François Gelis 
  
Grégoire Misguich 
  
Keywords: Out[4]= {KernelObject[1, local, <defunct>], KernelObject[ ...) * .. Parameters .. INTEGER M, N, NRHS PARAMETER Intrinsic Functions .. INTRINSIC INT, MIN

Evolution of 16 confs. on a 32 x 32 x L z grid [2x4 cores 2.93GHz 2x8MB cache] conf. size 1 conf. / 1 core 1 conf. / 4 cores 1 conf. / 8 cores (naive) 1 conf. / 8 cores (improved)

My Laptop [DELL XPS 13 (2015)]

• CPU: 2.4 to 3.0 GHz, 2 cores • Peak performance: 46 GFLOP/sec (double precision) (this would have placed my laptop on the top500 list of the world's most powerful computers, circa 1999...)

Let's do the math...

• At 3.0 GHz, 46 GFLOP/sec is equivalent to 15.3 FLOP/cycle i.e., 7.7 FLOP/cycle/core =⇒ there is a high amount of instruction-level parallelism In this case: each core uses AVX instructions to perform 4 double precision OPs at once, and has two Floating Point Units My Laptop [cont..]

• Memory Bandwidth:

• from RAM: 17-20 GB/sec • from L2 cache: 100-140 GB/sec • from L1 cache: 570-980 GB/sec

• Memory Latency:

• from RAM to CPU: 300 cycles • from L2 cache to CPU: 12 cycles • from L1 cache to CPU: 4 cycles • from L2 (core 1) to L2 (core 2): 90 cycles ←relevant for OpenMP

• When the access pattern is regular, the CPU does some data prefetching, and these latencies are somewhat avoided

• With many cores, the needs for memory bandwidth become more severe

Cache: use correct loop order in nested loops 

Vectorization

• The compiler tries automatically with -O3, but not perfect

• Biggest obstacle: dependence among loop indices:

for (int j = 1; j < N; ++j){ result[j] = 1.0/(1.0+result[j-1]); }
• Less if the dependence has a range longer than the vector length Parallelization on shared memory:

for (int j = 4; j < N; ++j){ result[j] = 1.0/(1.0+result[j- 4 
• Very easy to implement via OpenMP, with tiny code modifications

• Should scale perfectly for independent tasks Large scale eigenvalue problems. For (usually sparse) nxn matrices with n which can be as large as 10^8, or even more ! Ex: iterative algo. to find the largest eigenvalue, without storing the matrix M (just provide v→Mv).

Can be used from Python/SciPy Examples for several LAPACK routines that solve systems of linear equations.

Linear Least Squares Problems

Examples for some of the LAPACK routines that find solutions to linear least squares problems.

Symmetric Eigenproblems

Symmetric Eigenproblems has examples for LAPACK routines that compute eigenvalues and eigenvectors of real symmetric and complex Hermitian matrices.

Nonsymmetric Eigenproblems

Nonsymmetic Eigenproblems provides examples for ?geev, one of several LAPACK routines that compute eigenvalues and eigenvectors of general matrices.

Singular Value Decomposition

Examples for LAPACK routines that compute the singular value decomposition of a general rectangular matrix. Compilation and output :

Lapack-MKL example in Fortran

First call to DGELSD with LWORK=-1 → LAPACK returns the optimal size LWORK of the workspace array WORK.

Actual calculation

Lapack-MKL example in Fortran checking what linear algebra library that is actually used $ ldd diag.exe linux-vdso.so.1 => (0x00007ffeddd7c000) libarmadillo.so.9 => /usr/local/install/armadillo-9.200.6/lib64/libarmadillo.so.9 (0x00007f2c30549000) libstdc++.so.6 => /usr/local/install/gcc-4.8.0/lib64/libstdc++.so.6 (0x00007f2c3023f000) libm.so.6 => /lib64/libm.so.6 (0x000000338f200000) libgcc_s.so.1 => /usr/local/install/gcc-4.8.0/lib64/libgcc_s.so.1 (0x00007f2c30010000) libc.so.6 => /lib64/libc.so.6 (0x000000338e200000) libmkl_rt.so => /opt/intel/composer_xe_2013.5.192/mkl/lib/intel64/libmkl_rt.so (0x00007f2c2fb02000) libhdf5.so.6 => /usr/lib64/libhdf5.so.6 (0x0000003390a00000) libz.so.1 => /lib64/libz.so.1 (0x000000338ee00000) /lib64/ld-linux-x86-64.so.2 (0x000000338de00000) libdl.so.2 => /lib64/libdl.so.2 (0x000000338ea00000)

MKL used here The corresponding numpy will be using the MKL lib. 

