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Conflicting interpretations of experimental data preclude the understanding of the quantum mag-
netic state of spin-orbit coupled d2 double perovskites. Whether the ground state is a Janh-Teller-
distorted order of quadrupoles or the hitherto elusive octupolar order remains debated. We resolve
this uncertainty through direct calculations of all-rank inter-site exchange interactions and inelastic
neutron scattering cross-section for the d2 double perovskite series Ba2MOsO6 (M= Ca, Mg, Zn).
Using advanced many-body first principles methods we show that the ground state is formed by
ferro-ordered octupoles coupled by superexchange interactions within the ground-state Eg doublet.
Computed ordering temperature of the single second-order phase-transition is consistent with exper-
imentally observed material-dependent trends. Minuscule distortions of the parent cubic structure
are shown to qualitatively modify the structure of gaped magnetic excitations.

Identification of complex magnetic orders in spin-
orbital entangled and electronically correlated transi-
tion metal oxides has emerged as a fascinating field
of study, enabling the discovery of new quantum mag-
netic states originating from interaction between effective
pseudospins carrying high-rank multipoles [1, 2]. While
multipolar coupling in localized f-electrons systems has
been the subject of intense research and is overall well
understood [3, 4], the formation and quantum origin
of ordered multipoles in d-electron systems is a much
more recent research area which poses challenging issues
and controversial opinions. [5–9]. Ordered magnetic oc-
tupoles were initially proposed as an alternative orbital
ordering in eg manganites arising from the complex mix-
ing of doubly-degenerate orbitals [10, 11], and later in
spin-orbit coupled model systems analogous to Sr2VO4,
LiOsO3 and Cd2Re2O7 [5, 6, 8]. Rock-salt ordered dou-
ble perovskites (DP) Ba2MOsO6 (M=Ca, Mg, Zn; in
short: BCOO, BMOO and BZOO) represent the first
candidate materials experimentally proposed to host a
d-orbital octupolar order [7]. However, the possibility to
actually realize such an exotic magnetic order and the
driving mechanism responsible for its formation remain
largely debated, in particular regarding the rank of the
multipolar interactions at play, the degree of JT distor-
tions and the relative importance of direct and indirect
exchange [1, 7, 9, 12–14].

In these Os-based DPs the strong spin-orbit coupling
(SOC) strength splits the effective L = 1 t2g levels on the
magnetic Os ions into a lower j = 3

2 quadruplet ground
state (GS) and a doublet j = 1

2 excited state. With a d2

(S=1) configuration, the total angular momentum Jeff is
2, and the levels are split due to the remnant crystal field
(CF) into a lower Eg doublet and T2g triplet [7, 15]. In
contrast to the assumptions of the pioneering theoretical
study of Ref. 15, the intersite exchange interactions are

inferred to be much smaller than the remnant CF [7,
16]. Despite experimental evidence for a single phase
transition involving the Eg manifold [7, 17, 18], its origin
remains unclear.

Considering that the non-Kramers Eg doublet does not
carry dipole moments it would be legitimate to expect
that conventional quadrupolar couplings in a JT-broken
symmetry would promote an anti-ferro (AF) quadrupo-
lar order [9, 19]. This transparent picture does not seem
to be consistent with recent experiments: X-ray diffrac-
tion (XRD) does not find structural distortions (larger
than 0.1%) and, whereas no conventional magnetic or-
der is detected by neutron diffraction (upper limit ≈ 0.1
µB), muon spin relaxation still indicates time-reversal
(TR) symmetry breaking thereby ruling out quadrupo-
lar order [18]. To account for the experimental mea-
surements a ferro-octupolar (FO) ordered GS was pro-
posed [7, 12, 13, 20], involving a coupling between the
lower Eg and excited T2g states mediated by quadrupo-
lar operators. This model reproduces a spin-gap observed
in the excitation spectra [7, 12] and is overall reasonably
compatible with the experimental scenario, but it makes
use of some problematic assumptions. Only a subset
of inter-site exchange interactions (IEI) allowed within
Jeff=2 is assumed to be non-zero. Moreover, the in-
cluded quadrupole IEI, which cannot be directly inferred
from experiment, are tuned to obtain the desired prop-
erties of the FO phase.

Inspired by the apparent adequacy of the experimen-
tally proposed FO state and aiming to decipher the
key aspects of FO ordering in 5d-electron systems we
propose in this Letter an alternative mechanism based
on a direct numerical calculations of all possible inter-
action channels by means of many-body first principles
schemes. Without forcing any pre-assumption on the
form of the effective Hamiltonian we find a ferro order
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of xyz octupoles determined by a competition between
time-even and octupolar IEI within solely the GS Eg dou-
blet. Importantly, employing an analysis that discrimi-
nates between direct exchange (DE) and superexchange
(SE) mechanisms we found that IEI are dominated by
SE through O-2p and Ba orbitals; 5d-5d DE contributes
only marginally. Our data correctly predict the observed
second-order phase transition, with computed ordering
temperature compatible with the experimental one, and
a gapped excitation spectra.

Effective Hamiltonian and methods. The effective
Hamiltonian for the low-energy degrees of freedom on
the Os sublattice is a sum of the IEI (HIEI) and rem-
nant crystal-field (rcf) terms:

Heff =
∑

〈ij〉

∑

KQK′Q′

V QQ
′

KK′ (∆Rij)O
Q
K(Ri)O

Q′

K′(Rj)+
∑

i

Hi
rcf ,

(1)

where the first sum is over all 〈ij〉 Os-Os bonds, OQK(Ri)
is the Hermitian spherical tensor [4] for J=2 of the
rank K = 1...4 and projection Q acting on Os site

at the position Ri, the IEI V QQ
′

KK′ (∆Rij) acts between
the multipoles KQ and K ′Q′ on two Os sites con-
nected by the lattice vector ∆Rij = Rj − Ri. Finally,
Hi
rcf = −Vrcf

[
O0

4(Ri) + 5O4
4(Ri)

]
is the remnant octa-

hedral CF [7], where OQK are the standard Stevens oper-
ators.

To derive the above Hamiltonian we use density func-
tional theory (DFT) [21] + dynamical mean-field theory
(DMFT) [22–25] treating the quantum impurity problem
on the Os 5d shells within the quasi-atomic Hubbard-I

(HI) approximation [26]. All IEI V QQ
′

KK′ (∆R) are com-
puted within the HI-based force-theorem approach (FT-
HI) [27]. Our DFT+HI calculations correctly predict the
expected Jeff = 2 GS multiplet, which is split by Hrcf

into the ground state Eg doublet and excited T2g triplet.
More details can be found in the Supplementary Materi-
als (SM) [28].

CF splitting and intersite exchange interactions. The
calculated CF splitting ∆rcf = 120Vrcf listed in Table I is
about 20 meV for all members, in agreement with specific
heat measurements and excitation gap inelastic neutron

scattering (INS) [7, 12, 16]. The computed IEI V QQ
′

KK′ are
displayed in Fig. 1 (for BZOO, similar data are obtained
for the other members, see SM). The largest values, ≈
3 meV are significantly smaller than ∆rcf , in agreement
with experiment [7, 12], implying that the ordered phase
will be determined by the IEI acting within the ground-
state Eg doublet.

