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ELLIPTIC APPROXIMATE MESSAGE PASSING AND AN APPLICATION

TO THEORETICAL ECOLOGY

MOHAMMED-YOUNES GUEDDARI, WALID HACHEM, JAMAL NAJIM

Abstract. Approximate Message Passing (AMP) algorithms have recently gathered significant

attention across disciplines such as statistical physics, machine learning, and communication
systems. This study aims to extend AMP algorithms to non-symmetric (elliptic) matrices,

motivated by analyzing equilibrium properties in ecological systems featuring elliptic interaction

matrices.
In this article, we provide the general form of an AMP algorithm associated to a random

elliptic matrix, the main change lying in a modification of the corrective (Onsager) term. In

order to establish the statistical properties of this algorithm, we use and prove a generalized
form of Bolthausen conditioning argument, pivotal to proceed by a Gaussian-based induction.

We finally address the initial motivating question from theoretical ecology. Large foodwebs
are often described by Lotka-Volterra systems of coupled differential equations, where the in-

teraction matrix is elliptic random. In this context, we design an AMP algorithm to analyze

the statistical properties of the equilibrium point in a high-dimensional regime. We rigorously
recover the results established by Bunin [Bun17] and Galla [Gal18] who used techniques from

theoretical physics, and extend them with the help of Propagation of chaos type arguments.

1. Introduction

Approximate Message Passing (AMP) is a class of versatile and configurable iterative algo-
rithms. The output is a sequence of high-dimensional Rn-valued random vectors (uk)k≥1 based
on n×n (usually symmetric) random matrices, see (1). An important feature of AMP is a precise
description of the (uk)’s statistical properties as n goes to infinity, mainly via the so-called Density
Evolution (DE) equations (3).

Initially used in statistics for solving compressed sensing and sparse signal recovery problems
[DMM09, BM11], the AMP algorithms have found numerous applications in the fields of high-
dimensional estimation [DAM17, LM19], communication theory [BK17, RGV17], or statistical
physics [Mon21], and have undergone extensive developments that have widened their spectrum
of applications.

The goal of this article is to extend the AMP procedure to a non-Hermitian setting and to
consider large elliptic random matrices. This new setting is mainly motivated by the study of
equilibria in large random Lotka-Volterra systems of differential equations, a popular model in
theoretical ecology. Interestingly, modifying the matrix nature in the AMP algorithm changes the
iteration equation (modification of the Onsager term), necessitates extra mathematical develop-
ments but does not modify the DE equations.

A primer on Approximate Message Passing. Recall the definition of the Gaussian Orthogo-
nal Ensemble (GOE), a n×n random matrix with representation (X+X⊤)/

√
2 where X ∈ Rn×n

has n2 independent N (0, 1) elements. Consider the following AMP iterative algorithm :

(1)

{
u1 = An h0

(
u0, b

)
uk+1 = An hk

(
uk, b

)
−
〈
∂1hk

(
uk, b

)〉
n
hk−1

(
uk−1, b

)
, for k ≥ 1

where u0 ∈ Rn is an initialization vector that can be either random or deterministic, b = (bi)i∈[n]

is a parameter vector and uk = (uki )i∈[n] ∈ Rn is the iterate at step k. Matrix An is n×n random

such that
√
nAn is drawn from GOE. Functions hk : R2 → R (k ≥ 0 with the convention that

Date: February 13, 2024

CNRS, Laboratoire d’informatique Gaspard Monge (LIGM / UMR 8049), Université Gustave Eiffel, France.
1
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h−1 = 0) are the so-called activation functions and applied componentwise to vectors uk = (uki )
and b = (bi):

hk(u
k, b) =

(
hk(u

k
i , bi)

)
∈ Rn .

These functions are assumed to be differentiable with respect to the first parameter. We denote
the partial derivative ∂h

∂u (u, b) by ∂1h(u, b), and introduce the notation:〈
∂1hk

(
uk, b

)〉
n
=

1

n

∑
i∈[n]

∂1hk
(
uki , bi

)
∈ R .

