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Abstract In this work we pursue the study of manipulability of social choice
functions through “liftings”, that is, mappings which extend orderings over
points to orderings over subsets of points. We discover a very weak notion of
monotony which is closely related to independence of irrelevant alternatives.
This allows us to establish an interesting and general theorem on manipula-
bility. We show that this theorem is indeed equivalent to Arrow-Sen Theorem
in the class of nonmanipulable social choice functions. As a consequence of
this general theorem we obtain a manipulation theorem for linear profiles in
the style of Gibbard-Satterthwaite Theorem but for social choice functions
instead of voting schemes. We introduce the notion of nominator, which is
a natural generalization of the notion of pairwise nominator introduced by
Kelly. Then, we establish that, in the presence of rational properties over lift-
ings, a social choice function is either manipulable, or it admits a nominator.
In addition, we do a comparative study on different types of powerful voters
(dictators, nominators, pairwise nominators and weak-dictators) present in the
literature. Although, in general, they are non-equivalent notions, we show that
under some natural conditions, modulo nonmanipulability, the last three are
equivalent or even all the notions are equivalent.
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1 Introduction

Manipulation in the voting procedures concerns the existence of situations in
which a voter, misrepresenting his preferences, obtains a result which is more
convenient for him than the result obtained when he gives his true preferences.
For a detailed account on manipulability the reader may consult the works of
Taylor [49] and Barberà [5].

Examples of voting procedures in which a voter can have a strategic be-
haviour in order to obtain better results for him are known since the Middle
Ages (see the interesting historical survey which appears in Barberà’s work [5]).
However, in the modern times of social choice theory, the first rigorous and gen-
eral results on manipulability are due to Gibbard [28] and Satterthwaite [42].
After that, many works have been done in several lines which generalize this
pioneer work (see Taylor [49] and Barberà [5])

In 1986, during an interview with Kelly [2], Arrow said: “Gibbard’s (1973)
work was a bombshell. That was very exciting.” Indeed, almost fifty years after
the first modern results on manipulability by Gibbard and Satterthwaite, the
interest in understanding deeply the phenomena around the voting processes
that can be manipulated remains alive. In particular, some computational
aspects about the complexity of having strategic behaviour have been studied
in the last years (cf. Chapters 6 and 10 in the Handbook of Computational
Social Choice edited by Brandt et al. [12] and Chapters 11, 13, 15 and 20 in
Trends in Computational Social Choice edited by Endriss [19]).

Let us note that Gibbard-Satterthwaite Theorem is for resolute voting
schemes (functions mapping a profile into one sole alternative). This theorem
establishes that a voting scheme having at least three outputs is manipulable
or dictatorial. Gärdenfors [25], Barberà [7] and Kelly [31] gave generalizations
of this theorem to plain social choice functions, i.e., functions mapping a profile
and an agenda into a subset of the agenda which is not necessarily a singleton.
In order to define a natural notion of manipulability in this general case, the
cited authors introduce the notion of extensions of preferences over alternatives
to preferences over sets of alternatives. Here, such an extension will be called
a lifting.

In this work we pursue the study of this notion of manipulability in the
general setting of liftings and we try to reduce the proofs of our results to
Arrow’s Theorem. We think that this technique is simple and at the same
time a useful tool. To some extent, we take Arrow’s words [2] as a challenge:
“I still find it (Gibbard-Satterthwaite Theorem) surprising and feel that we
might not have the right proof.” Thus, our current work has the motivation to
present, if not the “proofs of the Book”, at least some standard and uniform
proofs.
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Let us note that many among the known results about manipulability are
a sort of dichotomy in the style of Gibbard-Satterthwaite Theorem: any “nor-
mal” voting process is manipulable or dictatorial. Or, it can be put in the
following form: for the “normal” voting processes, if they are nonmanipulable
then they are dictatorial. Actually, in the case of Gibbard-Satterthwaite The-
orem, a “normal” voting scheme has at least three outputs and that theorem
can be seen, without effort, as a characterization of dictators: a “normal” and
resolute voting scheme is nonmanipulable if and only if it is dictatorial. We
will see that in more general cases this equivalence fails. It is possible to have
dictatorial functions which are manipulable (see Observation 7).

In a more abstract and general manner, most results about manipulability
have the following logical structure: under certain conditions of normality, a
kind of nonmanipulability entails the existence of a powerful voter (dictator,
nominators, etc.). In this work we establish some results of this sort, and
we include an analysis of the different classes of powerful voters and their
relationships.

We establish three theorems about manipulability for social choice func-
tions.1 In the first theorem (Theorem 2), a fundamental result in our work, the
normality conditions are standard domain, transitive explanations, pairwise
nonimposition plus pairwise indifference (see Section 2 and 3 for the defini-
tions). This last condition is a weak form of monotony; it is a novel and very
important notion which is equivalent to independence of irrelevant alternatives
under the hypothesis of nonmanipulability. Then, under these conditions, the
nonmanipulable functions for a G-lifting admit a dictator. As a matter of fact,
we prove that in the class of nonmanipulable social choice functions, Arrow-
Sen impossibility theorem and Theorem 2 are equivalent (cf. Theorem 3). Our
second manipulability theorem (Theorem 4) is essentially a consequence of our
first fundamental theorem. In Theorem 4 the normality conditions are stan-
dard domain, transitive explanations and pairwise nonimposition. Then, under
these conditions and restricted to linear profiles, the nonmanipulable functions
are exactly the dictatorial functions. In our third result (Theorem 5, where we
consider again all kinds of profiles), the normality conditions are the same, i.e.,
standard domain, transitive explanations and pairwise nonimposition. Then,
under these conditions, the nonmanipulable functions for a G-lifting admit a
nominator.

Concerning the taxonomy of powerful voters: dictators, nominators, pair-
wise nominators and weak-dictators (see Section 2 for the definitions), we
establish four results. The first one (Theorem 6) is that the classes of these
powerful voters form a strict hierarchy. The second one (Theorem 7) is that the
classes of nominators and pairwise nominators coincide under the hypothesis
of transitive explanations. The third one (Theorem 8) is that all the classes
coincide under the hypotheses of resoluteness, nonmanipulability and transi-
tive explanations. The fourth result (Theorem 9) is that nominators, pairwise
nominators and weak-dictators coincide under the hypotheses of transitive

1 Figure 2 summarizes all these results.
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explanations and nonmanipulability with respect to one G1-lifting. Figure 3
summarizes these results.

The rest of this work is organized as follows: Section 2 contains the fun-
damental notions and tools used to present the ideas of this work. Section 3
contains our results of manipulability. Section 4 is devoted to the taxonomy
of powerful voters. It contains the study of the relationships between them.
Section 5 contains some remarks about related works. Finally, in Section 6 we
conclude with some final remarks and perspectives.

2 Preliminaries

In this section, we briefly introduce some fundamental notions and tools needed
for developing the main ideas of this work. Namely, we establish some basic
notions concerning preferences, liftings and social choice functions.

2.1 Orderings and Liftings

A preorder over a set X is a binary relation, �, which is reflexive and transitive.
Given a preorder�, we define the strict relation�, and the indifference relation
', both associated to �, respectively, as follows: x � y iff x � y and y 6� x;
and x ' y iff x � y and y � x.

Given a preorder � over X and a subset A of X, we say that a is a
maximal (resp. minimal) element of A, with respect to � , iff a ∈ A and there
is no x ∈ A such that x � a (resp. a � x). The set of maximal (resp. minimal)
elements of A, with respect to �, will be denoted max(A,�) [resp. min(A,�)].
From now on, we will write max(�) [resp. min(�)] instead of max(X,�) [resp.
min(X,�)] in order to denote the set of maximal (resp. minimal) elements of
the whole set X. We will denote by ��A the restriction of � to the set A.

An important class of preorders is that consisting of total preorders, which
are total (then reflexive) and transitive binary relations. It is important to
note that, if � is a total preorder over a set X and A is a subset of X, then a
in A is one of its maximal elements, with respect to �, iff a � x, for all x in
A. The set of total preorders over X will be denoted by P(X).

Simple examples of total preorders are given by linear orders and the flat
order.2 An interesting example of a total preorder is the lexicographical com-
bination of two total preorders. Consider two total preorders, �1 and �2, over
a set A. We define �lex(�1,�2), the lexicographical combination of �1 with �2,
by putting:

x �lex(�1,�2) y ⇔
{
x �1 y, or
x '1 y & x �2 y

A more complex class of total preorders is that of precise-leximax orders,
introduced by Leal and Pino Pérez [34]. These types of orders are defined over

2 A linear order is a total preorder for which antisymmetry holds, and the flat order is
that for which all the elements are indifferent between them.
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finite ordered tuples of different elements of a finite nonempty set X. More
precisely, given a total preorder � over a set X with n elements, we define
the precise-leximax order �Plmax

� over the set V ↓�X (the set formed by all the
vectors of size less or equal to n whose inputs are not repeated elements of
X, ordered in decreasing manner by �) as follows, for every couple of vectors
−→x = (x1, x2, . . . , xk), −→y = (y1, y2, . . . , ym) in V ↓�X :

−→x �Plmax
�

−→y ⇔
{
k ≤ m and xi ' yi, for all i ≤ k, or
there is j ≤ min{k,m} : xi ' yi, for all i < j and xj � yj

It is not hard to see that precise-leximax orders are actually total preorders.
Note that when a vector is an initial segment of another, then, in the precise-
leximax orders, the vector which is the initial segment is bigger than the other,
as in the antilexicographical order. Otherwise, the behaviour of a precise-
leximax order is as that of the lexicographical order.

It is well known that every total preorder � over a set X is given by a
ranking function f : X −→ E where E is linearly ordered by a relation ≥ and
f(x) ≥ f(y) iff x � y. When a total preorder is finite, the ranking functions
representing it can be defined taking values in the natural numbers with the
usual order. From now on we consider the canonical ranking function, r�,
associated to a total preorder � over X:

r�(x) = max{n ∈ N : ∃ x0, x1, . . . , xn ∈ A; xi+1 � xi and xn = x}
A preorder � might be seen as a preference or plausibility measure over the

elements in X: x � y expresses that x is at least as preferred as y, x � y means
that x is more preferred than y, while x ' y says that x and y are indifferent.
This classical point of view about preferences will be adopted from now on in
this work.