The Eg space can be encoded by spin-1/2 operators
τα, with the Eg states corresponding to the projections
±1/2 of pseudo-spin-1/2. The resulting Eg Hamiltonian

HEg
=

∑

〈ij〉∈NN

∑

αβ

Jαβ(∆Rij)τα(Ri)τβ(Rj), (2)

FIG. 1: Color map of the inter-site exchange interac-

tions (IEI) V QQ
′

KK′ , eq. 1, in BZOO for the [1/2,1/2,0]
Os-Os pair. The IEI involving hexadecapoles (K=4) are

negligible and not included. The complete list of V QQ
′

KK′

for the three compounds is given in the SM [28].

is eq. 1 downfolded into the Eg space (see SM [28] for
details). Up to a normalization factor, τy is the oc-

tupole O−2
3 ≡ Oxyz; the corresponding IEI V 2̄2̄

33 di-
rectly maps into Jyy. τx and τz are combinations of
the eg quadrupoles (O2

2 and O0
2, respectively) with hex-

adecapoles of the same symmetry. Therefore, V 22
22 and

V 00
22 together with the corresponding hexadecapole IEI

contribute to Jxx and Jzz, respectively. Since the hex-
adecapole IEI are negligible their admixture reduces the
magnitude of time-even Jxx and Jzz (Sec. III in SM [28]).
Overall, the order in Eg space is determined by a com-
petition of the time-even (τx and τz) combinations of
quadrupoles and hexadecapoles with the time-odd xyz
octupole. There are, correspondingly, no IEI coupling τy
with τx or τz due to their different symmetry under the
time reversal.

Our calculated Eg IEI for the [1/2,1/2,0] lattice vector
are listed in Table I. There are no off-diagonal couplings
in this case – only Jαα are non-zero. The IEI for other
NN lattice vectors are obtained by transforming (τx,τz)
with the corresponding rotation matrices of the eg irre-

Compound ∆rcf Jyy Jzz Jxx

Ba2CaOsO6 17.1 -2.98 1.48 -0.61

Ba2MgOsO6 19.2 -2.93 1.67 -0.69

Ba2ZnOsO6 20.5 -1.71 1.35 -0.50

TABLE I: Remnant CF splitting ∆rcf and IEI Jαα
within the Eg doublet for the Os-Os [1/2,1/2,0] lattice
vector. All values are in meV.



3

ducible representation; Jyy is the dominant interaction
and, as expected, the same for all the NN bonds; its neg-
ative sign corresponds to a ferromagnetic coupling be-
tween xyz octupoles, as schematically shown in the inset
of Fig. 2. The magnitude of Jyy varies substantially be-
tween the systems, being about 40% smaller in BZOO as
compared to BMOO or BCOO. The IEI in the time-even
(τx,τy) space are smaller and positive (AF), leading to a
possible frustration on the fcc Os sublattice.

We note that our results are qualitatively different
from previous assumptions [9, 12], since we obtain a sig-
nificant value for the xyz octupolar IEI V 2̄2̄

33 in the Jeff
space, see Fig. 1. Since the xyz octupole is directly
mapped to τy, this results in large Jyy. In contrast,

Ref. 12 assumed zero V 2̄2̄
33 ; to obtain a resonable value for

effective Jyy through an ”excitonic” mechanism, a huge

quadrupole IEI Vxy−xy ≡ V 2̄2̄
22 ∼35 meV (in our spherical

tensor normalization) was employed, which is about 2 or-
ders of magnitude larger than the one predicted by our
calculations (see Fig. 1 and SM [28]). Ref. 9 considered
only Os-Os DE and found the Jyy IEI to be zero.

In order to discriminate between DE and various
SE contributions to the IEI we have developed an ap-
proach to exclude a chosen set of hopping processes from
IEI. This approach is based on expanding the down-
folded Os 5d orbitals onto a set of all relevant valence
states (Ref. [29], see SM [28] for details). This analysis
shows that the effect of Os-Os DE is insignificant (below
10%). The IEI are dominated by SE processes, involv-
ing hoppings through O-2p and Ba states (Supp. Table
II [28] ), with contributions of similar magnitude to both
quadrupolar and octupolar IEI. These results explain the
comparable strength of quadrupolar and octupolar IEI
in the Jeff = 2 space (Fig. 1 and SM [28]). The time-
even IEI in the Eg space are then further diminished by
the hexadecapoles admixture into τx and τz as discussed
above, resulting in a dominating xyz coupling Jyy (Ta-
ble I).

A dominating SE also naturally explains the weaker
IEI in BZOO as compared to two other systems. Substi-
tuting Mg or Ca at the M site by more electronegative
Zn results in a more covalent M -O bond that weakens
the Os-O bond through ”covalency competition”[30]. In
result, the principal Os-Os SE coupling through O and
Ba is reduced.

Ordered phase. From the first-principles effective
Hamiltonian (1) we evaluate the ordered phases and tran-
sition temperatures To within the mean-field approxima-
tion (MFA) [31]. All three systems exhibit a single 2nd

order phase transition into the FO xyz phase, as shown
in Fig. 2 where the zero-T limit corresponds to the FO
ground-state ordering energy. The only non-zero Jeff =2
multipoles at the FO ground state are 〈Oxyz〉 (fully sat-
urated at 1/

√
2 for the spherical tensor normalization)

as well as the ”40” and ”44” hexadecapoles arising due

FIG. 2: Mean-field total energy vs. temperature cal-
culated from the Hamiltonian (1), with the zero energy
corresponding to the ground state energy of Hrcf (Eg
doublet). The bold lines are the energies calculated from
the full Hamiltonian. The thin solid lines of the corre-
sponding colors are calculated with the IEI between xyz
octupoles set to zero. The insets depict the resulting
FO and AFQ orders.

to Hrcf and exhibiting no peculiarity at To. The quasi-
linear behavior of Etot above the To is due to the CF
term. The calculated values of the FO To (TFO

o in Ta-
ble II) systematically overestimate the experimental one
by about 80% due to the employed approximations (MFA
and HI), in line with previous applications of the FT-HI
framework [32–34], but the material dependent changes
are captured very well (TFOBCOO

o /TFOBZOO
o ≈ 1.6, while

TFOBCOO
o /TFOBMOO

o ≈ 1).

To explore competing time-even orders, we set the xyz
IEI to zero and obtain a planar AF order of the eg
quadrupoles and associated hexadecapoles, with ferro-
alignment of all order parameters (encoded by 〈τx〉 and
〈τz〉) within (001) planes that are AF-stacked in the [001]
direction. This structure (shown as inset in Fig. 2 as well
as in SM [28]) is in agreement with the quadrupolar order
previously predicted by Ref. [9]. The corresponding or-
dering temperature TAF

o are about 3 times smaller than
TFO
o (see Fig. 2 and Table II) Considering that this AF

order in the cubic phase is unstable against JT distor-
tions [9], the release of JT modes is expected to further
stabilise the AF phase, but most unlikely by a factor of 3.
No sign of JT distortions above 0.1% have been measured
in BCOO [7].

Generalized susceptibility and on-site excitations. In-
formation on the characteristic excitations of the FO
xyz order is encoded in generalized dynamical lattice
(χ(q, E)) and single-site (χ0(E)) susceptibility, that
we computed within the random phase approximation
(RPA), see Ref. 35 and SM [28]. The matrix elements
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Compound TFO
o TAF

o T exp
o ES ET

Ba2CaOsO6 89 29 49 17.7 25.9

Ba2MgOsO6 91 33 51 17.6 28.0

Ba2ZnOsO6 58 23 30 10.2 25.6

TABLE II: Calculated mean-field ordering tempera-
tures To (in K) for the FO xyz and time-even antiferro
(AF) phases compared to the experimental values from
Refs. 17 and 18. Last two columns: the energies (in meV)
of the singlet (ES) and triplet (ET ) excited levels of the
Jeff=2 multiplet in the FO xyz ground state.

