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Abstract

The problem of finding envy-free allocations of indivisible goods cannot always
be solved; therefore, it is common to study some relaxations such as envy-free
up to one good (EF1) and envy-free up to any positively valued good (EFX).
Another property of interest for the efficiency of an allocation is the Pareto
Optimality (PO). Under additive utility functions for goods, it is possible to
find EF1 and PO allocations using the Nash social welfare. However, finding an
allocation that maximizes the Nash social welfare is a computationally costly
problem. Maximizing the utilitarian social welfare subject to EF1 constraints
is an NP-complete problem for the case where three or more agents participate.
In this work, we propose a restricted case of additive utility functions called
generalized binary utility functions. The proposed utilities are a generalization
of binary and identical utilities simultaneously. In this scenario, we present a
polynomial-time algorithm that maximizes the utilitarian social welfare and,
at the same time, produces an EF1 and PO allocation for goods as well as
for chores. Moreover, a slight modification of our algorithm gives a better
allocation: one which is EFX.
Keywords: Allocation of indivisible goods/chores, envy-free up to one
good/chore, efficiency, additive utility function.

1. Introduction

The resource allocation problem has been widely studied in mathematics
and economics for almost a century, [17, 18, 15, 3, 9, 8]. The main elements
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in the problem are agents and resources. The goal is to distribute (or allocate)
the resources among the agents in a “good manner.” The agents can represent
individuals, objects, government institutions, among others, depending on the
application. The set of resources or goods to be distributed can be divisible or
indivisible. In general, these sets are considered finite. In this work, we study
the problem of allocating indivisible resources among a group of agents, with
the aim of satisfying both the group and each individual in the best possible
way.

This topic has many applications, for instance in solving divorce disputes,
dividing an inheritance, sharing apartment rents, or even assigning household
chores. In the last decade, there has been a considerable interest in the computa-
tional aspects of this problem. In particular, in Artificial Intelligence and more
specifically in MultiAgent Systems, these problems are studied and renamed
MultiAgent Resource Allocations (MARA) problems [2, 10].

Finding a correct distribution of resources consists of distributing all the re-
sources among the agents fairly and efficiently. To establish efficiency and some
criterion of fairness, it is necessary to consider the preferences that each agent
has over resources. In general, these preferences over resources are established
through additive utility functions.

Traditionally, fairness is established through properties such as envy-freeness
or proportionality. However, there are situations where it is impossible to find
allocations that meet any of these properties. Thus, other weaker versions of
fairness, such as envy-free up to one good [7] or proportionality up to one good
[11] are considered. Although there are results that, under certain conditions,
guarantee the existence of allocations with some fairness property (see [9]),
finding them is a computationally complicated problem [12]. Just considering
fairness may not be enough, because it could imply loss in group satisfaction.

Efficiency, also known as Pareto efficiency or Pareto optimality, is related
to the group satisfaction by an allocation. One way to find efficient allocations
is through social welfare functions. Caragianis et al, [9], showed that, under
additive utility functions for goods, it is always possible to find an allocation
that is Pareto optimal and envy-free up to one good. Actually, they prove
that some of the allocations that maximize the Nash social welfare are Pareto
optimal and envy-free up to one good. Unfortunately, finding allocations which
maximize the Nash welfare is also an NP-hard problem [16] (see also [2]).

Searching allocations which maximize the utilitarian social welfare is in ge-
neral a more tractable problem from the computational point of view and, be-
cause of that, commonly used. A well-known result is that, under additive utility
functions, allocations that maximize this social welfare are Pareto optimal (see
Theorem 1), although the converse is not true. Moreover, allocations that max-
imize this social welfare do not always satisfy fairness properties. In Example 2,
an allocation that is Pareto optimal and does not maximize utilitarian social
welfare is proposed; besides, we find, in this example, that no allocation that
maximizes utilitarian social welfare is envy free up to one good.

When we consider additive utility functions, it is possible to define a proce-
dure that allows to find all the allocations which maximize utilitarian social wel-
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fare, see [8]. Moreover, finding these allocations is a computationally tractable
problem. Actually, in this work we propose a very simple algorithm in poly-
nomial time, for scenarios of additive utilities, that finds an allocation which
maximizes the utilitarian social welfare for goods as well as for chores.

Unlike the allocations that maximize the Nash social welfare which are EF1,
the allocations that maximize the utilitarian social welfare are not, in general,
EF1. Moreover, there are additive scenarios in which the property EF1 fails for
every allocation which maximizes the utilitarian social welfare (see Example 2).
Indeed, in this example we can see that Nash and utilitarian social welfares are
independent.

Finding an allocation that maximizes the utilitarian social welfare and sat-
isfies the EF1 criteria is an NP-complete problem when the number of agents is
greater than or equal to three (see [4]). However, for some specialized scenarios,
there are very simple algorithms in polynomial time which find EF1, and even
EFX allocations. That is the case of identical utilities (see Barman et al. [5])
and others like bivaluated utilities (Ebadian et al. [14]) or binary utilities [5]
(see Section 6).

In this work, we consider a class of additive functions, called generalized
binary utility functions. This class is more general than the classes of binary
and identical utilities. Intuitively, each resource has a market-price; each agent
either does not want the resource at all, or wants it and values it by its market
price. In the framework of these utility functions, the following results are
established:

1. A characterization for Pareto optimal allocations (Theorem 3).

2. Each allocation that maximizes the Nash social welfare also maximizes
the utilitarian social welfare (Theorem 4).

3. Constructive proofs of the existence of allocations which maximize the
utilitarian social welfare, which are PO and respectively EF1 and EFX
for goods and for chores. These allocations are obtained in polynomial
time (Theorems 7 and 8).

Moreover, we propose a basic algorithm in O(nm) which finds, under addi-
tive utility functions, an allocation that maximizes the utilitarian social welfare
(Theorem 6).

The rest of this work is organized as follows. Section 2 introduces the con-
cepts and problems studied in this paper. Section 3 is devoted to a characteriza-
tion of Pareto Optimality in our particular scenarios. In Section 4, we propose a
very simple and tractable algorithm for maximizing the utilitarian social welfare
and we study its justice properties in the case of generalized binary utilities. In
Section 5, we give a slight generalization of our generalized binary scenarios and
prove that most of the results obtained in the previous sections don’t hold for
this new class of scenarios. Section 6 contains a comparison of our work with
other works using specialized scenarios for tackling the problems of fairness and
efficiency. We conclude in Section 7 with some final remarks. The proofs, our
detailed algorithm and some detailed examples can be found in Appendix A.
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2. Preliminaries

The set of agents is denoted by A = {1, . . . , n} and the set of resources
is denoted by R = {r1, . . . , rm}. So, |R| = m and |A| = n. An allocation
of resources is a function F : R −→ A. For each agent i, F−1(i) = {r ∈
R : F (r) = i} is the set of resources (or bundle) assigned to i. The set of
all possible allocations is denoted by AR. The number of possible allocations
depends on n and m, given that |AR| = |A||R| = nm. The set of all subsets of
R is denoted by P(R). We consider two kinds of resources: goods and chores.
Goods are resources that agents are supposed to accept and chores are resources
that agents are supposed to reject. We will assume that either all resources are
goods or all resources are chores.