It is possible to extend preferences over single elements of a set X to
preferences over its subsets in different rational manners. This can be done
either quantitatively or qualitatively. Perhaps the first methods have been
quantitative and related to probability. Actually, if p is a probability measure
over a finite nonempty set X, we can see p as a representation of the preferences
(in this case the plausibility) over X as follows: x � y iff p({x}) ≥ p({y}). As
p extends additively the preferences of points in X to subsets (events) of X,
we can define the probabilistic relation wp over P(X) (the powerset of X) as
follows: A wp B iff p(A) ≥ p(B).

The idea of using qualitative methods to extend preferences over points to
preferences over sets of points goes back to the work of Bruno de Finetti [21],
in which he searches to characterize qualitative probabilities. Actually, this
important idea has been considered in logical frameworks by Halpern [29], van
Benthem, Girard and Roy [50], and Mata Dı́az and Pino Pérez [37,38,39].

An application �7→w� which maps any total preorder � over a set X into
a preorder w� over P(X), will be called a lifting if the following property
holds:

{x} w� {y} iff x � y
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From now on, given a total preorder �, the preorder w� will also be called a
lifting of �.

In the literature concerning manipulability, there are several specific and
well known liftings. Next, we present some examples of these extensions. The
first lifting to be presented, which is a very standard one, is called possibilistic
lifting, �7→wΠ

�. This idea (in a preliminary form) goes back to Shackle [45,46]
and it was proposed in different forms by Lewis [35], Spohn [47], Dubois, Lang
and Prade [17], Friedman and Halpern [24], and others.

A wΠ
� B iff there exists x in max(A,�) and y in max(B,�) s.t. x � y

For a fixed total preorder � over a set X, wΠ
� is actually a total preorder

over P(X), as can be easily shown. The relation wΠ
� can be seen as a “com-

parative possibility” relation associated with the plausibility measure �, as it
was highlighted by Dubois, Lang and Prade [17]. Actually, A wΠ

� B expresses
that the “best” elements in A are at least as good as the “best” elements in
B, with respect to �.

Analogously, we can define the pessimistic lifting, �7→wW
� . This lifting

has been addressed in decision making (cf. [6,18,48,49]) as well as in logical
frameworks (cf. [33]). It says that the “worst” elements in A are at least as
good as the “worst” elements in B:

A wW
� B iff there exists x in min(A,�) and y in min(B,�) s.t. x � y

Another classical lifting in the literature is Kelly lifting, �7→wK
�, introduced

by Jerry Kelly [31]. This lifting expresses that the “worst” elements in a set
A are at least as good as the “best” elements in a set B. More specifically:

A wK
� B iff A = B or for all x in A and for all y in B, x � y

The following lifting to be presented is the precise-leximax lifting, denoted
by wPlmax

� . This lifting was proposed by Leal and Pino Pérez [34] as a variant
of Moulin lifting, introduced by Hervé Moulin [40], and the leximax lifting (cf.
[6,9,13,14,16]). In order to define it, we will use the precise-leximax orders

over V ↓�X . For every subset C of X and every total preorder � over X, we

will consider [C]�, the subset of V ↓�X formed by all the vectors of length |C|
whose inputs are in C:

A wPlmax
� B iff for all −→y in [B]� there exists −→x in [A]� s.t. −→x �Plmax

�
−→y

This lifting tries to capture the idea that one has to prefer a group of alter-
natives which is smaller than another group of alternatives if the alternatives
of the first group are at least as preferred as the alternatives of the second
group. In order to give a real example of this kind of preference, we can imag-
ine that alternatives are workers and for economical reasons (e.g. economy of
salaries) a corporation prefers a team of workers with the same degree of skills
as another one if the former has fewer persons.
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Some properties of liftings have been studied in ordering theory. An im-
portant example of such properties are the simple dominance conditions in-
troduced by Peter Gärdenfors [25,26] in a general form and deeply studied by
Barberà, Bossert and Pattanaik [6] in the form proposed here.3

Simple dominance 1: {x, y} A� {y}, whenever x � y.
Simple dominance 2: {x} A� {x, y}, whenever x � y.

The simple dominance conditions will be called companionship properties
because they have a very natural interpretation: simple dominance 1 expresses
that “good company” improves the group; while simple dominance 2 tells us
that “bad company” worsens the group. These properties have also been con-
sidered in the computational social choice framework by Christian Geist and
Ulle Endriss [27], whose work concerns the automatized search of impossibility
theorems.

A lifting that satisfies simple dominance 1 will be called G1-lifting, while
that for which simple dominance 2 holds will be called G2-lifting. A lifting for
which both instances of simple dominance hold will be denominated G-lifting
(all the G’s in honour of Gärdenfors). It is not hard to see that Kelly lifting
and the precise-leximax lifting are actually instances of G-liftings, in contrast
to the possibilistic lifting which is a G1-lifting for which simple dominance 2
does not hold, or the pessimistic lifting which is a G2-lifting that does not
satisfy simple dominance 1, as can be easily verified.

From now on, we will focus on these types of liftings, that is, those that
satisfy one or both of companionship properties. Other well known examples of
this kind of liftings are the Fishburn lifting [22] and the Gärdenfors lifting [25].

2.2 Social choice functions and Arrow’s impossibility theorem

In order to introduce the notion of social choice function, we will present some
notation and special sets that will be used throughout this work. From now
on, N = {1, 2, . . . , n} will denote a finite set of voters; X = {x, y, z, . . . } will
denote a finite set of alternatives. The ballot (or preference) of a voter i will
be given by a total preorder �i over X. A profile of ballots (or simply profile)
is an n-tuple P = (�1,�2, . . . ,�n), which collects the ballots of all the voters
in N , in an ordered manner. We will say that P is a linear profile if each �i
in P is a linear order over X. The set of all the profiles of ballots will be
denoted Pn(X). An agenda is a nonempty set A formed by alternatives in
X. An agenda contains only those alternatives which are available for choice.
We denote by P∗(X) the set of all agendas. Given an agenda A and a profile
P = (�1,�2, . . . ,�n), we denote by P �A, the restriction of P to the agenda A,
that is, P �A= (�1�A,�2�A, . . . ,�n�A). We will denote by P [�∗/i] the profile
obtained from profile P by replacing ballot �i, in its input i, by ballot �∗.

3 These properties are also known as Gärdenfors principles.
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A social choice function is a map F : Pn(X)×P∗(X)→ P∗(X), such that
for every profile P and agenda A, if F (P,A) is defined then F (P,A) ⊆ A.
Thus, F might be a partial function.4 By tradition, FP (A) denotes F (P,A).

We will say that F is a resolute social choice function if the outputs, when
defined, are singletons.

The most trivial social choice function is that which we call the indifference
function: IP (A) = A, for every agenda A and every profile P . For this social
choice function, no matter what the voters express, all the available alterna-
tives will be chosen. Another example of social choice function is the dictator-
ship function: given a fixed voter d in N , we define DP (A) = max(A,�d), for
every agenda A and every profile P . Thus, this function is fully determined by
the preferred alternatives of the voter d. As a counterpart of this last function,
we have the anti-dictatorship function, which was presented by Taylor [49]:
TP (A) = min(A,�d), for every agenda A and every profile P . Converse to the
dictatorship function, the anti-dictatorship function is determined by the less
preferred alternatives of an agent d. Many other examples can be found in the
literature (cf. [3,12,32,49]).

The following properties were proposed by Arrow [1] as a set of suitable
features that a reasonable social choice function F has to satisfy:5

Standard domain (SD): F is a total function and X has at least three
alternatives.

Pareto condition (PC): If P = (�1,�2, . . . ,�n), x �i y for every i in N
and x is in A, then y is not in FP (A).

Independence of irrelevant alternatives (IIA): If P �A= P ′ �A then
FP (A) = FP ′(A).

Transitive explanations (T): There exists a mapping P 7→�P (a social
welfare function, which aggregates the preferences of the voters collected
in P into a global preference �P ) such that, for every profile P and every
agenda A, we have FP (A) = max(A,�P ).6

Another desirable property concerns the absence of voters with a strong
decision power. More precisely, we have the following definition:

Definition 1 A dictator for the social function F is a voter d in N satisfying
the following: for any profile P = (�1, . . . ,�n), any agenda A and any pair of
alternatives x, y, if x �d y and x is in A then y is not in FP (A).

4 Note that we have chosen to have only nonempty outputs, in order to allow the possibility
of having real partial functions. If we admit the empty set as output, we could define as the
empty set the output of undefined inputs and then all the functions would be total.

5 Although Arrow’s conditions were stated in the context of social welfare functions, it
is not hard to see that, modulo transitive explanations, they are equivalent to the versions
presented here for social choice functions (cf. [32,49]).

6 The name of Transitive explanations is the one used by Kelly [32] for this axiom. This
axiom is also called Transitive rationality by Taylor in his book of 2005 [49]. Moulin [40]
calls the social choice functions satisfying this property rationalizable choice functions. Sen
[44] gives an axiomatic characterization of these functions.
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It is not hard to see that when there exists a dictator d for F , this dictator
is unique.

Now we can state the property:

Absence of dictator: There is no voter d in N which is a dictator for F .

Standard domain states that there are three or more alternatives and
that the process of election gives always a result. The Pareto condition
says that if all the voters preferred alternative x to alternative y, and x is
an available alternative, then alternative y cannot be chosen. Independence
of irrelevant alternatives states the following: if the voters express in two
different situations different preferences, but these preferences coincide over
the available alternatives, then in both situations the result has to be the
same. Transitive explanations states that the process of election can be
decomposed in two parts: first taking a preference of the group, and then taking
the best available alternatives with respect to this group’s preference. The
property Absence of dictator is quite clear: it states that there is not a voter
(dictator) who imposes his preferences. In particular, this type of powerful
voter forces that the result does not contain those available alternatives which
he does not prefer. Actually, it is not hard to see that d is a dictator for F
iff we have FP (A) ⊆ max(A,�d). When a social choice function does not
satisfy this property, we say that it is a dictatorial social choice function or
that it admits a dictator. It is worth mentioning that every dictatorial function
satisfies the Pareto condition, as can be easily verified.