The Onsager term. In the AMP literature, the so-called Onsager term defined by

−
〈
∂1hk

(
uk, b

)〉
n
hk−1

(
uk−1, b

)
plays a pivotal role to describe the (high dimensional) statistical properties of (u0, · · · ,uk). It
is designed to asymptotically remove (as n goes to infinity) the non-Gaussian component from
An hk

(
uk, b

)
.

The joint empirical distribution. The joint empirical distribution of (u1, · · · ,uk) is defined as

µu1,··· ,uk

=
1

n

∑
i∈[n]

δ(u1
i ,··· ,uk

i )
,

where δ(u1,···uk) is the Dirac distribution at point (u1, · · · , uk). The techniques developed within
the scope of AMP enable to describe the limit of this joint empirical distribution as n→ ∞, which
turns out to be the distribution of a centered k-dimensional Gaussian vector whose covariance
matrix is defined recursively by the Density Evolution equations.

Density Evolution (DE) equations. These equations recursively characterize a family of covariance
matrices Rk ∈ Rk×k with k ≥ 1 defined as follows.

- Initialization: Let (ū, b̄) be a random vector in R2. Set

(2) R1 = E
[
h20
(
ū, b̄
)]

and let Z1 ∼ N (0, R1) be a random variable independent from (ū, b̄).
- Recursion: Suppose that Rk−1 is given. Let (Z1, · · · , Zk−1) ∼ Nk−1(0, R

k−1) be a vector
independent from (ū, b̄). Let Rk = (Rkij) be a k × k matrix defined by

(3) Rkij =

{
R1 if i = 1, j = 1

E
[
hi−1

(
Zi−1, b̄

)
hj−1

(
Zj−1, b̄

)]
if i ≥ 1, j ≥ 1

with the convention that Z0 ≜ ū.

Notice that Rk−1 represents the upper-left corner of matrix Rk. Thus we can also define an
operator R as follows which will encode all matrices Rk:

(4)
R : N∗ × N∗ → R+

(i, j) 7→ Rkij where k ≥ i, j,

We will simply denote R(i, j) by Rij for all (i, j) ∈ N∗ × N∗.
We now (informally) state the main result of the AMP for a GOE matrix:

Theorem ([BM11, FVRS21]). Let An be a n × n matrix such that
√
nAn is drawn from the

GOE. Let u0, b ∈ Rn independent from An, and (uℓ)1≤ℓ≤k be defined by (1). Suppose that

µu0,b −−−−→
n→∞

L(ū, b̄) and let Rk be defined by the DE equations (2)-(3). Then

µu1,··· ,uk

−−−−→
n→∞

L(Z1, · · · , Zk) where (Z1, · · · , Zk) ∼ Nk(0, R
k) .

The nature of the convergence of measures µu0,b and µu1,··· ,uk

will be specified for the main
theorem of the article.
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About the literature. Numerous studies have extended AMP algorithms to more complex and
general scenarios [JM13, BLM15]. For instance, Vector AMP [RSF18] broadens AMP to handle
vector observations, considering uk as a matrix rather than a vector. This adaptation is suited
for multi-channel and multi-dimensional signal processing tasks. Fan [Fan21] generalizes AMP
algorithms to encompass a wide range of matrices, particularly rotationally invariant ones, Dudeja
et al. [DMLS23] explore universality properties of AMP, etc.

Another important generalization known as “Asymmetric AMP” is discussed in [FVRS21, sec-
tion 2.2]. Given a rectangular matrix A with i.i.d. Gaussian entries, the form of this AMP
algorithm can be summarized as the following:{

vk = A gk
(
uk, α

)
− βkhk−1

(
vk−1, b

)
uk+1 = A⊤hk

(
vk, b

)
− bkgk

(
uk, α

) ,

which is a two-step algorithm that involves both matrices A and A⊤.
None of these extensions cover our model of interest.

Non-Hermitian AMP. In the sequel we will consider an AMP algorithm based on an elliptic
matrix instead of a GOE matrix. For the sake of our application, we shall also enable multiple
parameter vectors (b1, · · · , bp) instead of a single one (p fixed). These vectors will be stacked into
a n× p matrix

(5) B = (b1, · · · , bp)

and for h : Rk+1 → R, u ∈ Rn , h(u, B) will denote the vector

h(u, B) = (h(ui, Bi1, · · · , Bip) )i∈[n] .

