is any model such that

● X ∈ ∣C∣ is an object different from the initial one (this is always possible
since we have assumed that C is non degenerated).

● ν ∶ p ∈ PV ↦

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

IdX if p ∈∆

∅↣X otherwise

Note that no constraint is imposed on N .

The equivalence in the proposition is proved by structural induction on φ.
The cases of basic formulas and propositional connectives are easily provable.
Then, let us prove the property for the modality ◻ (the proof for the modality
◇ is substantially identical). So, let φ be of the form ◻ψ.

(Ô⇒) Let us suppose that [[M∆]](φ) = IdX . By anti-extensivity, we necessar-
ily have that [[M∆]](ψ) = IdX . Hence, by the induction hypothesis, we have
that ψ ∈∆, i.e. ψ ⊣⊢ ⊺ is obtained from ∆, and then so is ◻ψ ⊣⊢ ⊺ by the rule
for modalities, whence we can then conclude that

◻ψ ∈∆

(⇐Ô) Let us suppose that ◻ψ ∈ ∆. We then have that ψ ∈ ∆. Otherwise,
this means that the sequent ψ ⊣⊢ � can be obtained from ∆ from which
we can conclude by the axioms associated to modalities that φ ⊣⊢ � which
contradicts the hypothesis. So, by the induction hypothesis, we have that
[[M∆]](ψ) = IdX , from which we can conclude that [[M∆]](φ) = IdX .

8 As previously, the inductive set to which Zorn’s lemma is applied is S = {Γ′ ⊆
Sen(Σ) ∣ Γ′ is consistent and Γ ⊆ Γ′}. The poset (S,⊆) is inductive. Therefore, by
Zorn’s lemma, Γ is the maximal element of S, and quite directly it is maximally
consistent.
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Theorem 4 (Completeness). If φ ⊢ ψ is a sequent which is valid, then it is
provable.

Proof. If φ ⊢ ψ is not provable, then the set Γ = {¬(φ ⇒ ψ)} is consistent.
Let Γ be a maximally consistent set of formulas which contains Γ. By Propo-
sition 13, there exists a modelMΓ = (X,N, ν) such that [[MΓ]](¬(φ⇒ ψ)) =
IdX , and then φ /⊧ ψ.

6 Application to Symbolic AI

6.1 Belief Revision

Belief revision is the process that makes an agent’s beliefs evolve with newly
acquired knowledge. In a logical framework, agent’s beliefs and knowledge
are formally defined by formulas. In practice, in this setting, the problem is
then characterized by the resolution of the inconsistency of a theory after
the addition of a new formula. To facilitate the presentation, we will assume
that agent’s beliefs and knowledge are in a finite number, and therefore can be
represented by a simple formula. In the general case of an infinite set of knowl-
edge and therefore defined by a theory, we refer the reader to our article [3]
whose revision operators are easily adaptable to the formalism developed in
this paper.

Modal logics are classically used to formalize beliefs. The reason is that they
allow expressing beliefs about the beliefs of the other agents. Hence, we sup-
pose here that agent’s beliefs are formalized by modal formulas, and belief
revision will be defined by an operator ○ between two formulas φ and ψ which
will express how to transform φ into a formula φ′ such that φ′ ∧ ψ is consis-
tent [39]. 9

An axiomatization has imposed itself, the AGM theory [6], to describe the
proper functioning of the revision operator ○. AGM postulates are the follow-
ing:

● (G1) If ψ is a consistent formula, then so is φ ○ ψ
● (G2) Mod(φ ○ ψ) ⊆Mod(ψ)
● (G3) If φ ∧ ψ is consistent, then φ ○ ψ = φ ∧ ψ
● (G4) If φ ≡ φ′ and ψ ≡ ψ′, then Mod(φ ○ ψ) =Mod(φ′ ○ ψ′) (≡ means that
formulas are logically equivalent)

9 φ will often be the conjunction of a finite set of beliefs themselves defined by
formulas [39].
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● (G4’) If ψ ≡ ψ′, then Mod(φ ○ ψ) =Mod(φ ○ ψ′)
● (G5) Mod((φ ○ ψ) ∧ χ) =Mod(φ ○ (ψ ∧ χ)) if (φ ○ ψ) ∧ χ is consistent

Postulate (G4) means a complete independence of the syntax. But, we will
see next that when the revision operator applies a syntactic transformation to
knowledge bases (here specified by the formula φ) Postulate (G4) cannot be
ensured anymore. This will be the case for our revision operator dedicated to
the logic CS4 (see below), hence the introduction of Postulate (G4’).

Revision operators based on dilations. By the way we interpreted
modalities, we have for every φ ∈ Φ that

Mod(φ) ⊆Mod(◇φ)

(This is just a consequence of the fact that dilations are extensive).

Following the approach developed in [16] for the propositional logic, the idea
is then to dilate the class of models of φ until meeting the class of models
of ψ. The problem is that the set S = {k ∈ N ∣ ◇kφ ∧ ψ is consistent} can be
empty. In this case, we force φ ○ ψ to be ψ. This leads to:

φ ○ ψ =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

◇nφ ∧ ψ if S ≠ ∅ and n =min S

ψ otherwise

with ◇nφ =◇ . . .◇
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
n times

φ.

Proposition 14. The operator ○ satisfies the AGM postulates (G1)-(G5).

Proof. ○ obviously satisfies Postulates (G1), (G2) and (G3).
Let us prove (G4). Let φ ≡ φ′ and ψ ≡ ψ′. This means thatMod(φ) =Mod(φ′)
andMod(ψ) =Mod(ψ′). Obviously, we have for every k ∈ N thatMod(◇kφ) =
Mod(◇kφ′). This entails that Mod(φ ○ ψ) =Mod(φ′ ○ ψ′).
Let us now prove (G5). Here, tow cases have to be considered:

(1) there does not exist n ∈ N such that ◇nφ ∧ ψ is consistent. In this case,
Mod(φ ○ ψ) =Mod(ψ), and then Mod((φ ○ ψ) ∧ χ) =Mod(ψ ∧ χ). Now,
there does not existm ∈ N such that ◇mφ∧(ψ∧χ) is consistent, otherwise
◇mφ○ψ would be consistent too, which would be a contradiction. Hence,
we have that Mod(φ ○ (ψ ∧ χ)) =Mod(ψ ∧ χ).
Likewise, if there does not exist n ∈ N such that◇nφ∧(ψ∧χ) is consistent,
then as (φ ○ ψ) ∧ χ is consistent, this means that there does not exist
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m ∈ N such that ◇mφ○ψ is consistent. Hence, in both cases, we have that
Mod((φ ○ ψ) ∧ χ) =Mod(ψ ∧ χ) and Mod(φ ○ (ψ ∧ χ)) =Mod(ψ ∧ χ).

(2) φ ○ ψ = ◇nφ ∧ ψ. Therefore, as (φ ○ ψ) ∧ χ is consistent, we have that
Mod((φ ○ ψ) ∧ χ) = Mod(◇nφ ∧ ψ ∧ χ) ≠ ∅. Hence, S = {k ∣ ◇kφ ∧ ψ ∧
χ consistent} ≠ ∅ (n ∈ S). Then φ○(ψ∧χ) =◇mφ∧ψ∧χ wherem =minS.
This means that ◇mφ ○ψ is consistent, and then n ≤m. Moreover, since
n ∈ S and m = minS, then m ≤ n, from which we can conclude that
n =m.
Likewise, if we suppose that φ○(ψ∧χ) =◇nφ∧ψ∧χ, then this means that
φ ○ ψ = ◇nφ ∧ ψ. Indeed, if there were m ∈ N such that φ ○ ψ = ◇mφ ∧ ψ,
as (φ ○ ψ) ∧ χ is consistent, we would have that n ≤m.