The preference of agents over resources is established through utility func-
tions which are additive, that is, functions of the type u : P(R) → R which
satisfy:

• u(∅) = 0;

• ∀S ∈ P(R) with S 6= ∅, u(S) =
∑
s∈S

u({s}).

When the resources are goods, we always have ∀S ∈ P(R), u(S) ≥ 0. When the
resources are chores, we always have ∀S ∈ P(R), u(S) ≤ 0. For each i ∈ A, ui

denotes the additive utility function associated to i. For simplicity, u({s}) will
be denoted by u(s). If every agent establishes an additive utility function in a
problem of indivisible resource allocation, we say that it is an additive scenario.

Definition 1. Assume that for each rk ∈ R we have a mapping rk 7→ pk where
pk is a real number different from 0. Let u be a function u : P(R) → R. We
say that u is a generalized binary (g-binary for short) utility function if:

• u is an additive utility function;

• for every rk ∈ R, u(rk) ∈ {0, pk}.

We say that we are in a goods (chores) g-binary scenario when all the
resources are goods (chores) and every agent of the resource allocation problem
has a utility function which is g-binary for the same mapping rk 7→ pk.

Note that in case of goods (chores) pk can be viewed as the market-price
(rejection intensity) of the resource rk. The value 0 does not change an agent’s
utility; in case of goods, this value can be interpreted as a reject, whereas in
chores, it can be interpreted as a preference.

Clearly, if u is an additive utility function such that for each rk ∈ R, u(rk) ∈
{0, 1}, then u is a g-binary utility function. This type of function is known
as binary utility function, see [1]. Thus, the goods g-binary scenarios are a
generalization of binary scenarios.

We assume that in goods and chores scenarios there is not a resource r
such that for every agent i ∈ A, ui(r) = 0. Therefore, in a goods g-binary
scenario, ∀rj ∈ R, max{ui(rj) : i ∈ A} = prj

> 0 and min{ui(r) : i ∈ A} = 0.
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While, in a chores g-binary scenario, ∀rj ∈ R, max{ui(rj) : i ∈ A} = 0 and
min{ui(r) : i ∈ A} = prj < 0.

A goods g-binary scenario in which the value 0 is not taken by the utility
functions is called a scenario of identical utility functions. These scenarios were
considered by Barman et al. [5]. There are examples where imposing a scenario
of identical utilities is not very adequate to find an allocation that best satisfies
the agents. The following example shows such a situation.

Example 1. Suppose there are two goods r1, r2 and two agents 1, 2. Agent 1
wants r1 and his utility for this good is p1 , that is u1(r1) = p1. Agent 1 does
not want r2 and his utility for this good is null, that is u1(r2) = 0. For agent
2, it is all the contrary, more precisely: 2 wants r2 and his utility for this good
is p2, that is u2(r2) = p2 but 2 does not want r1 and his utility for this good
is null, that is u2(r1) = 0. In such a g-binary scenario, it is clear that the
best allocation corresponds to allocating r1 to 1 and r2 to 2. In a scenario with
identical utilities the agents can’t express that they are not interested in a good
(utility 0). Thus the allocation which gives r1 to 2 and r2 to 1, in a scenario of
identical utilities produces the same social utilitarian welfare but this allocation
is far from satisfying the agents.

Note that the goods g-binary scenarios are a simplification of the Fisher
market model in economy [6].

2.1. Fairness, efficiency, and social welfare
An attractive fairness criterion in additive scenarios is the absence of envy. If

no agent strictly prefers the bundle assigned to another agent instead of its own
bundle, the allocation is envy-free. More precisely, an allocation F is envy-free
(EF) if ∀i, j ∈ A, ui(F−1(i)) ≥ ui(F−1(j)). If there exists an agent i ∈ A
such that ui(F−1(i)) < ui(F−1(j)) for some j ∈ A, then the agent i envies
the agent j. The property EF is the most desirable property, but in a simple
example of an indivisible resource with two agents it is impossible to find an
allocation without envy. In the literature [7, 9, 1, 13, 14], weaker versions of the
envy free property can be found. The weakest among these is envy free up to
one good. The following definition establishes the main weak envy free notions
for goods and chores.1

Definition 2. Let F be in AR,

1. F is an envy-free up to one resource (EF1) allocation for goods if
∀i, j ∈ A, ∃g ∈ F−1(j) such that

ui(F−1(i)) ≥ ui(F−1(j) \ {g}) (1)

1Actually, one can give a unified and more compact definition but it is clearer if we split
it into two cases: goods and chores.
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2. F is an envy-free up to one resource (EF1) allocation for chores if
∀i, j ∈ A, ∃g ∈ F−1(i) such that

ui(F−1(i) \ {g}) ≥ ui(F−1(j)) (2)

3. F is an envy-free up to any non zero valued resource (EFX) allo-
cation for goods if ∀i, j ∈ A,

∀g ∈ F−1(j)with ui(g) > 0, ui(F−1(i)) ≥ ui(F−1(j) \ {g}) (3)

4. F is an envy-free up to any non zero valued resource (EFX) allo-
cation for chores if ∀i, j ∈ A,

∀g ∈ F−1(i)with ui(g) < 0, ui(F−1(i) \ {g}) ≥ ui(F−1(j)) (4)

5. F is an envy-free up to any valued resource (EFX0) allocation for
goods if ∀i, j ∈ A,

∀g ∈ F−1(j), ui(F−1(i)) ≥ ui(F−1(j) \ {g}) (5)

6. F is an envy-free up to any valued resource (EFX0) allocation for
chores if ∀i, j ∈ A,

∀g ∈ F−1(i), ui(F−1(i) \ {g}) ≥ ui(F−1(j)) (6)

It is clear that in the case of additive utilities for goods or for chores we
have:

EF ⇒ EFX0 ⇒ EFX ⇒ EF1
The efficiency, also known as Pareto efficiency or Pareto optimality, aims at

characterizing when the allocation best satisfies the group. Remember that if
F and G are allocations in AR, we say that F is Pareto dominated by G, when:

• ∀i ∈ A, ui(F−1(i)) ≤ ui(G−1(i)) and

• ∃j ∈ A such that uj(F−1(j)) < uj(G−1(j))

We say that G is Pareto optimal (PO), if it is not Pareto dominated by another
allocation.

One way to measure the social satisfaction of the agents is through the Nash
and utilitarian social welfare functions. Let us recall their precise definitions.
The utilitarian social welfare of F , denoted by SWu(F ), is defined by

SWu(F ) =
∑
i∈A

ui(F−1(i)) (7)

we put MSWu = {F : SWu(F ) ≥ SWu(G), ∀G ∈ AR}. The Nash social
welfare, denoted by SWNash(F ), is defined by

SWNash(F ) =
∏
i∈A

ui(F−1(i)) (8)
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we put MSWNash = {F : SWNash(F ) ≥ SWNash(G), ∀G ∈ AR}.
A well-known result is that any allocation that maximizes utilitarian social

welfare is PO:

Theorem 1. Under an additive scenario, let F be in AR, if F ∈MSWu, then
F is PO.