Process

• Each process has its own memory space. → they are somewhat independent • Switching from one process requires some interaction with the operating system → slow switching Thread

• Threads (associated to a given process) share the same memory space → Threads can share information easily /quickly • There is no memory "protection" between the threads of the same process → responsibility of the programmer • Threads have little information of their own → faster to create than processes Can be useful for some I/O tasks (because the CPU will be waiting for some remote server, etc.), but not really for computations. … will not be discussed here.

• Multiprocessing library (import multiprocessing) Allows to perform tasks simultaneously (using processes instead of threads)

We will present a few examples using: For loops Schedule(static):

• Process, Queue • Pool, map, imap
1 2 3 … thread #0 thread #1 thread #2 thread #3 thread #4 thread #5 33
Example above: #pragma omp parallel num_threads(6) { #pragma omp for schedule(static) for (int i=0;i<33;i++) … }

• Iterations are divided into 'chunks' of size chunk_size and distributed cyclically to the threads. • If the chunk_size is not specified, the iterations are divided into (almost) equal chunks, and each thread executes one chunk (example below).

For loops Schedule(static)

Another example: #pragma omp parallel num_threads(6) { #pragma omp for schedule(static,2) for (int i=0;i<33;i++) … }

1 2 3 … 33 thread #0 thread #1 thread #2 thread #3 thread #4 thread #5 thread #0 thread #1 thread #2 thread #3 thread #4 thread #5 thread #0 thread #1 thread #2 thread #3 thread #4
Advantage of large chunks: less overhead, cache friendly Advantage of small chunks: better load balance between the threads

For loops

Schedule(dynamic)

• The iterations are divided in chunks of size chunk_size (the last one can be smaller). • When a thread is idle, it is assigned a new chunk (first come, first served).

• If chunk_size is not specified, it is set to 1. 1 2 3 … thread #0 thread #1
1 and 3: long tasks.

For loops Schedule(guided)

• Similar to dynamic, but the chunk size is initially large, and decreased gradually • The size of a chunk is proportional to the number of remaining iterations, divide by the number of threads) • chunk_size specifies the minimum size of the chunks. If not specified, this minimal size is set to 1.

For loops

Schedule(runtime) 

[0]=0 A[1]=0 A[2]=0 A[3]=0 A[4]=0 A[5]=1 A[6]=1 A[7]=1 A[8]=0 A[9]=1

Message Passing Interface (MPI)

• MPI provides high level functions to exchange data between jobs on several nodes, that hide the network details 

Variants of MPI_Send

• MPI_Send : blocks until the array containing the data to be sent out can be reused safely (does not imply that the data has already reached its destination, since it could be buffered)

• This function has several variants 

Variants of MPI_Recv

• MPI_Recv : blocks until the array in which the data to be received arrives is ready to be used

• This function has one variant Easiest: independent computations on each node

• Each MPI job performs a (lengthy) computation, independently of the other jobs

• These computations are parallelized using OpenMP

• Output is sent back to MASTER node for final processing (e.g., averaging, saving in a file, etc...). For this, the MASTER node forks a special thread that collects this output • Input data:

• Monte-Carlo: input is a random configuration, generated locally on each node (make sure each MPI job uses its own RNG seed)

• Alternative: the MASTER node sends tasks taken from a list to each node as soon as a result returns

Threads on MASTER node

• Receiving/processing computed results is a very light task compared to the computations ⇒ the MASTER node can also perform computations without significant penalty

• Call omp_set_nested(1) on all nodes

• Create two parallel sections:

• First section: executed only by MASTER (empty on other nodes) Post MPI_Recv to receive results, post-process results, MPI_Send to send tasks, etc...