The above approach is constraining because it imposes to check that such an
index n exists. And this is not algorithmically definable. Moreover, it does
not work if we consider Axiom S4 of modal logics to be valid. Indeed, in this
case, the sequent ◇◇ φ ⊣⊢ ◇φ is valid, and then Mod(◇◇ φ) =Mod(◇φ).
Another way to define a revision operator algorithmically definable because
syntactic, is then to change necessity modalities to possibility ones. Indeed, it
is quite intuitive that if the revision cannot be consistent for all states, it can
be for some of them. A similar approach has been adopted in [3] for defining
revision operators in first-order logic and modal logic in a set framework. The
definition of these revision operators took advantage of Boolean reasoning.
Thus, the revision operators were defined on formulas in normal form. In an
intuitionistic framework, such normal forms for formulas do not exist. So,
when the topos C is not Boolean, we propose the following definition for the
revision operator: let us define first two mappings ρ, κ ∶ Φ→ Φ on formulas as

● ρ(⊺) = ⊺ and κ(⊺) = ⊺
● ρ(�) = � and κ(�) = �
● ρ(p) = p and κ(p) = p with p ∈ PV .
● ρ(φ⇒ ψ) = (κ(φ)⇒ ψ) ∨ (φ⇒ ρ(ψ)) and
κ(φ⇒ ψ) = (φ⇒ κ(ψ)) ∨ (ρ(φ)⇒ ψ)

● ρ(φ @ ψ) = (ρ(φ) @ ψ) ∨ (φ @ ρ(ψ)) and
κ(φ @ ψ) = (κ(φ) @ ψ) ∨ (φ @ κ(ψ)) with @ ∈ {∧,∨}

● ρ(¬φ) = ¬κ(φ) and κ(¬φ) = ¬ρ(φ)
● ρ(◻φ) =◇φ and κ(◻φ) = ◻κ(φ)
● ρ(◇φ) =◇ρ(φ) and κ(◇φ) = ◻φ

Intuitively, the mapping ρ transforms a formula φ by changing at each ap-
plication a modal operator ◻ to ◇ when the latter is in the positive part of
φ (i.e. the operator is not in the scope of a negation or in the premise of an
implication), and a ◇ into ◻ when the latter is in the negative part (i.e. it is
in the scope of a negation or in the premise of an implication). The mapping
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κ is the dual of ρ, that is it transforms a formula φ by changing at each ap-
plication a modal operator ◇ into ◻ when the latter is in the positive part of
the formula, and a ◻ in ◇ when the latter is in the negative part.
Proposition 15. For every formula φ and every model M = (X,N, ν), we
have [[M]](φ) ⪯X [[M]](ρ(φ)) and [[M]](κ(φ)) ⪯X [[M]](φ).

Proof. The proof is done by structural induction on φ. The basic cases are
obvious. For the general case, several forms of φ must be considered. Here, we
prove the result for implication and negation. The other cases are quite direct.

● φ is of the form ψ⇒ χ.
⋅ For the mapping ρ. By the definition of implication, we have that

[[M]](ψ⇒ χ) = [[M]](ψ)→ [[M]](χ)

By definition of →, [[M]](ψ) → [[M]](χ) is the greatest element ι in
Sub(X) such that

[[M]](ψ) ∧ ι ⪯X [[M]](χ)

By the induction hypothesis, we have both [[M]](κ(ψ)) ⪯X [[M]](ψ) and
[[M]](χ) ⪯X [[M]](ρ(χ)). Thus, we have that

[[M]](κ(ψ)) ∧ [[M]](ψ)→ [[M]](χ) ⪯X [[M]](χ)

and
[[M]](ψ) ∧ [[M]](ψ)→ [[M]](χ) ⪯X [[M]](ρ(χ))

and then by adjunction (i.e. the fact that ( ∧ [[M]](κ(ψ))) ⊣
([[M]](κ(ψ))→ ) and ( ∧ [[M]](ψ)) ⊣ ([[M]](ψ)→ ), we have that

[[M]](ψ⇒ χ) ⪯X [[M]](κ(ψ)⇒ χ)

and
[[M]](ψ⇒ χ) ⪯X [[M]](ψ⇒ ρ(χ))

that is
[[M]](ψ⇒ χ) ⪯X [[M]](ρ(ψ⇒ χ))

⋅ For the mapping κ. By definition, we have that

[[M]](ψ⇒ κ(χ)) = [[M]](ψ)→ [[M]](κ(χ))

and
[[M]](ρ(ψ)⇒ χ) = [[M]](ρ(ψ))→ [[M]](χ)

By definition of →, [[M]](ψ)→ [[M]](κ(χ)) and [[M]](ρ(ψ))→ [[M]](χ)
are the greatest elements ι and θ of Sub(X) such that

[[M]](ψ) ∧ ι ⪯X [[M]](κ(χ))
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and
[[M]](ρ(ψ)) ∧ θ ⪯X [[M]](χ)

By the induction hypothesis, we have that [[M]](κ(χ)) ⪯X [[M]](χ) and
[[M]](ψ) ⪯X [[M]](ρ(ψ)), and then again by the adjunction property, we
have that

[[M]](ψ⇒ κ(χ)) ⪯X [[M]](ψ⇒ χ)

and
[[M]](ρ(ψ)⇒ χ) ⪯X [[M]](ψ⇒ χ)

● φ is of the form ¬ψ.
⋅ For the mapping ρ. By definition, we have that

[[M]](¬ψ) = [[M]](ψ)→ [[M]](�)

By definition of →, we have

[[M]](ψ) ∧ [[M]](¬ψ) ⪯X [[M]](�)

By the induction hypothesis, we have that [[M]](κ(ψ)) ⪯X [[M]](ψ), and
then by the adjunction property, we can conclude that

[[M]](¬ψ) ⪯X [[M]](¬κ(ψ))

and therefore [[M]](φ) ⪯X [[M]](ρ(φ)).
⋅ For the mapping κ. By definition, we have that

[[M]](κ(¬ψ)) ⪯X [[M]](ρ(ψ))→ [[M]](�)

By adjunction property, we then have that

[[M]](ρ(ψ)) ∧ [[M]](κ(¬(ψ)) ⪯X [[M]](�)

By the induction hypothesis, and the adjunction property, we can conclude
that

[[M]](κ(¬ψ)) ⪯X [[M]](¬ψ)

Let us define the mapping τ ∶ Φ→ Φ as follows:

τ ∶

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Φ → Φ

φ ↦

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

χ if ρ(φ) = φ

ρ(φ) otherwise

where χ is a tautology.
Proposition 16. For every formula φ, we have:
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● Extensivity. Mod(φ) ⊆Mod(τ(φ))
● Exhaustivity. There exists k ∈ N such that Mod(τ k(φ)) =Mod

The operator τ is then an extensive operator that is not a dilation.

Proof. Obviously, exhaustivity holds. Let M ∈ Mod(φ). By definition of se-
mantics, this means that [[M]](φ) = IdX . If φ is a propositional formula,
we know that Mod(φ) ⊆ Mod(◇φ). Otherwise, by Proposition 15, we have
that [[M]](φ) ⪯X [[M]](ρ(φ)), and then [[M]](ρ(φ)) = IdX . The case where
τ(φ) = χ is obvious. This proves the extensivity of τ .

Let us define the following revision operator ○:

φ ○ ψ = τn(φ) ∧ ψ

with n =min{k ∈ N ∣ τ k(φ) ∧ ψ is consistent} and τn(φ) = τ(. . . τ
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
n times

(φ) . . .).

