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Abstract

The formation energies of n- and p-type dopants in III-V arsenide and phosphide semicon-

ductors (GaAs, GaP, and InP) are calculated within a first-principles total energy approach. Our
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findings indicate that –for all the considered systems– both the solubility and the shallowness

of the dopant level depends on the crystal phase of the host material (wurtzite or zincblende)

and is the result of a complex equilibrium between local structural distortion and electronic

charge reorganization. In particular, in the case of acceptors, we demonstrate that impurities

are always more stable in the wurtzite lattice with an associated transition energy smaller with

respect to the zincblende case. Roughly speaking, this means that it is easier to p-type dope a

wurtzite crystal and the charge carrier concentration at a given temperature and doping dose is

larger in the wurtzite as well. As for donors, we show that neutral chalcogen impurities have

no clear preference for a specific crystal phase, while charged chalcogen impurities favor sub-

stitution in the zincblende structure with a transition energy that is smaller if compared to the

wurtzite case (thus charge carriers are more easily thermally excited to the conduction band in

the zincblende phase).

Keywords

Polytypism, nanowires, crystal phase engineering, wurtzite, GaAs, InP, GaP, dopants, density func-
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Introduction

Crystal phase engineering is an emerging field in nanoscience that consists in the design of ma-

terials with tailor-made properties by growing ad hoc crystal phases. The interest in this field

was boosted by the enormous progresses made in recent years in the growth of semiconducting

nanowires (NWs)1,2 and, specifically, by the fact that metastable crystal phases, which in bulk can

only be obtained under extreme conditions of temperature and pressure, can be stabilized at room

temperature and atmospheric pressure, thanks to a tight control of growth conditions.3 Many III-V

semiconductors, such as arsenides4–7 and phosphides,8–11 that in bulk only exhibit the zincblende

(ZB) phase, can take the wurtzite (WZ) structure when grown as NWs. Similarly, Si and Ge group-
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IV semiconductors that in bulk have the 3C cubic-diamond crystal structure, can by synthesized

in the 2H hexagonal-diamond (i.e. lonsdaleite) polytype.12–15 The possibility of growing semi-

conductors in different crystal phases is very appealing, as it might enable novel applications.16

For instance, ZB GaP has an indirect bandgap and thus a limited light emission efficiency, but

in WZ GaP NWs, the bandgap becomes direct, resulting in a strong photoluminescence.9 Direct-

bandgap emission has also been predicted and reported in hexagonal Ge and SiGe alloys,17,18

materials that have a notoriously poor light emission in the conventional cubic polytype adopted in

the bulk. More in general, different polytypes can present different electronic7,19–21 optical22–26

and phononic properties.27–31

Perhaps, the most ambitious (and exciting) goal of crystal phase engineering is the design of

complex structures by playing only (or mostly) with different polytypes of the same material. The

conditions that favor the formation of WZ over ZB segments in III-V NWs are well understood32–34

and can be dynamically tuned during the growth. Therefore, not only isolated homointerfaces be-

tween the ZB and the WZ crystal phase of a same material can be obtained,22,35–37 but also periodic

superlattice structures. In these crystal phase superlattices, different polytypes of the same mate-

rial –rather than different materials, like in conventional superlattices– are arranged periodically,

building a metamaterial with its own unique properties, which can be tuned by controlling the

number of periods and their thickness.38–41 These crystal phase interfaces present some advan-

tages over the most common heterojunctions between two different materials: (i) they have a very

small lattice mismatch and (ii) they have no chemical intermixing. As a result, they are atomically

flat and virtually defect-free, what makes them ideal candidates to design materials with tailored

electronic38,42,43 and phononic properties.44,45 Similar effects have also been reported in the less

common crystal phase core-multishell NWs.46,47

The vast majority of applications that can be envisaged in this context relies on impurity dop-

ing, which is the primary approach to tune the electrical conductivity of semiconductors. Indeed,

the design of electronic devices is based on the juxtaposition of regions with different doping

features, e.g. in a pn junction, in a bipolar transistor or in a field-effect transistor. Therefore, a

3



detailed understanding of doping in different crystal phases is necessary, both from the viewpoint

of the fundamental understanding of the underlying physical mechanisms and for the operation of

a multitude of applications. Given a material, is it equally easy to dope it in the ZB and in the

WZ phase? Is the dopant activation energy the same or does it differ in different polytypes? The

answers to these questions tell us how the solubility and the charge carrier concentration depend

on the crystal phase and have thus far reaching consequences for the design and the optimization

of any device.

