Ce and Dy substitutions in Nd2Fe14B: Site-specific magnetic anisotropy from first principles
James Boust, Alex Aubert, Bahar Fayyazi, Konstantin Skokov, Yurii Skourski, Oliver Gutfleisch, Leonid Pourovskii

To cite this version:
James Boust, Alex Aubert, Bahar Fayyazi, Konstantin Skokov, Yurii Skourski, et al.. Ce and Dy substitutions in Nd2Fe14B: Site-specific magnetic anisotropy from first principles. Physical Review Materials, 2022, 6 (8), pp.084410. 10.1103/PhysRevMaterials.6.084410. hal-04452803

HAL Id: hal-04452803
https://hal.science/hal-04452803
Submitted on 12 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Ce and Dy substitutions in Nd$_2$Fe$_{14}$B: site-specific magnetic anisotropy from first-principles

James Boust1, Alex Aubert2, Bahar Fayyazi2, Konstantin P. Skokov2, Yurii Skourski3, Oliver Gutfleisch2 and Leonid V. Pourovskii1,4

1CPHT, Ecole Polytechnique, CNRS, Institut polytechnique de Paris, 91128 Palaiseau, France
2Functional Materials, TU Darmstadt, 64277 Darmstadt, Germany
3Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
4Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France

A first-principles approach combining density functional and dynamical mean-field theories in conjunction with a quasi-atomic approximation for the strongly localized 4f shell is applied to Nd$_2$Fe$_{14}$B-based hard magnets in order to evaluate crystal-field and exchange-field parameters at rare-earth sites and their corresponding single-ion contribution to the magnetic anisotropy. In pure Nd$_2$Fe$_{14}$B, our calculations reproduce the easy-cone to easy axis transition; theoretical magnetization curves agree quantitatively with experiment. Our study reveals that the rare-earth single-ion anisotropy in the “2-14-1” structure is strongly site-dependent, with the g rare-earth site exhibiting a larger value. In particular, we predict that increased f and g-site occupancy of R = Ce and Dy, respectively, leads to an increase of the magnetic anisotropy of the corresponding (Nd,R)$_2$Fe$_{14}$B substituted compounds.

I. INTRODUCTION

High-performance permanent magnets are key components of numerous energy-efficient technologies which have today to meet an increasing need, such as wind generators and electrical motors. Understanding and optimizing their intrinsic properties arising at the atomic level as well as their extrinsic properties due to the microstructure, is therefore crucial economically- and environmentally-wise. The market is dominated by rare-earth (R) transition-metal (M) intermetallics and whose intrinsic properties are generally understood within the two sub-lattice picture, the itinerant 3d electrons of a late transition metal, such as Fe and Co, provide the compound with strong permanent magnetism behavior (i.e. large magnetization and Curie temperature) while the magnetic hardiness mainly stems from the R localized 4f shell is applied to the R site. The interplay between these two sub-lattices is governed by the M induced exchange field, the 4f−4f interaction usually being much weaker and neglected.

The most widely used high-performance permanent magnet in the industry is the Nd$_2$Fe$_{14}$B (2-14-1) intermetallic, in which Nd is often partially substituted by heavy Rs such as Dy or Tb to further enhance the magnetic properties. However, substantial efforts are being made to find alternative hard magnets with reduced critical R content because of their economical as well as environmental costs. For instance, there is growing interest in Ce, which is far more abundant than Nd.

Within this context, understanding the intrinsic properties of complex 2-14-1 systems with partial Nd substitution would help optimizing the design of new hard magnets. It requires, however, a quantitative description of crystal-field effects, which induce the single-site rare-earth magnetic anisotropy and, thus, the magnetic hardness in these systems. A reliable evaluation of Crystal Field Parameters (CFPs) is a difficult task both from the experimental and theoretical perspectives. Indeed, extracting them by fitting experimental high field magnetization curves has a limited predictive power, as it usually neglects some CFPs, and requires the use of single crystals. Furthermore, care must be taken to properly separate contributions from the M and R sub-lattices. An alternative route is to compute these CFPs from first principles which is also a notorious challenge, notably due to the localized and strongly correlated nature of R 4f states which standard Density Functional Theory (DFT) fails to describe properly. Nd$_2$Fe$_{14}$B-based systems are especially hard to treat due to a large unit cell with two inequivalent R sites. First works towards ab initio methods were still partially relying on the crude point-charge electric model. Several DFT-based approaches have been so far developed and applied to various R-M intermetallics, but they are usually relying on open-core-like treatment of R 4f shells neglecting R-M hybridization. The latter can have a significant impact on CFPs and magnetic properties. Regarding 2-14-1 systems, after early studies focusing on the ‘20’ CFP authors of Refs. used a Wannier function based approach to compute all CFPs in various compounds but hybridization was taken into account in an approximate way.