χµµ
′

0 (E) are evaluated from the eigenvalues E and eigen-
states Ψ of the Jeff=2 manifold:

χµµ
′

0 (E) =
∑

AB

〈ΨA|Oµ|ΨB〉〈ΨB |Oµ′ |ΨA〉
EB − EA − E

[pA − pB ] ,

(3)
where A(B) labels five single-site eigenvalues and eigen-
states of the Hamiltonian (1), the combined index µ =
[K,Q] labels Jeff multipoles, and pA(B) is the corre-
sponding Boltzmann weight.

In the FO GS the Jeff=2 manifold is split into 3 levels
(Table II): singlet GS, first singlet (S) excited state (with
opposite sign of xyz octupole compared to GS and energy
proportional to IEI) and a high-energy T2g triplet (T) due
to ∆rcf further enhanced by IEI (cf. Tab. I). In contrast
to the Eg doublet, the T2g triplet degeneracy is not lifted
by the xyz exchange field, since the direct product T2g×
T2g does not contain the irreducible representation A2u

of the xyz octupole.
We find that only eg quadrupoles and hexadecapoles

connect the GS with the first excited S state, and since
the IEI matrices do not couple time-odd and time-even
multipoles, this S excitation can induce only time-even
contributions to the RPA lattice susceptibility χ(q, E).
In contrast, the matrix elements 〈ΨGS |Oµ|ΨT 〉 between
GS and T levels take non-zero values for many odd and
even multipoles (see inset in Fig. 3a).

Inelastic neutron-scattering (INS) cross-section. To
provide further evidence directly comparable with avail-
able measurements [7], from the knowledge of χ(q, E) we
compute the magnetic contribution to the INS differen-
tial cross-section:

d2σ

dΩdE′
∝
∑

αβ

(δαβ − qαqβ)


∑

µµ′

Fαµ(q)Fβµ′(q)Imχµµ′(q, E)


 , (4)

where we drop unimportant prefactors. In order to take
into account the octupole contributions into the INS

cross-sections, the form-factors Fαµ(q) are evaluated be-
yond the dipole approximation on the basis of Refs. 36
and 37 (for more details see SM [28]).

The calculated powder-averaged (averaged over q di-
rections) INS cross-section for BZOO is displayed in
Fig 3a (the similar results for BCOO and BMOO are
given in SM). One clearly observes a band of CF excita-
tions above 20 meV, in agreement with the magnitude of
ET . However, below the CF band one sees no features
corresponding to transitions to the lower-energy S exci-
tation. As only odd-time multipoles contribute to the
magnetic neutron scattering, this result can be antici-
pated from the structure of on-site excitations in the FO
xyz phase.

We conclude by showing the effect of minuscule tetrag-
onal distortions δ on the INS spectrum. The remnant CF
potential acting on the Jeff=2 multiplet in the distorted
structure becomes Hi

rcf = −Vrcf
[
O0

4(Ri) + 5O4
4(Ri)

]
+

VtO0
2(Ri), where the tetragonal contribution Vt = Ktδ.

Using BZOO as case material, we perform a series of
DFT+HI calculations for tetragonally-distorted BZOO
for δ in the range -0.5 to 0.5% extracting Kt =266 meV
(see SM). Then, we add

∑
iKtδO0

2(Ri) to the Hamilto-
nian (1) and solve it in the MFA for small values of δ
up to 0.1%. We observe the same transition into the FO
xyz order with To about 58 K as in the initial case. The
only difference is that 〈Oz2〉 is non-zero, reaching about
1/4 of its saturated value for δ =0.1% and an order of
magnitude less for δ =0.01%. In the case of tetragonal
compression (δ <0) we obtain the same 〈Oz2〉magnitudes
with opposite sign. The important point is that the GS
and excited singlet ΨS now feature non-zero matrix ele-
ment for the time-odd xyz, 〈ΨGS |Oxyz|ΨS〉 ∝ 〈Oz2〉GS .
Therefore, magnetic excitations across the gap become
possible (see inset in Fig. 3b) and should be, in principle,
visible by INS.

We evaluated the powder-averaged INS cross-section
for a set of small distortions (δ = ±0.1% and δ =

±0.01%). We then integrate δ2σ(q,ω)
dΩdE′ over the same range

of q and E as the experimental INS spectra (Fig. 1 in
Ref. 7). In the resulting cross-section shown in Fig 3b
the contribution of magnetic scattering across the ex-
change gap is completely negligible for δ = ±0.01%. For
the larger distortion (δ = ±0.1%) a narrow peak emerges
at E ≈10 meV, also visible in experimental INS data [7].
This peak has a small, but not negligible intensity as
compared to the crystal-field excitations. The onset of
the latter is shifting below 20 meV with increasing dis-
tortions (Fig. 3b).

Conclusions. Our first principles calculations provide
robust qualitative and quantitative evidence of a purely
ferro order of xyz octupoles in d2 DPs [7, 12, 38], de-
termined by a competition between the time-even and
octupolar IEI within the ground-state Eg doublet, alter-
native to previous models based on unrealistically large
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FIG. 3: (a) Color map of the calculated powder-averaged INS differential cross-section in cubic BZOO as a function
of the energy transfer E and momentum transfer q. Inset: on-site splitting of Jeff=2 levels in the ferro-octupolar
phase. Allowed time-even and time-odd transitions between the levels are schematically shown by blue and red
arrows, respectively. (b) q-integrated INS differential cross-section of BZOO for the tetragonal distortions δ = ±0.1%
and ±0.01%. An exchange peak at about 10 meV is clearly seen for the larger distortion. The onset of crystal-
field excitations is seen above 18-20 meV. Inset shows the corresponding Jeff=2 level scheme with a time-odd (xyz)
transition (pale red arrow) between the ground-state (GS) and singlet (S) levels turned on by the distortions.

quadrupolar coupling. Our study reveals the role of
superexchange as the main mechanism for triggering the
formation of octupolar ordering in spin-orbit coupled 5d
oxides. The obtained ordering temperatures are con-
sistent with material-dependent trends. The simulated
INS spectrum correctly reproduces the CF excitations in
the cubic phase, and small tetragonal distortions are nec-
essary to activate the Oxyz octupole operator connecting
the exchange-split ground and first excited states to gen-
erate the measured exchange peak [7].
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I. FIRST PRINCIPLES METHODS

A. DFT+HI

In order to evaluate the effective Hamiltonian from first principles, we start by calculating the electronic structure
of paramagnetic Ba2MOsO6 with the DFT+dynamical mean-field theory(DMFT) method. The quantum impurity
problem for the whole Os 5d shell is solved within the quasi-atomic Hubbard-I (HI) approximation1; the method
is abbreviated below as DFT+HI. We employ a self-consistent DFT+DMFT implementation2–4 based on the full-
potential LAPW code Wien2k5 and including the spin-orbit with the standard variational treatment. Wannier orbitals
representing Os 5d orbitals are constructed from the Kohn-Sham (KS) bands in the energy range [-1.2:6.1] eV relative
to the KS Fermi level; this energy window includes all t2g and eg states of Os but not the oxygen 2p bands.