In this paper we study by means of first-principles electronic structure calculations the doping

of GaAs, GaP, and InP in the ZB and in the WZ crystal phase, considering a few common donor

and acceptor impurities and an amphoteric impurity (Si in GaAs), whose doping type –donor or

acceptor– depends on the sublattice where the substitution takes place. We consider both the

neutral and the singly-charged impurity, thus allowing to estimate the transition energy, i.e. the

shallowness of the dopant electron state, which determines the concentration of extrinsic charge

carriers that are excited in the conduction or valence band for a certain doping dose and at a given

temperature, and thus the electrical conductivity. We carry our calculations in bulk systems, as

a reasonable approximation of NWs with diameters of several tens of nm and where quantum

confinement effects are negligible, which are commonly used in emergent electronic devices. We

observe, nonetheless, that previous results obtained for Si showed that ultrathin NWs (diameters of

∼ 2 nm) and bulk systems qualitatively exhibit the same behavior regarding the difference between

the cubic and hexagonal crystal phase.43

Computational methods

Electronic structure calculations

We perform density-functional theory (DFT) calculations with the VASP code48 with the local

density approximation (LDA) for the exchange-correlation energy functional. We used a plane

wave cutoff ranging from 255.2 to 400 eV, depending on the atomic species involved, with the

4



projector augmented-wave method,49,50 including semicore d electrons for Ga and In. At first we

optimized the lattice parameters of the ZB and WZ primitive cells, sampling the Brillouin zone with

a 10×10×10 and a 10×10×6 grid of k-points, respectively. Our results are shown in Table 1.

Substitutional impurities at both the group-III and group-V sublattice were studied in 5× 5× 5

and 5× 5× 3 supercells of the 2- and 4-atom ZB and WZ primitive cell, with a 2× 2× 2 grid

of k-points. The geometry of the doped supercells was optimized with a quasi-Newton algorithm

until all the forces on the atoms were lower than 0.01 eV/Å. This computational setup proved to be

accurate enough to give converged values of the formation energy, as shown in previous theoretical

studies.51–54

We also performed density-functional perturbation theory (DFPT) to compute the macroscopic

dielectric tensor, explicitly accounting for local field effects, which is needed for the charge correc-

tion scheme described below. We used the optimized lattice vectors and atomic positions obtained

at the single-particle DFT level. The computational parameters are the same of the DFT calcula-

tions, but we found that greatly increased k-points meshes are needed to obtain converged results.

We used a 36×36×36 and 36×36×22 grid for the ZB and the WZ polytypes, respectively. The

results are summarized in Table 1.

On top of the previously optimized primitive cells we performed single-shot G0W0 calcu-

lations, where quasi-particle energies are calculated from a single GW iteration i.e., using the

screened potential (W) as obtained from the DFT (LDA) step. To improve the quality of the re-

sults, a large number of real frequency points (200) has been employed for Hilbert transform of W

and self-energy, Σ. Similarly, a very large number of empty bands (∼ 200) has been included in

the calculations to ensure convergence of the results.

Handling of computational cells with net charge

Plane-wave DFT codes, but also localized-basis-set codes with a Poisson solver based on reciprocal

space, assume that the system extends ad infinitum with the periodicity set at the input for the

computational cell. For charge neutral systems, this use of periodic boundary conditions (PBCs)
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is of course well justified in bulk 3D systems, and in lower dimensionalities it poses no special

difficulties, provided that a thick enough vacuum buffer is added to prevent interaction between

the (spurious) system replicas.

The situation is, however, different when addressing systems with isolated net charges, such

as the case with an ionized dopant of interest to us here. The long-range Coulomb interaction

between the PBC-induced charge replicas will introduce a spurious contribution to the total energy

that must be corrected for. Several correction schemes have been proposed55–58 (see also Ref.

59 and references therein), often involving the computation of the Madelung energy for some

geometric arrangement of point charges in a compensating background.60,61 In this work we use

a variant of the Makov-Payne scheme56 that some of us extended to the case of arbitrary shape

of the computational cell and tensor value of the dielectric constant,62 which is necessary for the

hexagonal cells in the WZ case. This type of correction was shown to accelerate convergence in

the case of nanowires,63 and thus it is also expected to do it here.

The elements of the dielectric tensor that we have used for our Madelung correction have been

obtained from a DFPT calculation as detailed above. We do not consider it necessary to correct

these dielectric tensor entries by their experimental counterparts, given that the interaction between

the point charge replicas will be screened according our used theory level, i. e. LDA.