Proposition 17. The operator ○ satisfies the AGM postulates (G1)-(G3),
(G4’), and (G5).

Proof. The proof is substantially similar to that of Proposition 14.

Minimality result. In a previous paper [3], we showed independently of
any logic a minimization result demonstrated first by H. Katsuno and A.-
O. Mendelzon [39] in the framework of propositional logic. This result is a
representation theorem which means that revision operators satisfying AGM
postulates induce minimal changes, that is the models of φ ○ ψ are the mod-
els of ψ that are the closest to models of φ according to some distance for
measuring how close models are. This result is based on the notion of faithful
assignment [39] whose definition we recall below.
Definition 9 (Faithful assignment). An assignment is a mapping that as-
signs to each formula φ a binary relation ⪯φ on models. We say that this
assignment is faithful (FA) if the following two conditions are satisfied:

(1) If M,M′ ∈Mod(φ), then M /≺φM′

(2) For every M ∈Mod(φ) and for every model M′ ∉Mod(φ), M ≺φM′.

(M ≺φM′ means that M ⪯φM′ and M′ /⪯φM).
Proposition 18. A revision operator ○ satisfies the AGM postulates if and
only if there exists a FA that maps each formula φ to a binary relation ⪯φ
such that for every formula ψ

Mod(φ ○ ψ) =Min(Mod(ψ),⪯φ)
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where Min(Mod(ψ),⪯φ) = {M ∈Mod(ψ) ∣ ∀M′ ∈Mod(ψ),M′ /≺φM}.

The proof of Proposition 18 is given in Appendix. It is substantially similar to
that of the general result given in [3] (see Theorem 1) except that the result
here relates to formulas and not to theories. This then required redefining a
particular FA in the proof. The FA used in [3] to prove this representation
result was an adaptation of the FA proposed in the original paper [39], but
the latter was not adaptable within the framework of modal logic 10 .

6.2 Contraction

Other important operators considered in the domain of belief change are con-
traction operators [6]. Unlike revision operators, the goal of contraction oper-
ators is to remove the new piece of information.

Using the results of the previous subsection in which revision operators have
been defined, we can now define, via the Harper identity [36], contraction
operators in the following way:

φ −⋅ ψ = (φ ○ ¬ψ) ∨ φ (Harper identity)

The idea behind φ−⋅ ψ (φ contracted by ψ) is that the information provided by
ψ is “removed” from φ, thus guaranteeing that the result of the contraction
does not prove ψ. This is why the Harper identity links contraction of φ by ψ
to revision of φ by ¬ψ.

The well behaved contraction operators should satisfy the following postu-
lates: 11

(C1) φ ⊢ φ −⋅ ψ

(C2) If φ ⊬ ψ, then φ −⋅ ψ ⊢ φ

(C3) If φ −⋅ ψ ⊢ ψ, then ⊢ ψ

(C4) If φ ⊢ ψ, then (φ −⋅ ψ) ∧ ψ ⊢ φ

(C5) If ψ1 ≡ ψ2 then φ −⋅ ψ1 ≡ φ −⋅ ψ2

(C6) φ −⋅ (ψ ∧ β) ⊢ (φ −⋅ ψ) ∨ (φ −⋅ β)

(C7) If φ −⋅ (ψ ∧ β) ⊬ ψ, then φ −⋅ ψ ⊢ φ −⋅ (ψ ∧ β)

10 The reason is that, unlike in propositional logic, the set of valid modal formulas
for a model is not necessarily definable by a single modal formula.
11 We present the formulation of postulates as in [26].
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Now we can establish the following result, the proof of which is a straight-
forward consequence of Proposition 17 and standard facts about the duality
between revision and contraction [6]:

Proposition 19. Let −⋅ be the operator defined by the Harper identity where
○ is the revision operator of Proposition 17. Then, −⋅ satisfies (C1-C7).

6.3 Merging

When the beliefs play symmetrical roles, another widely addressed problem
is the one of belief merging, or fusion. Let φ1, ..., φm be m formulas modeling
agents’ beliefs. As for revision, their fusion can be defined from a dilation δ or
better by a τ operator (defined as in Section 6.1) as:

Merging(φ1, ..., φm) = τ
n(φ1) ∧ ... ∧ τ

n(φm)

where τ is defined as for the revision, and

n =min{k ∈ N ∣ ∧mi=1τ
k(φi) is consistent}

It has been shown in [21,24] that this dilation-based merging is equivalent to
a merging operator defined from a specific distance and aggregation function,
and satisfies the set of rationality postulates introduced in [40], except the
independence of the syntax, since syntactic operations are involved in τ . 12

6.4 Abduction

Abduction is the process of finding, given a theory T and an observation φ, the
best explanation ψ such that T ∪ {ψ} ⊧ φ. Candidate explanations of φ with
respect to T are many. In a logical framework, following our previous work
in [4] where abduction has been studied independently of a given logic, we
will also study abduction as a form of inference. Intuitively, finding candidate
explanations for φ with respect to T consists in cutting/eroding the class of
models of T while remaining consistent with φ. Hence, abduction can be seen
as the dual of revision, and then it will consist in cutting in Mod(T ∪ {φ}) as

12 Of course, if we define the fusion by

Merging(φ1, ..., φm) =◇
n
(φ1) ∧ ... ∧◇n

(φm)

under the condition that n exists, then all the rationality postulates in [40] are
satisfied because the complete independence of the syntax holds.
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much as possible while preserving minimality properties. For this, we propose
to instantiate the abstract approach developed in [4] to our framework of
categorical morpho-logic 13 . In an intuitionistic framework, to work around
the problem of missing normal forms of formulas, we propose the mapping
ζ ∶ Φ→ Φ defined as follows: let χ be an antilogy

ζ ∶

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Φ → Φ

φ ↦

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

χ if κ(φ) = φ

κ(φ) otherwise

where κ is the mapping defined in Section 6.1.

Thus, the mapping ζ will transform ⋀T at each step by changing an operator
◇ into ◻ in order to reduce the class of models, and thus hope to only encounter
the models of φ. If this is not possible (there are none left) and therefore we
no longer have a way to sufficiently reduce the models of ⋀T to keep only
those in common with φ, we force the transformation into an antilogy that
trivially ensures the inclusion of models.
Proposition 20. The mapping ζ verifies for every consistent formula φ ∈ Φ:

● Anti-extensivity. Mod(ζ(φ)) ⊆Mod(φ)
● Vacuum. There exists k ∈ N such that Mod(ζk(φ)) = ∅.

In [4], mappings satisfying such conditions are called retractions.

Proof. ζ is anti-extensive because by Proposition 15 κ is. The vacuum property
holds because in a finite number of steps, we always reach the antilogy χ.

Following [4], from ζ we can define two families of model classes Clcr and Clnr
as follows 14 : Let T be a finite set of modal formulas and let φ be a formula
such that T ∪ {φ} is consistent

Cφlcr = {Mod(ζk(⋀T ) ∧ φ) ∣ k ∈ N,Mod(ζk(⋀T ) ∧ φ) ≠ ∅}

Cφlnr = {Mod(ζk(⋀T ∧ φ)) ∣ k ∈ N,Mod(ζk(⋀T ∧ φ)) ≠ ∅}

where ⋀T = φ1 ∧ . . . ∧ φn if T = {φ1, . . . , φn}.

Let us observe that in both Cφlcr and C
φ
lnr we have a unique maximal chain of

finite size due to the vacuum property. Hence, both Cφlcr and Cφlnr are closed

13 The abstract approach in [4] has been applied to the case of modal logic but in
the set-theoretic framework. Here, as before, we must adapt this instantiation to
the intutionistic framework.
14 lcr for last consistent retraction and lnr for last non-trivial retraction

45



under set-theoretical inclusion and are well-founded. In [4], any sub-family
satisfying such conditions is called cutting.