The whole Os 5d shell is retained in the DMFT impurity problem, with the on-site Coulomb repulsion defined for
this shell using the Slater parameters F 0, F 2 and F 4 together with a standard assumption6 for the ratio F 4/F 2=0.625.
The on-site Coulomb vertex in this case is fully determined by two parameters: U = F 0 and JH = (F 2 + F 4)/14.
We use U = F0 = 3.2 eV for the BMOO and BZOO; for BCOO we employ a slightly larger value of U =3.5 eV to
stabilize the d2 ground state in DFT+HI. We use JH=0.5 eV for all three compounds. Our values for U and JH
are consistent with previous calculations of d1 Os perovskites by DFT+HI7 and with experimental estimates (e. g.
U∼3.2 eV by Ref.8). The Kanamori parametrization is often employed in the literature to define the t2g Coulomb
vertex; the corresponding Kanamori Hund’s rule coupling JKH ≈ 0.77JH

9. Our value of JH =0.5 eV thus corresponds
to JKH =0.385 eV; it is within the range of experimental estimates of JKH = 0.2 to 0.4 eV for 5d ions10–12. We have
also performed test calculations for BZOO with JH varied in the range from 0.2 to 0.5 eV; changing JH does not
affect the qualitative picture of a ferro-octupolar ground state.

All calculations are carried out for the experimental cubic lattice structures of Ba2MOsO6, the lattice parameter
a =8.346, 8.055, and 8.082 Å for M =Ca, Mg, and Zn, respectively13,14. We employ the local density approxima-
tion as the DFT exchange-correlation potential, 400 k-point in the full Brillouin zone, and the Wien2k basis cutoff
RmtKmax =8. The double-counting correction is evaluated using the fully-localized limit with the nominal 5d shell
occupancy of 2.

B. Calculations of inter-site exchange interactions (IEI)

In order to evaluate all IEI V QQ
′

KK′ (∆R) acting within Jeff=2 manifold, we employ the HI-based force-theorem
approach of Ref. 15 (abbreviated below as FT-HI). Within this approach, the matrix elements of IEI V (∆R) coupling
Jeff=2 shells on two Os sites read

〈M1M3|V (∆R)|M2M4〉 = Tr

[
G∆R

δΣatR+∆R

δρM3M4

R+∆R

G−∆R
δΣatR

δρM1M2

R

]
, (1)

where ∆R is the lattice vector connecting the two sites, M = −2...2 is the projection quantum number, ρ
MiMj

R is the

corresponding element of the Jeff density matrix on site R,
δΣat

R

δρ
MiMj
R

is the derivative of atomic (Hubbard-I) self-energy
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ΣatR over a fluctuation of the ρ
MiMj

R element, GR is the inter-site Green’s function. The self-energy derivatives are
calculated with analytical formulas from atomic Green’s functions. The FT-HI method is applied as a post-processing
on top of DFT+HI, hence, all quantities in the RHS of eq. 1 are evaluated from the fully converged DFT+HI electronic
structure of a given system.

Once all matrix elements (1) are calculated, they are directly mapped into the corresponding couplings V QQ
′

KK′ (∆R)
between on-site moments (eq. 22 in Ref. 15). To have a correct mapping into the Jeff pseudo-spin basis the phases
of |JeffM〉 are aligned, i. e. they are chosen such that 〈JeffM |J+|JeffM − 1〉 is a real positive number.

The calculations of IEI within the Eg space proceed in the same way starting from the same converged DFT+HI

electronic structure. The density matrices fluctuations ρ
MiMj

R are restricted within the Eg doublet, and M = ± 1
2 .

In the converged DFT+HI electronic structure the chemical potential µ is sometimes found to be pinned at the
very top of the valence (lower Hubbard) band instead of being strictly inside the Mott gap. Since the FT-HI method
breaks down if any small metallic spectral weight is present, in those cases we calculated the IEI with µ shifted into
the gap.

C. Generalized dynamical susceptibility.

We evaluated the generalized dynamical susceptibility in the FO xyz ordered state using the random phase approx-
imation (RPA), see, e. g., Ref.16. Within the RPA, the general susceptibility matrix in the Jeff=2 space reads

χ̄(q, E) =
[
I − χ̄0(E)V̄q

]−1
χ̄0(E), (2)

where χ̄0(E) is the on-site bare susceptibility, V̄q is the Fourier transform of IEI matrices V̂ (∆R), the bar .̄.. designates

a matrix in the combined µ = [K,Q] index labeling Jeff multipoles Notice, that V̂ (∆R) and, correspondingly, Vq do
not couple time-odd and time-even multipoles. The on-site susceptibility χ̂0(E) is calculated in accordance with eq. 3
of the main text.

II. INTERSITE EXCHANGE INTERACTIONS IN THE Jeff=2 SPACE

The IEI between Jeff=2 multipoles for a pair of Os sites form a 24×24 matrix V̂ (∆R), since Kmax(Kmax + 2)=24
with Kmax = 2Jeff . In Supplementary Table I we list all calculated IEI in the three systems with magnitude above
0.05 meV. The IEI are given for the [0.5,0.5,0.0] Os-Os nearest-neighbor lattice vector. The calculated next-nearest-
neighbor interactions are at least one order of magnitude smaller than the NN one; longer range IEI were neglected.

The IEI between hexadecapoles as well as between hexadecapoles and quadrupoles are below this cutoff and not
shown. The same applies to the next-nearest-neighbour IEI, which are all below 0.05 meV in the absolute value.

III. PROJECTION OF Jeff=2 MULTIPOLAR OPERATORS INTO THE Eg SPACE

In the |Jeff = 2,M〉 basis the pseudo-spin-1/2 states of Eg ground-state doublet read

| ↑〉 = |2, 0〉; | ↓〉 = (|2,−2〉+ |2, 2〉) /
√

2. (3)

The resulting Eg Hamiltonian is then related to the Jeff=2 one (eq. 1 of main text) by the projection

HEg = P̂HIEI P̂
T =

∑

〈ij〉∈NN

∑

αβ

Jαβ(∆Rij)τα(Ri)τβ(Rj), (4)

where the rows of projection matrix P are the Eg states in Jeff = 2 basis (3), τα is the spin-1/2 operator for α = x,y,
or z.

Only six Jeff=2 multipoles out of 24 have non-zero projection into the Eg space; those projections expanded into
the spin-1/2 operators are listed below. Namely, there are two quadrupoles

O0
2 ≡ Oz2 → 2

√
2/7τz, O2

2 ≡ Ox2−y2 → 2
√

2/7τx,

the xyz octupole

O−2
3 ≡ Oxyz → −

√
2τy,
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Supplementary Table I: Calculated IEI V QQ
′

KK′ for the Jeff=2 multiplet. First two columns list Q and Q′ ,
respectively. Third and fourth column displays the KQ and K ′Q′ tensors in the Cartesian representation,

respectively. The three last columns display the values of IEI for BCOO, BMOO, and BZOO in meV.