Formation energy

The formation energy is the central quantity in defect analysis and it tells us how likely it is to ob-

serve a defect in a crystal matrix,59 either in the case of intrinsic imperfections of the crystal lattice

or –the case addressed here– when it comes to an impurity added on purpose to alter in a con-

trolled way the property of a material. The knowledge of the formation energy of a defect delivers

some important information concerning the impurity equilibrium concentrations,64–66 the solubili-

ties,67,68 or the diffusivities.69,70 Additionally, by comparing the formation energy of a neutral and

a singly-charged defect one can obtain the transition energy, a quantity of paramount importance

in semiconductor physics that tells us which is the energy needed to thermally excite carriers from
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the dopant state to the conduction or valence band. The formation energy, as introduced by Zhang

and Northrup,64 is written as follows:

Eform = ED
tot −∑

i

niµi +q(µe +EV ) (1)

where ED
tot is the total energy of the system including the defect, the sum runs over all the chemical

species present and ni and µi are the number of atoms and chemical potential of species i; q is the

charge state of the defect, µe is the chemical potential of the electron, which is referred to EV , the

highest occupied eigenvalues of the pristine system. Therefore, µe varies from 0 –at the top of the

valence band– to Egap –at the bottom of the conduction band–, thus spanning the whole range of

doping conditions.

In the case of a compound semiconductor like the ones studied in this work, Eq. 1 is conve-

niently reformulated as:65

Eform = E tot
D −

1

2
(nGa +nAs)µ

bulk
GaAs −

1

2
(nGa −nAs)(µGa

bulk −µAs
bulk +∆µ)+

q (µe +EV )−nX µX (2)

which, for simplicity, we have written in the case of GaAs with a generic impurity X . The chemical

potentials µbulk
Ga , µbulk

As , and µbulk
GaAs refer to the bulk compound of Ga, As, and GaAs. We computed

µbulk
Ga and µbulk

As as the energy per atom of Ga and As in the orthorhombic and trigonal phase,

respectively; for µbulk
GaAs we considered the ZB or the WZ crystal phase, depending on the case

being addressed. Notice that µGa and µAs are the chemical potential of Ga and As in GaAs and

that computing their value is not straightforward. However, one can observe that the chemical

potential of bulk GaAs is µbulk
GaAs = µbulk

Ga + µbulk
As −∆H f , where ∆H f is the heat of formation of

GaAs. Now Eform is a function of the bulk chemical potential of Ga and As and of the parameter

∆µ that accounts for the difference between the chemical potentials of Ga and As in GaAs and in

their respective bulk state. The reformulation of Eform in Eq. 2 has the advantage of expressing it
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in terms of well defined quantities (the bulk chemical potentials) and of the parameter

∆µ = (µGa −µAs)− (µGa
bulk −µAs

bulk) (3)

which accounts for the macroscopic stoichiometry conditions of the material. ∆µ can vary between

−∆H f , limit that corresponds to the As-rich condition, and ∆H f , for the Ga-rich material, condition

fixed by the inequalities µGa ≤ µGa
bulk and µAs ≤ µAs

bulk. This formalism is also applied to the

case of GaP and InP, where we considered the cubic phase for bulk P and the trigonal phase for

bulk In to define µbulk
P and µbulk

In .

In the case of the chemical potential of the dopant, µX (X = Si, C, Zn, S, Te) we have taken the

energy of the isolated atom, assuming that the impurity is incorporated into the crystal from the

gas phase. This choice, though sound, is an approximation, because the chemical reservoir where

the impurity comes from is not necessarily the one of a monoatomic gas. A different choice would

result in a different value of the formation energy (see e.g. Ref. 71 for a discussion of the case of

H in SiC). Notice, however, that whenever we compare the formation energy of a given impurity

in the ZB or in the WZ crystal phase, µX cancels out and thus the conclusions do not depend on its

exact value, as already shown in Refs. 53,54. The same happens when comparing the formation

energy of a dopant in the neutral and singly-charged state, which determines the transition energy

(neither the transition energy depends on µX ).

Results and Discussion

Stability and bandgap of the pristine bulk systems

Before discussing impurity doping it is instructive to revise the theory that explains why a given

semiconductor adopts one crystal structure or the other, as it will then be important to understand

the stability of dopants as well.

The simplest way to understand the difference between the ZB and the WZ crystal phases is by
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looking at the stacking sequence along the [111] cubic axis, which is equivalent to the [0001] axis

of the wurtzite. As it is easy to see in Figure 1(a)-(b), in the ZB crystal structure the III-V bilayers

are stacked one on top of the other according to an ABCABC stacking motif, while in the WZ

one they follow an ABABAB stacking sequence. When III-arsenides or a III-phosphides form, the

starting point is always the AB stacking as the sequence of two bilayers of the same type, e.g. AA,

is energetically unfavorable. When the next layer grows it can take the A or the C position and thus

the ZB or the WZ symmetry. In other words, the two polytype structures differ only in the eclipsed

(WZ) or staggered (ZB) dihedral conformation that in turn affects the 1,4 atomic interactions (see

in Figure 1(c)-(d)). Under such conditions the preference for one of the two crystal phases is the

result of a competition between covalent and ionic contributions.72,73 For compounds following

the octet rule, ANB8-N, the WZ structure is favored when the ionic component is strong. The

limiting case is constituted by group-IV semiconductors, i.e. Si, Ge, and diamond, where the bond

is fully covalent and that accordingly adopt the cubic structure. Then, in III-V semiconductors, the

larger is the ionic contribution, the less the ZB phase will be favored over the WZ, until the latter

becomes the ground state as in GaN.