Observation 1 It is not hard to see that the indifference function, the dicta-
torship function, and the anti-dictatorship function, satisfy standard domain
(whenever X has at least three alternatives) and transitive explanations.7

However, the indifference function satisfies independence of irrelevant alterna-
tives and absence of dictator, but does not satisfy Pareto condition; the dicta-
torship function satisfies Pareto condition and independence of irrelevant al-
ternatives, but absence of dictator does not hold; and for the anti-dictatorship
function, independence of irrelevant alternatives and absence of dictator hold,
but Pareto condition does not hold.

The following result, which was established in its first version by Sen [43],
expresses the fact that, although the properties given above seem very rea-
sonable and suitable in a selection process, there is no social choice function
satisfying all these properties together. As Kelly [32] and Taylor [49] pointed
out, this result is equivalent to Arrow’s theorem [1], which was first stated in
terms of social welfare functions.

Theorem 1 (Arrow-Sen impossibility theorem) Any social choice func-
tion that satisfies standard domain, Pareto condition, independence of irrele-
vant alternatives and transitive explanations is dictatorial.

7 For the case of the indifferent function, it is enough to associate every profile with the
flat order.



10 Amı́lcar Mata Dı́az, Ramón Pino Pérez and Jahn Franklin Leal

There are other interesting properties considered in the literature on so-
cial choice functions. One of these expresses the diversity of possible results
of electoral processes (cf. [7,28,42]). These are regrouped under the term of
nonimposition (see [49]). The next property, first introduced by Wilson [51]
and then considered by Barberà [7] and others (see [49]), tries to capture such
a diversity:

Pairwise nonimposition (PNI): For every couple of alternatives x, y in X,
there exists a profile P such that FP ({x, y}) = {x}.

This property states that given two alternatives, the voters can establish
preferences in order to choose one of them, that is, any of these might be
chosen. A function for which this property holds is also called pairwise non-
imposed social choice function, and will be called pairwise imposed if pairwise
nonimposition does not hold.

Observation 2 It is worth noting that every social choice function that sa-
tisfies standard domain and Pareto condition is pairwise nonimposed, as it
can be easily verified. It is also easy to verify that if a social choice function
admits a dictator, it is pairwise nonimposed: let x, y be a pair of alternatives
in X and consider a profile P such that x �d y, where d is the dictator,
then FP ({x, y}) = {x}. From this fact, we get that the dictatorship function
is a pairwise nonimposed function. Note that, similarly, we can see that the
anti-dictatorship function is a pairwise nonimposed function for which Pareto
condition does not hold, showing that the converse of the first remark fails.
Moreover, from its definition, it is easy to see that the indifference function is
pairwise imposed.

In the literature, different types of powerful voters – that is voters which, in
some manner, can impose their will in the process of choice – have been studied.
Some of them are weaker than the Arrovian dictator previously defined. In the
sequel, we introduce other notions of powerful voters which should be avoided
by reasonable social choice functions.

The first notion is introduced by Kelly [31]. It concerns powerful voters
restricted to agendas of size two.

Definition 2 A pairwise nominator (for the social choice function F ) is a
voter d in N satisfying the following: for every couple of alternatives x, y in
X and every profile P = (�1, . . . ,�n), if x �d y, then x is in FP ({x, y}). We
will say that F admits a pairwise nominator if such voter d exists.

We have to mention that, in his work, Kelly called weak-dictators what we
call pairwise nominators, but we prefer this nomenclature, also used by Taylor
[49], because we reserve the name of weak-dictator for a different notion of
powerful voter (see Definition 4).

A suitable property for social choice functions is, of course, the following:

Absence of pairwise nominator: There is not a pairwise nominator.



Taxonomy of powerful voters and manipulation 11

See Observation 3 below, in order to see functions admitting pairwise no-
minator and one satisfying absence of pairwise nominator.

We introduce now a very natural generalization of the notion of pairwise
nominator:

Definition 3 A nominator (for the social choice function F ) is a voter d in N
satisfying the following: for every agenda A and every profile P = (�1, . . . ,�n),
there exists x in max(A,�d) such that x is in FP (A). We will say that a social
choice function F admits a nominator if such a voter d exists.

Again, reasonable social functions have to satisfy the following property:

Absence of nominator: There is not a nominator.

This property expresses that, restricted to the available alternatives, no
voter can guarantee that one of his preferred alternatives will always appear
in the result of the process of choice.

Observation 3 It is not hard to see that the indifference function and the
dictatorship function are instances of social choice functions that admit a
nominator (and also a pairwise nominator), while the anti-dictatorship func-
tion satisfies absence of nominator (and also absence of pairwise nominator).
Moreover, it is clear that every voter is a nominator (and also a pairwise
nominator) for the indifference function. Thus, unlike dictatorial functions in
which the dictator is unique, a social choice function might admit more than
one nominator (and more than one pairwise nominator).

Finally, concerning powerful voters we present a notion established by Leal
and Pino Pérez [34]: the notion of weak-dictator. More precisely, we have the
following definition.

Definition 4 A weak-dictator (for the social choice function F ) is a voter d
in N satisfying the following: for all x in X there exists a preference �x over
X such that x is in FP [�x/d]({x, y}), for every alternative y in X and for every
profile P .

As before, the suitable property for social choice functions is the following:

Absence of weak-dictator: There is not a weak-dictator.

This property, restricted to agendas of size two, expresses that no voter
can give a ballot in order to include a specific alternative, independently of
the preferences of the remaining voters.

A social choice function F for which absence of weak-dictator does not
hold is called weak-dictatorial function.

Observation 4 It is easy to see that the indifference function, the dictator-
ship function and the anti-dictatorship function are weak-dictatorial functions.

In Section 4 we will make a comparative study of the relationships between
the different notions of powerful voters previously defined.
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3 General results of manipulability through liftings

In this section we deal with the manipulability of social choice functions.
Roughly speaking, a manipulability situation occurs when a voter (the manip-
ulator) expresses in his ballot a choice which differs from his real preference,
in order to obtain a more “convenient” result for him than the result he would
obtain by expressing his true preference in his ballot. The literature in social
choice about manipulability is very broad. The works of Gibbard [28] and
Satterthwaite [42] in the case of voting schemes can be considered pioneers in
the subject.8 In the case of social choice functions, the literature concerning
studies of manipulability is quite vast. Among the first works in this frame-
work, we can cite the works of Barberà [4,7], Kelly [31] and Gärdenfors [25,
26]. There are also more recent works about manipulability in more abstract
frameworks (see, for instance, the works of Brandt [10], Brandt and Brill [11],
Pini et al. [41] and Ching and Zhou [15]). For a survey in manipulability, see
the works of Barberà [5] and Taylor [49] . In this section we present other
general results of manipulability through liftings, similar to those presented
by Leal and Pino Pérez [34], now involving nominators and dictators.

In what follows, we present the notion of manipulability of a social choice
function, based on liftings. This notion, implicit in the literature of manipula-
bility, was explicitly defined and studied by Leal and Pino Pérez [34].

Definition 5 (Manipulation through liftings) Let F be a social choice
function and �7→w� be a lifting. We will say that F is manipulable with respect
to �7→w� if there exists a voter i in N , an agenda A, a profile P = (�1, . . . ,�n)
and a ballot �∗ such that

FP [�∗/i](A) A�i FP (A)

We say that F is nonmanipulable with respect to �7→w�, if the statement
above does not hold.9 We also say that F is manipulable if it is manipulable
with respect to some lifting, and F is said to be nonmanipulable (NM) if it
is nonmanipulable with respect to every lifting. We say that F is absolutely
manipulable if it is manipulable with respect to every lifting. When F is non-
manipulable for a G-lifting we say that F satisfies the property (∃G-NM).

The set formed by voter i, the agenda A, the profile P and the (new) ballot
�∗, that witnesses the manipulability of a social choice function F , is called
manipulability situation for F , with respect to the lifting �7→w�, or simply
manipulability situation when the context is clear. Therefore, a social choice
function F is manipulable with respect to �7→w� if such a manipulability
situation exists. In the manipulability situation above, the agent i is called the
manipulator, while �∗ is the lie ballot expressed by i in order to get a better
result for him than the one obtained when he expresses his true preferences in
his ballot.

8 A voting scheme is a function V that maps a profile P into an element V (P ) of X.
9 Many authors use the term strategy-proof for nonmanipulable.
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Observation 5 From the definition of lifting, straightforwardly follows that a
resolute social choice function is absolutely manipulable iff it is manipulable.
This is due to the fact that, restricted to singletons, all the liftings are the
same. Thus, for resolute social choice functions, the manipulability situation
does not depend on the selected lifting.

The next example illustrates the notion of manipulability through liftings.
In fact, we will review the behaviour, concerning manipulability, of the concrete
examples presented in Subsection 2.2: the indifference function, the dictator-
ship function and the anti-dictatorship function.

Example 1 Due to the fact that IP (A) = A, it is clear that the indifference
function is nonmanipulable.

The anti-dictatorship, TP (A) = min(A,�d), is absolutely manipulable. To
see that, consider a couple of alternatives x, y in X, a profile P = (�1, . . . ,�n)
such that x �d y and a ballot �∗ such that y �∗ x; thus, TP ({x, y}) = {y}
and TP [�∗/d]({x, y}) = {x}. Then, we get TP [�∗/d]({x, y}) A�d TP ({x, y}), for
every lifting �7→w�.

More surprising is the fact that the dictatorship function, which is defined
DP (A) = max(A,�d), is manipulable. Actually, it is manipulable through
the precise-leximax lifting. In order to see this, let us consider a couple of
alternatives x, y in X, and a profile of ballots P = (�1, . . . ,�n) such that
x 'd y. Thus, DP ({x, y}) = {x, y}. Now, if �∗ is such that x �∗ y, we
get DP [�∗/d]({x, y}) = {x}. But it is clear that {x} APlmax

�d {x, y}, that is,

DP [�∗/d]({x, y}) APlmax
�d DP ({x, y}), as desired.

However, the dictatorship function is not absolutely manipulable. In fact, it
is not manipulable for Kelly lifting. To see that, consider an agenda A, a
voter i in N , a profile P , and a ballot �∗. Let us note that, if i 6= d, then
DP (A) = DP [�∗/i](A). Now suppose that i = d, and let us note that if x is
in DP (A) and y is in DP [�∗/d](A), then x �d y. Therefore, in any case we get
DP (A) wK

�i DP [�∗/i](A).