Dipole-Dipole BCOO BMOO BZOO

-1 -1 y y 1.62 1.47 0.97

0 0 z z 4.17 4.12 2.96

1 -1 x y 1.26 1.42 1.02

1 1 x x 1.62 1.47 0.97

Quadrupole-Quadrupole

-2 -2 xy xy -0.41 -0.52 -0.31

-1 -1 yz yz -0.79 -0.75 -0.60

0 -2 z2 xy 0.16 0.07 0.07

0 0 z2 z2 1.32 1.49 0.99

1 -1 xz yz -0.23 -0.22 -0.19

1 1 xz xz -0.79 -0.75 -0.60

2 2 x2-y2 x2-y2 -0.58 -0.65 -0.48

Octupole-Octupole

-3 -3 y(3x2-y2) y(3x2-y2) 1.16 1.25 1.24

-2 -2 xyz xyz -1.49 -1.47 -0.85

-1 -3 yz2 y(3x2-y2) -0.14 -0.19 -0.21

-1 -1 yz2 yz2 0.80 0.81 0.33

0 -2 z3 xyz -0.79 -0.88 -0.57

0 0 z3 z3 2.35 2.42 1.33

1 -3 xz2 y(3x2-y2) -0.29 -0.37 -0.38

1 -1 xz2 yz2 -0.98 -1.12 -0.82

1 1 xz2 xz2 0.80 0.81 0.33

2 2 z(x2-y2) z(x2-y2) -1.89 -2.00 -1.42

3 -1 x(x2-3y2) yz2 0.29 0.37 0.38

3 1 x(x2-3y2) xz2 0.14 0.19 0.21

3 3 x(x2-3y2) x(x2-3y2) 1.16 1.25 1.24

Dipole-Octupole

-1 -3 y y(3x2-y2) -0.07 -0.06

-1 -1 y yz2 1.97 1.92 0.93

-1 1 y xz2 -0.20 -0.23 -0.27

-1 3 y x(x2-3y2) -0.89 -1.01 -0.99

0 -2 z xyz -0.97 -1.29 -1.19

0 0 z z3 2.38 2.19 1.04

1 -3 x y(3x2-y2) 0.89 1.01 0.99

1 -1 x yz2 -0.20 -0.23 -0.27

1 1 x xz2 1.97 1.92 0.93

1 3 x x(x2-3y2) 0.07 0.06
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as well as three hexadecapoles

O0
4 →

√
7/40I −

√
5/14τz, O2

4 →
√

6/7τx, O4
4 → (1/

√
8)I + (1/

√
2)τz.

The O0
4 and O4

4 hexadecapoles contribute to the remnant CF Hrcf ; they have, correspondingly, non-zero traces in the
Eg space. Hence the presence of ”monopole” (unit 2× 2 matrix) I in their projections to Eg. To simplify subsequent
expressions one may transform the hexadecapolar operators into a symmetry-adapted basis:

(
OI4
Oz4

)
=

(
cos θ sin θ
− sin θ cos θ

)(
O0

4

O4
4

)
, (5)

where θ = arccos(
√

7/12). The transformed operators have the following projections into the Eg space:

OI4 →
√

3/10I, Oz4 →
√

6/7τz.

Substituting those expressions for the relevant multipoles into the effective Hamiltonian Heff (eq. 1 of the main
text) one may derive explicit formulas for the Eg IEI in terms of the Jeff=2 IEI:

Jyy = 2V 2̄2̄
33 , (6)

Jzz = 2

[
4

7
V 20

20 +
4
√

3

7
V 2z

24 +
3

7
V zz44

]
, (7)

Jxx = 2

[
4

7
V 22

22 +
4
√

3

7
V 22

24 +
3

7
V 22

44

]
, (8)

where we drop the R argument in V QQ
′

KK′ (R) for brevity. V 2z
24 and V zz44 are the IEI transformed to the symmetry-

adapted basis (5). The overall prefactor 2 is due to different normalizations of the spin operators and the spherical
tensors.

One sees that the xyz octupole IEI directly maps into Jyy. In contrast, Jzz and Jxx are combinations of quadrupole
and hexadecapole IEI. Since the IEI involving hexadecapoles are small (see Sec. II), Jxx and Jzz are essentially given
by the two corresponding quadrupolar IEI in the Jeff=2 space. However, the admixture of hexadecapole IEI into

Jxx and Jyy leads to a reduced prefactor for the quadrupole contributions. Hence, one sees that Jyy is equal to 2V 2̄2̄
33 ,

while Jxx and Jzz are essentially given by 8/7 of the corresponding quadrupolar couplings, V 22
22 and V 00

22 , in Jeff=2.
By comparing the data in Table I of the main text with Supp. Table I one see that this result holds for the IEI

evaluated numerically using the FT-HI approach.

IV. FORMALISM FOR THE INELASTIC NEUTRON-SCATTERING (INS) CROSS-SECTION
BEYOND THE DIPOLE APPROXIMATION

A. INS cross-section through generalized multipolar susceptibility

We start with the general formula for the magnetic neutron-scattering cross-section16,17 from a lattice of atoms:

d2σ

dΩdE′
= r2

0

k′

k

∑

n,n′

Pn|〈n′|Q̂⊥t (q)|n〉|2δ(~ω + En − En′), (9)

where r0 =-5.39·10−13 cm is the characteristic magnetic scattering length, k and k′ are the magnitudes of initial and
final neutron momentum, |n〉 and |n′〉 are the initial and final electronic states of the lattice, En and En′ are the
corresponding energies, Pn is the probability for the lattice to be in the initial state |n〉. We consider the case of INS

with the energy transfer to the system ~ω 6=0. Finally, Q̂⊥t (q) is the neutron scattering operator, which is a sum of
single-site contributions:

Q̂⊥t (q) = q×
(∑

i

Q̂i(q)eiqRi

)
× q. (10)
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The single-site one-electron operator Qi(q) at the site i reads

Q̂i(q) = Q̂is(q) + Q̂io(q) =
∑

j

eiqrj
[
ŝj −

i

q2
(q× p̂j)

]
, (11)

where the sum includes all electrons on a partially-filled shell, rj is the position of electron j on this shell with respect

to the position Ri of this lattice site, p̂j is the momentum operator acting on this electron. The on-site operator Q̂i

consists of the spin Q̂is(q) and orbital Q̂io(q) terms. We note that Q̂, as any one-electron operator acting within
an atomic multiplet with the total momentum J , can be decomposed into many-electron multipole operators of that
multiplet18:

Q̂αi (q) =
∑

µ

Fαµ(q)Oµ(Ri), (12)

where α = x, y, or z, Oµ(Ri) is the spherical tensor operator for the multipole µ ≡ {K,Q} of the total momentum
J acting on the site i, and Fαµ(q) is the corresponding form-factor. In contrast to the usual dipole form-factors
depending only on the magnitude q of the momentum transfer, for a general multipole µ it may also depend on the
momentum transfer’s direction. Since Q̂ is a time-odd operator, only multipoles with odd K contribute into (12).

By inserting (12) into (10) and then the resulting expression for Q̂⊥t (q) into (9), one obtains an expression for the
magnetic INS cross-section through the form-factors and matrix elements of the multipole operators:

d2σ

dΩdE′
= r2

0

k′

k

∑

ii′

∑

n,n′

Pn〈n|q×
(∑

µ

FµOµ(Ri)

)
× q|n′〉〈n′|q×


∑

µ′

Fµ′Oµ′(Ri′)


× q|n〉δ(~ω +En −En′), (13)

where Fµ is the 3D vector of form-factors for the multipole µ. Finally, using the same steps as in the standard
derivation of the cross-section within the dipole approximation16 we obtain the following expression for the magnetic
INS cross-section of non-polarized neutrons:

d2σ

dΩdE′
= r2

0

k′

k

∑

αβ

(δαβ − qαqβ)


∑

µµ′

Fαµ(q)Fβµ′(q)
1

2π~
Sµµ′(q, E)


 , (14)

where the dynamic correlation function Sµµ′(q, E) for q and the energy transfer E = ~ω is related to the generalized
susceptibility χ̄(q, E) (eq. 2 above) by the fluctuation-dissipation theorem:

Sµµ′(q, E) =
2~

1− e−E/T χ
′′
µµ′(q, E), (15)

where T is the temperature, and the absorptive part of susceptibility χ′′µµ′(q, E) = Imχµµ′(q, E) in the relevant case

of a cubic lattice structure with the inversion symmetry. We then insert (15) into (14) omitting the detalied-balance
prefactor 1/(1 − e−E/T ) ≈ 1 for the present case of a near-zero temperature and a large excitation gap. We also
omit the constant prefactors and the ratio k′/k, which depends on the initial neutron energy in experiment, and thus
obtain eq. 5 of the main text.