Our results agree well with this picture, as we found that the preference for the ZB structure

according to our calculations is 21.9 meV for GaAs, 17.4 meV for GaP, and 10.6 meV for InP per

unit formula (f.u.), which follows a prediction based on the electronegativity differences between

anion and cation according to the Pauling scale, a crude measure of the ionicity of the bond: 0.37

for GaAs, 0.38 for GaP, and 0.41 in InP. Therefore, the larger the electronegativity difference, the

more ionic is the bond and the less favored is the ZB crystal phase. A more refined definition

of the ionicity of a bond is the so-called atomic asymmetry parameter (AAS) between a pair of

atoms,74,75 which is known to work well in crystals of the ANB8-N type. The AAS values for

GaAs, GaP, and InP are 0.316, 0.371 and 0.506, which are also in good agreement with the above

mentioned energy preferences. Other criteria to estimate the ionic character of chemical bond are

of course possible, see e.g. the ionicity scale based on the centers of maximally localized Wannier

functions of Abu-Farsakh and Qteish.76
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One of the reasons of interest in crystal phase engineering is the tunability of the electronic

properties. Therefore, another issue that we addressed and briefly discuss before moving to the case

of extrinsic doping is the dependence of the electronic bandgap on the crystal phase. As it is well

known, DFT in its local and semilocal approximation of the exchange-correlation energy severely

underestimates the bandgap. Therefore, we have performed quasiparticle G0W0 calculations that

allow bypassing this limitation. The results are reported in Table 1.

The electronic properties of bulk ZB GaAs have been investigated from first-principles since

decades in view of the microelectronics oriented applications of the material77–80 and theoretical

assessing the bandgap of GaAs main polymorphs remains controversial, as a definitive conclusion

is still missing (see Ref. 16 for a detailed discussion). Furthermore, while on one side there is

large availability of experimental data about ZB GaAs (see e.g.81,82), the scarcity of experimental

data about WZ GaAs samples, mostly derived by NW structures, makes the comparison with

experimental data for this polymorph a quite cumbersome task due to the expected overestimation

of the gap because of quantum confinement effects. Indeed, there are experimental reports for the

band gap of WZ-GaAs NWs to be either larger or smaller than the one of ZB-GaAs NWs by few

tens of meV.16

A good description and comparison between DFT and GW calculated electronic properties of

the two polymorphs of GaAs has been provided by Zanolli et al.:83 their LDA calculated value for

WZ GaAs is 50 meV larger than the ZB calculated one in good agreement with our findings (the

absolute values differ because Zanolli et al. used a different, custom made pseudopotential84) and

with those of Yeh et al.78 On the other hand, the GW values they obtain are 1.133 eV (ZB) and

1.351 eV (WZ), while at the quasiparticle level we found the bandgap of ZB GaAs to be larger

than WZ GaAs (see Table 1).

A similar problem can be encountered in the case InP and GaP. Since the WZ bulk phase of

these compounds is not stable under normal conditions, all the experimental data concerning its

band gap are derived from indirect measurements on NWs (in which instead the WZ phase can

be stabilized). Theoretical and experimental literature addressing this issue is less extensive if
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compared to GaAs. The band gap of WZ InP has been experimentally reported to be slightly

larger than that of ZB InP (see for instance Refs.85,86), in agreement with our results (see Table 1)

and other theoretical calculations.87 On the other hand a limited number experiments has been

performed to investigate the band gap of WZ GaP,9,26 which is expected to be around 2.19 eV. This

value is not far from what we calculated (2.28 eV) and other ab initio quasiparticle calculations.88

Impurity doping: stability and transition energies

General considerations

Band theory of semiconductors relies on a perfect duality between n- and p-type doping, where

electrons and holes are thermally excited from the impurity state to the conduction and valence

band. Microscopically, however, this duality breaks down, because chemical bonds are formed by

electrons only. Therefore, the case of donors, where the four bonds of a tetrahedral semiconductor

can be satisfied and there is an additional, loosely bound electron, is different from the case of

acceptors, where the substitutional impurity only has three electrons to form bonds.