Although in general it is not always possible to find EF allocations, fortu-
nately, Caragiannis and colleagues [9] showed that under an additive scenario
for goods it is possible to find EF1 and PO resource allocations. Actually, they
prove the following theorem:

Theorem 2. [Caragianis et al. [9]] Under an additive scenario for goods, every
allocation2 that maximizes Nash social welfare is EF1 and PO.

Note that, with the help of Theorem 2, it is easy to see that the converse of
Theorem 1 is false. The following example shows this.

Example 2. Let R = {r1, r2} be the set of resources and A = {1, 2} the set of
agents where each agent i establishes its utility function ui over every resource,
according to Table 1.

Table 1: Utility functions.

r1 r2
u1 10 10
u2 3 2

Let F and G be the allocations defined by Table 2.

Table 2: Allocations.

r1 r2
F 1 1
G 2 1

The utility by bundle received by each agent and social welfare are showed in
Table 3.

Table 3: Utility by bundle received and social welfare.

1 2 SWu SWNash

ui(F−1(i)) 20 0 20 0
ui(G−1(i)) 10 3 13 30

2Actually, the Theorem as stated is true when the maximum Nash social welfare is strictly
positive. When it is zero, it is necessary to impose that the set of agents having a good is a
maximal set (see [9]).
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It is easy to see that F is the only allocation which maximizes utilitar-
ian social welfare. However, F is not EF1 because agent 2 envies agent 1,
u2(F−1(2)) = 0 < 5 = u2(F−1(1)), but even after removing r1 or r2 from
(F−1(1)), envy does not disappear:

u2(F−1(2)) = 0 < 2 = u2(F−1(1)\{r1}) and
u2(F−1(2)) = 0 < 3 = u2(F−1(1)\{r2})

The maximum Nash social welfare is reached at 30, so G maximizes the Nash
social welfare. By Theorem 2 G is EF1, but it does not maximize the utilitarian
social welfare. In the following table, we identify the properties that satisfy F
and G; if an allocation satisfies a property we use 3 and 5 otherwise.

Table 4: Identification of properties (within a non g-binary scenario).

PO EF1 MSWu MSWNash

F 3 5 3 5
G 3 3 5 3

3. A characterization of Pareto Optimality

The following theorem shows that under g-binary scenarios, the converse of
Theorem 1 is satisfied; i.e., having the property PO and belonging to MSWu

are equivalent.

Theorem 3. Assume a goods (chores) g-binary scenario and let F be an allo-
cation in AR. Then, F is PO if, and only if, F ∈MSWu.

Note that, in general additive scenarios, Theorem 3 does not hold as Exam-
ple 2 reveals.

We have seen in Example 2 that MSWNash 6⊆ MSWu. However, under
goods g-binary scenarios, Theorems 2 and 3 together, tell us that MSWNash ⊆
MSWu. This is important and will be stated in the following result.

Theorem 4. Under a goods g-binary scenario, each allocation that maximizes
Nash social welfare also maximizes utilitarian social welfare.

A straightforward corollary of Theorem 4 and Theorem 2, is the existence,
under goods g-binary scenarios, of allocations maximizing the utilitarian social
welfare and satisfying the EF1 property. The existence is based in finding an
allocation producing a maximum Nash welfare, a hard problem from a compu-
tational point of view. In the next section we will see that in g-binary scenarios
it is easy to compute allocations EF1 producing a maximal utilitarian welfare.

4. A simple Algorithm and its behavior in some additive scenarios

In this section, we propose a very natural and simple algorithm and we
analyze its behavior in additive scenarios, in particular in g-binary scenarios.
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Let us start with a key result in the conception of the algorithm. It estab-
lishes that an allocation distributes resources to the agents that maximize them
if, and only if, this allocation maximizes the utilitarian social welfare. One can
find a straightforward proof of this result3, using a matrix approach, in [8].

Theorem 5. Under an additive scenario, F ∈ MSWu if, and only if, ∀i ∈
A,∀r ∈ F−1(i) we have that ui(r) = max{uj(r) : j ∈ A}.

Suppose that in an additive scenario, R = {r1, . . . , rm} (all the resources are
goods or all the resources are chores) and A = {1, . . . , n}. Let α1, . . . , αm be the
real numbers defined in the following way: for each rk ∈ R, αk = max{uj(rk) :
j ∈ A}. Then, by the previous theorem the following simple algorithm defines
an allocation, Γ, having a maximal utilitarian welfare, that is, Γ ∈MSWu.

Algorithm 1: An allocation for maximal utilitarian welfare
Input: Two finite sets, R = {r1, . . . , rm} for the resources,

A = {1, . . . , n} for the agents, and their respective utilities ui

Output: The allocation Γ
1 v0 ← (0, . . . , 0)
2 for k ← 1 to m do
3 αk ← max{uj(rk) : j ∈ A}
4 Pk ← {j ∈ A : uj(rk) = αk}
5 lk ← min {|[vk−1]j | : j ∈ Pk}
6 Mk ← {i ∈ Pk : |[vk−1]i| = lk}
7 jk ← min{Mk}
8 Γ(rk)← jk

9 [vk]i ←
{

[vk−1]i + ujk
(rk), if i = jk

[vk−1]i , if i 6= jk.
for all i ∈ A

10 return Γ

The idea of Algorithm 1 is very simple: the resource rk is allocated to an
agent who maximizes its utility and such that before this step, that is until
the partial allocation of resources {r1, . . . , rk−1} is done, he has the minimal
utility in case of goods and the maximal utility in the case of chores. A detailed
description of the behavior of this algorithm appears in the Appendix.

From Theorem 1 we have the following result:

Corollary 1. Under an additive scenario, Γ is PO.

We saw in Example 2 that the allocation F , the unique allocation that
maximizes the utilitarian social welfare is not EF1 (see Table 4). But this
allocation is indeed the allocation Γ, thus in general, Algorithm 1 does not
produce an allocation EF1.

3Actually, in [8] the if is proved. The only if is obvious.
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The following observation summarizes some facts in g-binary scenarios. This
will be proved throughout Example 5 in Appendix A.

Remark 1. It is important to note that in g-binary scenarios there are allo-
cations EF1 which are not in MSWu. In those scenarios there are allocations
which are PO and MSWu but they are neither EF1 nor belong to MSWNash.
Also in those scenarios Γ is EF1, PO, it is in MSWu but, in general, it is not
in MSWNash. It can happen that there exist allocations that are EF1, PO, and
they are in both MSWu and in MSWNash.

We have already said that Algorithm 1 produces a maximal utilitarian wel-
fare. This occurs in case of additive scenarios and due to Theorem 5 and the
definition of Algorithm 1. The next result summarizes this and gives the com-
plexity of the algorithm.