These two cuttings give rise to the following two explanatory relations:

φ ⊳Clcr ψ⇐⇒

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Mod(T ∪ {ψ}) ≠ ∅, and

Mod(T ∪ {ψ}) ⊆Mod(ζn(⋀T ) ∧ φ)

where n = sup{k ∈ N ∣Mod(ζk(⋀T ) ∧ φ) ≠ ∅};

φ ⊳Clnr
ψ⇐⇒

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Mod(T ∪ {ψ}) ≠ ∅, and

Mod(T ∪ {ψ}) ⊆Mod(ζm(⋀T ∧ φ))

where m = sup{k ∈ N ∣Mod(ζk(⋀T ∧ φ)) ≠ ∅}.

Directly from Theorems 2, 3 and 4 in [4], we derive that these two explanatory
relations satisfy all or part of the (rationality) postulates defined in [52] which
we summarize in Table 1.

Rationality postulates ⊳Clcr ⊳Clnr

LLE and RLE
√ √

RS
√ √

E-Con
√ √

ROR
√ √

E-Reflexivity
√ √

E-CM
√

E-C-Cut
√

Table 1
Links between rationality postulates in [52] and properties satisfied by ⊳Clcr and
⊳Clnr

.

The original postulates of [52] are recalled in Table 2.

6.5 Spatial Reasoning: RCC-8

A part of the domain of qualitative spatial reasoning deals with topologi-
cal relations between spatial entities. Here we propose to apply the defined
morpho-logic to mereotopology, and more precisely to the RCC-8 model [55].
This theory allows defining several topological relations from a connection
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LLE: If ⊢T α↔ α′ and α ⊳ γ then α′ ⊳ γ.

RLE: If ⊢T γ ↔ γ′ and α ⊳ γ then α ⊳ γ′.

E-CM: If α ⊳ γ and γ ⊢T β then (α ∧ β) ⊳ γ.

E-C-Cut: If (α ∧ β) ⊳ γ and ∀δ [α ⊳ δ ⇒ δ ⊢T β ] then α ⊳ γ.

RS: If α ⊳ γ, γ′ ⊢T γ and γ′ /⊢T � then α ⊳ γ′.

ROR: If α ⊳ γ and α ⊳ δ then α ⊳ (γ ∨ δ).

E-Reflexivity: If α ⊳ γ then γ ⊳ γ.

E-Con: /⊢T ¬α iff there is γ such that α ⊳ γ.

Table 2
Rationality postulates of [52], expressed according to a theory T .

predicate C, and has been often formalized in first order logic in the literature.
Let us recall the eight relations of RCC-8 theory (without their formalization):

● Disconnection DC. DC(XY ) means that region X is disconnected from
region Y ;

● External Connection EC. EC(X,Y ) means that X is externally con-
nected to Y (close to the notion of adjacency);

● Partial Overlap PO. PO(X,Y ) means that X and Y intersect each other
but are not equal;

● Tangential Proper Part (resp. inverse) TPP (resp. TPPi).
TPP (X,Y ) (resp. TPPi(X,Y )) means that X (resp. Y ) is a tangential
proper part of Y (resp. of X);

● Non-Tangential Proper Part (resp. inverse) NTPP (resp. NTPPi).
NTPP (X,Y ) (resp. NTPPi(X,Y )) means that X (resp. Y ) is a non-
tangential proper part of Y (resp. of X);

● Equality EQ. EQ(X,Y ) means that X and Y are identical regions.

As shown in [5,13,16], morpho-logic, as defined in this paper, provides a simple
axiomatization of some of these relations.

LetM = (X,N, ν) be a model. The sub-objects of X are spatial entities (i.e.
regions), and formulas are combinations of such entities. The RCC-8 relations
can then be formulated as follows:

● C(X,Y ) ∶ φ ∧ ψ;
● DC(XY ) ∶ ¬(φ ∧ ψ);
● EC(X,Y ) ∶ ¬(φ ∧ ψ) and ◇φ ∧ ψ and φ ∧◇ψ;
● PO(X,Y ) ∶ φ ∧ ψ and φ ∧ ¬ψ and ¬φ ∧ ψ;
● TPP (X,Y ) ∶ φ⇒ ψ and ◇φ ∧ ¬ψ;
● NTPP (X,Y ) ∶ φ⇒ ψ and φ⇒ ◻ψ;
● EQ(X,Y ) ∶ φ⇔ ψ.
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where φ and ψ are formulas defining regions X and Y , respectively. Let us
detail the meaning of some of these formulas:

● For EC: the two regions X and Y do not intersect, but as soon as one of
them is dilated (using ◇) then they do intersect.

● For TPP : X is included in Y but the dilation of X (represented by ◇φ) is
not.

● For NTPP : X is included in Y and also in the erosion of Y .

The meaning of the other relations is very natural.

7 Conclusion

In this article, we deepened in the topos framework the strong link between
MM and modal logic initiated twenty years ago in [13]. The interest of toposes
is that they generalize the notion of space and subspace, and then they include
a large family of algebraic structures which have proved useful for knowledge
representation and reasoning.

We have then generalized MM from a topos perspective that we extended by
moving from the power object PX to PPX, for X an object of a topos C,
to define structuring neighborhoods. We then showed that the morphological
operations of erosion and dilation have all the properties to make PX an
internal modal algebra, and then can be used to give a neighborhood semantics
to constructive modal logic in the topos setting.

To our knowledge, MM has never been studied independently of a given struc-
ture. In the complete lattice setting, basic MM operators are defined without
referring to the notion of structuring element in the algebraic definitions. Our
work is then the first proposition of a generalization of MM independently of a
particular structure (set, graph...). Taking into account the notion of structur-
ing element and structuring neighborhood allowed us to generalize the notion
of Kripke model and neighborhood model in the topos framework.

The proposed extension of basic operators relies on structuring elements de-
fined as morphisms X → PX. Dilations and erosions using a structuring el-
ement are then defined as morphisms PX → PX with specific properties.
Dilations, erosions, as well as their compositions are shown to have similar
properties as in classical morphology (adjunction, monotonicity...). Interest-
ingly enough, the proofs of the main results in this paper highly benefit from
the internal logic of topos. The underlying logic being intuitionistic, as fu-
ture work, it might be interesting to certify these proofs using a formal proof
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management system, such as Coq 15 .

Finally, we introduced structuring neighborhoods and topological neighbor-
hoods, giving rise to modal algebras, for which a sound and complete entail-
ment system is proposed.

This led us to suggest applications to typical reasoning problems in AI, such
as revision, merging, abduction, spatial reasoning based on RCC-8 relations.

Let us now mention some other directions for future work.

Towards a unification of morphological operators via the notion
of predicate lifting. By the bijection correspondence Hom(X,PY ) ≃
Sub(X ×Y ), structuring elements and structuring neighborhoods can be seen
as mappings which match each element x with elements in relation with it.
A generalization of that can be obtained via the notion of co-algebras [57]. In
computing science, co-algebras have been studied in Set (the category of sets),
and in this framework the notion of predicate liftings [50] has been identified
as the concept underlying modal operator semantics. This notion of predi-
cate lifting can be extended to arbitrary topos. Indeed, suppose a topos C
and a functor T ∶ C → C. A predicate lifting is then a natural transformation
λ ∶ P ⇒ P ○ T (recall that P is the contravariant functor presented in Sec-
tion 2). A structuring element b is then defined as a morphism (co-algebra)
b ∶X → T (X). If we define the morphism b−1 ∶ PT (X)→ PX as follows:

b−1(Y ) = {x ∶X ∣ ∃y.y ∈T (X) Y ∧ b(x) = y}

a morphological operator op[b] ∶ PX → PX is then defined by: op[b] = b−1 ○
λX . From there, a morphological operator op[b] is an erosion (respectively a
dilation) if λX commutes with ∧ (respectively ∨).

