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We present an Hamiltonian formulation of the classical electron dynamics and the electro-magnetic field it radiates. The relativistic electron dynamics is governed by the Lorentz force and the fields by Maxwell equations. It is shown that this set of equations can be derived from an Hamiltonian that will be detailed in this presentation.

Introduction

Except with restrictions (e.g. in a cavity, see W. Heitler [1, chapter 1]) the electron dynamics and its radiated field are modeled by a set of equations whose Hamiltonian nature is not apparent. Starting from the well known Lorentz force and Maxwell equations Poynting has shown that the electro-magnetic field is carrying energy and impulse. A first difficulty appears even in the case of the static electron because the energy of the 1/r² electrostatic field of the electron is diverging. This is the problem of the infinite rest mass of the electron. Other difficulties appear in non-static situations. Starting from Maxwell equations, Liénard-Wiechert derivation shows that an accelerated electron radiates an electromagnetic field whose energy and impulse is not zero. When we consider for example an electron in a constant magnetic field following a circular trajectory at constant velocity, one end up with the contradiction that in this situation an electron with constant kinetic energy radiates power. This is of course in contradiction with energy conservation, or, said differently, the theory can not be derived from an Hamiltonian. In order to solve this problem it has been proposed to complement the Lorentz force with a correction that accounts for the radiated momentum. This is the Abraham-Lorentz force. By doing so however we introduce non-physical trajectories where the electron can experience self-acceleration (so called "run aways" [START_REF] Jackson | Classical Electrodynamics[END_REF]) and the physics is acausal [START_REF] Hartemann | High-field electrodynamics[END_REF]. Therefore this classical theory is not satisfactory and the only consistent theory has been found within a quantum description (quantum electrodynamics theory). But the question remains why it is not possible to find a consistent Hamiltonian classical limit of this quantum theory while a classical limit is normally found in other fields of quantum physics? To progress on this point and to clarify the question of energy and momentum balance in electrodynamics we have continued the search of an Hamiltonian description of the classical theory which can help to simulate beam-wave interaction in TWTs [START_REF] Bernardi | Utilisation et amélioration du modèle discret d'excitation d'un guide d'onde périodique pour la simulation pratique du tube à onde progressive en régime temporel[END_REF] [START_REF] Ryskin | Nonstationary nonlinear discrete model of a coupledcavity traveling wave tube amplifier[END_REF].

Method

First we improve a method originally developed by S. Kuznetsov [START_REF] Kuznetsov | On one form of excitation equations of a periodic waveguide[END_REF] and later by N. Ryskin [START_REF] Ryskin | Nonstationary nonlinear discrete model of a coupled-cavity traveling wave tube amplifier[END_REF] where the fields are first decomposed onto functions which satisfy the Floquet condition thanks to a transform proposed by I. Gel'fand [START_REF]Gel'fand, Expansion in characteristic functions of an equation with periodic coefficients (in Russian)[END_REF]. Then we perform the well known modal decomposition of these functions. Thanks to this double decomposition we find an Hamiltonian for the fields alone and we find an expression for the excitation by the electrons. By adding it to the well known Hamiltonian of an electron in a given electromagnetic field we find the complete Hamiltonian. From this Hamiltonian we derive the time derivative of the electron momentum, i.e. the force acting on the electron. Finally we adjust the amplitudes of the base functions used in the previous modal decomposition so that this expression is the expected Lorentz force. At this point the derivation is complete, we have found an Hamiltonian from which both the Maxwell equations and the Lorentz force can be derived, and where these two sets of equations are coupled self consistently.
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