Recently, Delange et al. introduced a new approach to the first-principles calculation of CFPs in such intermetallics by treating the 4f shell, in the framework of the Dynamical Mean-Field Theory (DMFT) within the quasi-atomic Hubbard-I (HI) approximation. This DFT+DMFT method removes the unphysical 4f contribution to CF by an averaging scheme. It was successfully applied to RCo$_5$ compounds by Pourovskii et al. who explained the 40-year-old mystery of the mea-
sured zero-temperature Nd magnetic moment in NdCo$_2$, being frozen below saturation by a large high-rank ‘66’ CFP arising from the hybridization with neighboring Co atoms. Hybridization can be implicitly taken into account in this methodology by a proper choice of the 4f Wannier projection window.

Building on this success, we apply in this work the same methodology to 2-14-1 systems. Comparison of our computed CFPs and resulting magnetic properties with experimental data shows that this essentially ab initio approach can accurately capture intrinsic magnetic properties of the parent Nd$_2$Fe$_{14}$B compound such as the temperature evolution of the spontaneous magnetization direction and magnetization curves. We then focus on site-specific partial Nd substitutions by either Dy or Ce. Our main results are: (i) the CFPs on a given inequivalent R site are not sensitive to substitutions on the second R site and (ii) the R single-ion anisotropy (SIA) is strongly site dependent. We therefore predict that optimization of site occupancy in Ce and Dy substituted Nd$_2$Fe$_{14}$B could lead to an increase, though moderate, of magnetic properties of the parent Nd$_2$Fe$_{14}$B compound. In order to evaluate the latent magnetic moment aligned along the [001] direction. The magnetic moment aligned along the [001] direction is pinned at the Fermi level E_F very close to the Fermi level E_F, for Dy, as the 4f KS bands move towards lower energies during the self-consistent calculation, the window is centered around the central weight of the 4f partial density of states. This window should be large enough to enclose most of the 4f KS states but small enough to capture the hybridization with M atoms which, as shown in Ref. 23, is crucial to the proper evaluation of CFPs.

Within the HI approximation, the DMFT impurity problem is reduced to the diagonalization of the following quasi-atomic Hamiltonian for the 4f shell:

$$\hat{H}_{\text{el}} = \hat{H}_{\text{el}} + \hat{H}_U = \sum_{m\sigma} \epsilon_{m\sigma}^f \hat{f}_{m\sigma}^\dagger \hat{f}_{m\sigma} + \hat{H}_U.$$ \hfill (1)

Here, $\hat{f}_{m\sigma}^\dagger$ is the annihilation operator for the 4f orbital $m\sigma$, \hat{H}_U is the Coulomb repulsion Hamiltonian and $\epsilon_{m\sigma}^f$ is the one-electron level-position matrix:

$$\epsilon = -(\mu + \Sigma_{\text{DC}})\mathbb{I} + \sum_{k \in \mathbb{BZ}} P_k H_{K\sigma}^k P_k^\dagger$$ \hfill (2)

where \mathbb{I} is the identity matrix, μ is the chemical potential, Σ_{DC} is the double-counting correction computed here within the Fully-Localized Limit (FLL) with nominal atomic occupancy, $H_{K\sigma}^k$ is the KS Hamiltonian matrix and P_k is the projection matrix between the 4f Wannier and KS space.

The Coulomb interaction \hat{H}_U is specified by the parameters $J_H = 0.77$ (0.99) eV (as measured by optical spectroscopy) and $U = 6$ (7) eV for Nd (Dy) respectively.

II. THEORETICAL APPROACH

A. Electronic structure calculations

The electronic structure calculations of rare-earth transition metal intermetallics are carried out using the DFT+HI approach of Refs. 30 and 23. Within this self-consistent over the charge density DFT+DMFT scheme, the local-spin density approximation (LSDA) is employed to describe the M magnetism while the quasi-atomic Hamiltonian approximation for the DMFT impurity problem is used to describe the R 4f shell. La is treated within LSDA as its 4f shell is empty (La$^{3+}$). Spin-orbit coupling is included within the standard second-variation procedure as implemented in Ref. 30. The experimental crystal structure (space group P4$_2$/mmm) and lattice parameters are used throughout; lattice distortion with temperature is neglected. In order to evaluate the lattice parameters of the mixed (RR)$'_2$Fe$_{14}$B systems from those of the corresponding pure compounds we employ Vegard’s law. Calculations are performed with the M magnetic moment aligned along the [001] direction. The approach is implemented within the full-potential linearized augmented plane wave (FP-LAPW) band structure code Wien2K in conjunction with the TRIQS library.