Studying this unifying framework in more depth should allow us to generalize
the theory of co-algebras, to other toposes than the category Set, but also
to go further in the generalization of MM and its application to modal logic.
Among other things, this will allow us to study concepts such as bisimulation
and associated preservation results which have been extensively studied in the
theory of co-algebras, at a more abstract level.

Extension to the fuzzy case. It is usual to introduce uncertainty in qual-
itative spatial reasoning. Then, as future work, we propose to extend our
approach to the fuzzy case. This will first require us to introduce fuzziness in
a topos. There are some works showing that fuzzy sets do not form toposes in

15 https://coq.inria.fr/
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general [10,31,53], but there are very few which extend toposes to the fuzzy
case. Fuzzy sets may form a topos when different maps between them are con-
sidered [63]. An extension of toposes to fuzzy sets has been proposed in [54].
We can then rely on this work to introduce fuzziness in toposes. This will
allow us to extend erosion and dilation based on structuring elements to the
fuzzy case in this framework. In the set theory framework, several definitions
of MM on fuzzy sets with structuring elements have been proposed in the lit-
erature, since the early work in [9,22] (see e.g [14,23,46] for reviews). We will
be able to take inspiration from the approach developed in [14,15,58] using
conjunctions and implications from a topos perspective. More generally, we
could replace the traditional [0,1] interval by any lattice L, thus opening the
way towards bipolar information (positive as preferences, arguments, observa-
tions, and negative as constraints, attacks, etc.). This could find applications
in preference-based reasoning, argumentation, spatial reasoning, among oth-
ers.

Pretopos structures. There are spatial structures which are not toposes
but only pretoposes. The most emblematic example is the category of compact
Hausdorff spaces. Now the properties of pretoposes (exactness and extensivity)
make them a very set-like category. Among others, they have an internal logic.
The difficulty for extending our work to such structures will be to see how to
get around the absence of the power object, a notion on which many of the
concepts presented in the paper are built.
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Mathematical Journal, 9:119–221, 1957.

[36] W.L. Harper. Rational conceptual change. In Biennal Meeting of the Philosophy
of Science Association, PSA, vol. 2, pages 462–494, East Lansing, Mich, 1977.
Philosophy of Science Association.

[37] H.J.A.M. Heijmans and C. Ronse. The Algebraic Basis of Mathematical
Morphology. Part I: Dilations and Erosions. Computer Vision,Graphics and
Image Processing, 50:245–295, 1990.

[38] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Vol1.
and Vol.2. Oxford University Press, 2002.

[39] H. Katsuno and A.-O. Mendelzon. Propositional knowledge base revision and
minimal change. Artificial Intelligence, 52:263–294, 1991.
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A Algebraization of subobjects

Let C be a topos. Let X be an object of C. Let us define the partial ordering ⪯
on Sub(X) as follows: for all f ∶ A↣X and g ∶ B ↣X

[f] ⪯ [g]⇐⇒ ∃h ∶ A↣ B,f = g ○ h
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Proposition 21. (Sub(X),⪯) is a bounded lattice. It is a complete lattice if
C is a complete topos (i.e. C has all limits and colimits).

Proof. Obviously, ⪯ is reflexive and transitive. To show anti-symmetry, let us
suppose that [f] ⪯ [g] and [g) ⪯ [f]. This means that there exist h and h′

such that f = g ○ h and g = f ○ h′ whence we have both that f = f ○ h′ ○ h and
g = g ○h○h′. We can deduce that h′ ○h = IdA and h○h′ = IdB, and then A ≃ B
that is [f] = [g]. Given two elements [f] and [g] of Sub(X) with f ∶ A ↣ X

and g ∶ B ↣ X, the infimum of [f] and [g] is [A ∩ B ↣ A
f
↣ X] which is

equivalent to [A ∩ B ↣ B
g
↣ X] (we recall that every topos has pullbacks,

and pullbacks of monics are monics), and the supremum of [f] and [g] is
[A ∪B ↣ X] where A ∪B ↣ X is the unique morphism, consequence of the
fact that A∪B is the pushout of A∩B. This pushout exists because pushouts
of monics are monics in toposes. Hence, (Sub(X),⪯) is a lattice. Finally, it is
bounded because C is a topos, and then [∅ ↣ X] (in any topos, the unique
morphism from the initial object ∅ to any other object is always a monic) and
[idX] belongs to Sub(X). These definitions of supremum and infimum extent
to any family of elements of Sub(X) when C is complete, and then, if C is
complete, then so is the lattice (Sub(X),⪯).

Actually, (Sub(X),⪯) satisfies a stronger result, it is a Heyting algebra. This
has generated many works (initiated by Lawvere and Tierney [41]) which
establish strong connections between elementary toposes and intuitionistic
logics.

Proposition 22. (Sub(X),⪯) is a Heyting algebra.

Proof. Let us show first that Sub(1) where 1 is the terminal object of the
topos C is a Heyting algebra, i.e. categorically Sub(1) is finitely complete
and finitely co-complete, and it is Cartesian closed. We have seen in Propo-
sition 21 that Sub(1) is both finitely complete and finitely co-complete. Fi-
nite product is defined by the infimum of equivalence classes of monics intro-
duced in Proposition 21. It remains to show that Sub(1) has exponentials.
Let [U ↣ 1] and [V ↣ 1] be two subobjects of 1. As C is a topos, U and
V have an exponential V U . As 1 is terminal in C, there is a unique mor-
phism vu ∶ V U → 1. It remains to show that the morphism vu is a monic.
Let f, g ∶ S → V U be two morphisms. Under the (exponential) bijection, we
have that HomC(S,V U) ≃ HomC(S × U,V ), and then we have for f and g
corresponding morphisms f, g ∶ S ×U → V . Let us suppose that vu ○ f = vu ○ g.
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This means that f ○ u = g ○ u. But u is a monic and then f = g which implies
by bijection that f = g. We then deduce that vu is a monic, and we conclude
that Sub(1) is a Heyting algebra.
It is not difficult to show that Sub(X) ≃ SubC/X(IdX) where C/X is the slice
category over X and SubC/X(IdX) is the set of subobjects of the object IdX
in the slice category C/X . By the fundamental theorem of topos theory 16 C/X
is also a topos, and then SubC/X(IdX) is a Heyting algebra (IdX is terminal
in C/X), whence we conclude under the isomorphism Sub(X) ≃ SubC/X(IdX)
that Sub(X) is a Heyting algebra.

B Logic and Internal Language in Topos

An interesting feature of toposes is that we can reason on objects and mor-
phisms of a topos “as if they were sets and functions” [38,41]. The reason is
that we can do logic in toposes. Indeed, we can define logical connectives in
toposes. Here, we recall the definition of propositional connectives {∧,∨,¬,⇒}
and of constants true, false.

● By definition of subobject classifiers, we have a monomorphism true ∶ 1↣ Ω,
and then we also have a morphism (true, true) ∶ 1 ↣ Ω ×Ω which is also a
monomorphism. So, by the subobject classifier definition, ∧ ∶ Ω ×Ω → Ω is
its characteristic morphism.

● ∨ ∶ Ω×Ω→ Ω classifies the image of the morphism [(true, IdΩ), (IdΩ, true)] ∶
Ω +Ω→ Ω ×Ω, where + denotes the co-product.