Theorem 6. Under a goods (chores) additive scenario, Γ ∈ MSWu and it is
obtained in O(nm) operations.

In addition to this, we will show next that in g-binary scenarios for goods
and chores, the allocation Γ, given by Algorithm 1 is also envy-free up to one
resource (good or chore).

Theorem 7. Under a g-binary scenario for goods or chores, the allocation Γ
given by Algorithm 1 produces a maximal utilitarian welfare, is EF1 and PO.
Its run time is O(mn).

As a matter of fact, in a g-binary scenario for chores, if for any resource r,

maxi∈A{ui(r)} 6= mini∈A{ui(r)}

we have that Γ is EF. That is because, in such a case, Γ is an allocation in which
all the agents give utility 0 to their bundles.

Moreover, with a very slight modification of Algorithm 1, we will obtain
another allocation, Γ∗, which is EFX. This modification consists in taking one
more step: reordering the resources. In the case of goods we order the resources
in decreasing order and in the case of chores we order the resources in increasing
order according to the maximal absolute value of utilities given to resources.
More precisely, a resource r precedes another resource r′ if maxi∈A{|ui(r)|} ≥
maxi∈A{|ui(r′)|}. For this Γ∗ we have the following result.

Theorem 8. Under a g-binary scenario for goods or chores, the allocation Γ∗
given by Algorithm 1 modified as previously indicated maximizes the utilitarian
social welfare, is EFX and PO. Moreover, its run time is O(m logm+mn).

It is interesting to observe that the algorithm producing Γ∗ is quite similar
to Barman et al. algorithm [5] producing an allocation EFX, in the case of
identical scenarios for goods. In fact, in identical scenarios, the notions EFX
and EFX0 coincide. This is not the case in g-binary scenarios. This can be
viewed by building a g-binary scenario, in which Γ∗, the allocation given by the
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modified Algorithm 1, which is EFX, is not EFX0 (see Example 6 in Appendix
A).

Note that if F is an allocation EFX for goods (for chores) such that for all
i, j ∈ A such that ui(F−1(i)) < ui(F−1(j)) we have that F−1(j) ⊆ {r ∈ R :
ui(r) > 0} (F−1(i) ⊆ {r ∈ R : ui(r) < 0}), then F is EFX0 for goods (for
chores).

5. Some limits of Algorithm 1

It is natural to ask if Algorithm 1 has other interesting properties. For
instance, does it compute a maximal egalitarian welfare4 allocation? We will
see in Example 3 that it is not the case even when we work in g-binary scenarios.

Another question concerns the properties of Algorithm 1 in a slight modifi-
cation of g-binary scenarios. Remember that in g-binary scenarios, every Pareto
efficient allocation indeed maximizes utilitarian social welfare (see Theorem 3),
and as a consequence, in the case of goods, every assignment that maximizes
Nash’s social welfare also maximizes the utilitarian one (see Theorem 5). Thus,
natural questions are: in these modified scenarios, is it possible to preserve these
properties? Furthermore, does Algorithm 1 achieve fair allocations?

The following example shows that neither Γ nor Γ∗ maximize the egalitarian
social welfare.

Example 3. There are three agents and three resources. The utilities are given
in Table 5. In Table 6 are the allocations. In Table 7 appear the utilities of each
agent for every allocation and the egalitarian social welfare denoted by SWe.

Table 5: Utility functions.

r1 r2 r3
u1 4 1 2
u2 4 0 2
u3 4 0 0

Table 6: Allocations.

r1 r2 r3
Γ 1 1 2
Γ∗ 1 1 2
A 3 1 2

4The egalitarian social welfare of an allocation F , denoted by SWe(F ) is defined by
SWe(F ) = min{ui(F−1(i)) : i ∈ A}.
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Table 7: Utility by bundle received and egalitarian social welfare.

1 2 3 SWe

ui(Γ−1(i)) 5 2 0 0
ui(Γ∗−1(i)) 5 2 0 0
ui(A−1(i)) 1 2 4 1

Table 7 shows that Γ and Γ∗ do not maximize the egalitarian social welfare
because the allocation A has egalitarian social welfare which is better than the
egalitarian social welfare of Γ and Γ∗.

Now, we propose a scenario called ε-g-binary, which slightly changes the
range of the utilities of each agent, generalizing the notion of g-binary scenarios.
Let us see the definition below.

Definition 3. Assume that for each rk ∈ R we have a mapping rk 7→ pk where
pk is a real number. Let u be a function u : P(R) → R. We say that u is an
ε-g-binary utility function for goods (chores) if:

• ε ≥ 0 (ε ≤ 0);

• u is an additive utility function;

• for every rk ∈ R, pk > ε (pk < ε) and u(rk) ∈ {ε, pk}.

When every agent has an ε-g-binary utility function for goods (chores) with the
same mapping rk 7→ pk, we say that the scenario is goods (chores) ε-g-binary.

The above definition generalizes Definition 1; in the case goods (chores), ε
is the minimum (maximum) value for the scenario. It means that the minimum
(maximum) value could be equal to zero or greater than (less than) zero. When
ε is equal to 0, we get exactly the goods (chores) g-binary scenario.

In the following example, we give an ε-g-binary scenario, with ε > 0, for
which there exists an allocation G /∈MSWu having a greater Nash social welfare
than all the allocations that maximize the utilitarian social welfare.

Example 4. We consider n = m = 3. Table 8 defines our ε-g-binary scenario
with b > a > ε > 0.

Table 8: Utility functions.

r1 r2 r3
u1 b a a
u2 b ε ε
u3 b ε ε

Note that any allocation that maximizes the utilitarian social welfare assigns
the resources r2 and r3 to agent 1 (see Theorem 5). Thus, there are only three
allocations, F1, F2 and F3, which maximize the utilitarian social welfare. They
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are shown in table 9. This table shows also another allocation, namely the
allocation G that assigns the resource r3 to agent 3, who gives it a utility of ε.

Table 9: Definition of allocations.

r1 r2 r3
F1 1 1 1
F2 2 1 1
F3 3 1 1
G 2 1 3

Table 10 describes the valuations that the agents give to the received bundle
in the different allocations of Table 9; also, it shows the Utilitarian and Nash
social welfare of the allocations.

Table 10: Utility by received bundle and social welfare.

1 2 3 SWu SWNash

ui(F1
−1(i)) 2a+ b 0 0 2a+ b 0

ui(F2
−1(i)) 2a b 0 2a+ b 0

ui(F3
−1(i)) 2a 0 b 2a+ b 0

ui(G−1(i)) a b ε a+ b+ ε abε

Note that allocation G has better Nash social welfare than F1, F2 and F3.
This is because the Nash social welfare of F1, F2 and F3 is 0 and the Nash social
welfare of G is strictly positive. Then MSWu∩MSWNash = ∅. Consequently,
there are PO allocations that are not contained in MSWu; and therefore, The-
orem 3, instantiated in these scenarios, does not hold.