Definition 1.1 (Gaussian elliptic matrix model). A random matrix Mn = (Mij) ∈ Rn×n is said
to follow the Gaussian elliptic distribution with parameter ρ ∈ [−1, 1] if the entries’ distributions
are given by

Mii ∼ N (0, 1 + ρ) for i ∈ [n] and

[
Mij

Mji

]
∼ N2

(
0,

[
1 ρ
ρ 1

])
for i < j .

Moreover, all the elements of the following set are independent:{
Mii , i ∈ [n]

}
∪
{
(Mij ,Mji) , i, j ∈ [n] , i < j

}
.

We write Mn ∼ Elliptic(n, ρ) for such matrices. We will also call a normalized (Gaussian)
elliptic matrix An ∈ Rn×n a matrix that verifies

√
nAn ∼ Elliptic(n, ρ).

Notice that a normalized elliptic matrix An is no longer symmetric. Its spectral distribution has
been thoroughly studied [Gir86, Nau12, OR14] and it is well-known that it almost surely converges
as n→ ∞ to the uniform law over the compact set bounded by the ellipse defined for |ρ| < 1 by

Eρ =

{
(x, y) ∈ R2 :

x2

(1 + ρ)2
+

y2

(1− ρ)2
≤ 1

}
,

hence the name. This model interpolates from antisymmetric matrices (ρ = −1) to GOE matrices
(ρ = 1) with the important special case of matrices with i.i.d. Gaussian entries (ρ = 0).

Elliptic AMP. For a normalized elliptic matrix An, the AMP algorithm takes the form:

(6) uk+1 = An hk
(
uk, B

)
− ρ

〈
∂1hk

(
uk, B

)〉
n
hk−1

(
uk−1, B

)
,

and we shall prove in Theorem 1 the counterpart of Theorem 1 with the same DE equations,
vector b being replaced by matrix B.

Notice however the modified Onsager term, multiplied by the correlation coefficient ρ. If ρ = 0,
matrix

√
nA has i.i.d. N (0, 1) entries and the Onsager term vanishes. For ρ = 1 we recover the

GOE model.
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Bolthausen’s conditioning argument. In the framework of the GOE, the challenge for rigorously
proving Theorem 1 by induction lies in an essential ingredient often called Bolthausen’s condi-
tioning argument [Bol14]. This technique provides a convenient representation of the conditional
distribution of the new iterate uk+1 given the past

(
u1, · · · ,uk

)
. In the course of the proof, we

establish a generalized version of Bolthausen’s technique suited to handle elliptic matrix models.

Application to theoretical ecology. An important challenge in theoretical ecology is to build
and analyze mathematical models to describe trophic networks and food-webs [LHM+04] of large
dimension. In this regard, Lotka-Volterra (LV) systems of coupled differential equations is a
popular model to describe the evolution of the various species’ abundances in a food-web. The
LV system of equations is written:

(7)
dx

dt
(t) = x(t)⊙ (r − (In − Σn)x(t)) , x(0) ∈ (0,∞)n,

where ⊙ stands for the Hadamard product, x(t) ∈ Rn is the vector of abundances of the n species
at time t, r ∈ Rn is the vector of intrinsic growth rates of the species and Σn = (Σij) is the n× n
interaction matrix, Σij representing the effect of species j on the growth of species i.

In large dimension, a key feature of LV systems is the use of random matrices1, see for instance
[AT15, ABC+22], to model the interactions between the different species. This choice of a random
matrix model is motivated in particular because the estimation of the real interactions is often
out of reach.

An elliptic interaction matrix Σn, more precisely κ
√
nΣn ∼ Elliptic(n, ρ) (here κ > 0 is an extra

degree of freedom), covers the case where the reciprocal interactions Σij and Σji between species
are correlated. The elliptic model encompasses the cases of independent and equal reciprocal
ecological interactions, and is widely considered in theoretical ecology [AT12, AT15, Bun17, Gal18].