In the ZB phase all atoms occupy the center of a perfect tetrahedron with all four first neighbors

distances equal (Td symmetry). This local symmetry is maintained in the case of doping with

deformations consisting in the sole uniform contraction or expansion of the bond length. In the

WZ phase, each atom has three equidistant first neighbors, while the fourth neighbor, along the

c direction, is usually more far apart (C3v symmetry). The WZ structure has thus more structural

freedom to adjust to perturbations induced by impurities, because the variations in the bonding

can be tuned by the fact that there are two different types of bonds. Therefore, when an acceptor

is introduced in the lattice, it will try to form three bonds, something that is favored in the WZ

structure where three of the bonds can become stronger and one weaker, the final outcome being

a stabilization of the lattice. This does not happen in the ZB lattice. Thus introducing electron

deficiency in the pristine III-V solids provides a bias for the WZ structure.53

Another way of tuning the WZ-ZB stability is by altering the ionic component of the bonding.

In III-V solids the bond is always partly ionic and one partner is electron-rich, whereas the other is
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electron-poor. Adding electrons or holes has different effects: adding electrons increases the elec-

tronic asymmetry and thus the ionic contribution, whereas adding holes decreases the electronic

asymmetry and thus the ionic contribution. Accordingly to the discussion of the previous section,

an increased ionicity favors the WZ lattice, while more covalent bonds favor the ZB. Therefore,

adding (removing) electrons is expected to stabilize the WZ (ZB) crystal phase.

Acceptors

We now move to the discussion of the main results of our study and start with impurities that

provide p-type doping. We computed the formation energies of five different systems doped with

an acceptor: CAs@GaAs, SiAs@GaAs, ZnGa@GaAs, ZnGa@GaP, ZnIn@InP, where the notation

CAs@GaAs stands for a C substituting an As atom in a GaAs lattice (and likewise for the other

cases). In all the cases we considered the neutral charge state and the −1 charge state, which is

expected to be the more stable charge state when the Fermi level lies above the dopant level. These

are all textbook cases of acceptors, where an atom of the lattice is substituted by an impurity from

the group of the periodic table immediately at its left. Impurities from group-IV can, in principle,

be both donors and acceptors, depending on the sublattice chosen for the substitution.89 This is

the case of Si@GaAs, which acts as an acceptor when it substitutes an As and as a donor when

it substitutes a Ga. C could behave similarly, but substitution at the As sublattice is much more

stable than substitution at the Ga sublattice (we found a difference of 0.27 and 0.37 eV in ZB and

WZ GaAs, respectively), so that the latter in practice never occurs. We recall that we carry out our

calculations in bulk systems, as an approximation of realistic, large diameter NWs. For a study of

extrinsic defects in GaAs NWs the interested reader can see e.g. the works of Galicka et al.90 and

Diao et al.;91 intrinsic defects in GaAs and their relation with polytypism have been explored by

Du et al.92

The results of the formation energy as a function of the chemical potential of the electron for

GaAs are shown in Figure 2. As it can be seen, all the three acceptors have some features in

common: (i) the neutral impurity is always more stable in the WZ lattice, for all values of µe (see
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dashed lines in Figure 2); (ii) the increased stability is similar in all the cases; (iii) the transition

energy is (slightly) smaller in the WZ and the impurity state is shallower (see the zoomed view for

SiAs@GaAs). Simply put, it is easier to p-type dope GaAs in the WZ phase and these dopants will

be easier to activate.

Following the arguments given above, we now attempt to rationalize the observed behavior.

A very important factor to consider in understanding the role of the impurity is the mismatch

between the impurity and the host lattice. The four Ga-As bond lengths in pristine WZ GaAs are

2.422 (x3) and 2.433 Å. Let us consider the case of SiAs@GaAs (the full list of bond lengths is

given in the Supporting Information). The Si-As bond lengths around the impurity are 2.348 (x3)

and 2.353 Å, i.e. they are all shorter because Si is smaller than As. The four distances associated

with the four nearest-neighbor Ga atoms are 2.440-2.430 (x3) and 2.348-2.353 Å. This means that

the structural perturbation of the impurity is almost limited to the second coordination sphere of

the impurity. However, more important to notice is the fact that the three bonds for every nearest-

neighbor of the impurity connecting with the rest of the GaAs lattice are longer than in the pristine.

In other words, the stabilizing effect due to the four bonds of the Si impurity are at least partially

compensated by the destabilization of the twelve Ga-As bonds of the second coordination sphere.

Of course, this effect occurs even more intensely for the case of CAs@GaAs. A different situation

occurs for ZnGa@GaAs. In that case the Zn-As distances are 2.395 (x3) and 2.397 Å, which are

shorter than the initial ones, but not as much as for Si. However, now the distances connecting the

four nearest-neighbors with the rest of the GaAs lattice are all around 2.390-2.400 Å, i.e. they are

all shorter than the initial ones. Clearly, the better match between the impurity and the host lattice

allows a weaker but better balanced distortion of the lattice which avoids the above mentioned

destabilization of twelve bonds and transforms it into stabilization.