Note that in this example Γ = Γ∗ = F1. But, regarding fairness, in allo-
cations F1, F2, and F3, at least one agent does not receive any good, and at
the same time, this agent values positively the two resources received by another
agent. Then, it is not possible to eliminate the envy removing only one resource.
Thus, in this scenario, the allocations which maximize utilitarian social welfare
do not necessarily satisfy fairness. In particular, Algorithm 1 does not attain
success in finding an allocation EF1.

6. Related work

Due to the fact that allocations producing a maximal utilitarian welfare are,
in additives scenarios, Pareto optimal, in order to assure the Pareto optimality
and EF1, it is natural to look for allocations which are inMSWu and are simul-
taneously EF1. However, in general additive scenarios, the problem of finding
allocations producing a maximal utilitarian social welfare being simultaneously
EF1 is NP-hard [4]. Thus, several works adopt the strategy of working in sce-
narios in which the utility functions are restricted. Next, we resume the main
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proposals studied in the literature, their results and the connections with our
framework.

Actually, the work of Caragiannis et al. [9], under general goods additive
scenarios shows that some special allocations producing maximum Nash social
welfare are EF1 and PO. However, finding this kind of allocations is in general
an NP-complete problem. Moreover, this does not solve the problem of finding
an allocation that produces a maximal utilitarian social welfare and that is
also EF1, because the allocations in MSWNash are not necessarily in MSWu.
However, in g-binary scenarios, we have MSWNash ⊆MSWu, because in these
scenarios being Pareto optimal is equivalent to producing a maximal utilitarian
welfare.

In the same vein, Amanatidis et al. [1] connect the maximum of Nash and
EFX. They consider k-valued scenarios, that is, scenarios where there is a set
of k distinct possible values, all real numbers, that agents can assign to their
utilities. For 2-valued scenarios they prove that the allocations maximizing the
Nash social welfare are EFX0. They also prove that for k-valuated scenarios,
with k ≥ 3, it is not true that the allocations maximizing the Nash social
welfare are EFX0. To the best of our knowledge, there is no known simultaneous
existence of EFX and PO allocations under k-valued scenarios. Note that these
scenarios are a generalization of ε-g-binary scenarios.

Actually, the 2-valued scenarios, called also bivaluated, are deeply studied
by Ebadian et al. [14]. They prove that for the case of chores, in that scenario,
there exist polynomial time algorithms for calculating allocations which are
simultaneously EF1 and PO. They studied also other fairness properties and
other scenarios for which they prove the existence of allocations in polynomial
time which are fair and PO. Note that the bivaluated scenario and the g-binary
are independent.

A particular case of a bivaluated scenario is a binary scenario, where the
utility functions can take only the values zero or one. In those scenarios, Barman
et al. [5] proposed an algorithm to find an allocation that satisfies EFX and PO
constraints and runs in polynomial time. Actually, they propose an algorithm
that finds an allocation maximizing the Nash social welfare in polynomial time
in the case of binary utilities. In the case of identical utilities, they propose
also an algorithm in polynomial time to compute an allocation EFX which
maximizes the utilitarian social welfare. They show also that this allocation is
a good approximation of a maximum of Nash social welfare.

In Figure 1, we summarize the results of this discussion. The left branch in
the figure goes from the most specialized scenario, the binary scenario, to the
most general additive scenario passing through the bivaluated an k-valuated
scenarios. The right branch goes from identical scenario, the most specialized
in this branch, to additive scenarios (the most general) passing through the new
scenarios we study in this work: g-binary and ε-g-binary scenarios.

We have noted that g-binary scenarios generalize simultaneously binary and
identical scenarios and it is easy to see that ε-g-binary scenarios generalize bi-
valuated scenarios.
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Figure 1: The boxes having a bold face framework represent the classes and results proposed
in this work. The arrows show strict inclusion. Check marks (X) denote the existence of
fairness (EFX) and efficiency (PO) properties, while (?) denotes an open question.

7. Concluding remarks

In this work, we have studied fair and efficient allocations for indivisible
resources (goods and chores) when the valuations are defined through g-binary
utility functions. We showed that there exists an allocation that is envy-free up
to one item (EF1) (for goods and chores) and maximizes utilitarian social welfare
(MSWu) using g-binary utility functions. This result can be slightly modified
to produce an allocation that is envy-free up to any item valuated different
from zero (EFX) (for goods and chores). In this framework a characterization
of Pareto optimality is given.

Actually, we build algorithms for finding allocations which are EF1, EFX and
simultaneously MSWu (for goods and chores). They run in polynomial-time.
However, the algorithm finding an allocation EF1 is computationally slightly
better than the algorithm finding an allocation EFX.

The results of Section 5 show, in some way, that the g-binary scenarios are
a sort of limiting scenario in which it is easy to provide EF1 and PO properties
related to utilitarian social welfare. This is achieved by considering when a
resource is indifferent to an agent. However, a little bit beyond that, the results
do not hold.
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It is known that finding allocations producing a maximum of Nash is NP-
hard even in identical scenarios (see [5]). Thus, in g-binary scenarios this prob-
lem will necessarily be NP-hard. Then, the natural question is if we can adapt
the techniques of Barman et al. [5] in order to prove that Algorithm 1 pro-
duces a good approximation of a maximum of Nash social welfare in the case of
g-binary scenarios.
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Appendix A. Algorithm, proofs and examples

A more detailed explanation of Algorithm 1 is as follows:

1. Let v0 = (0, . . . , 0) be the initial vector of partial valuations, with size n.

2. For k = 1 to m:

(a) We take rk ∈ R.
(b) αk = max{uj(rk) : j ∈ A}.
(c) Let Pk and Mk be the sets given by:

Pk = {j ∈ A : uj(rk) = αk} (A.1)

and
lk = min {|[vk−1]j | : j ∈ Pk}

Mk = {i ∈ Pk : |[vk−1]i| = lk} (A.2)

where [vk−1]i is the position i of vk−1.
(d) Let jk be the minimum of Mk.
(e) Allocation of rk:

Γ(rk) = jk (A.3)
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(f) Updating the vector vk of partial utilities, for all i ∈ A:

[vk]i =
{

[vk−1]i + ujk
(rk), if i = jk

[vk−1]i , if i 6= jk.

Notice that Pk 6= ∅. Therefore, Mk 6= ∅ and Mk ⊆ N; so, there exists a
minimum for Mk. On the other hand, ∀i ∈ A, ui is an additive utility function,
so each position i of vk, [vk]i, is the partial valuation given by agent i to its
assigned bundle up to step k.

Theorem 3. Assume a goods (chores) g-binary scenario and let F be an allo-
cation in AR. Then, F is PO if, and only if, F ∈MSWu.

Proof: (only if part) Let F ∈ AR, and we suppose that F does not maximize
utilitarian social welfare. We want to show that F is not Pareto optimal.