The question we shall address is the description of the statistical properties of an equilibrium
x⋆ ∈ Rn to (7), as n goes to infinity, whenever such an equilibrium exists (sufficient conditions
for the existence of a unique and stable equilibrium have been provided in [CEFN22]). More
specifically, we will be interested in the number of surviving species at equilibrium, the distribution
of the surviving species, the individual distribution of a species, etc.

Based on Theorem 1 and following the strategy developed in [AHMN23] in the context of a sym-
metric interaction matrix, we will design an AMP algorithm which shall capture the equilibrium’s
statistical properties. This question has already been addressed by Bunin [Bun17] and Galla
[Gal18] who provided a full description of x⋆’s statistical properties via a system of non-linear
equations at a physical level of rigor. We recover their equations, cf. (13), and provide a rigorous
analysis of this system, substantially more demanding than in the symmetric case [AHMN23].

Combining a local AMP result (see Corollary 2) with arguments from the propagation of chaos
theory, we also obtain new results on the individual distributions of species with different intrinsic
growth rates.

Outline of the article. In Section 2, we present the elliptic AMP algorithm and state the main
corresponding results, Theorem 1 (global AMP) and Corollary 2 (blockwise AMP). In Section 3,
we present an application of AMP to theoretical ecology and design a specific AMP algorithm
to describe the statistical properties of an equilibrium to a large LV system, see Theorem 3.
Relying on propagation of chaos arguments, we describe the limiting behaviour of individual
species’ abundances in Corollary 4 (global exchangeability assumption) and Theorem 5 (blockwise
exchangeability assumption). Proofs of AMP results are provided in Section 4. Proofs related to
LV equilibria are provided in Section 5.

Technical results of special interest are Lemma 3.4 (description of the key equilibrium param-
eters via a deterministic system), Propositions 4.7 and 4.8 (extension of Bolthausen conditioning
argument to elliptic random matrices) and Proposition 5.2 (chaos propagation for blockwise ex-
changeable vectors).

1In theoretical ecology, the use of random matrices goes back to May [May72].
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Main notations and definitions. For a positive integer n, denote [n] = {1, · · ·n}. For x ∈ R let
x+ = max(x, 0) and x− = −min(x, 0) so that x = x+ − x−. Vectors will be denoted by lowercase
bold letters x = (xi) ∈ Rn and matrices by capital letters. For a matrix A = (Aij) ∈ Rn×n, we
denote by Ai,∗ its i-th row and by A∗,j its j-th column we also denote by A[i],j the first i elements

of the j-th column of A. We denote by A⊤ the transpose transpose matrix of A.
For a vector x ∈ Rn (respectively a n × n matrix B), ∥x∥ (resp. ∥B∥) denotes its euclidean

norm (resp. spectral norm) and ⟨x⟩n ≜ 1
n

∑n
i=1 xi the arithmetic mean of its coordinates. For two

matrices A,B with identical dimensions, denote by A ⊙ B = (AijBij) their Hadamard product.
The notation applies for two Rn-vectors x⊙ y = (xiyi).

For f : R → R, g : Rp+1 → R and x,y1, · · · ,yp ∈ Rn, denote by f(x) and g(x,y1, · · · ,yp) the
n-dimensional vectors

f(x) = (f(xi))i∈[n] and g(x,y1, · · · ,yp) = (g(xi, y
1
i , · · · , y

p
i ))i∈[n] .

In particular, x+ = ([xi]+).
Denote by L(X) the law of a random variable X. The equality in law between X and Y will

be either denoted X
L
= Y or L(X) = L(Y ). Independence is denoted by ⊥⊥.

Acknowlegment. We thank all the members of the CNRS project 80-Prime-KARATE where
part of this work has been initiated.

2. AMP for random elliptic matrices

We first introduce the notions of complete convergence and Wasserstein spaces. These concepts
are crucial for the precise formulation of our main theorem.