This last example shows that the nonmanipulation of a social choice func-
tion heavily relies on the lifting selected. However, one might think that a
gauge for the goodness of a lifting is the strategy behaviour of a social choice
function, which we expect to be nonmanipulable. Thus, if such a function is
manipulable with respect to a given lifting, one could think that the problem
comes from this lifting and not from the function. But, as we show in Exam-
ple 7, there are dictatorial functions which are manipulable for any lifting.
Therefore, the idea of using such a gauge is not convenient.

There are several properties over social choice functions intimately related
with manipulability. The next one, is a pairwise version of a series of principles
regrouped under the name of monotonicity in the literature. The property here
presented appears in Taylor [49]. It concerns the stability of an election process
when only two alternatives are available: if one alternative is selected and if a
voter changes his mind in such a way that the losing alternative is strictly less
preferred than the winner, then winner remains the same. More precisely:
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Pairwise down-monotonicity for singleton winners: For all i in N , if
x �∗ y and FP ({x, y}) = {x}, then FP [�∗/i]({x, y}) = {x}.

The indifference and the dictatorship functions, presented in Subsection 2.2,
are instances of social choice functions that satisfy pairwise down-monotonicity
for singleton winners. As a matter of fact, the satisfaction of this property by
the indifference function follows trivially from the fact that there are no sin-
gleton winners when the agenda is a set of a couple of alternatives. We can
also easily see, from the definition of the dictatorship function, that this func-
tion satisfies pairwise down-monotonicity for singleton winners. However, the
anti-dictatorship function does not satisfy this property. In order to see this,
consider a ballot �∗ and a profile P = (�1, . . . ,�n) such that x �∗ y and
y �d x. Thus, TP ({x, y}) = {x} but TP [�∗/d]({x, y}) = {y}.

Observation 6 If F is a social choice function that satisfies pairwise down-
monotonicity for singleton winners and FP ({x, y}) = {x}, it is easy to see
that, if O is a set of voters in N and, for every i in O, �∗i is a ballot such
that x �∗i y, then FP∗({x, y}) = {x}, where P ∗ is the profile obtained from P
when every voter i in O has the ballot �∗i .

There is a tight relationship between pairwise down-monotonicity for sin-
gleton winners and nonmanipulability. This fact is stated in the next result.

Proposition 1 If a social choice function satisfying standard domain is non-
manipulable with respect to a G2- lifting, then it satisfies pairwise down-
monotonicity for singleton winners.

Proof Suppose that F is a social choice function which satisfies standard do-
main and is nonmanipulable with respect to �7→w�. We will show that F
satisfies down-monotonicity for singleton winners. Towards a contradiction,
consider a pair of alternatives x, y in X, a profile P and a ballot �∗ such
that x �∗ y, FP ({x, y}) = {x} and suppose that y is in FP [�∗/i]({x, y}). Thus,
since x �∗ y, we get {x} A�∗ {y} and, by simple dominance 2, {x} A�∗ {x, y}.
Now, if we consider the profile P ∗ := P [�∗/i], we get P ∗[�i/i] = P . More-
over, the following hold: FP∗[�i/i]({x, y}) = {x} and either FP∗({x, y}) = {y}
or FP∗({x, y}) = {x, y}. Therefore, for any of the two possible outputs of
FP∗({x, y}), we have FP∗[�i/i]({x, y}) A�∗ FP∗({x, y}). Thus, P ∗, i, {x, y}
and �i (the lie ballot) is a manipulation situation of F with respect to �7→w�,
a contradiction.

The converse of this result does not hold. The following is an example of
a classical social choice function that satisfies standard domain (when there
are at least three alternatives) and pairwise down-monotonicity for singleton
winners, but it is manipulable with respect to any G2-lifting.
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Example 2 The plurality rule, defined by:10

CP (A) = {x ∈ A : ∀y ∈ A; |{i : max(A,�i) = {x}}| ≥ |{i : max(A,�i) = {y}}|}
satisfies pairwise down-monotonicity for singleton winners, and it is also ma-
nipulable with respect to any G2-lifting.

To show that pairwise down-monotonicity for singleton winners holds, con-
sider a pair of alternatives x, y, a voter i, a profile P = (�1, . . . ,�n), a ballot
�∗ and, for every couple of alternatives w, z and every profile P ∗, consider
the set Ow

z (P ∗) = {�∈ P ∗ : max({w, z},�) = {w}}. If CP ({x, y}) = {x} and
x �∗ y, then |Ox

y (P [�∗/i])| ≥ |Ox
y (P )| > |Oy

x(P )| ≥ |Oy
x(P [�∗/i])|. From this,

we get CP [�∗/i]({x, y}) = {x}, as desired.
To prove that the plurality rule is manipulable with respect to any G2-

lifting, assume N = {1, 2, 3}, X = {x, y, z} and consider the next manipulation
situation: the agenda A = X and a profile of ballots P = (�1,�2,�3) such
that y �1 x �1 z, x �2 y �2 z and x '3 z �3 y. In this case, we obtain
CP (A) = {x, y}. Moreover, if the voter 3 expresses a ballot �∗ such that
x �∗ z �∗ y, we obtain CP [�∗/3](A) = {x}.

Now, since x �3 y, for any G2-lifting �7→w�, we get {x} A�3 {x, y}, that
is, CP [�∗/3](A) A�3 CP (A). This shows the manipulability of the plurality rule
with respect to any G2-lifting.

The Pareto condition is obtained when pairwise nonimposition and pair-
wise down-monotonicity for singleton winners are present. More precisely, we
have the following proposition.

Proposition 2 If F is a social choice function for which standard domain,
transitive explanations, pairwise nonimposition and pairwise down-monotoni-
city for singleton winners hold, then F satisfies the Pareto condition.

Proof Let us suppose that F is a pairwise nonimposed social choice function
that satisfies standard domain, transitive explanations, pairwise nonimposition
and pairwise down-monotonicity for singleton winners. We want to see that
the Pareto condition holds. Consider an agenda A, a couple of alternatives
x, y in X, with x in A, and a profile of ballots P = (�1, . . . ,�n) such that
x �i y, for all i in N . We will show y is not in FP (A).

Note that the result is trivial if y is not in A. Now, suppose that y is in A.
Since F is pairwise nonimposed, there is a profile P ∗ = (�∗1, . . . ,�∗n) such that
FP∗({x, y}) = {x}. Thus, by Observation 6, we get that FP ({x, y}) = {x}.
From this, by transitive explanations, we get x �P y. Again, from transitive
explanations, we get that y is not in FP (A).

The converse of the previous proposition does not hold. Actually, in Ob-
servation 2 we have seen that, under standard domain, the Pareto condition
entails pairwise nonimposition. However, pairwise down-monotonicity for sin-
gleton winners is not entailed by the Pareto condition. This will be seen

10 This version of the plurality rule is an adaptation of the plurality rule presented by
Taylor [49] in the setting of voting rules.
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through an example using a generalization of a classic social choice function,
namely, the Borda rule (cf. [8,34,49]). Let us define the generalized Borda
rule. Let X = {x1, . . . , xk} be the set of alternatives and N = {1, . . . , n} be
the set of voters; we define the generalized Borda rule (which we will continue
to call Borda rule for simplicity) as follows: for a profile P = (�1, . . . ,�n)
and a nonempty subset A of X, we put BP (A) = max(A,�ΣP ), where the
global preference �ΣP (the Borda relation) is defined by putting a �ΣP b iff∑n
i=1 r�i(a) ≥∑n

i=1 r�i(b).
11

Example 3 Let X = {x, y, z} be the set of alternatives and N = {1, 2} be the
set of voters. It is well known that the Borda rule satisfies the Pareto condition
(due to the monotonicity of addition). However, this function does not satisfy
pairwise down-monotonicity for singleton winners. In order to show this claim,
let us consider the profile P = (�1,�2) where x �1 z �1 y and z �2 y �2 x.
Now define �∗ by putting z �∗ x �∗ y. Then, with an easy calculation, we get
BP ({x, y}) = {x} and BP [�∗/1]({x, y}) = {x, y}. Therefore, B does not satisfy
pairwise down-monotonicity for singleton winners.

Note that, by Example 3 and Proposition 1, the Borda rule is manipula-
ble with respect to any G2-lifting (even if this function satisfies the Pareto
condition). Moreover, this function is absolutely manipulable, as we will see
through the next example.

Example 4 Suppose X = {w, x, y, z} and N = {1, 2, 3}. If we consider the
profile P given in Figure 1, it is easy to see that BP ({x, y}) = {y}. However, if
voter 3 expresses his preferences through the ballot �∗ (see Figure 1) instead
of his true preferences, we have BP [�∗/3]({x, y}) = {x}.

( b
x

b

y

b
w

b
z

⪰1

b

y

b
w

b
z

b
x

⪰2

b
x

b
z

b
w

b

y

⪰3

)
Profile P

( b
x

b

y

b
w

b
z

⪰1

b

y

b
w

b
z

b
x

⪰2

b
x

b
z

b
w

b

y

⪰∗

)
Profile P[⪰∗/3]

1
Fig. 1 Profiles of ballots considered in Example 4

Now, since x �3 y, for every lifting �7→w�, we have {x} A�3
{y}. There-

fore, BP [�∗/3]({x, y}) A�3
BP ({x, y}). Thus, the Borda rule is absolutely ma-

nipulable.

11 It is easy to see that this function coincides with the Borda rule when the profile is
constituted by linear ballots.
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From Propositions 1 and 2 and Observation 2, we get straightforwardly
that, modulo nonmanipulability, pairwise nonimposition is equivalent to the
Pareto condition. More precisely, we obtain the following corollary.

Corollary 1 Let F be a social choice function satisfying standard domain and
transitive explanations. If F is nonmanipulable with respect to a G2-lifting,
then F is pairwise nonimposed iff F satisfies the Pareto condition.

There is another natural property that any rational social choice function
should satisfy. This concerns a sort of monotonous behaviour. We call this
property pairwise indifference. To our knowledge, it is introduced in this work
for the first time.