Since all agents consider g-binary utility functions and F does not maximize
utilitarian social welfare, by Theorem 5, there exist r∗ ∈ R and j ∈ A such that
uj(r∗) = max{0, p∗} and ui(r∗) = min{0, p∗} with i = F (r∗) and p∗ 6= 0. Let
G ∈ AR be given by

G(r) =
{
F (r), if r 6= r∗

j, if r = r∗

Note that r∗ /∈ F−1(j), G−1(j) = F−1(j) ∪ {r∗}, G−1(i) = F−1(i) \ {r∗}, and
for all k ∈ A with k /∈ {i, j}, F−1(k) = G−1(k).

In a good g-binary scenario, uj(r∗) = p∗ > 0 and ui(r∗) = 0. So, uj(F−1(j)) <
uj(G−1(j)) and uk(F−1(k)) = uk(G−1(k)) for k 6= j. Hence, F is Pareto domi-
nated by G.

Now, in a chore g-binary scenario, uj(r∗) = 0 and ui(r∗) = p∗ < 0. Thus,
ui(G−1(i)) = ui(F−1(i)) − ui(r∗) > ui(F−1(i)) and uk(F−1(k) = uk(G−1(k))
for k 6= j. Therefore, G dominates F .

In both cases F is not PO.
(if part) Follows from Theorem 1.

The following observation is very useful in the proofs. Its proof is obvious
by equations (A.3), (A.1) and (A.2).

Remark 2. We assume an additive scenario. Let Γ be the allocation of Algo-
rithm 1. For every rk ∈ R and every j ∈ A such that Γ(rk) = j, we have

1. ∀i(i ∈ Pk =⇒ |[vk−1]j | ≤ |[vk−1]i|)

2. uj(rk) = αk = max{ui(rk) : ∀i ∈ A}

Theorem 6. Under a goods (chores) additive scenario, Γ ∈ MSWu and it is
obtained in O(nm) operations.

Proof: Let Γ be the allocation of Algorithm 1. By Remark 2, part 2,
and Theorem 5, we have that Γ ∈ MSWu. The proposed algorithm starts
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initializing the vector of partial utilities v0 with zeros, which has one position
by each one of the n agents. This step demands O(n) operations. Step-2
allocates the m resources finding the agent with minimum partial utility in
each iteration, following (A.2). Allocating m resources, finding the minimum
of n agents demands O(nm) operations. In the next steps, the agent receives
the resource in (A.3); for all the resources, this step and the updating of the
vector of partial utilities runs in O(m). Building the resource allocation runs in
O(max(n, nm,m)), thus, we have that the proposed algorithm is in O(nm).

In order to prove Theorem 7, we establish a technical lemma for goods
or chores g-binary scenario. To establish this lemma we need the following
definitions:

Aij = {r | ui(r) = max{0, pr} ∧ uj(r) = min{0, pr}},
Bij = {r | ui(r) = min{0, pr} ∧ uj(r) = max{0, pr}},
Cij = {r | ui(r) = max{0, pr} = uj(r)},
Dij = {r | ui(r) = min{0, pr} = uj(r)},
R∗ = {r | ui(r) = min{0, pr}, ∀i ∈ A}.

Note that for every i, j we have

R = Aij ∪Bij ∪ Cij ∪Dij (A.4)

and this is a partition of R.

Lemma 1. Under a g-binary scenario for goods or chores, if Γ is computed via
Algorithm 1, then for all i, j ∈ A we have that

ui

(
Γ−1(i)

)
=
{
ui

(
Γ−1(i) ∩Aij

)
+ ui

(
Γ−1(i) ∩ Cij

)
in goods g-binary scenario

ui

(
Γ−1(i) ∩R∗

)
in chores g-binary scenario

(A.5)
and,

ui

(
Γ−1(j)

)
=
{
ui

(
Γ−1(j) ∩ Cij

)
in goods g-binary scenario

ui

(
Γ−1(j) ∩Bij

)
+ ui

(
Γ−1(j) ∩R∗

)
in chores g-binary scenario

(A.6)

Proof: For each r ∈ R, we consider Mr = {k ∈ A : uk(r) = max{0, pr}} and
mr = {k ∈ A : uk(r) = min{0, pr}}. Note that, Mr ∩mr = ∅ and Mr ∪mr = A.
Moreover, by definition of Γ, if Mr 6= ∅, then Γ(r) ∈Mr.

Claim 1. For all i, j ∈ A,

1. Aij ∩ Γ−1(j) = ∅ = Bij ∩ Γ−1(i).
In fact, if r ∈ Aij ∩ Γ−1(j), then Γ(r) = j ∈ Mr and j ∈ mr which is a
contradiction. So, Aij ∩Γ−1(j) = ∅. As Bij = Aji, then Bij ∩Γ−1(i) = ∅.
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2. Dij ∩ Γ−1(i) = R∗ ∩ Γ−1(i).
Suppose that R∗ = ∅.Then Mr 6= ∅ for all r. If r ∈ Dij ∩ Γ−1(i), then
Γ(r) = i ∈ Mr and i ∈ mr which is a contradiction. So, Dij ∩ Γ−1(i) =
∅ = R∗ ∩ Γ−1(i). Now, suppose that R∗ 6= ∅, if r ∈ R∗, then mr 6=
∅ and, by definition of Γ, Γ(r) ∈ mr. Given r ∈ Dij ∩ Γ−1(i), then
ui(r) = min{0, pr} = uj(r) and Γ(r) = i. Therefore, for all k ∈ A,
uk(r) = min{o, pr}; otherwise, Γ(r) /∈ mr. Thus, r ∈ R∗ ∩ Γ−1(i). But,
R∗ ⊆ Dij. Thus, Dij ∩ Γ−1(i) = R∗ ∩ Γ−1(i).

3. Γ−1(i) = (Aij ∩ Γ−1(i)) ∪ (Cij ∩ Γ−1(i)) ∪ (R∗ ∩ Γ−1(i)).
This is due to parts 1 and 2 of Claim1 and Equation A.4.

Now we prove the lemma. By Claim1 part 3 and the fact that Bij = Aji

and Cij = Cji, we have

ui(Γ(i)) = ui(Aij ∩ Γ−1(i)) + ui(Cij ∩ Γ−1(i)) + ui(R∗ ∩ Γ−1(i))
ui(Γ(j)) = ui(Bij ∩ Γ−1(j)) + ui(Cij ∩ Γ−1(j)) + ui(R∗ ∩ Γ−1(j))

If the scenario is a chore g-binary scenario, then ui(Aij ∩ Γ−1(i)) = ui(Cij ∩
Γ−1(i)) = ui(Cij ∩ Γ−1(j)) = 0. While in a good g-binary scenario, ui(R∗ ∩
Γ−1(i)) = ui(R∗ ∩ Γ−1(j)) = ui(Bij ∩ Γ−1(j)) = 0. Thus, the equations (A.5)
and (A.6) are true.