R 4f Wannier orbitals are constructed from the Kohn-Sham (KS) bands enclosed in an energy window of size 4 eV. As in Ref. 23 for Nd, whose KS 4f states are pinned at the Fermi level E_F, this window is centered around E_F; for Dy, as the 4f KS bands move towards lower energies during the self-consistent calculation, the window is centered around the central weight of the 4f partial density of states. This window should be large enough to enclose most of the 4f KS states but small enough to capture the hybridization with M atoms which, as shown in Ref. 23, is crucial to the proper evaluation of CFPs.

B. Single-ion model for the 4f Hamiltonian

Once the DFT+HI scheme described in the previous sub-section has converged, the CFPs, spin-orbit coupling and exchange field are extracted by fitting the converged one-electron part \hat{H}_{el} of the quasi-atomic Hamiltonian onto the form expected within the single-ion model (which neglects 4f-4f interactions). Namely, for a R ion embedded in a 2-14-1 crystal with ferromagnetically aligned M moments, it reads:

$$\hat{H}_{\text{el}} = E_0 \mathbb{I} + \lambda \sum_i \hat{S}_i \hat{S}_i + \hat{H}_{\text{CF}} + \hat{H}_{\text{ext}}.$$ \hfill (3)

E_0 is an energy shift, λ is the spin-orbit coupling, $\hat{H}_{\text{CF}} = 2\mu_B \mathbf{B}_{\text{ext}}(T) \cdot \mathbf{S}_M$ is the M-R exchange interaction with $\mathbf{B}_{\text{ext}}(T)$ being the exchange field at temperature T and \hat{S}_M the 4f spin operator. The M-R exchange interaction is a multi-orbital coupling as it has been shown to be mediated by the moment of R5d6s orbitals. The exchange field $\mathbf{B}_{\text{ext}}(T)$ used in the single-ion model captures
the combined effects of the inter-atomic M3d–R5d6s and intra-atomic R5d6s–R4f interactions as an effective mean-field acting on the R4f shell.

\[\hat{H}_{CF} = L_2^0 \hat{T}^0_2 + L_2^{-2} \hat{T}^{-2}_2 + L_4^0 \hat{T}^0_4 + L_4^{-2} \hat{T}^{-2}_4 + L_6^0 \hat{T}^0_6 + L_6^{-2} \hat{T}^{-2}_6 + L_6^{-6} \hat{T}^{-6}_6 \]

where \(\hat{T}^q_k \) are the Hermitian combination of Wybourne’s operators \(\hat{T}^q_k \) with the same notations as Ref. 30 and \(L_q^l \) are the CFPs. As often done in the literature, we will use the Stevens convention \(A_k^l(r^k) = \lambda_{kq} L_k^q \) (\(\lambda_{kq} \) are tabulated in Ref. 50 for instance). We neglect possible temperature dependence of CFPs \(\lambda_{kq} \).

\[\hat{H}_{ext} = -\hat{H}_{ext} \cdot \hat{M}_{1f} \]

is the Zeeman interaction between the total 4f moment operator \(\hat{M}_{1f} \) and the external magnetic field \(\hat{H}_{ext} \).

With the M sub-lattice magnetism treated by zero-temperature LSDA, the term \(\hat{H}_{ext} \) is obtained for \(T = 0 \) (and the external field \(\hat{H}_{ext} \) is zero). The CFPs, spin-orbit coupling and exchange field are extracted this way for the two inequivalent R sites, labeled \(f \) and \(g \), as well as for the two \(z = 0 \) and \(z = 1/2 \) planes \([100] \) (cf. Fig. 1). To remove the unphysical 4f contribution to the CF splitting and exchange field, the DFT+HI scheme described above also employs a self-interaction correction; the computed CFPs are furthermore weakly dependent on the values of \(U \) and \(J_H \).

C. Two sub-lattice model of 3d-4f intermetallics

The results of the previous sub-section (i.e. one-electron 4f Hamiltonian defined in [3]), with its parameters calculated \(ab \text{ initio} \) for each R site in the unit cell) are then employed within the two sub-lattice picture of rare-earth transition-metal intermetallics. The latter decomposes the total free energy \(F \) of a \((R_1-xR_2')_2Fe_{14}B \) system as:

\[F(T) = \sum_i w_i F_{4f}^{(i)}(T) + F_{3d}(T) \tag{4} \]

\[F_{3d}(T) = -M_{3d}(T) \cdot \hat{H}_{ext} + K_{1}^{3d}(T) \sin^2 \theta_{3d} \tag{5} \]

\[F_{4f}^{(i)}(T) = -T \log \left\{ \text{Tr} \left\{ \exp \left\{ -\beta \left(\frac{\hat{H}_{1f}^{(i)} + \hat{H}_U}{k_B T} \right) \right\} \right\} \right\} \tag{6} \]