● the morphism⇒∶ Ω×Ω→ Ω is the characteristic morphism of ⪯↣ Ω×Ω where
⪯ is the equalizer of ∧ and the projection on the first argument p1 ∶ Ω×Ω→ Ω.

● Finally, the unique morphism ∅↣ 1 is a monomorphism. Let us denote by
false ∶ 1→ Ω its characteristic morphism. Then, ¬ ∶ Ω→ Ω is defined as the
composite ⇒ ○ (IdΩ × false).

16 This fundamental theorem states that if C is a topos, then for every object X ∈ ∣C∣,
C/X is a topos (see [11] for a proof of this result).
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Consequently the power object Ω = P 1 is an internal Heyting algebra 17 and
then the logic is intuitionistic. Actually, through the bijection Sub(X × Y ) ≃
HomC(X,PY ), for every object X in a topos C, PX is an internal Heyting
algebra. We can then define a partial order ⪯X as an object of C such that ⪯X
is the equalizer of ∧ ∶ PX × PX → PX and p1 ∶ PX × PX → PX where p1 is
the projection on the first argument of couples.

For every topos C, we can define an internal language LC composed of types
defined by the objects of C, from which we can define terms as follows:

● true ∶X;
● x ∶X where x is a variable and X is a type;
● f(t) ∶ Y where f ∶X → Y is a morphism of C and t ∶X is a term;
● < t1, . . . , tn >∶X1 × . . . ×Xn if for every i, 1 ≤ i ≤ n, ti ∶Xi is a term;
● (t)i ∶Xi if t ∶X1 × . . . ×Xn is a term;
● {x ∶X ∣ α} ∶ PX if α ∶ Ω is a term;
● σ = τ ∶ Ω if σ and τ are terms of the same type;
● σ ∈X τ ∶ Ω if σ ∶X and τ ∶ PX are terms;
● σ ⪯X τ ∶ Ω if σ, τ ∶ PX are terms;
● φ @ ψ ∶ Ω if φ ∶ Ω and ψ ∶ Ω are terms with @ ∈ {∧,∨,⇒};
● ¬φ ∶ Ω if φ ∶ Ω is a term;
● Qx.φ ∶ Ω if x ∶X and φ ∶ Ω are terms and Q ∈ {∀,∃}.

Terms of type Ω are called formulas.

Semantics of terms will depend on their type. Hence, semantics of terms of type
X ≠ Ω will be defined by morphisms, and terms of type Ω will be interpreted
as subobjects.

We say that a sequence of variables x⃗ = (x1, . . . , xn) is a suitable context for a
term or a formula if each free variable of this term or this formula occurs in
x⃗. Let us denote by Xx⃗ the product X1 × . . . ×Xn when x⃗ = (x1, . . . , xn) and
each xi ∶ Xi. Then the semantics of t ∶ X in the context x⃗, denoted by [[t]]x⃗,
is a morphism from Xx⃗ to X. It is defined recursively on the structure of t as

17 An internal Heyting algebra in a topos is an internal lattice L, that is equipped
with two morphisms ∧,∨ ∶ L×L→ L such that the diagrams expressing the standard
laws for ∧ and ∨ commute, and with top and bottom which are morphisms �,⊺ ∶ 1→
L such that ∧○ (IdL ×⊺) = IdL and ∨○ (IdL ×�) = IdL, together with an additional
morphism ⇒∶ L ×L→ L which satisfies the diagrams given by the identities:

● x⇒ x = ⊺

● x ∧ (x⇒ y) = x ∧ y and y ∧ (x⇒ y) = y

● x⇒ (y ∧ z) = (x⇒ y) ∧ (x⇒ z)
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follows:

● [[xi ∶ Xi]]x⃗ = pi where pi ∶ Xx⃗ → Xi is the obvious projection on the ith

argument;
● [[f(t)]]x⃗ = f ○ [[t]]x⃗;
● [[< t1, . . . , tn >]]x⃗ = ([[t1]]x⃗, . . . , [[tn]]x⃗);
● [[(t)i]]x⃗ = pi ○ [[t]]x⃗ where pi is the projection on the ith argument of the
tuple;

● [[{x ∶ X ∣ α}]]x⃗ is the unique morphism r ∶ Xx⃗ → PX making the diagram
below a pullback square

R //

[[α]](x,x⃗)
��

∈X

��
X ×Xx⃗

IdX×r //X × PX

The semantics of a formula φ ∶ Ω in the context x⃗, denoted by [[φ]]x⃗, is
interpreted as a subobject of Sub(Xx⃗) and is recursively defined as follows:

● [[true]]x⃗ = IdXx⃗
;

● when φ = σ = τ , then [[φ]]x⃗ equalizes [[σ]]x⃗ and [[τ]]x⃗;
● when φ = σ ∈X τ , then [[φ]]x⃗ ∶ R ↣ Xx⃗ where R is the pullback of the
diagram

R //

[[φ]]x⃗
��

∈X

��
Xx⃗ [[σ]]x⃗×[[τ]]x⃗

//X × PX

● if φ = σ ⪯X τ , then [[φ]]x⃗ ∶ R ↣Xx⃗ where R is the pullback of the diagram

R //

[[φ]]x⃗
��

⪯X

��
Xx⃗ [[σ]]x⃗×[[τ]]x⃗

//PX × PX

● if φ = φ1 @ φ2, then [[φ]]x⃗ = [[φ1]]x⃗ @ [[φ2]]xt where @ is the operator in
{∧,∨,⇒} in the Heyting algebra Sub(Xx⃗);

● [[¬φ]]x⃗ = ¬Xx⃗
([[φ]]x⃗) where ¬Xx⃗

([[φ]]x⃗) is the pseudo-complement of [[φ]]x⃗
in Sub(Xx⃗);

● [[∀x.φ]]x⃗ = ∀p([[φ]](x⃗,x)) where p ∶Xx⃗ ×X →Xx⃗ is the projection, and ∀p is
the right adjoint to the pullback functor p∗ ∶ Sub(Xx⃗)→ Sub(Xx⃗×X) when
the Heyting algebras Sub(Xx⃗) and Sub(Xx⃗×X) are regarded as categories.

● [[∃x.φ]]x⃗ is the image of p○[[φ]](x⃗,x) where p is the same projection as above.

Equivalently, semantics of any formula φ ∶ Ω could be defined by a morphism
from Xx⃗ to Ω, by interpreting φ as the classifying morphism of [[φ]]x⃗.

We write C ⊧x⃗ φ if [[φ]]x⃗ = IdXx⃗
(IdXx⃗

is the top element in Sub(Xx⃗)). How-
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ever, to actually prove properties on toposes, the best way is to use the internal
logic. This internal logic is defined as for any logic by a set of inference rules
which allow us to derive true statements from other true statements. In order
to describe this better we need to introduce the notion of a sequent.
Definition 10 (Sequent). Given two formulas φ and ψ, a sequent is an
expression of the form φ ⊢x⃗ ψ and means that ψ is a logical consequence of φ
in the context x⃗.

Note that if the sequence x⃗ is empty, then we will note simply ⊢ and ⊧.

The deduction system is then defined as a sequent calculus, i.e. a set of in-
ference rules which will allow us to infer a sequent from other sequents (see
[38,43,48] for a presentation of this deduction system).

C Proofs of Section 3.2

C.1 Proof of Proposition 1 (adjunction)

Let us first recall a useful lemma.
Lemma 4.

φ⇒ ψ ⊣⊢ φ ∧ ψ⇔ φ

where A ⊣⊢ B is a shortened notation for A ⊢ B and B ⊢ A.

The result in Proposition 1 then rests on the two following propositions.
Proposition 23.