• Second section: executed by everybody performs actual computations ⇒ further fork in Ncores threads

Harder: Two-level slicing of the computation domain

• Large array to be processed (e.g., evolved in time)

• Divide the array in N cores × N threads slices, and assign a slice to each thread

• Case 1: evolution is "almost" local, i.e. depends at most on a few neighboring sites (e.g., discretization of a Laplacian)

At the beginning of each timestep, each thread must be given a copy of the layers just before and just after its slice

• Case 2: evolution is completely non-local (update of a point i depends on all other points) 2.a. Array is small enough: each node can have its own copy of the full array (it must be refreshed at the beginning of each timestep) 2.b. Array is too large: communications will probably make parallelization very inefficient

Boltzmann Equation

• Two-body elastic interactions

• Spatially homogenous

• Isotropic particle distribution

• Scattering amplitude may be momentum dependent

∂ t f 1 = 1 E 1 p 2,3,4
M(1, 2, 3, 4) 2 f 3 f 4 (1+f 1 )(1+f 2 )-f 1 f 2 (1+f 3 )(1+f 4 )

• Collision integral reduces to 4-dim integral thanks to momentum conservation and isotropy

3. 0

 0 GHz × (2 cores) × (2 FPUs) × 4(AVX) = 48 GFLOP/sec • What bandwidth do we need for this? To simplify, assume 1 FLOP = 2 reads + 1 write 48 GFLOP/sec =48 × 8 (Bytes in a double) × 3 (2 reads + 1 write) GB/sec =1152 GB/sec François Gelis, Grégoire Misguich, June 2019

  for (i=0;i<N;i++){ for (j=0;j<N;j++){ b[j+N*i] = a[i+N*j]; } } • Improvement: slice the j loop in blocks of size B: for (jb=0;jb<N;jb+=B){ for (i=0;i<N;i++){ for (j=0;j<B;j++){ b[j+jb+N*i] = a[i+N*(j+jb)]; } } } Cache: sometimes, "loop tiling" helps • How does it work? • This transformation makes the two innermost loops work on a contiguous range of size N * B doubles • For N = 2 13 , the optimal block-size is around B = 2 4 (empirical) • 2 13 × 2 4 × 8 (Bytes in a double) = 1 MByte = order of L2 cache• Note: the compiler can do this transformation automatically (but perhaps not choose the best block-size)

×

  (# FPUs) × (Width of vector inst.) well exploited only for appropriate code × (# cores) try this?

  's documentation] « Maple provides tools for two different types of parallel programming. The Task Programming Model enables parallelism by executing multiple tasks within a single process. The second type of parallelism comes from the Grid package, which enables parallelism by starting multiple processes."Remark: the task model is somewhat analogous Threads/OpenMP, and Grid is analogous to MPI. Both OpenMP and MPI will be presented in these lectures2. Automatic parallelizationfinish Shared Memory & Synchronization » SetSharedVariable -specify symbols with values to synchronize across subkernels SetSharedFunction -specify functions whose evaluations are to be synchronized $SharedVariables ▪ $SharedFunctions ▪ UnsetShared ▪ CriticalSectio n Setup and Configuration » LaunchKernels -launch a specified number of subkernels $KernelCount -number of running subkernels $KernelID ▪ Kernels ▪ AbortKernels ▪ CloseKernels ▪ ... $ProcessorCount -number of processor cores on the current computer Multi-Processor and Multicore Computation Compile -create compiled functions that run in parallel Parallelization -execute compiled functions in parallel CompilationTarget -create machine-level parallel compiled functions GPU Computing » CUDAFunctionLoad -load a function to run on a GPU using CUDA OpenCLFunctionLoad -load a function to run on a GPU using OpenCL File-Based Parallelism FileSystemScan ▪ FileSystemMap 1. Introduction & hardware aspects (FG) 2. A few words about Maple & Mathematica 3Here: a few simple examples showing how to call some parallel linear algebra libraries in numerical calculations (numerical) Linear algebra • Basic Linear Algebra Subroutines: BLAS • vector op. (=level 1) • matrix-vector (=level 2) • matrix-matrix mult. & triangular inversion (=level 3) • Many implementations but standardized interface • Discussed here: Intel MKL & OpenBlas (multi-threaded = parallelized for shared-memory architectures) • More advanced operations Linear Algebra Package: LAPACK ('90, Fortran 77) • Call the BLAS routines • Matrix diagonalization, linear systems and eigenvalue problems • Matrix decompositions: LU, QR, SVD, Cholesky • Many implementations Used in most scientific softwares & libraries (Python/Numpy, Maple, Mathematica, Matlab, …) A few other useful libs … for BIG matrices • ARPACK =Implicitly Restarted Arnoldi Method (~Lanczos for Hermitian cases)