Pairwise indifference (PI): If x is in FP ({x, y}), y �i x and x '∗ y, then
x is in FP [�∗/i]({x, y}).12

Pairwise indifference expresses that, if only two alternatives are available in
a process of choice, an alternative chosen under a profile must not be rejected if
a voter expresses through a new ballot that the two alternatives are indifferent
and in the old ballot, this alternative was not better than the other available
alternative. This is a sort of monotonicity, as we mentioned previously.

Some natural social choice functions satisfy PI, as we will see in the next
example.

Example 5 From the monotonicity of the sum it follows that the Borda rule
is a classical instance of a natural social choice function that satisfies pairwise
indifference. Another classical example of a natural function that satisfies this
property is the plurality rule, which was presented in Example 2:

CP (A) = {x ∈ A : ∀y ∈ A; |{i : max(A,�i) = {x}}| ≥ |{i : max(A,�i) = {y}}|}

To show that the strict plurality rule satisfies pairwise indifference, let us
consider a pair of alternatives x, y, a voter i, a profile P = (�1, . . . ,�n), a
ballot �∗ and, for every pair of alternatives w, z and every profile P ∗, consider
again Ow

z (P ∗) = {�∈ P ∗ : max({w, z},�) = {w}}. If x is in CP ({x, y}),
y �i x and x '∗ y, we get |Ox

y (P )| ≥ |Oy
x(P )|, Ox

y (P ) = Ox
y (P [�∗/i]) and

Oy
x(P [�∗/i]) ⊆ Oy

x(P ). Therefore, |Ox
y (P [�∗/i])| ≥ |Oy

x(P [�∗/i])|, that is, x is
in CP [�∗/i]({x, y}), as desired.

It is also easy to see that the indifference, the dictatorship and the anti-
dictatorship functions are instances of social choice functions that satisfy pair-
wise indifference. Then, classical examples of social choice functions satisfy this
property. Therefore, it is quite natural to consider it as a rational property.

Under nonmanipulability, pairwise indifference and independence of irrele-
vant alternatives are equivalent. More precisely, we have the following result.

12 A strong version of PI can be established if we consider x �∗ y instead of x '∗ y.
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Proposition 3 Let F be a social choice function that satisfies standard do-
main and transitive explanations and suppose that it is nonmanipulable with
respect to a G-lifting. Then F satisfies pairwise indifference iff it satisfies in-
dependence of irrelevant alternatives.

Proof Assume that F satisfies standard domain, transitive explanations and it
is nonmanipulable with respect to a G-lifting �7→w�. We will show that pair-
wise indifference holds iff independence of irrelevant alternatives also holds.

In order to show the only if part, let us consider an agenda A and a couple
of profiles P = (�1, . . . ,�n), P ∗ = (�∗1, . . . ,�∗n) such that P �A= P ∗�A and,
towards a contradiction, suppose FP (A) 6⊂ FP∗(A) [the case FP∗(A) 6⊂ FP (A)
is analogous].

Let x be an alternative in FP (A) such that x is not in FP∗(A) and consider
an alternative y in FP∗(A). From transitive explanations we get that x is
in FP ({x, y}) and FP∗({x, y}) = {y}. Put Po = P ∗ and, for every i in N ,
Pi = Pi−1[�i/i]. Let us note that Pn = P and, given i in N , Pi−1 = Pi[�∗i/i].
Therefore, FPo({x, y}) = {y} and FPn({x, y}) 6= {y}. Let k be the greatest
integer in N , such that FPk({x, y}) = {y}. Note that k < n; by simplicity
denote j = k+1. Thus, we have FPj ({x, y}) 6= {y}, and then FPj ({x, y}) = {x}
or FPj ({x, y}) = {x, y}.

Since Pj [�∗j /j] = Pk, we obtain FPj [�∗j/j]({x, y}) = {y}. Thus, x is in

FPj ({x, y}) but x is not in FPj [�∗j/j]({x, y}). Then, by pairwise indifference, it

is not the case that y �j x and x '∗j y. Therefore we have the following three
cases: x �j y, x �∗j y and y �∗j x.

x �j y: In this case, since �j�{x,y}=�∗j�{x,y}, we get x �∗j y. From this we have

{x} A�∗j {y} and, by simple dominance 1, {x, y} A�∗j {y}. Therefore, since

Pj = Pk[�j /j], we get FPk[�j/j]({x, y}) A�∗j FPk({x, y}), independently

of the two possible outputs for FPk[�j/j]({x, y}) = FPj ({x, y}). This shows
the manipulation of F , a contradiction.

x �∗j y: Since �j�{x,y}=�∗j�{x,y}, we have x �j y, and by the previous argu-

ment this is impossible.
y �∗j x: Since �j�{x,y}=�∗j�{x,y}, we have y �j x. Thus, {y} A�j {x} and,

by simple dominance 2, {y} A�j {x, y}. Therefore, for any of the two
possible outputs for FPj ({x, y}), we get FPj [�∗j/j]({x, y}) A�j FPj ({x, y}).
This shows the manipulation of F , a contradiction.

To prove the if part, suppose that y �i x, x '∗ y, x is in FP ({x, y}) and,
towards a contradiction, assume that x is not in FP [�∗/i]({x, y}). Thus, we
get, on one hand, FP ({x, y}) = {x} or FP ({x, y}) = {x, y}, and, on the other
hand, FP [�∗/i]({x, y}) = {y}. Let us consider the following two cases for which
y �i x holds:

y 'i x: In this case, we have P�{x,y}= P [�∗/i]�{x,y}. Therefore, from IIA, we
have FP ({x, y}) = FP [�∗/i]({x, y}), a contradiction.

y �i x: In this case, {y} A�i {x} and, by simple dominance 2, {y} A�i {x, y}.
Thus, FP [�∗/i]({x, y}) A�i FP ({x, y}), regardless of the two possible out-
puts for FP ({x, y}). This shows the manipulation of F , a contradiction.
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It is worth mentioning that Proposition 3 says that under standard domain
and transitive explanations, the nonmanipulability is a sufficient condition to
obtain the equivalence between independence of irrelevant alternatives and
pairwise indifference. However, it is not a necessary condition for this equiv-
alence. For instance, the anti-dictatorship function is an example of a social
choice function that satisfies standard domain, transitive explanations, inde-
pendence of irrelevant alternatives and pairwise indifference, but, as we have
seen previously, it is absolutely manipulable (cf. Example 1).

The following result, which is straightforwardly derived from Proposition 3,
provides a tool for determining when a social choice function having good
properties is absolutely manipulable, in terms of independence of irrelevant
alternatives.

Corollary 2 Every social choice function that satisfies standard domain, tran-
sitive explanations and pairwise indifference is either manipulable with respect
to any G-lifting or it satisfies independence of irrelevant alternatives.

It is worth mentioning that Gibbard [28] and Satterthwaite [42] are the pio-
neers in stating such a duality between independence of irrelevant alternatives
and nonmanipulation, but in the context where ties are dismissed.

Actually, a reading of Corollary 2 has another interesting consequence re-
lated to the postulate of independence of irrelevant alternatives and the con-
troversies around its acceptance. On one hand, this postulate is accused of
being too strong. Moreover, it is pointed at as the cause of Arrow’s impos-
sibility theorem (cf. Hansson [30]). However, some classical democratic social
choice functions satisfy it, like the plurality rule (cf. Example 2 and 5), even
if some other procedures, like the Borda rule, do not (cf. Example 3 and also
[1,30]). On the other hand, nonmanipulation is a good criteria. Indeed, Bar-
berà [7], Kelly [31] and Feldman [20] considered that any good system of social
choice should be free of manipulation. Then, under the hypotheses of standard
domain, transitive explanations and pairwise indifference, Corollary 2 leads us
to the following:

– Independence of irrelevant alternatives will be accepted, whenever nonma-
nipulation for at least some G-lifting is accepted.

– If independence of irrelevant alternatives is rejected, absolute manipulation
with respect to G-liftings must be accepted.

In order to illustrate how this observation can help in extracting informa-
tion about the behavior of certain functions, let us consider again the Borda
rule and the dictatorship function. As we mentioned before, these functions
satisfy transitive explanations and pairwise indifference. Note that it is well
known that independence of irrelevant alternatives is incompatible with the
Borda rule [23,49]. Therefore, from Corollary 2 it follows that it is manipula-
ble with respect to any G-lifting. This supports what we showed in Example 4
(at least when we restrict to G-liftings). Also note that the dictatorship func-
tion is nonmanipulable with respect to a G-lifting (cf. Example 1), then, by
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Corollary 2, we get that this function satisfies independence of irrelevant al-
ternatives. This confirms our remark in Observation 1.

We are now ready to establish our main general theorem of manipulability,
which involves Arrovian dictators. This result is a straightforward consequence
of Arrow-Sen Theorem (Theorem 1) and Corollaries 1 and 2.

Theorem 2 Let F be a social choice function that satisfies standard domain,
transitive explanations, pairwise nonimposition and pairwise indifference. If F
is nonmanipulable with respect to a G-lifting, then it admits a dictator.

This result is interesting for at least two reasons. First of all, because
it establishes, with weak hypothesis, when the nonmanipulability entails the
presence of an Arrovian dictator. Or the other way around, with very weak
assumptions, if a function does not admit an Arrovian dictator, necessarily it
is manipulable for any G-lifting. The other important reason is that it entails
Theorem 1 for the class of functions which are nonmanipulable with respect to
a G-lifting. This entailment follows from the fact that Pareto condition clearly
implies PNI (cf. Observation 2) and IIA implies PI (under nonmanipulability;
cf. Proposition 3). This equivalence is in our view quite remarkable and it is
worth to underline as a result:

Theorem 3 In the class of social choice functions which are nonmanipulable
with respect to a G-lifting, Theorem 1 and Theorem 2 are equivalent.

The equivalence given by the previous theorem might be seen as an answer
to the quest of a right proof of Gibbard-Satterthwaite Theorem.

The following observation shows that the converse of Theorem 2 fails. More-
over, it surprisingly establishes that there are dictators who are absolutely
manipulable.

Observation 7 (Absolutely manipulable dictators) For every profile of

ballots P = (�1, . . . ,�n), define the total preorder �EP=�lex(�1,�ΣP ), where
�ΣP is the Borda relation, and consider the social choice function E, defined
by EP (A) = max(A,�EP ).