where \(w_i \) is the occupancy of magnetic (Nd or Dy) ion \(i = (R, \text{ site, plane}) \), \(K_{1}^{3d}(T) \) is the first anisotropy constant of the M sub-lattice, \(\theta_{3d} \) is the angle between the M moment \(M_{3d}(T) \) and the \([001]\) axis, \(\beta = 1/(k_B T) \). The calculation of the 4f free energy \(F_{4f}^{(i)}(T) \) is performed by taking into account states up to the first excited multiplet, whose importance has been pointed out in previous works \([12,23] \). Magnetization curves can then be obtained by minimizing \(F \) with respect to \(\theta_{3d} \). In the following sub-sections \([11,12] \) and \([12] \) we explain how we set the parameters describing the 3d sub-lattice in Eqs. \((4) \)–\((6) \), namely \(M_{3d}(T), B_{ext}(T) \) and \(K_{1}^{3d}(T) \).

D. 3d sub-lattice at zero temperature

We assume the zero temperature \(K_{1}^{3d} \) to be independent on the R ions and evaluate it in La \(2Fe_{14}B \) by performing two separate LSDA+U calculations with the M moment aligned along \([001]\) and \([100]\), and \(U-J = 1.1 \) eV for the M 3d shells. We then employ the method of Ref. \([52] \) computing \(K_{1}^{3d} \) from the change of M sub-lattice spin-orbital energy upon its moment rotation:

\[K_{1}^{3d} = \sum_i \Delta E_i^{SO}/2, \tag{7} \]

where the sum runs over all M ions, \(\Delta E_i^{SO} = E_i^{SO}(M_{3d}||001) - E_i^{SO}(M_{3d}||001) \). The spin-orbit energy \(E_i^{SO} \) for site \(i \) is calculated as \(\text{Tr} \left[\hat{H}_i^{So} \hat{M}_{3d}^d \right] \), where \(\hat{H}_i^{So} \) is the on-site 3d density matrix for a given \(M_{3d} \) direction and the spin-orbit Hamiltonian \(\hat{H}_i^{So} \) is of the same form as for the R shell but with the LSDA+U estimated value \(\lambda_{Fe} = 60 \) meV. This approach yields
the value \(K_1^{3d} = 0.4 \text{ MJ.m}^{-3} \) for La\(_2\)Fe\(_4\)B, in reasonable agreement with experimentally measured value\(^{53}\). \(K_2^{3d} = 0.7 \text{ MJ.m}^{-3} \).

At 0 K, both \(B_{ex} \) and the 3d spin moment are extracted from the material specific DFT+HI scheme described in II.A. Namely, \(B_{ex} \) is extracted from the converged one-electron 4f Hamiltonian as described in II.B. The 3d spin moment \(S_{3d} \) is calculated simultaneously. Notice, that since the spin-polarization is suppressed in the calculated DFT+HI charge density, as described in Ref. 56, the resulting DFT+HI total spin moment corresponds to \(S_{3d} \). It is found to be essentially the same (30 \(\mu_B \)/f.u.) in Nd\(_2\)Fe\(_4\)B and Dy\(_2\)Fe\(_4\)B. Since \(B_{ex} \) originates from the same 3d spin polarization in the same calculation, this treatment ensures consistent values of these parameters.

We expect the 3d zero-temperature orbital moment \(L_{3d} \) to be essentially independent on the R ions in the system. We therefore add to \(S_{3d} \) the value of \(L_{3d} \) computed by LSDA+U in La\(_2\)Fe\(_4\)B, yielding 0.06 \(\mu_B \)/atom (in reasonable agreement with the experimental value of \(\sim 0.08 \mu_B \)/atom\(^{34}\)) and a total moment per unit cell of \(M_{3d} = L_{3d} + S_{3d} = 30.8 \mu_B \) at zero temperature.

E. Temperature scaling of the 3d sub-lattice

Consistently with the definition of the exchange field, \(M_{3d}(T) \) and \(B_{ex}(T) \) are assumed to be anti-aligned (as is the case in our calculations for \(T = 0 \)) and, neglecting the temperature variation of the exchange coupling constant, to follow the same temperature scaling, for which we use Kuzmin’s semi-empirical one\(^{55}\):

\[
M_{3d}(T) = M_{3d}|\alpha(T)\rangle \\
B_{ex}(T) = B_{ex}|\alpha(T)\rangle
\]

\[
\alpha(T) = \left(1 - s\left(\frac{T}{T_c}\right)^{2}\right) - (1 - s)\left(\frac{T}{T_c}\right)^{p}\right)\frac{3}{4} \quad (10)
\]

where \(T_c \) is the Curie temperature taken from experiment\(^{37}\) for pure compounds and computed as the weighted sum of parent pure compounds for mixed systems (cf. Table I). We use \(s = 0.6 \) and \(p = 5/2 \) in accordance with Ref. 56.