  for(j = 0; j<N; j++ ) a[i*LDA+j].real=rand(),a[i*LDA+j].imag=rand( the num. of threads Call to Lapack. This version takes care of the workspace memory management (contrary to the Fortran version) w: array containing the eigen. vals. for(j = 0; j<N; j++ ) a[i*LDA+j]=lapack_make_complex_double(rand() ,rand()); // LAPACKE_zheevd: computes all // eigenvalues and eigenvectors of a // complex Hermitian matrix A using divide // and conquer algorithm info = LAPACKE_zheevd( LAPACK_ROW_MAJOR, 'V', 'L', N, a, LDA, w ); /* Check for convergence */ if( info > 0 ) { printf( "The algorithm failed to compute eigenvalues.\n" ); exit( 1 ); } /* Print the extreme eigenvalues */ printf("Smallest eigen value=%6.2f\n",w[0]); printf("Largest value=%6.2f\n\n",w[N-1]); } OpenBLAS/CBLAS dgemm example in C #include <stdio.h> #include <stdlib.h> #include <cblas.h> int main() { int N=10000,N2,i,j; N2=N*N; //Memory allocation for the arrays: double *A, *B, *C; A = (double *)malloc( N2*sizeof( double ) ); B = (double *)malloc( N2*sizeof( double ) ); C = (double *)malloc( N2*sizeof( double ) ); for (i = 0; i < (N2); i++) A[i] = (double)(i+1), B[i] = (double)(-i-1), C[i] = 0.0; printf ("Computing matrix product using OpenBLAS dgemm function via CBLAS interface ...\n"); cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, N, N, N, 1.0, A, N, B, N, 1.0, C, N); printf ("done.\n\n"); return 0; } Matrix-matrix multiplcation (BLAS) of double precision general matrices Specify the « order » of the matrix elements in memory: A[i][j]=A[j+LDA*i] row-major (C/C++ order) A[i][j]=A[i+LDA*j] column-major (=Fortran order) Compilation of the OpenBLAS examples -use of make & makefile #specify below the path to the OpenBLAS library files (like libopenblas.a and cblas.h) OPEN_BLAS_LIB= ../OpenBLAS #specify below the path to the lapacke.h header file LAPACKE_INC= ../OpenBLAS/lapack-netlib/LAPACKE/include dgemm_example_mini.exe: dgemm_example_mini.c gcc $< -o $@ -L $(OPEN_BLAS_LIB)-I $(OPEN_BLAS_LIB) -lopenblas -pthread zheevd_example.exe: zheevd_example.c gcc $< -o $@ -I $(LAPACKE_INC) -L $(OPEN_BLAS_LIB) -lopenblas -fopenmp -lgfortran clean: \rm *.exe all: dgemm_example.exe zheevd_example.exe To compile: make dgemm_example.exe or make all or make -j 2 all -j option: use several threads/cores to compile multiple files in parallel makefile $< : 1st pre-requiste (usually the source file) $@ : target (executable name) $ make dgemm_example.exe gcc dgemm_example.c -o dgemm_example.exe -L ../OpenBLAS -I ../OpenBLAS -lopenblas -fopenmp -lrt $ export OMP_NUM_THREADS=1; ./dgemm_example.exe 2000 Initializing the matrices ... done. Computing matrix product using OpenBLAS dgemm function via CBLAS interface... done. Elaspe time (s): 0.719543 22.2308 GFlops $ export OMP_NUM_THREADS=10; ./dgemm_example.exe 2000 Initializing the matrices ... done. Computing matrix product using OpenBLAS dgemm function via CBLAS interface... done. Elaspe time (s): 0.0814542 196.38 GFlops Close to the peak power of the CPU (here Xeon E5-2630 v2 @ 2.60GHz / 15360 KB Cache). Check with cat /proc/cpuinfo ) compilation ARMA_INC=/usr/local/install/armadillo-9.200.6/include ARMA_LIB=/usr/local/install/armadillo-9.200.6/lib64/ diag.exe: diag.cpp g++ -std=gnu++11 $< -o $@ -I $(ARMA_INC) -L $(ARMA_LIB) -larmadillo mult.exe: mult.cpp g++ -std=gnu++11 $< -o $@ -I $(ARMA_INC) -L $(ARMA_LIB) -larmadillo computing