Note that E is a social choice function that satisfies transitive explanations
and the standard domain condition (when there are at least three alternatives).
Moreover, as we will see in the following, this is a dictatorial and pairwise
nonimposed social choice function that satisfies pairwise indifference, but it is
absolutely manipulable (when at least three voters and four alternatives are
available in the election process).

Let us show that voter 1 is a dictator for E. In order to do this, we consider
a profile of ballots P = (�1, . . . ,�n), an agenda A and a pair of alternatives
x, y in X, such that x is in A and x �1 y. Thus, x �EP y, and therefore y is
not in max(A,�EP ), that is, y is not in EP (A).

From this it straightforwardly follows that E is pairwise nonimposed, as
we pointed out in Observation 2.
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To see that pairwise indifference holds, assume that a voter i and a couple
of alternatives x, y are such that x is in EP ({x, y}), y �i x and x '∗ y. We
show that x is in EP [�∗/i]({x, y}). To do so, note that x �EP y and consider
the following cases:

i 6= 1 : Since x �EP y, we have either x �1 y, or x '1 y and x �ΣP y.

If x �1 y, since i 6= 1, it straightforwardly follows that x �EP [�∗/i] y.

Suppose then x '1 y and x �ΣP y. Since y �i x, x '∗ y and x �ΣP y, we
have ri(y) ≥ ri(x), r�∗(x) = r�∗(y) and

∑
rj(x) ≥ ∑ rj(y). Then, from

the monotonicity of addition, we get
∑
j 6=i rj(x) ≥∑j 6=i rj(y). From this,

we obtain r�∗(x)+
∑
j 6=i rj(x) ≥ r�∗(y)+

∑
j 6=i rj(y), that is, x �ΣP [�∗/i] y.

Therefore, since x '1 y and x �ΣP [�∗/i] y, we have x �EP [�∗/i] y.

i = 1 : Again, because x �EP y, we get x �1 y. Thus, since y �i x and i = 1,
we have x '1 y, and therefore x �ΣP y. Then, by an argument which is
similar to the previous one, we obtain x �EP [�∗/i] y.

In any case, x is in max({x, y},�EP [�∗/i]) = EP [�∗/i]({x, y}), as desired.

In order to show the absolute manipulability of E, consider N = {1, 2, 3},
X = {w, x, y, z} and the manipulability situation given in Example 4: the
agenda A = {x, y}, the voter (the manipulator) i = 3, the profile of ballots P
and the (lie) ballot �∗, given in Figure 1.

Note that x '1 y and, as we saw in Example 4, y �ΣP x and x �ΣP [�∗/3] y.

From this we get y �EP x and x �EP [�∗/3] y, that is, EP ({x, y}) = {y} and

EP [�∗/3]({x, y}) = {x}. Now, since x �3 y, for any lifting �7→w�, we have
{x} A�3

{y}. Therefore, EP [�∗/3]({x, y}) A�3
EP ({x, y}). This shows the

absolute manipulability of E.

Theorem 2 entails two other important manipulation theorems:

Theorem 4 Restricted to linear profiles, let F be a social choice function that
satisfies standard domain and transitive explanations. Then, F is pairwise
nonimposed and nonmanipulable with respect to a G-lifting iff F admits a
dictator.

Theorem 5 Let F be a social choice function that satisfies standard domain
and transitive explanations. If F is pairwise nonimposed and nonmanipulable
with respect to a G-lifting, then F admits a nominator.

Before giving the formal proofs of these theorems, let us make some ob-
servations. Note that Theorem 4 says that, restricted to linear profiles, the
functions that satisfy standard domain and transitive explanations, which are
pairwise nonimposed and nonmanipulable are exactly the dictatorial ones. This
result is similar to Gibbard-Satterthwaite Theorem [28,42] for voting schemes.
Even if there are some similarities between these two theorems, they are indeed
very different in nature. As a matter of fact, Gibbard-Satterthwaite Theorem
says that for the voting schemes which are resolute (i.e. the output is only
one alternative) and nonimposed (all alternatives are possible outputs), the
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conditions of being nonmanipulable and admitting a dictator are equivalent.
Unlike this, Theorem 4 concerns social choice functions, a framework which
is richer than voting schemes. Moreover, we do not consider that the social
choice functions are resolute. The other difference is that the social choice func-
tions have an additional parameter: the agenda. These two differences force
to consider notions of manipulation and dictator which are different than the
corresponding notions considered in the case of resolute voting schemes, be-
cause our notions are adapted to deal with (in principle) nonresolute social
choice functions and agendas. Thus, on one hand, it is far from clear that
Gibbard-Satterthwaite Theorem entails our Theorem 4. On the other hand,
our Theorem 4 relies on a hypothesis which is absent in Gibbard-Satterthwaite
Theorem: the assumption that the social choice functions satisfy transitive ex-
planations. Thus, it is not clear that Theorem 4 entails Gibbard-Satterthwaite
Theorem. All this makes it difficult to establish the precise relationships be-
tween both theorems.

Before giving the proof of Theorem 4, we must note it is quite clear that, for
any agenda A, if � is a linear order then max(A,�) is a singleton. Moreover,
if F is a dictatorial function, and d is the dictator, we have that for every
profile P = (�1, . . . ,�n) and every agenda A, if �d is a linear order then
FP (A) = max(A,�d). This is due to the fact that if max(A,�d) = {x} then
for every y ∈ A such that y 6= x, necessarily x �d y and, as d is the dictator,
y 6∈ FP (A). Thus, the only possibility is FP (A) = {x}. Summarizing this, we
have the next observation which will be very useful in the proof of Theorem 4.

Observation 8 Suppose that F is a dictatorial function satisfying standard
domain, and assume d is the dictator. Then, for every profile P = (�1, . . . ,�n)
and every agenda A, if �d is a linear order then FP (A) = max(A,�d) and
therefore FP (A) is a singleton.

We are now ready to prove Theorem 4.

Proof of Theorem 4 The proof of the only if part straightforwardly follows
from Theorem 2 and from the fact that PI is trivially satisfied for linear profiles.
In order to show the if part, let us suppose that F is a dictatorial social
choice function, and suppose that d in N is the dictator for F . We will see
that F is a pairwise nonimposed function which cannot be manipulable with
respect to any G-lifting �7→w�. Restricted to linear ballots, by Observation 8,
FP (A) = max(A,�d), for every agenda A and every linear profile P . Moreover,
F is a resolute social choice function.

Pairwise nonimposition: this follows from Observation 2.
Nonmanipulation: Towards a contradiction, let us suppose that F is mani-

pulable with respect to a G-lifting �7→w�. Thus, there exists an agenda
A, a voter i in N , a linear profile P and a linear ballot �∗ such that
FP [�∗/i](A) A�i FP (A). Due to the resoluteness of F , suppose FP (A) = {x}
and FP [�∗/i](A) = {y}, where x 6= y. Let us note that, if i 6= d, from the
remark above we get FP (A) = FP [�∗/i](A), a contradiction. Thus, i = d,
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which leads us to {y} A�d {x}. From this, we get y �d x. Therefore, since
d is a dictator for F , x is not in FP (A), a contradiction.

Due to Observations 5 and 8, we have as a corollary of Theorem 4 the
following:

Corollary 3 Restricted to linear profiles, let F be a social choice function that
satisfies standard domain, transitive explanations and pairwise nonimposition.
If F is nonmanipulable with respect to a G-lifting, then F is nonmanipulable
with respect to any lifting.

Note that Theorem 4 establishes a deep relationship between nonimposi-
tion, nonmanipulability and the existence of powerful voters in processes of
choice, when restricted to the linear ballots’ context. Thus, it is natural to
wonder if it is possible to extend this type of results to the nonlinear bal-
lots’ framework. Affirmative responses for this question were established when
pairwise nominator (cf. Bárberà-Kelly Theorem [7,31]) and weak-dictator (cf.
Leal-Pino Pérez Theorem [34]) were considered. Actually, Theorem 5 states
that the existence of a nominator is a necessary condition for having a non-
imposed and nonmanipulable social choice function. As we will see below,
Theorem 5 is a consequence of Theorem 4 and, therefore, of Theorem 2.

Proof of Theorem 5 Assume that F is pairwise nonimposed and nonmanipu-
lable with respect to a G-lifting �7→w�. We must show that F admits a
nominator, that is, there exists d in N for which the following holds: for every
agenda A and every profile P , there exists x in max(A,�d) such that x is
also in FP (A). In order to see this, consider f , the restriction of F to linear
profiles. We claim that f is pairwise nonimposed and nonmanipulable with
respect to �7→w�. The nonmanipulation of f straightforwardly follows from
the nonmanipulation of F . Now we prove that f is pairwise nonimposed. Con-
sider a couple of alternatives x, y in X. We want to see that there exists a
linear profile P such that fP ({x, y}) = {x}. Since F is pairwise nonimposed
and nonmanipulable with respect to �7→w� for which simple dominance 2
holds, from Corollary 1 we get that F satisfies the Pareto Condition. Thus,
if we consider a linear profile P , such that x �i y, for every i in N , then
FP ({x, y}) = {x}, that is, fP ({x, y}) = {x}.

Now, by Theorem 4, it follows that f admits a dictator d in N . We claim
that d is a nominator for F . Towards a contradiction, suppose that d is not a
nominator for F , and consider a profile P = (�1, . . . ,�n) and an agenda A
such that, for all x in max(A,�d), x is not in FP (A). Let us fix x in max(A,�d)
and y in FP (A); note that x is not in FP (A) and, since y is in A but not in
max(A,�d), x �d y. Then, {x} A�d {y}.

Since x is not in FP (A), from transitive explanations it straightforwardly
follows that FP ({x, y}) = {y}. Moreover, by Proposition 1, we have that F
satisfies pairwise down-monotonicity for singleton winners. Then, if we con-
sider a profile of ballots P ∗ = (�∗1, . . . ,�∗n) such that �∗i is a linear ballot for
which y �∗i x, for every voter i different from d, and �∗d=�d, by Observation 6,
we get FP∗({x, y}) = {y}.
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Now, let us consider �′ a linear ballot for which x �′ y and note that
P ∗[�′/d] is a linear profile in which the voter d prefers x against y, that is,
x �′ y. Thus, since d is a dictator for f , we get fP∗[�′/d]({x, y}) = {x}, that is,
FP∗[�′/d]({x, y}) = {x}. Then, FP∗[�′/d]({x, y}) A�d FP∗({x, y}). Therefore, F
is manipulable with respect to �7→w�, a contradiction.