Theorem 7. Under a g-binary scenario for goods or chores, the allocation Γ
given by Algorithm 1 produces a maximal utilitarian welfare, is EF1 and PO.
Its run time is O(mn).
Proof: We prove first the case of goods. We suppose that ∀i ∈ A, ui is
a g-binary utility function. We consider the allocation Γ of Algorithm 1. By
Theorem 6, Γ maximizes utilitarian social welfare in O(mn) operations, and by
Theorem 3, Γ is PO. We want to show that Γ is EF1. Suppose that there exists
i ∈ A such that

ui(Γ−1(i)) < ui(Γ−1(j)) (A.7)
for some agent j. As ui is a g-binary utility, by Lemma 1, it is enough to show
that there exists r ∈ Γ−1(j) ∩ Cij such that ui(Γ−1(i)) ≥ ui(Γ−1(j)) − ui(r).
Clearly, Γ−1(j)∩Cij 6= ∅. Otherwise, by (A.6) and (A.7), we have ui(Γ−1(j)) <
0, which is a contradiction because ui is non negative. Let Γ−1(j) ∩ Cij =
{rs1 , . . . , rsk

}, where rsk
is the last resource assigned to j and it is preferred by

i and j. Since Γ(rsk
) = j and i ∈ Psk

, by Remark 2, part 1,

ui(Γ−1(i) ∩ {r1, . . . , rsk−1}) ≥ uj(Γ−1(j) ∩ {r1, . . . , rsk−1}).

By additivity of uj ,

uj(Γ−1(j) ∩ {r1, . . . , rsk−1}) ≥ uj(Γ−1(j) ∩ {r1, . . . , rsk−1} ∩ Cij).

Using the transitivity of ≥, we have

ui(Γ−1(i) ∩ {r1, . . . , rsk−1}) ≥ uj(Γ−1(j) ∩ {r1, . . . , rsk−1} ∩ Cij). (A.8)
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As ui and uj are utility functions in a g-binary scenario, then the utility that
agents i and j assign to each resource in Cij is equal, so

uj(Γ−1(j) ∩ {r1, . . . , rsk−1} ∩ Cij) = ui(Γ−1(j) ∩ {r1, . . . , rsk−1} ∩ Cij). (A.9)

By equations (A.8) and (A.9),

ui(Γ−1(i) ∩ {r1, . . . , rsk−1}) ≥ ui(Γ−1(j) ∩ {r1, . . . , rsk−1} ∩ Cij). (A.10)

Now, by equation (A.6) and additivity of ui,

ui(Γ−1(j)) = ui(Γ−1(j) ∩ Cij)
= ui(Γ−1(j) ∩ {r1, . . . , rsk−1} ∩ Cij) + ui(rsk

)

and, by equation (A.10),

ui(Γ−1(j)) ≤ ui(Γ−1(i) ∩ {r1, . . . , rsk−1}) + ui(rsk
);

so,
ui(Γ−1(i) ∩ {r1, . . . , rsk−1}) ≥ ui(Γ−1(j))− ui(rsk

).

But, ui(Γ−1(i)) ≥ ui(Γ−1(i) ∩ {r1, . . . , rsk−1}), and using transitivity,

ui(Γ−1(i)) ≥ ui(Γ−1(j))− ui(rsk
). (A.11)

Therefore, Γ is EF1.
Now we give the proof in the case of chores. By Lemma 1, for all i, j ∈ A,

ui(Γ−1(i)) = ui(Γ−1(i) ∩R∗) (A.12)

and
ui(Γ−1(j)) = ui

(
Γ−1(j) ∩Bij

)
+ ui

(
Γ−1(j) ∩R∗

)
. (A.13)

If R∗ = ∅, then ui(Γ−1(i)) = 0 and ui(Γ−1(j)) = ui

(
Γ−1(j) ∩Bij

)
≤ 0.

Thus, ui(Γ−1(i)) ≥ ui(Γ−1(j)). So, Γ is EF. In consequence, Γ is EF1.
Suppose that R∗ 6= ∅ and that there exist i, j ∈ A such that

ui(Γ−1(i)) < ui(Γ−1(j)). (A.14)

We want to show that there is r ∈ Γ−1(i) such that

ui(Γ−1(i) \ {r}) ≥ ui(Γ−1(j) (A.15)

By equation (A.14), ui(Γ−1(i)) < 0; and by equation (A.12), Γ−1(i)∩R∗ 6= ∅.
Using additivity of ui and equations (A.12) and (A.13), to show that (A.15) is
true, it is enough to find r ∈ Γ−1(i) ∩R∗ such that

ui((Γ−1(i) ∩R∗) \ {r}) ≥ ui

(
Γ−1(j)

)
. (A.16)
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Let rs ∈ Γ−1(i) ∩ R∗ such that rs is the last chore allocated to i and it is
minimized for all l ∈ A. Consider {r1, . . . , rs−1}5 the set of all chores allocated
before rs. As

{r1, . . . , rs−1} ∩ Γ−1(l) ∩R∗ ⊆ Γ−1(l)
then

ui(R∗ ∩ {r1, . . . , rs−1} ∩ Γ−1(l)) ≥ ui(Γ−1(l)). (A.17)
On the other hand, as rs is the last chore assigned to i and rs ∈ R∗, then

ui(R∗ ∩ Γ−1(i) \ {rs}) = ui(R∗ ∩ {r1, . . . , rs−1} ∩ Γ−1(i))

and by Lemma 1,

ui(R∗ ∩ {r1, . . . , rs−1} ∩ Γ−1(i)) = ui({r1, . . . , rs−1} ∩ Γ−1(i))

then, by transitivity,

ui(R∗ ∩ Γ−1(i) \ {rs}) = ui({r1, . . . , rs−1} ∩ Γ−1(i)). (A.18)

In order to complete the proof, we only have to show that

ui({r1, . . . , rs−1} ∩ Γ−1(i)) ≥ ui(R∗ ∩ {r1, . . . , rs−1} ∩ Γ−1(j)) (A.19)

because if in (A.17), we take l = j and use transitivity between (A.18) , (A.19)
and (A.17), the expression (A.16) is true.

As Γ(rs) = i, by the way the Γ is defined, then ∀l ∈ A

ui({r1, . . . , rs−1} ∩ Γ−1(i)) ≥ ul({r1, . . . , rs−1} ∩ Γ−1(l))).

But, for all l ∈ A,

ul({r1, . . . , rs−1} ∩ Γ−1(l)) = ul(R∗ ∩ {r1, . . . , rs−1} ∩ Γ−1(l))
= ui(R∗ ∩ {r1, . . . , rs−1} ∩ Γ−1(l)))

and

ul(R∗ ∩ {r1, . . . , rs−1} ∩ Γ−1(l))) = ui(R∗ ∩ {r1, . . . , rs−1} ∩ Γ−1(l))).

Using transitivity, we get (A.19).

Theorem 8. Under a g-binary scenario for goods or chores, the allocation Γ∗
given by Algorithm 1 modified as previously indicated maximizes the utilitarian
social welfare, is EFX and PO. Moreover, its run time is O(m logm+mn).
Proof: The argument of the proof is similar to that in the proof of the
Theorem 7. Let i, j be in A such that

ui(Γ∗−1(i)) < ui(Γ∗−1(j)).