  BLAS & Lapack from Python/Numpy Python → Numpy → Linalg → LAPACK → BLAS Different possible implementations • standard BLAS/LAPACK (Netlib) • ATLAS (Automatically Tuned Linear Algebra Software) • OpenBLAS • MKL • … Multi-threaded /parallel Python/Numpy linalg Check the version of Lapack & BLAS numpy is linked to: >>> import numpy as np >>> np.__config__.show() Python 2.7.5 (default, Mar 20 2015, 15:33:03) [GCC 4.4.7 20120313 (Red Hat 4.4.7-11)] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import numpy as np >>> np.__config__.show() lapack_opt_info: libraries = ['openblas', 'openblas'] library_dirs = ['/usr/local/lib'] define_macros = [('HAVE_CBLAS', None)] language = c blas_opt_info: libraries = ['openblas', 'openblas'] library_dirs = ['/usr/local/lib'] define_macros = [('HAVE_CBLAS', None)] language = c openblas_info: libraries = ['openblas', 'openblas'] library_dirs = ['/usr/local/lib'] define_macros = [('HAVE_CBLAS', None)] language = c (. . .) Python/Numpy linalg What if my numpy version is not linked to a parallel linear algebra lib. ? • Install OpenBLAS: > sudo apt-get install libopenblas-dev (this will hopefully replace the previous BLAS lib. by OpenBLAS in Numpy) • Or the Intel Python distribution https://software.intel.com/en-us/articles/installingintel-free-libs-and-python-apt-repo (…) > sudo apt-get install intelpython3

•#

  Matrix diagonalization exampleSpecify the #of threads using an environnent variable (bash shell): > export OMP_NUM_THREADS=4 Python/Numpy linalg import numpy as np import numpy.random as npr import time npr.seed(2019) n=3000 A = npr.randn(n,n) t = time.time() v = np.linalg.eigvals(A) td = time.time()t print(" Time=%0.4f s" % (td)) 1. Introduction & hardware aspects (FG) 2. A few words about Maple & Mathematica 3FFTW: a high performance implementation (in C) Fastest Fourier transform in the West • http://www.fftw.org/ • Multi-threaded • portable • Open source (GPL license) • Can be used from Python (pyFFTW) (discrete) Fourier transform example using multi-threaded FFTW v3 A given application/program may run different processes and different threads

•

  Thread library (import threading) Can start several threads, but they will not run simultaneously (because of the Global Interpreter Lock -a.k.a. GIL).

•'