B. Calculations of the form-factors

In order to evaluate the form-factors Fαµ(q) one needs the matrix elements

〈lms|Q̂(q)|lm′s′〉 (16)

of the one-electron neutron scattering operator (11) for the 5d shell (l=2) of Os6+ (l, m, and s are the orbital, magnetic
and spin quantum numbers of one-electron orbitals, respectively). We compute those matrix elements employing the

analytical expressions for the spin and orbital part of Q̂(q) that are derived in chap. 11 of the book by Lovesey17;
they are succinctly summarized by Shiina et al.18. Notice that in eqs. 13 and 14 of Ref. 18 the matrix elements are
given for the projected operator q×Q̂(q)×q, but they are quite simply related to those of unprojected Q̂(q) (see also
eq. 11.48 in Ref. 17). The radial integrals 〈jL(q)〉 for the Os6+ 5d shell, which enter into the formulas for one-electron
matrix elements, were taken from Ref. 19 .
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Supplementary Figure 1: q-dependent prefactor (17) for the elastic neutron scattering along the direction [100] in
the q space, for the saturated |22〉 state of the Os6+ Jeff=2 multiplet. The meaning of various curves is explained

in the text

In order to obtain matrix elements of Q̂(q) for many-electron states from the one-electron ones (16), Refs. 17,18,20
generally assume a certain coupling scheme for a given ion (LS or jj). Instead we simply use the atomic two-electron
states of Os6+ Jeff=2 shell as obtained by converged DFT+HI for a given Ba2MOsO6 system to calculate those
matrix elements numerically for each point of the q-grid. Since the two-electron atomic eigenstates are expanded in
the Fock space of (lms) orbitals, such calculation is trivial. The resulting matrices in the Jeff space with matrix

elements QMM ′
α (q) = 〈JeffM |Q̂α(q)|JeffM ′〉 are then expanded in the odd Jeff multipoles in accordance with (12)

to obtain the form-factors Fαµ(q) for each direction α.

C. Form-factors for the saturated M = J state of the Jeff=2 multiplet

As an example of application of the approach described above, let us consider the neutron-scattering form-factors
for the saturated |J = 2,M = J〉 ≡ |JJ〉 state of the Os6+ 5d2 Jeff=2 multiplet. We evaluate the corresponding
q-dependent prefactor for elastic scattering

A(q) =
∑

αβ

(δαβ − qαqβ) 〈Q̂α(q)〉JJ〈Q̂β(q)〉JJ , (17)

for the case of |JJ〉 ground state (which is, of course, not realized in the actual Ba2MOsO6 systems); Q̂α(q) is the

neutron-scattering operator (11) for the direction α, by 〈X̂〉JJ we designate the expectation value of an operator X

in the |JJ〉 state, 〈X̂〉JJ ≡ 〈JJ |X̂|JJ〉 . We consider q along the [100] direction; corresponding A(q) vs. q obtained
by direct evaluation of the matrix elements using (16) is shown in Supplementary Fig. 1 by dots. It can be compared
with the same prefactor (shown in Supplementary Fig. 1 in magenta) calculated within the dipole approximation for
matrix elements:

〈Q̂(q)〉JJ '
1

2
[〈j0(q)〉〈L + 2S〉JJ + 〈j2(q)〉〈L〉JJ ] , (18)
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where L and S are orbital and spin moment operators, respectively, 〈jl(q)〉 are the radial integrals19 of the spherical

Bessel function of order l for Os6+. Of course, within the dipole approximation (18) the matrix elements of Q̂ depend
only on the absolute value q of momentum transfer. The total Mtot = 〈L + 2S〉JJ and orbital ML = 〈L〉JJ magnetic
moments are equal to 0.39 and -1.49, respectively. The oscillatory behavior of A(q) is thus due to |Mtot| � |ML| in
conjunction with 〈j0(q)〉 being ever decreasing function and 〈j2(q)〉 of Os6+ peaked at non-zero q ≈4 Å−1. One may
notice that A(q) calculated beyond the dipole approximation exhibits even much stronger oscillations reaching the
overall maximum at large q ≈5 Å−1. Overall the dipole approximation is reasonable for q <2 Å−1; it underestimates
very significantly the magnitude of A(q) for larger q .

Let us now evaluate the same quantity (17) using the multipole form-factors (12). The |JJ〉 state has only two
non-zero odd-time multipoles: the dipole 〈Oz〉JJ=0.632 and the octupole 〈Oz3〉JJ=0.316. For those multipoles and
q||[100] only the form-factors for the direction z are non-zero. Thus by inserting (12) into (17) one obtains:

A(q) = F 2
zz(q)〈Oz〉2JJ + F 2

zz3(q)〈Oz3〉2JJ + 2Fzz(q)Fzz3(q)〈Oz〉JJ〈Oz3〉JJ = Add(q) +Aoo(q) +Ado(q). (19)

One sees that the total value of A(q) thus calculated (red line in Supplementary Fig. 1) coincides, as expected, with

that obtained by the direct evaluation of the Q̂ matrix elements. The advantage of using the multipole form-factors
is that one may separate total A(q) into contributions due to different multipoles and their mixtures. In the present
case one obtains (Supplementary Fig. 1) a large oscillatory dipole contribution Add(q), a small octupole contribution
Aoo(q) exhibiting a shallow peak at q ≈3 Å−1, and mixed dipole-octupole Ado(q) with the magnitude comparable to
that of Add(q).

V. INS CROSS-SECTION OF BCOO AND BMOO

In Supp. Fig. 2 we display the calculated powder-averaged INS cross-section for cubic BCOO and BMOO, the
analogous data for BZOO are shown in Fig. 3a of the main text. As in the case of BZOO, only crystal-field excitations
contribute to the INS, with no discernible scattering intensity present below 20 meV.

VI. TETRAGONAL CRYSTAL FIELD IN DISTORTED BZOO

In order to evaluate the dependence of tetragonal crystal field (CF) on the corresponding distortion in BZOO we have
carried out self-consistent DFT+HI calculations for a set of tetragonally distorted unit cells. In these calculation we
employed the tetragonal body-centered unit cell, which lattice parameters are a′ = a/

√
2 and c = a for an undistorted

cubic lattice with the lattice parameter a. The tetragonal distortion was thus specified by δ = c/a−1 = c/(
√

2a′)−1.
Other parameters of those calculations (U , JH , the choice of projection window) are the same as for the cubic structure
(Supps. Sec. I).

The local one-electron Hamiltonian for an Os 5d shell in a tetragonal environment reads

H1el = E0 + λ
∑

lisi + L0
2T̂

0
2 + L0

4T̂
0
4 + L4

4T̂
4
4 , (20)

where the first two terms in the RHS are the uniform shift and spin-orbit coupling. The last three terms represent
the CF through the one-electron Hermitian Wybourne’s tensors T qk (see, e. g., Ref.21 for details). The term L0

2T̂
0
2

arises due to the tetragonal distortion. By fitting the matrix elements of (20) to the converged Os 5d one-electron
level positions as obtained by DFT+HI for a given distortion δ we extracted21 the tetragonal CF parameter L0

2 vs. δ.
The resulting almost perfect linear dependence for small δ is shown in Supplementary Fig. 3, giving L0

2 = K ′δ with
K ′ = −13.3 eV.