2.1. Background.

Complete convergence. Given a sequence of random variables (Xn), we say that Xn converges

completely to a constant x if for any other sequence (Yn)n such that Xn
L
= Yn for all n, Yn

converges almost surely to x. We denote this mode of convergence as

Xn
c−−−−−→

n→+∞
x or Xn −−−−→

n→∞
x (completely) .

It is worth noticing that the complete convergence of (Xn)n to x is equivalent to the condition∑
n∈N P(∥Xn − x∥ > ε) < ∞ for all ε > 0, as per Borel-Cantelli’s lemma. One advantage of this

convergence mode is that it is transmissible through equality in law, i.e.:

If

Xn
c−−−−−→

n→+∞
x,

Yn
L
= Xn, for all n

then Yn
c−−−−−→

n→+∞
x.

This property is shared with convergence in probability but not with almost sure convergence.

Wasserstein spaces. The Wasserstein space of order r ≥ 2 denoted by Pr
(
Rd
)
is the set of prob-

ability distributions µ on Rd with finite moments of order r:

Pr
(
Rd
)
=

{
µ ∈ P(Rd) ,

∫
Rd

∥x∥rdµ(x) <∞
}
.

The Wasserstein distance between µ, ν ∈ Pr
(
Rd
)
, denoted by W(µ, ν), is defined as:

W(µ, ν) = inf
π∈Π(µ,ν)

(∫
Rd×Rd

∥x− y∥rdπ(x,y)
)1/r

,

where Π(µ, ν) is the set of probability measures on Rd×Rd having µ and ν as marginals. Given a
sequence of probability measures (µn) ⊂ Pr

(
Rd
)
we will say that this sequence converges in the
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Wasserstein space to µ ∈ Pr
(
Rd
)
if W(µn, µ) −−−−→

n→∞
0. We write

µn
Pr(Rd)
−−−−−→
n→+∞

µ .

Convergence of measures in the Wasserstein space can be characterized using pseudo-Lipschitz
functions. We say that f : Rd → R is a pseudo-Lipschitz function of degree r ≥ 2 if there exists a
constant L such that for every x,y ∈ Rd the following inequality holds:

|f(x)− f(y)| ≤ L∥x− y∥
(
1 + ∥x∥r−1 + ∥y∥r−1

)
.

We denote the set of pseudo-Lipschitz functions by PLr
(
Rd
)
. The following classical lemma which

can be found in [AHMN23, Lemma 1] summarizes the characterizations of the convergence in the
Wasserstein space.

Lemma 2.1. Let µn, µ ∈ Pr
(
Rd
)
for r ≥ 2. The following conditions are equivalent:

(1) µn
Pr(Rd)
−−−−−→
n→+∞

µ,

(2) for all φ ∈ PLr
(
Rd
)
,
∫
φdµn →

∫
φdµ,

(3) µn
w−→ µ and

∫
∥x∥rµn(dx) →

∫
∥x∥rµ(dx).

2.2. Assumptions. We define an AMP algorithm by a triplet
(
An,H,

(
u0, Bn

))
, where An is

a random matrix of size n × n, H = {hk(., .)}k∈N is a sequence of functions from Rp+1 to R,
u0 ∈ Rn is an initialization point and Bn ∈ Rn×p is a matrix parameter. For our main theorem,
the following assumptions are needed.

(A1) An is a normalized elliptic matrix with correlation coefficient ρ ∈ [−1, 1].

(A2) The random vector (u0, Bn) ∈ Rp+1 is independent of An and there exists a vector
(ū, b̄1, · · · , b̄p) whose distribution belongs to Pr(Rp+1) such that

µu0
n,Bn = µu0

n,b
1
n,··· ,b

p
n

Pr(Rp+1)−−−−−−→
n→∞

L
((
ū, b̄1, · · · , b̄p

))
(completely) .

We denote b̄ = (b̄1, · · · , b̄p).
(A3) For all k ≥ 0, the function hk : Rp+1 → R is Lipschitz.

(A4) For every k ≥ 0, P
(
The function x 7→ hk

(
x, b̄
)
is constant

)
< 1 .

(A5) The functions ∂1hk are continuous λ ⊗ Pā- almost everywhere, where λ is the Lebesgue
measure on R.