  import os, math from multiprocessing import Process,Queue def my_function(r,q): proc = os.getpid() i1=r[0]**3 i2=r[1]**3 print('Process #{0} will sum from {1} to {2}'.format(proc,i1,i2)) sum=0.0 for i in xrange (i1,i2): sum+=math.sin(i) q.put((i1,i2,sum)) ranges = [ [1,100], [201,300], [300,400],[401,500] ] list_of_procs = [] q=Queue() for r in ranges: p = Process(target=my_function, args=(r,q)) list_of_procs.append(p) p.start() for p in list_of_procs: p.join() results=[q.get() for p in list_of_procs] print(results) q: Object where each process can write its result Processes do not share memory, which means that the global variables are copied, hence their value in the original process do not change. This example does not work (i.e. output is [0,0,0,0]) import os, math from multiprocessing import Process A=[0,0,0,0] def my_function(i): A[i]=A[i]+1 return list_of_procs = [] for r in range(4): p = Process(target=my_function, args=(r,)) list_of_procs.append(p) p.start() for p in list_of_procs: p.join() print(A) Python/Multiprocessing Multiprocessing.Process linear algebra: processes versus threads Single Python processe using ~24 threads (and 24 CPU cores) import multiprocessing as mp from sympy import * p=mp.Pool(processes=3) x = symbols('x') print(p.map(integrate,[x,x**2,x**3])) Python/multiprocessing Multiprocessing.Pool & Sympy import multiprocessing as mp from sympy import * import sys x = symbols('x') A= [ exp(x),sin(x),cos(x),cosh(x),sinh(x)] def my_func(f): count=0 while (count<10000) : f=diff(f,x) count=count+1 return f # Pass the wanted number of process as commandline argument np=int(sys.argv[1]) p=mp.Pool(processes=np) results=p.map(my_func,A) print(results) Based on threads • For shared-memory architectures • Standardized • Mature (goes back to the 90's) • Portable (supported by many compilers, systems and languages) compiler directives to your existing sequential code (written in C, C++ or Fortran) to tell: • Which instructions should executed in parallel • How to distribute (and synchronize) the instructions over the threads • How to distribute/share the data over the threads OpenMP Hello world' with OpenMP Fotran example. Compile with > ifort -fopenmp hello.f90 program hello USE OMP_LIB PRINT *,"Hello, I am thread #", OMP_GET_THREAD_NUM() PRINT *,"a.k.a. the master thread" !$OMP PARALLEL NUM_THREADS(3) PRINT *,"I am thread #", OMP_GET_THREAD_NUM() !$OMP END PARALLEL end program hello OpenMP compiler directives Parallel section =creation of a team of threads [misguich@totoro OpenMP]$ ./a.out Hello, I am thread # 0 a.k.a. the master thread I am thread # 0 Implicit barrier at the end of the parallel section (wait until all the threads in the team have reach this point) 'Hello world' with OpenMP C++ example. Compile with: icc -fopenmp hello.cpp Output: #include <stdio.h> #include <omp.h> int main() { #pragma omp parallel num_threads(3) { printf("Hello, I am thread %d/%d\n",omp_get_thread_num(),omp_get_num_threads()); } } ./hello-cpp.exe Hello, I am thread 0/3 Hello, I am thread 2/3 Hello, I am thread 1/3 For loops with reduction in Fortran program pi USE OMP_LIB INTEGER n, i DOUBLE PRECISION sum, x n=1e9 !$OMP PARALLEL DO REDUCTION(+:sum) private(x) do i=0,n-1 x=(i*1.0)/n sum=sum+sqrt(1-x*x) enddo !$OMP END PARALLEL DO print *, sum/n*4 end program pi $make pi_f90.exe gfortran -fopenmp pi_f90.f90 -o pi_f90.exe $ export OMP_NUM_THREADS=10;time ./pi_f90.exe

3

  Example of task submission script (for PBS/Torque)Listing 1: script.pbs #PBS -S /bin/bash #PBS -N boltzmann #PBS -e job.err #PBS -o job.log #PBS -m abe #PBS -M francois.gelis@ipht.fr #PBS -l nodes=32:ppn=16 module load openmpi/1.6.4 cd $PBS_O_WORKDIR mpirun -npernode 1 ./my_program • This example will start 32 copies of my_program (one per node) • Then, do: qsub script.pbs • Other commands: qstat, qdel • This is sufficient to start independent tasks on several nodes • Non-interactive: I/O to files only François Gelis, Grégoire Misguich, June 2019

  Collective communication: Broadcast• MPI_Bcast(Buf,N,Type,0,MPI_COMM_WORLD) François Gelis, Grégoire Misguich, June 2019 Collective communication: Gather • MPI_Gather(Source,N,Type,Dest,N,Type,0,MPI_COMM_WORLD) • Variant: MPI_Gatherv: gather variable size chunks of data, and place them at variable offsets in the Dest array Collective communication: AllGather • MPI_Allgather(Source,N,Type,Dest,N,Type,MPI_COMM_WORLD) François Gelis, Grégoire Misguich, June 2019 • Superimposing MPI and OpenMP parallelization poses no problem • In general, each MPI job should fork in a number of threads equal to the number of physical cores on one node • Various hybrid scenarios are possible François Gelis, Grégoire Misguich, June 2019

  

  

  

  

out DGELSD Example Program Results Minimum norm solution -0.69 -0.24 0.06 -0.80 -0.08

  