Within the Os d2 Jeff=2 multiplet the one-electron tensor T̂ 0
2 can be substituted by the corresponding Stevens

operator T̂ 0
2 = −0.020O0

2, where O0
2 = 3J2

z −Jeff (Jeff +1). In result, for the tetragonal CF parameter in the Stevens
normalization Vt = Kδ one obtains K = −0.020K ′ = 266 meV.

VII. PROJECTIVE ANALYSIS OF INTER-SITE EXCHANGE INTERACTIONS

A. Formalism

In our DFT+HI approach the 5d states are represented by ”extended” Wannier orbitals (EWO) |wmσ〉, where m
and σ are the magnetic quantum number and spin, formed by 5d-like Os bands that are heavily hybridized with
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Supplementary Figure 2: Color map (in arb. units) of the calculated powder-averaged INS differential cross-section
in BCOO (top) and BMOO (bottom) as a function of the energy transfer E and momentum transfer q.

O-2p (and, possibly, with other states). The use of such EWO within DFT+HI allows one to effectively accounts for
the hybridization (ligand) contribution to the crystal field, though this contribution is not directly included within
the quasi-atomic HI approximation. Therefore, one obtains a reliable description of the crystal-field splitting in both
correlated oxides22,23 and intermetallics21,24. However, all hopping processes between 5d shells – whether direct or
indirect – are in this case downfolded into effective hopping between those extended Os-5d states. Hence, one cannot
directly separate various super-exchange and direct-exchange contributions to IEI.

In order do disentangle different contribution to inter-site exchange interactions (IEI) we thus adopted the projective
approach of Ref.21, see Appendix F therein. Namely, we introduce a large set of WO representing all orbitals
contributing into the bands in the energy window W =[-1.2:6.1] eV that is employed to form the EWO. We label WO
of the large set |w̃Λ〉 introducing the combined index Λ ≡ αlmσ, where α and l are the atomic site and orbital quantum
number, respectively. These Wannier functions in k-space are obtained from the KS bands by the projection2,25

|w̃Λ(k)〉 =
∑

ν∈W̃
P̃Λν(k)|ψν(k)〉, (21)

where ν labels KS bands within the energy window W̃ chosen for constructing the large WO (LWO) set, |ψν(k)〉 are

the corresponding KS states. Since this set includes many orbitals it is essential to choose W̃ sufficiently wide so that
it includes all corresponding bands. Within the small window W, the LWO set is approximately complete with all
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Supplementary Figure 3: Calculated crystal field parameter L20 vs. tetragonal distortion δ = c/a− 1 in BZOO. The
circles are calculated points, the line is a linear regression fit.

characters contributing to the bands within this range included. Hence, within the windowW the projection matrices
ˆ̃P in (21) become essentially unitary21, and (21) can be inverted as

|ψν(k)〉 ≈
∑

Λ

P̃ ∗Λν(k)|w̃Λ(k)〉. (22)

In result, the two set of WO are shown to be related by a projection:

|wmσ(k)〉 ≈
∑

Λ

UmσΛ (k)|w̃Λ(k)〉, (23)

where the matrix elements UmσΛ (k) =
∑
ν∈W Pmσν(k)P̃ ∗Λν(k), Pmσν are the projection matrices for the EWO.

The projection matrix Û is thus rectangular with the rows labeled by mσ and columns labeled by Λ. We introduce

M̂(k) = Û(k)Û†(k), (24)

which becomes a unit matrix in the EWO space if the condition (22) is fulfilled (as can be easily shown from the
orthonormality of the EWO set).

Let us now rewrite the FT-HI eq. (1) for IEI through Fourier-transformed inter-site Green’s functions (GF) inserting

the M̂ matrices around each GF:

〈M1M3|V (∆R)|M2M4〉 =
∑

kk′

ei(k
′−k)∆RTr

[
M(k)GkM(k)

δΣat

δρM3M4
M(k′)Gk′M(k′)

δΣat

δρM1M2

]
, (25)

where we dropped R labels for on-site self-energies, since in the present case all Os sites are equivalent. Defining
GPk = M(k)GkM(k) and performing the Fourier transforms one obtains back eq. 1 with G∆R substituted by

GP∆R =
∑

k

M̂(k)GkM̂(k)e−ik∆R. (26)

Obviously, if all large-window orbitals are included and (22) is fulfilled exactly then GP∆R is simply G∆R. The essential

idea is that a subset of LWO can be excluded from the projection matrix Û(k) by setting the corresponding columns
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to zero. In this case the matrix M̂ is not a unit matrix. As one sees from eqs. 23, 24 and 26 this corresponds to
excluding some sites/orbitals from hopping processes encoded by the inter-site GF. Hence, the resulting IEI will be
obtained with those hopping processes suppressed. In this way one may evaluate the relative importance of various
contributions to the IEI.

B. Results

We constructed LWO sets for BZOO and BMOO from the Kohn-Sham band structure obtained with the converged
DFT+HI charge density. We chose the orbitals to be included by inspecting the KS DOS within the window W:
all characters giving a non-negligible contribution were included. In result, Os-5d, O-2p, Ba-6s, 6p, and 5d as well
as Zn-4s, 4p and 3d were included for BZOO; in the case of BMOO Mg-3s and 3p were included instead of the Zn
orbitals. We employed the windows [-9.5:12.2] eV and [-9.5:13.6] eV for BZOO and BMOO, respectively. We evaluated

the matrices M̂(k) with all LWO included using (24); the resulting matrices were almost equal to the unit one, with
the diagonal elements deviating at most by about 0.01 from the unity. Hence, the LWO space is quite close to being
a complete one.

We subsequently calculated all IEI within the Jeff=2 space using those M̂(k) in (26); the resulting values of the
IEI relevant for the Eg doublet space – the eg quadrupole and xyz octupole ones – are listed in third column of Supp.
Table II. By comparing them with the corresponding values obtained using the standard FT-HI formalism (Supp.
Table I) one finds a good quantitative agreement with a deviation of at most 10% and all qualitative tendencies well
reproduced.

We then reevaluated the IEI excluding certain orbitals from the projection matrix Ûk by setting the corresponding
columns to zero. This corresponds to excluding certain hopping processes from contributing into the downfolded
inter-site GF GP∆R. The results are displayed in columns 4-7 of Supp. Table II.

In particular, by keeping only Os-5d in the LWO set one may extract the direct-exchange (DE) contribution to IEI.
One sees (4th column) that the contribution due to the direct Os-5d-to-Os-5d hopping is insignificant being less than
10% in all cases. Hence, the DE, which was assumed by Ref.26 to be the only important inter-site exchange in those
DP, is of marginal importance. The IEI in those systems are thus due to the super-exchange (SE).

In order to estimate the relative importance of various SE processes we excluded in turn O-2p, all Ba, and all
M -site (Zn or Mg) LWO, in each case keeping all other LWO. We note that contributions of various hopping processes
into IEI are not additive (i. e., one cannot obtain the total value by summing up contributions due to various LWO
included separately). However, by excluding certain set of orbitals one may evaluate the total contribution of all SE
processes involving those orbitals. Hence, to evaluate the importance of SE involving the excluded orbitals one needs
to compare the IEI values calculated without them with the corresponding values obtained including all LWO (third
column). One thus finds that the SE processes involving the M site (Zn or Mg) contribute little, since excluding the
M -site orbitals modifies the IEI rather weakly. As expected, the SE involving O-2p are crucial, hence, excluding those
states leads to a drastic reduction in the IEI. More interestingly, Ba orbitals seem also to provide a very significant
contribution into the IEI (column 6).