\(K_1^{3d}(T) \) is assumed to follow the temperature scaling of Zener\(^{36}\) (although it is a rather simplistic approximation in 2-14-1 systems, as shown in Refs. 53 54 59):

\[
K_1^{3d}(T) = K_1^{3d} \left(\frac{M_{3d}(T)/M_{3d}}{M_{3d}(T)/M_{3d}}\right)^{3}
\]

which gives \(K_1^{3d}(T) = K_1^{3d}\alpha(T)^3 \).

F. Treatment of Ce-based compounds

A special treatment is necessary for Ce-based compounds which we explain here. Indeed, according to the measurements of Ref. 60 Ce is found in an intermediate valence state dominated by Ce\(^{4+} \) in ”2-14-1” intermetallics, the description of which would require the use of more sophisticated and computationally heavy many-body approaches such as Quantum Monte-Carlo\(^{61}\). Moreover, in 2-14-1 systems with localized rare-earth, those localized R ions (Nd, Dy etc.) provide a dominant contribution to the magnetic anisotropy. The contribution of Ce, whether with an itinerant or localized 4f shell, is expected to be relatively small, in particular at room temperature and above (as shown in Ref. 61). Therefore, in mixed compounds (Nd\(_{1-x}\)Ce\(_x\))\(_2\)Fe\(_4\)B:

- Ce is treated within LSDA for CFP calculations of Nd by the DFT+HI scheme described above;
- Ce contributions to the magnetic moment and anisotropy in the two sub-lattice model are described by a mere renormalization of the same 3d quantities at zero temperature. Specifically, as the total experimental moment per unit cell in Ce\(_2\)Fe\(_4\)B is 29.4 \(\mu_B \) at 4.2 K\(^{12}\), we adapt \(M_{3d} \) = 30.8\((1-x) + 29.4\mu_B \) per unit cell. Furthermore, as we measured a larger zero temperature \(K_1 = 1.6 \text{ MJ.m}^{-3} \) in Ce\(_2\)Fe\(_4\)B (in agreement with previous measurement\(^{53 59}\)) compared to La\(_2\)Fe\(_4\)B, we adapt \(K_1^{3d} = 0.4(1-x) + 1.6 \text{ x MJ.m}^{-3} \) (cf. Table I).

<table>
<thead>
<tr>
<th>(T_c)</th>
<th>(K_1^{3d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd(_2)Fe(_4)B</td>
<td>585 0.4</td>
</tr>
<tr>
<td>Ce(_2)Fe(_4)B</td>
<td>424 1.6</td>
</tr>
<tr>
<td>(Ce({0.63})Nd({0.37}))(_2)Fe(_4)B</td>
<td>484 1.16</td>
</tr>
<tr>
<td>(Ce({0.36})Nd({0.64}))(_2)Fe(_4)B</td>
<td>527 0.83</td>
</tr>
<tr>
<td>Dy(_2)Fe(_4)B</td>
<td>590 0.4</td>
</tr>
<tr>
<td>(Dy({0.66})Nd({0.34}))(_2)Fe(_4)B</td>
<td>590 0.4</td>
</tr>
</tbody>
</table>

TABLE I: Values of the Curie temperature \(T_c \) (in K) and of the 3d first anisotropy constant at 0 K \(K_1^{3d} \) (in MJ.m\(^{-3} \)) involved in the two sub-lattice model for different compounds.

III. EXPERIMENTAL METHODS

(Nd\(_{1-x}\)Ce\(_x\))\(_2\)Fe\(_4\)B (\(x = 0, 0.63, 1 \)) single crystals were grown using the “reactive flux” method as described in our previous study\(^{52}\).

The chemical composition was determined using Energy Dispersive X-ray (EDX) spectroscopy equipped in a Philips XL30 FEG Scanning Electron Microscopy (SEM). The single crystallinity and crystallographic orientation of the single crystals were verified using a backscattering Laue camera. The magnetization measurement was performed using a Physical properties Measurement System (PPMS 14, Quantum Design) with vibrating Sample Magnetometer (VSM) up to 14 T at temperatures ranging from 10 to 300 K. For magnetization
measurements at fields up to 50 T, a pulsed-field magnetometer built at the High-field Laboratory in Dresden-Rossendorf (HZDR) was used, as described in detail in Ref. 63. The MAE was extracted from the experimental results by calculating the integral of the M(H) curves for [100] and [001] axis (hard and easy axis at RT, respectively), and we subtracted the integral of the [001] (which is taken as reference, also below spin reorientation) from the one of [100].