For all neutral acceptor impurities studied (Table 2) we find that, whatever the mismatch is, the

WZ structure is clearly preferred. This is the consequence of two features, both already anticipated

in the discussion of the previous section: (i) acceptor impurities generate electron deficiency in the

already electron deficient sites of the lattice, and (ii) as far as the impurity is smaller or similar
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in size to the original host atom, the induced structural perturbation is more easily accommodated

within the WZ lattice, because of the larger structural freedom degrees allowing a 3+1 type coordi-

nation. As shown in Table 2 this preference is even increased for the charged impurities. Thus, the

transition energies for acceptor impurities are always smaller (i.e. the impurity level is closer to the

valence band, ∆E(0/−) in Table 2) in the WZ structure. If we consider impurities in the GaAs lat-

tice, it is clear that the increase in the preference when the impurity is charged is an almost constant

value (the only exception is singly-charged Si that does not favor any crystal phase). By analyzing

the Bader charges before and after the charging we could conclude that there is barely any change

at the impurity and four nearest-neighbors sites, thus suggesting that the hole resulting from the

acceptor impurity must be very delocalized in the lattice. Since adding an electron increases the

charge asymmetry, the WZ should be further stabilized over the ZB because of the charging al-

though the effect is only modest for acceptor impurities. Consequently, our calculations suggest

that smaller transition energies will be associated with larger stabilizations of the WZ structure for

the neutral impurity.

All these considerations are straightforwardly extended to the case of ZnGa@GaP and ZnIn@InP,

whose formation energies are shown in Figure 3 and 4, and thus confirm the generality of the trends

discussed.

Donors

We considered four different systems doped with a donor: SiGa@GaAs, SP@GaP, TeP@GaP, and

TeP@InP. In all these cases an atom of the lattice is substituted by an impurity from the group

of the periodic table immediately at its right. We studied each impurity in the neutral and +1

charge state, which is expected to be the more stable charge state when the Fermi level lies below

the dopant level. As mentioned above, Si is an amphoteric dopant, so while SiAs@GaAs was an

acceptor, here we study SiGa@GaAs that acts as a donor.

The results of the formation energy as a function of the chemical potential of the electron for the

three compounds investigated are shown in Figures 2-4. Also in this case it is possible to highlight
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some common features: (i) neutral chalcogen impurities, S and Te, show no clear preference for

the ZB or the WZ crystal phase; (ii) charged chalcogen impurities favors substitution in the ZB

structure; (iii) the transition energy is smaller in the ZB, i.e. the impurity state is shallower (see

the zoomed view of SiGa@GaAs, TeP@GaP, and TeP@InP, in the side panels). Therefore, at

variance with the case of acceptors, donor impurities are more easily activated in the ZB crystal

phase, while their solubility is larger in ZB structures when the impurities are in the +1 charge

state. We note that occasionally the transition energy falls within the conduction band, this being a

known shortcoming of using LDA to account for the exchange-correlation energy and thus of the

underestimation of the bandgap. We have indeed computed much more accurate bandgaps from

G0W0 calculations, but treating the doped supercells at the same level of the theory is beyond the

current computational capabilities and, obviously, single-particle and many-body results cannot be

mixed together. Therefore, the conclusions directly related to transition energies obtained from

DFT-LDA calculations can only be taken to be semiquantitative59 and approaches that suggest to

ignore the calculated band edges and reference charge transition levels to marker levels93 or to

the average electrostatic potential94–96 have been proposed. We recall once again, however, that

our main goal is understanding the difference between doping with a certain impurity the ZB and

the WZ crystal phase of a given semiconductor, and not to quantitatively estimate the transition

energies. Hence, we argue that all the conclusions based on such comparisons are robust and the

physical insight they provide is reliable.

The donors that we studied belong to two different categories. When P is substituted by S or Te

neutral impurities, a structural perturbation different from those discussed above takes place. Both

atoms are strongly electronegative and although they act as donors toward the lattice by generating

an extra electron, they also gain electron density. For instance, the calculated Bader charges for

SP@GaP and TeP@GaP are 6.85 and 6.38 e−, respectively, in the WZ structure and 6.83 and 6.42−

in the ZB structure (for comparison, the Bader charge of P in the pristine GaP lattice amounts to

5.70 e− in the ZB and 5.72 e− in the WZ; remind that, do to the inclusion of 3d electrons in the

valence of Ga atom, the total charge for each Ga-P pair is 18 e−). In fact, this electronic gain mostly
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originates from the polarization of the bonds between the very electronegative chalcogen atom and

the weakly electronegative Ga atom. The important structural observation is that, in contrast with

acceptors, the bonds between the chalcogen and the four nearest neighbors become clearly longer

than in the pristine crystal. For instance, the Ga-P bonds in WZ GaP are 2.327 (x3) and 2.338 Å.