5Note that if rs = r1, then {r1, . . . , rs−1} = ∅
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First we consider the case of goods. By Lemma 1,

ui(Γ∗−1(j)) = ui(Γ∗−1(j) ∩ Cij) = {rs1 , . . . , rsk
}.

As R is sorted in descending order, then for all r ∈ Γ∗−1(j) with ui(r) > 0,

ui(rsk
) ≤ ui(r).

By equation (A.11)

ui(Γ∗−1(i)) ≥ ui(Γ∗−1(j))− ui(rsk
).

So, for all r ∈ Γ∗−1(j) with ui(r) > 0,

ui(Γ∗−1(i)) ≥ ui(Γ∗−1(j))− ui(r).

Thus, Γ∗ is EFX.
Now, we consider the case of chores. By Lemma 1,

ui(Γ∗−1(i)) = ui(Γ∗−1(i) ∩R∗) = ui(Γ∗−1(i) ∩R∗ ∩ {r1, . . . , rs})

where rs is the last chore in R∗ allocated to i. Note that, ∀r ∈ Γ∗−1(i) \ R∗,
ui(r) = 0. As R is sorted in increasing order then for all r ∈ Γ∗−1(i) with
ui(r) < 0,

ui(rs) ≥ ui(r).

Then
ui(Γ∗−1(i))− ui(r) ≥ ui(Γ∗−1(i))− ui(rs). (A.20)

Since (A.16) is true for rs, using Transitivity, from (A.20) and (A.16), we
have that ∀r ∈ Γ∗−1(i) with ui(r) < 0,

ui(Γ∗−1(i))− ui(r) ≥ ui(Γ∗−1(j)).

Thus, Γ∗ is EFX.

The following example shows the facts established in Remark 1 about the
behavior of Γ and other allocations in a g-binary scenario.

Example 5. Suppose that R = {r1, r2, r3, r4, r5} and that each resource rk is
valued as pk according to Table A.11.

Table A.11: pk values for each resource.

r1 r2 r3 r4 r5
pk 500 200 50 100 250

Let A = {1, 2, 3} be the set of agents; each agent i establishes its utility
functions ui over each resource using Table A.12.
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Table A.12: Utility functions.

r1 r2 r3 r4 r5
u1 500 200 50 0 0
u2 500 0 50 100 250
u3 500 200 0 100 0

Note that all agents prefer the resource r1 and their utility is 500. The
resource r2 is required by agents 1 and 3, and their utility is 200; the agents 1
and 2 give to resource r3 the utility of 50. Concerning the resource r4, agents
2 and 3 give it the utility of 100; whereas resource r5 is only required by agent
2 with utility 250. If for i = 1, 2, 3, the function ui is extended additively over
each subset S ⊆ R, that is, ∀i ∈ A, ui(S) =

∑
r∈S ui({r}), then each ui is a

g-binary utility function, i.e., it is a g-binary scenario.
In this scenario, we will consider four allocations in order to illustrate their

behavior with respect to properties EF1, PO, MSWu and MSWNash. Let F , G,
Γ and J be the allocations defined by Table A.13, which shows the agent number
who receives each resource.

Table A.13: Allocations.

r1 r2 r3 r4 r5
F 1 3 3 3 2
G 1 3 2 3 2
Γ 1 3 2 2 2
J 1 1 2 3 2

In Table A.14, we show the utility assigned by each agent to its received
bundle, and the social welfare in each allocation.

Table A.14: Utility by received bundle and social welfare.

1 2 3 SWu SWNash

ui(F−1(i)) 500 250 300 1050 37500000
ui(G−1(i)) 500 300 300 1100 45000000
ui(Γ−1(i)) 500 400 200 1100 40000000
ui(J−1(i)) 700 300 100 1100 21000000

The properties of each allocation are described in Table A.15 and the detailed
verification of these facts is given below.
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Table A.15: Allocation properties under a g-binary scenario.

PO EF1 MSWu MSWNash

F 5 3 5 5
G 3 3 3 3
Γ 3 3 3 5
J 3 5 3 5

It is important to note that F is an allocation EF1 and it is not in MSWu.
G satisfies all the properties. Γ is EF1, PO, it is in MSWu but it is not in
MSWNash. Finally, J is PO and it is in MSWu but it is neither EF1 nor in
MSWNash.

Proof of Properties in Example 5: We give details of the properties
fulfilled by the allocations in Table A.15.

From Theorem 5 and Table A.11, it is easy to see that the maximum util-
itarian welfare is reached in 1100. Moreover; G, Γ and J maximize SWu. By
Theorem 1 and Table A.14, we have that G, Γ, and J are PO. On the other
hand, from Table A.14, we can observe that agents 1 and 3 in the allocations F
and G, have the same utility for the received bundle; but, in G, agent 2 improves
its utility. Then, F is Pareto dominated by G. Therefore, F is not PO.

A search determined that the maximum Nash social welfare is reached at
45000000. Then G is a maximum Nash social welfare and, by Theorem 2, G is
EF1. Moreover, allocations F and Γ are EF1. In fact, Γ is EF1 by Theorem 6.

For F , agents 2 and 3 envy agent 1, however, the envy disappears when elim-
inating r1. Finally, J is not EF1, because agent 3 envies agent 1, u3(J−1(3)) <
u3(J−1(1)) and

u3(J−1(3) = 100 < 200 = u3(J−1(1) \ {r1}) < 500 = u3(J−1(1) \ {r2}).

The following example shows that Γ∗ is not EFX0.

Example 6. Let’s consider the following g-binary scenario where n = 3, m = 8.
Table A.16 shows the utility functions that each agent gives to each resource.

Table A.16: Utility functions.

r1 r2 r3 r4 r5 r6 r7 r8
u1 20 0 10 2 0 0 3 1
u2 20 0 10 2 11 19 0 1
u3 20 9 0 2 0 19 3 1

Now, using the modified Algorithm 1, we get the following allocation Γ∗.
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Table A.17: Allocation Γ∗

r1 r2 r3 r4 r5 r6 r7 r8
Γ∗ 1 3 1 3 2 2 3 3

Then, in Table A.18 we show the utility assigned by each agent to its received
bundle, and the social welfare in each allocation.

Table A.18: Utility by received bundle and social welfare.

1 2 3 SWU SWNash

ui(Γ∗−1(i)) 30 30 15 75 13500

Notice that agent 3 envies agent 2 because

u3({r2, r5, r6}) = 15

u3({r5, r6}) = 19

which means that
u3({r2, r5, r6}) < u3({r5, r6}).

Since Γ∗ was obtained using the modified Algorithm 1, we obtain that Γ∗ is
EFX. Now we check that Γ∗ does not satisfy EFX0. Observe that

u3({r5, r6}\{r5}) = 19 given that u3({r5}) = 0

so, it follows that

u3({r2, r5, r6}) = 15 < 19 = u3({r5, r6}\{r5}) (A.21)

Thus, property EFX0 is not satisfied.
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