⊢x⃗ Y ⪯X Z⇔ (∀x. x ∈X Y ⇒ x ∈X Z)

Proof.

Y ⪯X Z ⊣⊢Y,Z Y ∧Z = Y

⊣⊢Y,Z,x x ∈X Y ∧ x ∈XZ⇔ x ∈X Y

⊣⊢Y,Z,x x ∈X Y ⇒ x ∈XZ

⊣⊢Y,Z ∀x. x ∈X Y ⇒ x ∈XZ

Proposition 24. The following statement is valid:

⊢ ∀y. y ∈X Y ⇒ (∀x. x ∈X b(y)⇒ x ∈X δ[b](Y ))
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Proof. By using the internal logic, by both universal quantification and im-
plication rules, this amounts to prove that

y ∈X Y ∧ y ∈X b̆(x) ⊢Y,y,x x ∈X δ[b](Y )

(We use the fact that x ∈x b(y) ⇔ y ∈X b̆(x)). The existential quantifica-
tion rule combined with the definition of dilation concludes. Indeed, by the
existential quantification rule, we have

∃y. y ∈X Y ∧ y ∈X b̆(x) ⊢Y,x true

and then, by introduction of hypothesis, we can write

∃y. y ∈X Y ∧ y ∈X b̆(x) ⊢Y,x ∃y. y ∈X Y ∧ y ∈X b̆(x)

Then, by the definition of dilation, we have

∃y. y ∈X Y ∧ y ∈X b̆(x) ⊢Y,x x ∈X δ[b](Y )

By using the existential quantification rule, this is equivalent to

y ∈X Y ∧ y ∈X b̆(x) ⊢Y,y,x x ∈X δ[b](Y )

Note that he opposite implication ⇐ in Proposition 24 is also valid.

It is now easy to prove the adjunction property. Its proof is substantially
similar to that above.

Proof. of Proposition 1: By definition, both dilation and erosion of any object
Y ∶ PX define subobjects ε[b](Y )↣X and δ[b](Y )↣X. Dilation and erosion
both result in applications Sub(X) → Sub(X). Moreover, by proposition 24
we have that

⊢Y ∀y. y ∈X Y ⇒ (∀x. x ∈X b(y)⇒ x ∈X δ[b](Y ))

From Proposition 23, we deduce that

⊢Y ∀y. y ∈X Y ⇒ b(y) ⪯X δ[b](Y )

Then, we have the following equivalences:

⊢Y,Z δ[b](Y ) ⪯X Z ⇔ ∀y. y ∈X Y ⇒ b(y) ⪯X Z

⇔ ∀y. y ∈X Y ⇒ y ∈X ε[b](Z) (definition of erosion)

⇔ Y ⪯X ε[b](Z) (Proposition 23)
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C.2 Proof of Proposition 2

Let us show the properties for erosion. Let us show first the monotonicity
property:

⊢Y,Z Y ⪯X Z Ô⇒ ε[b](Y ) ⪯X ε[b](Z)

We have the following implications:

Y ⪯X Z ⊢Y,Z ∀x. x ∈X ε[b](Y ) ⇒ b(x) ⪯ Y (definition of erosion)

⇒ b(x) ⪯ Z (hypothesis and transitivity of ⪯X)

⇒ x ∈X ε[b](Z) (definition of erosion)

⇒ ε[b](Y ) ⪯X ε[b](Z) (Proposition 23)

Let us show the commutativity of erosion with conjunction:

⊢ ∀Y. ∀Z. ε[b](Y ∧Z) = ε[b](Y ) ∧ ε[b](Z)

By definition of erosion, we have that

⊢Y,Z ∀x. x ∈X ε[b](Y ∧Z)⇔ b(x) ⪯X Y ∧Z

and then we have that

⊢Y,Z ∀x. x ∈X ε[b](Y ∧Z)⇔ b(x) ⪯X Y ∧ b(x) ⪯X Z

By definition of erosion, we can then derive that

⊢Y,Z ∀x. x ∈X ε[b](Y ∧Z)⇔ x ∈X ε[b](Y ) ∧ x ∈X ε[b](Z)

that is:

⊢Y,Z ∀x. x ∈X ε[b](Y ∧Z)⇔ x ∈X ε[b](Y ) ∧ ε[b](Z)

This extends to any conjunction.

Now, let us show that ⊢ ε[b](X) =X. By definition of erosion, we have that

⊢ ∀x. x ∈X ε[b](X)⇔ b(x) ⪯X X

Now, by the topos properties, we have that

⊢ ∀x. b(x) ⪯X X

and then, by the cut rule, we can write

⊢ ∀x. x ∈X ε[b](X)
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from which we derive
⊢ ε[b](X) =X

To finish, let us prove the necessary and sufficient condition for anti-extensivity
of erosion, and first show that:

⊢ (∀x. x ∈X b(x))⇒ (∀Y. ε[b](Y ) ⪯X Y )

By the rules for the implication connective and universal quantifier, this is
equivalent to prove the following statement:

∀x. x ∈X b(x) ⊢Y ε[b](Y ) ⪯X Y

By introduction of hypothesis, we have

∀x. x ∈X b(x) ⊢Y ∀x. x ∈X b(x)

and then, by the rule for the universal quantifier, this leads to

∀x. x ∈X b(x) ⊢Y,x x ∈X b(x)

By the thinning rule, we have

∀x. x ∈X b(x), x ∈X ε[b](Y ) ⊢Y,x x ∈X b(x)

Now, by the introduction of hypothesis and the definition of ε[b], we have

∀x. x ∈X b(x), x ∈X ε[b](Y ) ⊢Y,x b(x) ⪯X Y

and then by Proposition 23, we deduce

∀x. x ∈X b(x), x ∈X ε[b](Y ) ⊢Y,x x ∈X Y

By the rule for the implication, we then have

∀x. x ∈X b(x) ⊢Y,x x ∈X ε[b](Y )⇒ x ∈X Y

which gives, by the rule for the universal quantifier:

∀x. x ∈X b(x) ⊢Y ∀x. x ∈X ε[b](Y )⇒ x ∈X Y

which, by Proposition 23, allows us to conclude

∀x. x ∈X b(x) ⊢Y ε[b](Y ) ⪯X Y

Let us now prove the opposite sequent: we have

∀Y. ε[b](Y ) ⪯X Y ⊢Y ε[b](Y ) ⪯X Y
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and then by substitution:

∀Y. ε[b](Y ) ⪯X Y ⊢x ε[b](b(x)) ⪯X b(x)

We have by definition ⊢x x ∈X ε[b](b(x)), so by thinning and finite conjunction
rules, we have:

∀Y. ε[b](Y ) ⪯X Y ⊢x x ∈X ε[b](b(x)) ∧ ε[b](b(x)) ⪯X b(x)

⊢x x ∈X b(x)

which concludes by the universal quantification rule:

∀Y. ε[b](Y ) ⪯X Y ⊢Y ∀x. x ∈X b(x)

The proofs for dilation are substantially similar.