IV. RESULTS

A. Crystal-field parameters and exchange field

Nd CFPs and B_{ex} computed within our approach (cf. [II A] and [II B] in Nd$_2$Fe$_{14}$B, together with experimental and previous ab initio values, are summarized on Figure 2 for f and g inequivalent sites in the unit cell. Our theoretical parameters have the same sign and order of magnitude than the ones extracted by Ref. 13 from experimental magnetization curves (only a subset of CFPs was assumed to be non-zero in their fitting). The only significant discrepancy with respect to Ref. 13 is the underestimation of $A_{4}^{(6)}$ on the g site. Overall, the results of our ab initio approach are comparable with those of Ref. 29.

The precise values are summarized in Table III in the Appendix, which also lists computed CFPs for Dy as well as our results for various mixed systems with Ce or La (both treated within LSDA) occupying one of the two sites. These calculations with partial substitution give, for Nd and Dy, essentially the same CFPs and B_{ex} as in the corresponding pure compounds. This shows that the CFPs on one R site are insensitive to substitution of the R element at the other site, therefore justifying the use of equation (4).

Furthermore, in all cases, the g site exhibits higher or equal $A_{2}^{(2)}$ and B_{ex} compared to the f site. This suggests that the g site exhibits a higher SIA than the f one (in agreement with the results of Refs. 10, 29), at least at high temperature, where higher order CFPs are essentially negligible. This idea will be explored in the last two subsections.

B. Magnetic properties of pure Nd$_2$Fe$_{14}$B

We employ the computed CFPs shown in Figure 2 and parameters summarized in Table I within the two sublattice picture (cf. [II C] and [II D] to compute magnetic properties of Nd$_2$Fe$_{14}$B and compare our predictions with experimental data.

Fig. 3 displays the computed Nd$_2$Fe$_{14}$B magnetization curves along the [100] and [110] directions together with the experimental ones at T=10 K and 300 K. The experimental curves are well reproduced, including some subtle features such as the First-Order Magnetization Process (FOMP) along [100] at $T = 10$ K (at $H_{ext} = 17$ T) as well as the saturation ($\sim 37 \mu_B$/f.u. along [100] at 10 K) and spontaneous magnetizations ($\sim 13 \mu_B$/f.u. and $\sim 17 \mu_B$/f.u. at 10 K along [100] and [110] respectively).

Fig. 4 shows the evolution of the angle θ between the total spontaneous magnetization and the [001] axis in Nd$_2$Fe$_{14}$B. Our calculations reproduce the spin reorientation transition (SRT) occurring at low temperature due to the competition. The low temperature angle is also reproduced ($\sim 30^\circ$), which is consistent with the excellent agreement of the low temperature magnetizations at zero field (Fig. 3). The SRT temperature is however underestimated (~ 75 K instead of 135 K). There has been a lot of debate regarding the magnetic structure of the compound at 4 K: some works predicted a very small canting angle between Nd moments and the total one ($\leq 7^\circ$), while others suggested a large...
Our calculations support the small canting angle picture, with a maximum angle of 5° between a Nd moment and the total one.

Fig. 5 displays the evolution of Nd$_2$Fe$_{14}$B anisotropy constants K_1 and K_2 extracted with the Sucksmith-Thompson (ST) method. Although it assumes perfectly aligned Fe and Nd moments, we employ the ST method in order to have a consistent comparison with experimental anisotropy constants that were also extracted with it. The agreement is fairly good. It is also consistent with Fig. 4 at high temperatures, both anisotropies constant are positive and the phase is therefore uniaxial. At low temperature, the competition between negative K_1 and positive K_2 results in the conical phase. The temperature at which K_1 changes signs is underestimated, consistently with the underestimation of the spin reorientation transition temperature (Fig. 4).

Our method therefore proves to be a reliable ab initio approach to the magnetic properties of the complicated Nd$_2$Fe$_{14}$B system: it provides site-specific Nd CFPs as well as exchange field and explains different subtle experimental features (SRT, FOMP, etc.), with the crystal structure, temperature dependence of the 3d magnetic moment and Wannier projection window as the only parameters.