The X-Ga (X = S, Te) bond lengths around the impurity in XP@GaP are as long as, 2.407 (x3) and

2.413 Å for X = S, and 2.610 (x3) and 2.617 Å for X = Te. The anionic chalcogen atoms, with

their high electron density, strongly push the four nearest-neighbor atoms compressing the lattice

around the second coordination sphere of the impurity. Under such circumstances the additional

structural degree of freedom of the WZ structure becomes considerably less effective and the very

isotropic nature of the ZB structure becomes comparable or even slightly preferred. Only for the

more expanded lattice of InP the WZ structure is again slightly favored (see Table 3).

In contrast, because of the structural mismatch, SiGa@GaAs behaves in the same way described

above for the case where Si was acting as an acceptor; the only difference is that the short distances

with the four nearest neighbors are now a bit longer (i.e. 2.372 (x3) and 2.382 Å for SiGa compared

with 2.348 (x3) and 2.353 Å for SiAs in GaAs WZ). Thus, according to our calculations, Si in GaAs

has a preference for WZ irrespective of acting as a donor or an acceptor. In fact the calculated

energy differences are comparable (187 meV/f.u. for SiAs and 152 meV/f.u. for SiGa). This result

emphasizes the key role of the mismatch in enforcing the WZ-ZB preference.

Notice that among the different impurities studied, charging the impurity always favors the ZB

structure even when the impurity is smaller than the host atom replaced (Table 3). This contribution

is relatively large and finally determines the preference of all donor impurities studied for the ZB

structure. We believe the origin of this result is that, as noted above, removing the electron provided

by the neutral impurity decreases the ionicity of the lattice and consequently the ZB structure is

favored. According to our calculations, for donors compressing the lattice around the impurity the

shallowness will increase with the size of the impurity and/or decreasing the cell constants of the

pristine lattice.

As a final remark, we observe that our computed transition energies, indicating that donor states
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are shallower in the ZB crystal phase, agree well with the predictions of the hydrogenic model

of substitutional impurities within the Effective Mass Theory (EMT). Within this simple model,

the substitutional impurity form four bonds with the nearest-neighbors, with negligible relaxation

effects and charge transfer, leaving one unpaired electron whose energy is approximately given by

En ∼−Ry
m∗

ε2n2
(4)

where m∗ is the effective mass in units of the electron mass, n the main quantum number, ε is

the (relative) static dielectric constant, and Ry is the Rydberg constant. This is the quantum-

mechanical solution of the hydrogen atom except for the fact that it contains parameters of the bulk

host crystal, such as m∗ and ε . En is the energy of the unpaired electron relative to the conduction

band minimum, so that large values of ε and small values of m∗ both contribute to make the

impurity shallower, i.e. En small. If we look at the computed values of the static dielectric constant

collected in Table 1, we see that, for both GaAs, GaP, and InP, when going from the ZB to the

WZ it decreases (with a reduction that is slightly more pronounced for the zz component of the

tensor). As for the electron effective mass, it has been shown experimentally that it is heavier in

the WZ than in the ZB,36,37,97,98 a trend corroborated by our calculations. Therefore, both these

effects tend to make the impurity state deeper in the WZ, in agreement with the computed transition

energies. EMT also provides an estimate for the effective Bohr radius of the ground-state, which

is

aB ∼ (ε/m∗)a0 (5)

where a0 ∼ 0.577 Å is the Bohr radius of the isolated hydrogen atom. The effective Bohr radius

gives a useful indication of the distance over which the dopant wavefunction extends. This value

ranges from 0.5 to 11 nm, indicating that the wavefunction can be considerably delocalized and that

the donor electron loosely binds to the dopant atom. This observation agrees with the computed

Bader charge of the donors that barely change when the system goes from neutral to charged, i.e.

the additional charge effectively spreads all over the atoms of the supercell.
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Conclusion

We have presented first-principles density-functional calculations of impurity doping in GaAs,

GaP, and InP, comparing their stability and transition energies when dopants are introduced in the

ZB or in the WZ. The cubic ZB crystal structure is the common crystal phase of bulk arsenides and

phosphides, but doping of the WZ is becoming increasingly important, because this crystal phase

can be stabilized even at room temperature and atmospheric pressure when these semiconductors

are grown as NWs. Our results highlight a general trend where acceptors favor substitution in

WZ crystals, where they have shallower electronic state, allowing an easier excitation of charge

carriers for band transport. The situation is reversed for donors, which feature shallower impurity

state and higher solubilities in the ZB. These observations are rationalized in terms of the local

distortion and electronic charge reorganization upon doping. In particular we show that (i) the

reduced symmetry of the WZ is better suited to accommodate the local relaxation of acceptors,

which favor to a three-fold coordination; (ii) ionic bonds favor the WZ lattice, while more covalent

bonds favor the ZB and that the ionic character of the bond can be increased (decreased) by adding

electrons (holes). These results are important for the design and optimization of electron devices

based on semiconducting nanowires in the growing field of crystal phase engineering.