	X :	S	REAL	
		D	DOUBLE PRECISION	
		C	COMPLEX	
		Z	COMPLEX*16 or DOUBLE COMPLEX
	YY:	BD DI GB GE	bidiagonal diagonal general band general	0.21 0.12 -0.65 0.29 -0.24 0.38 0.42 0.29 0.35 -0.30
		GG	general matrices, generalized problem (i.e., a pair of general
	matrices)			Effective rank =	4
		GT (…)	general tridiagonal	Singular values 18.66 15.99 10.01	8.51

DGELSD/from Intel's website (part 1/3) Here minimize 𝑏 -𝐴 Ԧ 𝑥 2 with 𝐴 a rectangular matrix and 𝑏 a vector.

Naming convention of the LAPACK routines : XYYZZZ ZZZ: Type of computation. Here LSD stands for minimum norm solution to a linear least squares problem using the singular value decomposition of A and a divide and conquer $ ifort -mkl DGELSD_example.f $ ./a.

•

  The scheduling method is decided only during the execution (=runtime), according to the environment variable OMP_SCHEDULE (or using omp_set_schedule(…));

	#include <stdio.h>	
	#include <omp.h>	$ export OMP_SCHEDULE=guided,1 $ ./for-schedule.exe
	int main() {	A
	int n=6;int A[n];	
	#pragma omp parallel num_threads(2)	
	{	
	int id=omp_get_thread_num();	
	#pragma omp for schedule(runtime)	
	for (int i=0;i<n;i++) A[i]=id;	
	}	
	for (int i=0;i<n;i++)	
	printf("A[%d]=%d\n",i,A[i]);	
	}	

  LockApplications: computing the number of neighbors of a given node in a network

				2 2	
				3	
	for (i=0; i<Nv; i++) omp_init_lock(&locks[i]); for (i=0; i<Nv; i++) omp_init_lock(&locks[i]);	BUG !	1 1	0	3 3
	#pragma omp parallel for #pragma omp parallel for		2	4 4	
	for (j=0; j<Nb j++){ for (j=0; j<Nb j++){				
	omp_set_lock(&locks[bondA[j]]); omp_set_lock(&locks[bondA[j]]);			1	
	omp_set_lock(&locks[bondB[j]]); degree[bondA[j]]++;		0 0		
	degree[bondA[j]]++; omp_unset_lock(&locks[bondA[j]]); degree[bondB[j]]++; omp_unset_lock(&locks[bondA[j]]); omp_set_lock(&locks[bondB[j]]); degree[bondB[j]]++;		Nv: number of nodes=5 Nv: number of nodes=5 Nb: number of bonds=5 bondA[0]=1;bondsB[0]=4; bondA[1]=4;bondsB[1]=0; Nb: number of bonds=5 bondA[0]=1;bondsB[0]=4; bondA[1]=4;bondsB[1]=0;	
	omp_unset_lock(&locks[bondB[j]]); omp_unset_lock(&locks[bondB[j]]);		bondA[2]=0;bondsB[2]=1; bondA[2]=0;bondsB[2]=1;	
	} }		bondA[3]=3;bondsB[3]=2; bondA[3]=3;bondsB[3]=2;	
			bondA[4]=1;bondsB[4]=1; bondA[4]=1;bondsB[4]=1;	

François Gelis, Grégoire Misguich, June 2019

Example of (symmetric) matrix diagonalizationCan call OpenBLAS or MKL #include <iostream> #include <armadillo> using namespace arma; int main() { const int N=5000; size_t dim=N; mat A(dim, dim, arma::fill::randu); vec eigval; mat eigvec; eig_sym(eigval,eigvec,A); cout<<"1st eigenvalue="<<eigval[0]<<"\tLast="<<eigval[dim-1]<<endl; return 0;

Matrix-matrix multiplication#include <iostream> #include <armadillo> using namespace arma; int main() { const int N=10000; size_t dim=N; mat A(dim, dim, arma::fill::randu); mat B(dim, dim, arma::fill::randu); mat C=A*B; return 0; }

workers (=processes), each one using ~12 threads (and 12 CPU cores) [mutli-threaded linear algebra lib.]