C. Ce substitution

Within the two sub-lattice model (cf. II C, II D, II E, II F), we now turn to partial substitution of Nd by lighter, more abundant and cheaper Ce whose preferred site is still controversial. Indeed, Ref. [60] showed that Ce favors the smaller f site in their compounds (consistently with a valence dominated by Ce$^{4+}$). However, Ref. [71] suggested the opposite. To investigate this issue, we compared the experimental FOMP at 10 K along [100] in (Nd$_{0.37}$Ce$_{0.63}$)$_2$Fe$_{14}$B with theoretical calculations for different occupancy scenarios (cf. Table II): Ce with a slight g preference as measured by Ref. [71] (scenario 1), no site preference between Ce and Nd (scenario 2), Ce with a slight f preference as measured by Ref. [60] (scenario 3) and Ce fully occupying the f site (scenario 4). As illustrated on Figure 6 gauged by the FOMP field, scenario 3 gives the best agreement with experiment. However, one may notice that the relative error in the determination of the FOMP field for the pure compound (about 2 Tesla) suggests an accuracy of about 1 Tesla for the mixed case with the error scaled correspondingly to the lower Nd concentration. Within this uncertainty, we cannot discriminate between the scenarios 2 and 3; however, Nd preference for f site (scenario 1) and purely g Nd occupancy (scenario 4) are unlikely. Therefore, the experimental situation likely corresponds to either no preference or a slight Ce preference for the f site. This implies that there is potentially room for site occupancy optimization which will be studied below.

We then computed and measured the magnetocrystalline anisotropy $MAE = F_{[100]} - F_{[001]}$ for differ-
TABLE II: Site-detailed stoichiometry of \((\text{Nd}_{1-x} \text{R}_x)_{2}\text{Fe}_{14}\text{B}\) compounds (\(\text{R}=\text{Ce}, \text{Dy}\)), depending on various occupancy scenarios. Numbers labeling the scenarios are used for clear reference in the main text and figures. No pref. = no site preference between Nd and R. \(\text{R on i} = \) ion R occupies first the site i. Ref. 71 = Ce has a slight preference for the \(g\) site. Ref. 60 = Ce has a slight preference for the \(f\) site. Ref. 72 = Dy has a slight preference for the \(f\) site. The actual occupation numbers of scenarios 1, 3, 5 and 7 were extracted by interpolation of the measured data displayed in the respective references.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Scenario</th>
<th>Nd (f) Nd (g) R (f) R (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{Nd}{0.37}\text{Ce}{0.63}){2}\text{Fe}{14}\text{B})</td>
<td>1. Ref. [71]</td>
<td>0.45 0.29 0.55 0.71</td>
</tr>
<tr>
<td></td>
<td>2. No pref.</td>
<td>0.37 0.37 0.63 0.63</td>
</tr>
<tr>
<td></td>
<td>3. Ref. [60]</td>
<td>0.25 0.49 0.75 0.51</td>
</tr>
<tr>
<td></td>
<td>4. Ce on (f)</td>
<td>0.0 0.74 1.0 0.26</td>
</tr>
<tr>
<td>((\text{Nd}{0.64}\text{Ce}{0.36}){2}\text{Fe}{14}\text{B})</td>
<td>5. Ref. [60]</td>
<td>0.56 0.72 0.44 0.28</td>
</tr>
<tr>
<td></td>
<td>6. Ce on (f)</td>
<td>0.28 1.0 0.72 0.0</td>
</tr>
<tr>
<td>((\text{Nd}{0.64} \text{Dy}{0.36}){2}\text{Fe}{14}\text{B})</td>
<td>7. Ref. [72]</td>
<td>0.51 0.77 0.49 0.23</td>
</tr>
<tr>
<td></td>
<td>8. Dy on (g)</td>
<td>1.0 0.28 0.0 0.72</td>
</tr>
</tbody>
</table>

FIG. 6: Magnetization curve of \((\text{Nd}_{0.37}\text{Ce}_{0.63})_{2}\text{Fe}_{14}\text{B}\) along [100] at 10 K, according to experiment and computed for the different occupancy scenarios 1-4 (cf. Table I).

FIG. 7: Magnetocrystalline anisotropy as a function of temperature of \((\text{Nd}_{1-x}\text{Ce}_x)_{2}\text{Fe}_{14}\text{B}\) compounds. a): experiment. b): theory according to occupancy scenarios of Table I. In the case of \(\text{Ce}_2\text{Fe}_{14}\text{B}\), the theoretical MAE amounts to \(K_{12}^{3d}(T)\) as explained in the Methods section.

Dy substitution

Within the two sub-lattice model (cf. II C, II D, II E), we now turn to Dy substitution, which is routinely used in the industry to enhance anisotropy in \(\text{Nd}_2\text{Fe}_{14}\text{B}\). According to Ref. [72] Dy has a preference for the \(f\) site, which is consistent with its smaller atomic radius compared to Nd (lanthanide contraction). As in the case of Ce, the experimental occupancy is still close to equal occupation between sites, but the situation is reversed: here, heavy R occupying the \(f\) site is expected to be detri-
FIG. 8: Evolution of theoretical MAE with temperature. a): Nd$_2$Fe$_{14}$B and (Nd$_{0.64}$Dy$_{0.36}$)$_2$Fe$_{14}$B according to occupancy scenarios of Table II.