One may thus conclude that the IEI interactions in these DP are determined by SE involving oxygen O-2p and Ba
states.

Finally, we argue that the stronger IEI in BCOO and BMOO as compared to BZOO should be attributed to a more
covalent Os-O bonding in the former. The reduction of Os-O covalency in BZOO is reflected in a weaker ligand field
resulting, in accordance with our DFT+HI calculations, in a 10% smaller CF splitting between Os-5d t2g and eg in
BZOO as compared to BCOO and BMOO. This process can be understood in the context of the so-called ’covalency
competition’ mechanism, namely a competition in covalent bond formation among constituent metal ions27, in our
case between M and Os sites. Mg and Ba are chemically similar to Zn, however, Zn has a stronger tendency to form
covalent bonds with the neighboring anions because of its higher electronegativity (1.65), as compared to Mg (1.31) or
Ca (1.00). Consequently, the reduced degree of Os-d/O-p hybridization in BZOO weakens the principal contribution
to SE, which is due to hopping through O-2p and Ba. The corresponding enhancement of O-M hybridization does
not compensate for it, since SE through M site is small.

VIII. ANTI-FERRO QUADRUPOLAR ORDER

In Supp. Fig. 4a we display the calculated planar anti-ferro quadrupole order (AFQ) that is stabilized with the xyz
IEI set to zero. This structure is formed by a ferro-quadrupolar order within (001) planes (yz in the Supp. Fig. 4);
those planes are AF-stacked in the perpendicular direction [ (x in the plot). The saturated order parameters, |〈τx〉|
and |〈τz〉|, are equal to 0.46 and 0.27, respectively, with sign alternating between the adjacent (001) planes.
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Supplementary Table II: Calculated values of the eg quadrupole and xyz octupole IEI for the [0.5,0.5,0] Os-Os
nearest-neighbor lattice vector with some hopping processes excluded using the projective formalism. The first two

columns labels the interactions in the spherical tensor and Cartesian notation. The values in columns (from third to
seventh) are with all LWO included, with only Os-d included, with O-2p excluded, with all Ba orbitals excluded and

with all Zn (Mg) orbitals excluded, respectively. All values are in meV.

BZOO

all included only Os-5d excl. O-2p excl. Ba excl. Zn

V 00
22 Vz2,z2 0.96 0.07 -0.19 -0.47 0.94

V 22
22 Vx2−y2,x2−y2 -0.50 0.01 0.03 -0.07 -0.47

V 2̄2̄
33 Vxyz,xyz -0.93 0.04 0.24 -1.56 -0.86

BMOO

all included only Os-5d excl. O-2p excl. Ba excl. Mg

V 00
22 Vz2,z2 1.45 0.12 -0.29 -0.58 1.49

V 22
22 Vx2−y2,x2−y2 -0.71 0.03 0.05 -0.09 -0.77

V 2̄2̄
33 Vxyz,xyz -1.68 0.12 0.33 -2.12 -1.47

Supplementary Figure 4: (a). Calculated anti-ferro quadrupolar order. Only the Os and M sites (Ca, Mg, or Zn)
are shown as dark and light grey balls, respectively. The pattern of ordered quadrupoles is shown at four Os sites

forming a primitive fcc unit cell; the quadrupoles at other Os sites are obtained by conventional lattice translations.
The quarupoles are shown by polar plots, where the distance from the origin and the color indicates the quadrupole
absolute magnitude and its sign. For simplicity, in the present plot we neglected the hexadecapole contributions to
τx(z). (b). Calculated ferro-octupolar ground-state order. Polar plots of xyz octupoles are shown for the same Os

sites as in panel (a).

An AFQ order for d2 cubic DP has been previously obtained by Khaliullin et al.26. The actual model solved in
Ref.26 is a classical Heisenberg with the quadrupole degrees of freedom mimicked by unit vectors in the xz plane.
The calculated ordered structure depicted in their Fig. 4 agrees qualitatively with ours. Their ordered moments are
inclined within the xz plane indicating non-zero values for both 〈τx〉 and 〈τz〉, in agreement with our result.

The ferro-octupolar ground state predicted by our calculations is depicted in Supp. Fig. 4b for comparison.
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7 D. Fiore Mosca, L. V. Pourovskii, B. H. Kim, P. Liu, S. Sanna, F. Boscherini, S. Khmelevskyi, and C. Franchini, Phys. Rev.

B 103, 104401 (2021).
8 A. S. Erickson, S. Misra, G. J. Miller, R. R. Gupta, Z. Schlesinger, W. A. Harrison, J. M. Kim, and I. R. Fisher, Phys. Rev.

Lett. 99, 016404 (2007).
9 A. Georges, L. d. Medici, and J. Mravlje, Annual Review of Condensed Matter Physics 4, 137 (2013).

10 S. M. Winter, Y. Li, H. O. Jeschke, and R. Valent́ı, Phys. Rev. B 93, 214431 (2016).
11 A. E. Taylor, S. Calder, R. Morrow, H. L. Feng, M. H. Upton, M. D. Lumsden, K. Yamaura, P. M. Woodward, and A. D.

Christianson, Phys. Rev. Lett. 118, 207202 (2017).
12 B. Yuan, J. P. Clancy, A. M. Cook, C. M. Thompson, J. Greedan, G. Cao, B. C. Jeon, T. W. Noh, M. H. Upton, D. Casa,

et al., Phys. Rev. B 95, 235114 (2017).
13 C. M. Thompson, J. P. Carlo, R. Flacau, T. Aharen, I. A. Leahy, J. R. Pollichemi, T. J. S. Munsie, T. Medina, G. M. Luke,

J. Munevar, et al., Journal of Physics: Condensed Matter 26, 306003 (2014).
14 C. A. Marjerrison, C. M. Thompson, A. Z. Sharma, A. M. Hallas, M. N. Wilson, T. J. S. Munsie, R. Flacau, C. R. Wiebe,

B. D. Gaulin, G. M. Luke, et al., Phys. Rev. B 94, 134429 (2016).
15 L. V. Pourovskii, Phys. Rev. B 94, 115117 (2016).
16 J. Jensen and A. R. Mackintosh, Rare Earth Magnetism: Structures and Excitations (Clarendon Press, Oxford, 1991).
17 S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Clarendon Press, Oxford, 1984).
18 R. Shiina, O. Sakai, and H. Shiba, Journal of the Physical Society of Japan 76, 094702 (2007).
19 K. Kobayashi, T. Nagao, and M. Ito, Acta Crystallographica Section A 67, 473 (2011).
20 C. Stassis and H. W. Deckman, Journal of Physics C: Solid State Physics 9, 2241 (1976).
21 P. Delange, S. Biermann, T. Miyake, and L. Pourovskii, Phys. Rev. B 96, 155132 (2017).
22 L. V. Pourovskii and S. Khmelevskyi, Phys. Rev. B 99, 094439 (2019).
23 L. V. Pourovskii and S. Khmelevskyi, Proceedings of the National Academy of Sciences 118, e2025317118 (2021).
24 L. V. Pourovskii, J. Boust, R. Ballou, G. G. Eslava, and D. Givord, Phys. Rev. B 101, 214433 (2020).
25 B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O. Wehling, and A. I. Lichtenstein, Phys. Rev. B 77, 205112 (2008).
26 G. Khaliullin, D. Churchill, P. P. Stavropoulos, and H.-Y. Kee, Phys. Rev. Research 3, 033163 (2021).
27 I. Yamada, A. Takamatsu, N. Hayashi, and H. Ikeno, Inorganic Chemistry 56, 9303 (2017).