Multiprocessing.Pool &

Multiprocessing.Pool & Sympy

my_file.write(str(n)+"\t"+str(td)+"\n") Eigenvals of (10,10) matrix in 0.0008 s Eigenvals of (20,20) matrix in 0.0002 s Eigenvals of (50,50) matrix in 0.0006 s Eigenvals of (100,100) matrix in 0.0359 s Eigenvals of (200,200) matrix in 0.0393 s Eigenvals of (300,300) matrix in 0.0996 s Eigenvals of (400,400) matrix in 0.1522 s Eigenvals of (500,500) matrix in 0.2451 s Eigenvals of (600,600) matrix in 0.3967 s Eigenvals of (700,700) matrix in 0.4587 s Eigenvals of (800,800) matrix in 0.5750 s Eigenvals of (900,900) matrix in 0.6680 s Eigenvals of (1000,1000) matrix in 0.7734 s Eigenvals of (2000,2000) matrix in 2.4721 s Eigenvals of (3000,3000) matrix in 7.4194 s Eigenvals of (4000,4000) matrix in 14.2675 s Eigenvals of (6000,6000) matrix in 39.1304 s Eigenvals of (8000,8000) matrix in 68.1390 s

shared, private

Inside a parallel region:

• Shared variables can be read and written by all the threads. Be careful with potential race conditions. If two threads simultaneously write at the same memory location (variable), or if a threads reads it while another one writes on it, the result is potentially random (possibility of corrupted data). There will be no error message !

• If a variable is private, each thread has its own copy. If a variable existed with the same name before the parallel construct, it is not affected when exiting the parallel region. • By default, variables declared outside the parallel regions are shared, and those declared inside are private. • When entering a parallel region, the private variables are not initialized. In C++ they are created using the default constructor firstprivate, lastprivate

• Firstprivate: special case of private variable, where each local copy is initialized from the value of the variable with the same name before the beginning of the parallel region

• Lastprivate: special case of private variable for parallel section or parallel for, where, at the end of the parallel region, the variable with the same name outside the parallel region gets the value of local copy of the thread doing the last iteration (or last section). printf("task2 done.\n"); } } printf("sum=%g\n",sum); return 0; } Required, to ensure that threads do not attempt to update the shared variable sum simultaneously.

Critical and atomic

Intructions or blocks which must be executed one thread at a time sum is a shared variable before the parallel section. In the parallel for loop a private copy of sum is created for each thread. At the end of the loop the private copies are combined using the operation '+'. I absence of the nowait option, there is an implicit barrier at the end of the loop. All the threads will wait that all the loop iterations are completed before going on. Same implicit barrier at the end of sections or single directives. Here the use of atomic would have not been possible, since vector::push_back(…) is not an "atomic" statement. critical would have been possible, but slower.

Tasks

Useful to parallelized « irregular » problems, unbounded loops, or recursive algorithms. (since OpenMP3).

• Each time a thread reaches a task directive, the corresponding unit of work is added to a queue, and that thread can continue. • A thread of the team (the same or another one) will execute the task (now of later). • All the tasks created by any thread in the current team will be completed before exiting the parallel region. Cutoff needed for performance, to avoid creating too many very small tasks.

Sort the list

wait that both tasks above are finished before returning the result i+j

Only one thread of the team calls fibonacci.

Recursive calls → exploration of a binary tree 

Distributed memory "computers"

• Organization of a computer cluster:

• one front-end node for compilation and administration tasks • many nodes for computations, not directly accessible • computation tasks submitted via a batch system • The nodes are connected via a network • Types of network connections: 

Hybrid: MPI+OpenMP
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Case study: deterministic Boltzmann solver
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Sketch of the Algorithm

• At each time-step:

1. For each i, compute ∆f i (given by a 4-dim integral ⇒ slow)

If FALSE, re-run the previous loop with a smaller timestep 3. Do f i + ∆f i → f i and return to step 1

• Note: cost of computing ∆f i not uniform (50% variation) Thus, we expect that the parallelization of the "big loop" will not be perfectly efficient (the computation time will align to that of the slowest bins)

Sequential version (sketch of the relevant bit of code)

// Core of the function that evolves f[ i ]

double * df = (double * )malloc(N * sizeof(double)); for ( i=0;i<N;i++) df[ i ] = dt * C(i , f ) ; // depends on f[k] with k!=i ; computation of C(i,f) very slow