Next, we study industrially motivated partial substitution of Nd by Ce or Dy, focusing on the substitution site preference and its impact on magnetic properties. In Ce substituted compounds – often considered in the quest to reduce the scarce heavy rare-earth content in hard magnets – comparison of experimental data with our theoretical calculations supports a slight Ce preference for the f site. We carry out experimental measurements of MAE in Ce substituted single crystals, which are found to be in good agreement with our theoretical predictions. Our calculations also predict that enhancing Nd preferential g-site occupancy leads to a higher SIA. This theoretical observation implies that one might be able to enhance the magnetic anisotropy in (Nd,Ce)$_2$Fe$_{14}$B compounds by engineering higher Ce f-site occupancy.

In Dy substituted compounds, routinely used in the industry, we also show that an increase – though moderate – of the magnetic anisotropy is theoretically expected when Dy occupies the g site. This could perhaps be achieved by adding a third R element with an even smaller radius (therefore occupying preferably the f site), such as Ce$^{4+}$: while this kind of doping would lower the anisotropy of the compound, it could increase the anisotropy per Dy atom by the mechanism aforementioned as well as reduce the total economic cost (as Ce is cheaper than Dy), resulting in an overall better anisotropy/price ratio.

Overall, our ab $initio$ approach is shown to be a reliable tool to predict and analyze intrinsic properties of complex, substituted, hard magnetic materials. It may provide useful insight into site occupancy optimization and its impact on magnetic properties.

VI. ACKNOWLEDGEMENTS

This work was supported by the future pioneering program "Development of magnetic material technology for high-efficiency motors" (MagHEM) commissioned by the New Energy and Industrial Technology Development Organization (NEDO). A. Aubert and K. Skokov acknowledge the financial support from the Deutsche Forschungsgemeinschaft - Project-ID 405553726 -TRR 270. L. Pourovskii and J. Boust are grateful to the CPHT computer support team.
VII. APPENDIX

Table III summarizes CFPs and exchange fields computed in this work for various 2-14-1 systems.
TABLE III: Site specific theoretical CFPs and B_{ex} (in K) for Nd and Dy computed in different compounds. The values are for the R ions in the $z = 0$ plane of the unit cell (the signs of $A_2^0 \langle r^2 \rangle$, $A_4^0 \langle r^4 \rangle$, $A_6^0 \langle r^6 \rangle$ change for the middle plane). In substituted compounds, Nd/Dy occupies the site indicated in the second column, which is also highlighted by the order of the ions in the compound formula (first ion on site f, second on site g).

<table>
<thead>
<tr>
<th>Site</th>
<th>$A_2^0 \langle r^2 \rangle$</th>
<th>$A_2^{-2} \langle r^2 \rangle$</th>
<th>$A_4^0 \langle r^4 \rangle$</th>
<th>$A_4^{-2} \langle r^4 \rangle$</th>
<th>$A_6^0 \langle r^6 \rangle$</th>
<th>$A_6^{-2} \langle r^6 \rangle$</th>
<th>$A_6^{-6} \langle r^6 \rangle$</th>
<th>B_{ex}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd2Fe${14}$B f</td>
<td>246</td>
<td>-537</td>
<td>-14</td>
<td>54</td>
<td>-91</td>
<td>-27</td>
<td>-24</td>
<td>-232</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>420</td>
<td>349</td>
<td>-41</td>
<td>-29</td>
<td>42</td>
<td>-19</td>
<td>15</td>
</tr>
<tr>
<td>NdLaFe$_{14}$B f</td>
<td>297</td>
<td>-641</td>
<td>-22</td>
<td>73</td>
<td>-119</td>
<td>-25</td>
<td>-16</td>
<td>-228</td>
</tr>
<tr>
<td>CeNdFe$_{14}$B g</td>
<td>414</td>
<td>334</td>
<td>-45</td>
<td>-28</td>
<td>54</td>
<td>-20</td>
<td>9</td>
<td>-154</td>
</tr>
<tr>
<td>Dy2Fe${14}$B f</td>
<td>113</td>
<td>-345</td>
<td>-4</td>
<td>29</td>
<td>-19</td>
<td>-12</td>
<td>27</td>
<td>-93</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>186</td>
<td>180</td>
<td>-16</td>
<td>-17</td>
<td>19</td>
<td>-10</td>
<td>-14</td>
</tr>
<tr>
<td>DyCeFe$_{14}$B f</td>
<td>115</td>
<td>-381</td>
<td>-6</td>
<td>32</td>
<td>-21</td>
<td>-14</td>
<td>32</td>
<td>-95</td>
</tr>
<tr>
<td>CeDyFe$_{14}$B g</td>
<td>190</td>
<td>129</td>
<td>-18</td>
<td>-7</td>
<td>8</td>
<td>-11</td>
<td>-21</td>
<td>-15</td>
</tr>
</tbody>
</table>