Theorem 5 is indeed a corollary of Barberà-Kelly Theorem [7,31]. In Sec-
tion 5 we will discuss this fact. However, we have to say that the proof of
Theorem 5 presented here uses a technique which is simpler and more direct
than the techniques used by Barberà and Kelly.

We must note that the converse of Theorem 5 is not true. As a matter of
fact, there exist some instances of social choice functions that satisfy standard
domain, transitive explanations and admit a nominator but either pairwise
nonimposed or nonmanipulation with respect to a G-lifting fails.

For instance, the indifference function, IP (A) = A, is an example of a func-
tion that satisfies standard domain, transitive explanations, admits a nomina-
tor, is nonmanipulable, but it is pairwise imposed, as we saw above.

Another example of the failure of the converse of Theorem 5 is the fact
that there are absolutely manipulable nominators . Indeed, in Observation 7
the existence of absolutely manipulable dictators is shown and it is not hard
to see that all dictators are, in fact, nominators (cf. Theorem 6).

The following figure summarizes the main results of this section.

Arrow-Sen Theorem (Theorem 1)

Theorem 2

Theorem 4

Theorem 5

Common
Normality
Conditions

SD + T + PC + IIA D

∃G-NM

SD + T + PNI PI D

SD + T PNI + ∃G-NM D

SD + T + PNI + ∃G-NM N

∃G-NM
+ +

Modulo

∃G-NM

Theorem 3

(Restricted to linear profiles)

[[ ]]

1

Fig. 2 Summary of manipulability theorems that involve powerful voters
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4 Taxonomy of the powerful voters

As we mentioned earlier, different types of powerful voters have been studied
in the literature of social choice function. In this section, we are going to
establish some relationships that hold between the powerful voters presented
in this paper. As a matter of fact, Theorem 6 establishes a strict hierarchy
among the powerful voters introduced so far.

The following notions regroup a taxonomy for some classes of powerful
voters. The set of all dictatorial social choice functions satisfying the stan-
dard domain condition is denoted by D. The set formed by all social choice
functions that admit a nominator, and for which standard domain holds, is
denoted by N . The set of all social choice functions that satisfy standard
domain and admit a pairwise nominator is denoted by N ∗. The set of all
weak-dictatorial social choice functions satisfying standard domain is denoted
by D∗. The set of all social choice functions that admit a nominator and sat-
isfy standard domain and transitive explanations is denoted by NT . The set
of all the social choice functions that admit a pairwise nominator and satisfy
standard domain and transitive explanations is denoted by N ∗T . The set of all
nonmanipulable, dictatorial and resolute social choice functions that satisfy
standard domain and transitive explanations is denoted by DNMT -R . The set of
all nonmanipulable, resolute social choice functions that satisfy standard do-
main, transitive explanations and admit a nominator is denoted NNM

T -R . The
set of all nonmanipulable, resolute social choice functions that satisfy standard
domain, transitive explanations and admit a pairwise nominator is denoted by
NNM∗
T -R . The set of all nonmanipulable, resolute social choice functions that

satisfy standard domain, transitive explanations and admit a weak-dictator is
denoted by DNM∗T -R . The set of all social choice functions that satisfy standard
domain, transitive explanations, admit a nominator and which are nonmanip-
ulable with respect to a G1-lifting is denoted by NNM1

T . The set of all social
choice functions that satisfy standard domain, transitive explanations, admit
a pairwise nominator and which are nonmanipulable with respect to a G1-
lifting is denoted by NNM1∗

T . The set of all social choice functions that satisfy
standard domain, transitive explanations, admit a weak-dictator and which
are nonmanipulable with respect to a G1-lifting is denoted by DNM1∗

T . Note
that by Observation 5 we have that NNM

T -R ⊆ NNM1
T .

Theorem 6 The following inclusions hold:

D ( N ( N ∗ ( D∗

Moreover, every dictator for a social choice function F satisfying standard
domain is a nominator for F . Every nominator for F is also a pairwise nom-
inator for F , and every pairwise nominator for F is a weak-dictator for F .

Proof We will show that D ( N . Let us consider F in D, and suppose that d
in N is a dictator for F . In order to show that F is in N , we will see that d is a
nominator for F . Towards a contradiction, suppose that d is not a nominator
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for F . Thus, there exist an agenda A and a profile P such that, for every
alternative x in max(A,�d), x is not in FP (A). Let x be an alternative in
max(A,�d) and consider an alternative y in FP (A). Since y is in A but it is
not in max(A,�d) we have x �d y. Thus, since d is a dictator for F and x is
in A, we have that y is not in FP (A), a contradiction.

In order to show that N 6⊂ D, we consider the indifference social choice
function, IP (A) = A. As we mentioned earlier, every voter i in N is a nom-
inator for I. However, if we consider any voter d in N , an agenda A, two
alternatives x, y in A and a profile P = (�1, . . . ,�n), even if x �d y, we get
y is in IP (A). Thus, d is not a dictator.

We will see that N ( N ∗. Suppose that F is a social choice function in
N and consider d in N a nominator for F . In order to show that d is also
a pairwise nominator for F , it is enough to note that if x, y are a couple of
alternatives in X and P = (�1, . . . ,�n) is a profile such that x �d y, then
max({x, y},�d) = {x}. Thus, the result straightforwardly follows from the
fact that d is a nominator for F .

To show N ∗ 6⊂ N , let us consider a prefixed voter d in N and the following
function: GP (A) = A if |A| ≤ 2 and GP (A) = min(A,�d) otherwise. From
its definition, it straightforwardly follows that every voter i in N is a pairwise
nominator for G. However, G does not admit a nominator. In order to show
this claim, let us consider an agenda A with at least three alternatives, two
different alternatives x, y in A and a profile P = (�1, . . . ,�n) such that
min(�d) = {x} and max(�i) = {y}, for every i in N . Thus, GP (A) = {x}
and, if we consider any voter i in N , max(A,�i) = {y} but y is not in GP (A).
This shows that i is not a nominator for G.

Now, we will prove that N ∗ ⊂ D∗. Let us suppose thus that F is a social
choice function in N ∗ and consider d a pairwise nominator for F . In order to
show that F is in D∗ we will see that d is a weak-dictator for F , that is, d
satisfies the following: for every x in X there exists a ballot �x such that x is
in FP [�x/d]({x, y}), for every alternative y in X and every profile P . Let x be
an alternative in X and �x be a ballot such that max(�x) = {x}. Thus, given
a profile P and an alternative y in X, different from x, we have that P [�x/d]
is a profile for which the voter d prefers x against y, that is, x �x y. Since d
is a pairwise nominator for F , we get that x is in FP [�x/d]({x, y}).

In order to see that D∗ 6⊂ N ∗, let us consider the anti-dictatorship function,
TP (A) = min(A,�d). It is not hard to see that d is a weak-dictator for T . In
order to show this, it is enough to consider for every alternative x in X, a ballot
�x such that x is in min(�x). However, this function does not admit a pairwise
nominator. Indeed, if we consider a couple of different alternatives x, y in X
and a profile P = (�1, . . . ,�n) such that min(�d) = {x} and max(�i) = {y},
for every i in N , then we will have TP ({x, y}) = {x}. However, considering
any voter i in N , we get y �i x but y is not in TP ({x, y}). This shows that i
is not a pairwise nominator for T .
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Although, in general, the inclusions of the classes given in Theorem 6 are
strict, under certain hypothesis the classes collapse. The following result es-
tablishes precisely the hypothesis under which a first collapse occurs.

Theorem 7 We have that NT = N ∗T . More precisely, for every social choice
function F that satisfies standard domain and transitive explanations, d in N
is a nominator for F iff d is a pairwise nominator for F .

Proof Let F be a social choice function that satisfies transitive explanations.
The only if part straightforwardly follows from Theorem 6. To show the if part,
assume that d in N is a pairwise nominator for F and, towards a contradiction,
suppose that d is not a nominator for F . Then, there exists an agenda A and
a profile P = (�1, . . . ,�n) such that, for every alternative x in max(A,�d), x
is not in FP (A). Thus, consider x in max(A,�d) and y in FP (A). Since x is
not in FP (A), by transitive explanations we get FP ({x, y}) = {y}. However,
because y is in A but it is not in max(A,�d), then x �d y. From this, since d
is a pairwise nominator for F , we get x is in FP ({x, y}), a contradiction.

A consequence of this theorem is that the function G of the proof of The-
orem 6, which admits a pairwise nominator but not a nominator, does not
satisfy transitive explanations.

Next, we give our second result of collapse:

Theorem 8 For every nonmanipulable resolute social choice function F that
satisfies standard domain and transitive explanations, the following assertions
are equivalent:

(i) d in N is a dictator for F
(ii) d in N is a nominator for F

(iii) d in N is a pairwise nominator for F
(iv) d in N is a weak-dictator for F

That is,

DNMT -R = NNM
T -R = NNM∗

T -R = DNM∗T -R

Proof In order to show this result, let us note that, due to Theorem 6, it is
enough to see that (iv) entails (i). Assume that d in N is a weak-dictator
for F and, towards a contradiction, assume that d is not a dictator for F .
Thus, there exist a profile P = (�1, . . . ,�n), an agenda A and a couple of
alternatives x, y in X such that x is in A, x �d y but y is in FP (A). It is
worth noting that, by the resoluteness of F , we get Fp(A) = {y}. From this,
by transitive explanations, we obtain Fp({x, y}) = {y}. Now, because d is a
weak-dictator for F , when considering x, there exists a ballot �x such that
FP∗[�x/d]({x, z}) = {x}, for every profile P ∗ and every alternative z in X. In
particular, we have FP [�x/d]({x, y}) = {x}. Now, since x �d y, if we consider a
lifting �7→w�, we have {x} A�d {y}, that is, FP [�x/d]({x, y}) A�d Fp({x, y}).
Thus F is manipulable, a contradiction.
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It is interesting to note the role of nonmanipulability in the previous result.
Actually, there exist resolute social choice functions that satisfy transitive ex-
planations and admit a weak-dictator, which are not dictatorial. In particular,
the anti-dictatorship function, T≥ with a rule (≥) for breaking ties is an ex-
ample of such a function (see the definition below), as can be easily checked.
More precisely, this function is defined as follows: fix a linear order ≥ over X;
then put

T≥P (A) = max(A,�lex(�−1
d ,≥))

where �−1
d is the reflection of �d, i.e., x �−1

d y iff y �d x. It is clear that this
function satisfies transitive explanations, is resolute, admits a weak-dictator
but is not dictatorial. Therefore, this observation together with the previ-
ous theorem entail that the anti-dictator function with a rule is manipulable.
Indeed, this last claim can also be easily verified, finding a manipulability
situation for T≥.