Let us only prove the necessary and sufficient condition for extensivity of
dilation. We have:

(∀x. x ∈X b(x)) ∧ x ∈X Y ⊢Y,x x ∈X b(x) ∧ x ∈X Y

⊢Y,x,y y = x ∧ y ∈X b̆(x) ∧ y ∈X Y

⊢Y,x ∃y. y = x ∧ y ∈X b̆(x) ∧ y ∈X Y

⊢Y,x ∃y. y ∈X b̆(x) ∧ y ∈X Y

⊢Y,x x ∈ δ[b](Y )

and by implication and universal quantification rules, we derive:

∀x. x ∈X b(x) ⊢ ∀Y. Y ⪯X δ[b](Y )

Conversely:

∀Y. Y ⪯X δ[b](Y ) ⊢x {x} ⪯X δ[b]({x})

⊢x x ∈X δ[b]({x})

⊢x ∃y. x ∈X b(y) ∧ y ∈X {x}

⊢x ∃y. x ∈X b(x)

⊢x x ∈X b(x)

and by universal quantification:

∀Y. Y ⪯X δ[b](Y ) ⊢ ∀x. x ∈X b(x)

C.3 Proof of Proposition 4

● Monotonicity is derived directly from the monotonicity of ε[b] and δ[b].
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● Extensivity of closing. Obviously, we have that

⊢Y δ[b](Y ) ⪯X δ[b](Y )

and then by the adjunction property, we can conclude that

⊢Y Y ⪯X ε[b](δ[b](Y ))

● Anti-extensivity of opening. Obviously, we have that

⊢Y ε[b](Y ) ⪯X ε[b](Y )

and then by the adjunction property, we can conclude that

⊢Y δ[b](ε[b](Y )) ⪯X Y

● Preservation. By anti-extensivity of opening we have that

⊢Y δ[b](ε[b](Y )) ⪯X Y

and then by monotonicity of erosion, we can conclude that

⊢Y ε[b](δ[b](ε[b](Y ))) ⪯X ε[b](Y )

To show the opposite direction, we obviously have that

⊢Y δ[b](ε[b](Y )) ⪯X δ[b](ε[b](Y ))

and then by the adjunction property, we can conclude that

⊢Y ε[b](Y ) ⪯X ε[b](δ[b](ε[b](Y )))

The equation δ[b] ○ ε[b] ○ δ[b] = δ[b] can be proved similarly.
● Idempotence. Direct consequence of the preservation properties.

C.4 Proof of Proposition 18

(Ô⇒) Let us suppose that the revision operator ○ satisfies AGM Postulates.
Let us define the binary relation ⪯φψ on Mod(ψ) as follows:

M ⪯φψM
′ iffM ∈Mod(φ ○ ψ) andM′ ∉Mod(φ ○ ψ)

Let us set f(t) =⪯φ= ⋃ψ ⪯
φ
ψ. Let us first show that ⪯φ is a FA. Then, let us

show that the mapping f is a FA.

● LetM,M′ ∈Mod(φ), and let us suppose thatM ⪯φM′. This means that
there exists ψ such thatM ⪯φψM

′, i.e.M,M′ ∈Mod(ψ),M ∈Mod(φ ○ψ)
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andM′ ∉Mod(φ ○ψ). Hence, we have that φ∧ψ is consistent, and then by
Postulate (G3), φ ○ ψ = φ ∧ ψ. We then have that M′ ∈Mod(φ ○ ψ) which
is a contradiction.

● Let M ∈ Mod(φ) and let M′ ∉ Mod(φ). We have that M ⪯φ⊺ M
′ by defi-

nition of ⪯φ. Now, let us suppose that M′ ⪯φ M. This means that there
exists ψ such that M′ ⪯φψ M. Hence, we have that M,M′ ∈ Mod(ψ),
M′ ∈Mod(φ ○ ψ) andM ∉Mod(φ ○ ψ), and then asM ∈Mod(φ) we have
that φ∧ψ is consistent. By Postulate (G3), we then have that φ○ψ = φ∧ψ,
and thenM ∈Mod(φ ○ ψ) which is a contradiction.

Let us show now that Mod(φ ○ ψ) =Min(Mod(ψ),⪯φ).

● Let M ∈Mod(φ ○ ψ), and let us suppose that M ∉Min(Mod(ψ),⪯φ). By
Postulate (G2), M ∈ Mod(ψ). By hypothesis, there exists M′ ∈ Mod(ψ)
such that M′ ≺φ M. This means that there exists a formula δ such that
M′ ∈Mod(φ ○ δ) andM ∉Mod(φ ○ δ). By definition of the relation ⪯φδ , we
have that ψ ∧ δ is consistent, and then by Postulate (G5), we can write

Mod((φ ○ ψ) ∧ δ) =Mod((φ ○ δ) ∧ ψ) =Mod(φ ○ (ψ ∧ δ))

Hence, we have thatM ∈Mod(φ ○ δ) which is a contradiction.
● Let M ∈ Min(Mod(ψ),⪯φ). Let us assume that M ∉ Mod(φ ○ ψ). Let us
suppose M′ ∈ Mod(φ ○ ψ). By definition of ⪯φψ, we have that M′ ⪯φψ M,
and then M′ ⪯φM. Now, let us suppose that M ⪯φM′. This means that
there exists δ such that M ∈Mod(φ ○ δ) and M′ ∉Mod(φ ○ δ). But, M′ ∈
Mod(ψ ∧ δ), and by Postulate (G5) we have that

Mod((φ ○ ψ) ∧ δ) =Mod((φ ○ δ) ∧ ψ) =Mod(φ ○ (ψ ∧ δ))

Therefore, we have that M ∈ Mod(φ ○ δ) which is a contradiction. Hence,
we just showed thatM′ ≺φM which is a contradiction.

(⇐Ô) Let us now suppose that for a revision operation ○ there exists a FA
which maps any formula φ to a binary relation ⪯φ satisfying the conditions of
Proposition 18. Let us prove that ○ satisfies the AGM Postulates.

● (G1) As ψ is consistent, we have that Min(Mod(ψ),⪯φ) ≠ ∅, and then by
the hypothesis φ ○ ψ is consistent.

● (G2) LetM ∈Mod(φ ○ ψ). By hypothesis, we have that

M ∈Min(Mod(ψ),⪯φ)

and thenM ∈Mod(ψ).
● (G3) Let us suppose that φ ○ ψ is consistent.
⋅ Let us prove that Mod(φ ○ ψ) ⊆ Mod(φ ∧ ψ). Let M ∈ Mod(φ ○ ψ).
Hence, we have that M ∈ Mod(ψ). Let us suppose that M ∉ Mod(φ).
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LetM′ ∈Mod(φ). By the definition of FA, we have thatM′ ≺φM which
contradicts the fact thatM ∈Min(Mod(ψ),⪯φ).

⋅ Let us prove that Mod(φ ∧ ψ) ⊆ Mod(φ ○ ψ). Let M ∈ Mod(φ ∧ ψ) be
a model such that M ∉ Mod(φ ○ ψ). We have that M ∈ Mod(ψ). By
hypothesis, there exists a model M′ ∈ Mod(ψ) such that M′ ≺φM, and
thenM ∉Mod(φ) which is a contradiction.

● (G4) Let us suppose that ψ ≡ ψ′. This means thatMod(ψ) =Mod(ψ′), and
then Min(Mod(ψ),⪯φ) = Min(Mod(ψ′),⪯φ). We can then conclude that
Mod(φ ○ ψ) =Mod(φ ○ ψ′).

● (G5) Let us suppose that (φ ○ ψ) ∧ χ is consistent.
⋅ Let us suppose that M ∈ Mod((φ ○ ψ) ∧ χ). Let us suppose that M ∉
Min(φ ○ (ψ ∧ χ)). This means that there exists M′ ∈ Mod(ψ ∧ χ) such
that M′ ≺φ M. We have then that M′ ∈ Mod(ψ), and then M ≺φ M′

which is a contradiction.
⋅ Let us suppose that M ∈ Mod(φ ○ (ψ ∧ χ)). We then have that M ∈
Mod(ψ ∧ χ). Now, we have that

Min(Mod(ψ ∧ χ),⪯φ) =Min(Mod(ψ),⪯φ) ∩Mod(χ)

and thenM ∈Mod((φ ○ ψ) ∧ χ).
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