Supporting Information. First-neighbor distances of the pristine crystal, of the impurity and

of the four first-neighbors.
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rali, R.; Bakkers, E. P. A. M.; Zardo, I. Probing Lattice Dynamics and Electronic Resonances

in Hexagonal Ge abd SixGe1-x Alloys in Nanowires by Raman Spectroscopy. ACS Nano 2020,

14, 6845–6856.

(32) Glas, F.; Harmand, J.-C.; Patriarche, G. Why Does Wurtzite Form in Nanowires of III-V Zinc

Blende Semiconductors? Phys. Rev. Lett. 2007, 99, 146101.

(33) Dubrovskii, V. G.; Sibirev, N. V.; Harmand, J. C.; Glas, F. Growth kinetics and crystal struc-

ture of semiconductor nanowires. Phys. Rev. B 2008, 78, 235301.

23



(34) Dubrovskii, V. G.; Sibirev, N. V. Growth thermodynamics of nanowires and its application to

polytypism of zinc blende III-V nanowires. Phys. Rev. B 2008, 77, 035414.

(35) Zheng, H.; Wang, J.; Huang, J. Y.; Wang, J.; Zhang, Z.; Mao, S. X. Dynamic Process of Phase

Transition from Wurtzite to Zinc Blende Structure in InAs Nanowires. Nano Lett. 2013, 13,

6023–6027.

(36) Corfdir, P.; Van Hattem, B.; Uccelli, E.; Conesa-Boj, S.; Lefebvre, P.; Fontcuberta i Mor-

ral, A.; Phillips, R. T. Three-Dimensional Magneto-Photoluminescence as a Probe of the

Electronic Properties of Crystal-Phase Quantum Disks in GaAs Nanowires. Nano Lett. 2013,

13, 5303–5310.

(37) Tedeschi, D.; Fonseka, H. A.; Blundo, E.; Granados del Águila, A.; Guo, Y.; Tan, H. H.;
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Table 1: Lattice parameters, relative dielectric constants, and G0W0 bandgaps (LDA values are

indicated in parenthesis).

a (Å) c (Å) εxx εzz Bandgap (eV)

GaAs zincblende 5.601 - 13.75 13.75 1.66 (0.54)

wurtzite 3.946 6.510 12.80 13.03 1.46 (0.55)

GaP zincblende 5.381 - 10.52 10.52 2.17 (1.39)

wurtzite 3.790 6.254 10.16 10.60 2.28 (1.32)

InP zincblende 5.821 - 11.41 11.41 1.42 (0.62)

wurtzite 4.107 6.748 10.73 10.96 1.49 (0.68)
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Table 2: Difference in the neutral and charged impurity formation energy, ∆Eform, between the

ZB and the WZ structures (a positive value indicates that the WZ is more stable) for the series of

acceptor impurities studied. All energies are given in meV/f.u. We also report the difference in

transition energies, ∆E(0/−), between the ZB and the WZ structures (a positive value indicates

that the impurity state in WZ is shallower).

GaAs GaP InP

SiAs CAs ZnGa ZnP ZnP

∆E0
form 187 248 197 94 33

∆E−1
form 201 265 210 119 39

∆E(0/−) 14 17 13 25 6

32



Table 3: Difference in the neutral and charged impurity formation energy, ∆Eform, between the

ZB and the WZ structures (a positive value indicates that the WZ is more stable) for the series

of donor impurities studied. All energies are given in meV/f.u. We also report the difference in

transition energies, ∆E(+/0), between the ZB and the WZ structures (a positive value indicates

that the impurity state in ZB is shallower).

GaAs GaP InP

SiGa SP TeP TeP

∆E0
form 152 -7 -39 20

∆E+1
form -8 -130 -122 -117

∆E(+/0) 160 123 83 137
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Figure 1: Side view of (a) the ZB and (b) the WZ lattice structure where the ABCABC vs ABABAB

stacking along the cubic [111] axis can be appreciated. (c) Staggered and (d) eclipsed dihedral

conformation of the ZB and WZ crystal phases.
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Figure 2: Formation energies as a function of the chemical potential of the electron of Si, C, and

Zn in ZB (continuous line) and WZ (dashed line) GaAs. The side panels show zoomed views of

SiAs (top) and SiGa (bottom).
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Figure 3: Formation energies as a function of the chemical potential of the electron of Te, S, and

Zn in ZB (continuous line) and WZ (dashed line) GaP. The side panels show zoomed views of

ZnGa (top) and TeP (bottom).
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Figure 4: Formation energies as a function of the chemical potential of the electron of Te and Zn in

ZB (continuous line) and WZ (dashed line) InP. The side panels show zoomed views of ZnIn (top)

and TeP (bottom).
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