If we remove the hypothesis of resoluteness in the previous proposition,
we maintain the identification between nominators, pairwise nominators and
weak-dictators (see Theorem 9 below). However, we cannot identify these
classes with the class of dictators. As a matter of fact, it is easy to see that the
indifference function, IP (A) = A, is an example of a function which satisfies
transitive explanations, it is nonmanipulable (with respect to any lifting), it
admits a nominator, but it does not admit a dictator, as we highlighted in
Subsection 2.2 (see also the proof of Theorem 6).

Theorem 9 For every social choice function F which satisfies standard do-
main, transitive explanations and is nonmanipulable with respect to a G1-
lifting, the following are equivalent:

(i) d in N is a nominator for F
(ii) d in N is a pairwise nominator for F

(iii) d in N is a weak-dictator for F

Therefore we have

NNM1
T = NNM1∗

T = DNM1∗
T

Proof Due to Theorem 6, we only have to show that every weak-dictator for
F is also a nominator for F . Let d in N be a weak-dictator for F and, towards
a contradiction, suppose that d is not a nominator for F . Then, there exist an
agenda A and a profile P = (�1, . . . ,�n) such that, for all x in max(A,�d),
x is not in FP (A).

Consider an alternative x in max(A,�d). Since d is a weak-dictator for F ,
there exists a ballot �x such that, for every profile P ∗ and every alternative
z in X, x is in FP∗[�x/d]({x, z}). In particular, for y in FP (A) and the chosen
profile P , we have that x is in FP [�x/d]({x, y}). Then, FP [�x/d]({x, y}) = {x} or
FP [�x/d]({x, y}) = {x, y}. Moreover, since y is in A but it is not in max(A,�d),
x �d y. Then, {x} A�d {y} and by simple dominance 1, {x, y} A�d {y}. In ad-
dition, since x is not in FP (A), by transitive explanations, y �P x, and there-
fore FP ({x, y}) = {y}. Thus, in any case, FP [�x/d]({x, y}) A�d FP ({x, y}).
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This shows the manipulability of F with respect to �7→w�, a contradiction.

The picture in Figure 3 summarizes the results established in this section
concerning the taxonomy of powerful voters. As we can see in this picture,
the nonmanipulable social choice functions are highly concentrated in N (the
class of functions that admit a nominator), except for the specific case of
resolute functions, which are concentrated in D (the class of functions that
admit an Arrovian dictator). This suggests that N might be seen as the kernel
of nonmanipulable functions.

D

N
N ∗
D∗

NT = N∗
T

DNM
T -R = NNM

T -R = NNM∗
T -R = DNM∗

T -R

NNM1
T = NNM1∗

T = DNM1∗
T

1

Fig. 3 Diagram summarizing the taxonomy of powerful voters

5 Related works

One interesting feature of the classification results of Section 4 is that they
allow establishing clear connections with some results in the literature about
manipulation. Let us examine, for instance, the following theorem (see [34]):

Theorem 10 (Leal-Pino Pérez) Let F be a pairwise nonimposed social
choice function satisfying the standard domain condition and transitive ex-
planations. Then, F is manipulable with respect to a G-lifting or it has a
weak-dictator.

Note that the assumptions in the previous Theorem are exactly the same
as those in Theorem 5. Thus, from Theorem 9, it straightforwardly follows
that Leal-Pino Pérez Theorem is equivalent to our Theorem 5. However, it is
important to say that the proofs of both theorems are completely different.

Moreover, Theorem 5 is also a corollary of Barberà-Kelly Theorem. Actu-
ally, as it was pointed out in [34], Theorem 10 is a corollary of Barberà-Kelly
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Theorem, therefore, by the previous remark, we can deduce that Theorem 5
follows from Barberà-Kelly Theorem.

It is interesting to note that Brandt [10] proved that the social choice func-
tions which are Condorcet extensions13 are manipulable for the Kelly lifting.
Using Theorem 5, we can obtain a result related to this. Actually, it is easy
to see that when the number of voters is greater or equal to three, the social
choice functions which are Condorcet extensions do not admit a nominator.
Moreover, these functions are pairwise nonimposed. Then, under the hypothe-
ses of Theorem 5, they are manipulable with respect to all the G-liftings. More
precisely, we have the following result:

Corollary 4 Let F be a social choice function that satisfies standard domain
and transitive explanations. If F is a Condorcet extension, then it is manipu-
lable with respect to any G-lifting.

In another work, Brandt and Brill [11] study the manipulability under
the liftings of Kelly, Fishburn and Gärdenfors. Actually, they gave sufficient
(and necessary) conditions for nonmanipulability under such liftings. Again,
using Theorem 5 and their results we obtain interesting information: the social
choice functions which do not admit a nominator and satisfy standard domain,
pairwise nonimposition and transitive explanations, fail to satisfy all conditions
given by Brandt and Brill in order to have nonmanipulability with respect to
the liftings of Kelly, Fishburn and Gärdenfors.

We also have to mention some similarities and differences with the work
of Pini et al. [41]. In their work, they generalize the results of impossibility
and nonmanipulability to the case where the ballots are expressed as partial
preorders. They also considered different notions of dictators which are related
to our notions of powerful voters. Indeed, their strong dictator notion is not
considered by us. However, in our work this kind of functions is considered
as an example of dictators (see function D in subsection 2.2). Their notion of
dictator is the normal Arrovian notion of dictator. In addition, their notion of
weak dictator corresponds to our notion of nominator. They do not consider
other notions of powerful voters we consider, such as the notion of pairwise
nominator and our notion of weak-dictator.

The processes of voting represented in their framework and those repre-
sented in the one we discuss are different: they study social welfare functions
where the input is a profile P of (strict) partial orders and the output is a
(strict) partial order; they also consider voting rules (they call this kind of
functions social choice functions) in which the input is a profile of (strict)
partial orders and the output is a set of candidates. We consider social choice
functions where the input is a profile and an agenda and the output is a set of
candidates. Nevertheless, the framework of social welfare functions and that
of social choice functions we treat here, are strongly related when we assume
that transitive explanations hold.

13 Those social choice functions which give as output the Condorcet winner whenever it
exists.
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It is interesting to note that their notion of monotonicity evokes our notion
of pairwise indifference which plays a central role in our results.

To finish our discussion of relationships between the work of Pini et al. and
our work, we have to say that their notion of manipulability (also considered
by Ching and Zhou [15]) can be viewed as a particular case of our general
notion of lifting.

To conclude, we have to mention that tight links between social choice
theory and some topics in Artificial Intelligence, in particular with logical
belief merging, have been recently revealed by Mata Dı́az and Pino Pérez
[36]. Therein, an impossibility theorem is proved which generalizes Theorem 1.
Pursuing this line of research, some works have also been done by these authors
about manipulability in belief merging [37,38,39]. In particular, Theorem 3
and Theorem 4 in [37] could be seen as the counterparts of Theorem 4 and
Theorem 5 respectively of the current work; Theorem 3 in [39] is a counterpart
of Theorem 2 of the current work.

6 Final remarks and perspectives

We end this work with some remarks about our results.

1. We have put in evidence a very natural notion which is equivalent to IIA
under the hypothesis of nonmanipulability: pairwise indifference.

2. Theorem 2 is interesting because it shows that, under very normal situa-
tions as pairwise indifference, the nonmanipulable functions are dictatorial.
Actually, this theorem is equivalent to Arrow-Sen impossibility theorem in
the class of nonmanipulable social choice functions.

3. Another important feature of Theorem 2 is that it can be considered the
source from which other manipulability theorems follow (cf. Figure 2).

4. Theorem 4 is a characterization of dictatorial social choice functions in
terms of nonmanipulability when the profiles are restricted to linear bal-
lots. The precise links between this theorem and Gibbard-Satterthwaite
Theorem are indeed an interesting challenge.

5. We have established in Theorems 6 to 9 some relations between different
notions of powerful voters. Though, in general, these notions are different,
under certain conditions these notions coincide.

6. The previous point allows establishing a link between our results and oth-
ers in the literature (see our discussion in the previous section about our
Theorem 5). It is worth to note, however, that the technique used for the
proof of Theorem 5 is new and more in the Arrovian style, that is, reducing
the problem to an application of Arrow’s Theorem.

7. We comment in the previous section that there are some relations between
social choice theory and logical belief merging. We wonder if there exists a
technical result allowing to translate the information of one domain to the
other.
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Acknowledgments

We thank the anonymous reviewers for their remarks, which have been very
helpful for improving our work. We also thank Professor Olga Porras for her
careful proof reading.

The second author has benefited from the support of the AI Chair BE4musIA
of the French National Research Agency (ANR-20-CHIA-0028) and has also
been partially funded by the program PAUSE of Collège de France and by
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de la Universidad de Los Andes (CDCHTA-ULA) through the Project N◦

C-1855-13-05-AA.

References

1. Arrow, K.: Social choice and individual values. 1st Edition, Wiley, New York (1951)
2. Arrow, K., Kelly, J.S.: An interview with Kenneth Arrow. In: K. Arrow, A.K. Sen,

K. Suzumura (eds.) Handbook of Social Choice and Welfare, Handbooks in Economics,
vol. 2, chap. 13, Part II, pp. 4–24. North-Holland (2011)

3. Arrow, K., Sen, A.K., Suzumura, K.: Handbook of Social Choice and Welfare, Handbooks
in Economics, vol. 1. North-Holland (2002)
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36. Mata Dı́az, A., Pino Pérez, R.: Impossibility in belief merging. Artificial Intelligence
251, 1–34 (2017)
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