Remark 2.2.

• Assumption (A4) ensures that the covariance matrices Rk defined by the Density Evolution
equations in (3) are positive definite, and in particular invertible. This is an important
assumption used in the proof of Theorem 1 - see [FVRS21, Lemma 2.2].

• Assumption (A5) is a technicality needed to ensure the convergence of
〈
∂1hk

(
ukn, Bn

)〉
n

to a deterministic limit.

2.3. Main result. Recall that p is fixed. We first update the DE equations associated to a
matrix parameter Bn ∈ Rn×p. This simply amounts to replace the scalar b̄ in (2)-(3) by the vector
b̄ =

(
b̄1, · · · , b̄p

)
. Let hi : Rp+1 → R, consider vector (ū, b̄) ∈ Rp+1 then Eq. (2) and (3) write

(8) R1 = E
[
h20
(
ū, b̄
)]
, Rkij =

{
R1 if i = 1, j = 1

E
[
hi−1

(
Zi−1, b̄

)
hj−1

(
Zj−1, b̄

)]
if i ≥ 1, j ≥ 1

We can now state the main result of this section.

Theorem 1. Let k ≥ 1, assume (A1)-(A5) and consider a sequence of vectors
(
uk
)
k
that satisfies

the AMP scheme, i.e.{
u1 = An h0

(
u0, Bn

)
,

uk+1 = An hk
(
uk, Bn

)
− ρ

〈
∂1hk

(
uk, Bn

)〉
n
hk−1

(
uk−1, Bn

)
.
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Let (Z1, · · · , Zk) be a centered Gaussian vector independent of (ū, b̄) with covariance matrix Rk

given by the updated DE equations (8). Then the following convergence of the iterates holds:

(9) µB,u
1,··· ,uk Pr(Rp+k)

−−−−−→
n→+∞

L
((
b̄, Z1, · · · , Zk

))
(completely) .

Proof of Theorem 1 is provided in Section 4.

Remark 2.3. Proof of Theorem 1 crucially relies on the Gaussianity of matrix An’s entries and
an important question would be how to relax this assumption. In Bayati et al. [BLM15], AMP is
extended from a GOE model to a general Wigner matrix (symmetric matrix with i.i.d. entries on
and above the diagonal) using an alternative strategy based on combinatorial methods. Adaptation
of this combinatorial strategy to an elliptic framework will be the subject of a future work.

Remark 2.4. Using Lemma 2.1 the convergence result can also be expressed as

∀φ ∈ PLr
(
Rp+k

)
,

1

n

n∑
i=1

φ
(
b1i , · · · , b

p
i , u

1
i , · · · , uki

)
−−−−→
n→∞

E
[
φ
(
b̄1, · · · , b̄p, Z1, · · · , Zk

)]
.

Notice that the sum is over all integers from 1 to n, and thus each iterate vector uℓ (1 ≤ ℓ ≤ k)
is flattened. One may want to get a more local information, say the convergence of

1

|C(n)|
∑
i∈C(n)

φ
(
b1i , · · · , b

p
i , u

1
i , · · · , uki

)
,

where C(n) is a subset of [n].

Corollary 2 generalizes Theorem 1 in this direction. It relies on the following assumption.

(A2′) Let q ≥ 1 be fixed and consider the following partition of [n]:

(10) [n] = C(1)
n ∪ · · · ∪ C(q)

n where
|C(j)
n |
n

−−−−→
n→∞

cj ∈ (0, 1) for all j ∈ [q] .

There exist q vectors
(
ūj , b̄j,1, · · · , b̄j,p

)
with j ∈ [q] such that:

1

|C(j)
n |

∑
i∈C(j)

n

δ(u0
i ,b

1
i ,··· ,b

p
i )

Pr(Rp+1)−−−−−−→
n→∞

L
(
ūj , b̄j,1, · · · , b̄j,p

)
(completely) .

Corollary 2 (blockwise AMP). Let (A2′) hold and consider the framework of Theorem 1 except
for (A2) (replaced by (A2′)). Then for all j ∈ [q]

1

|C(j)
n |

∑
i∈C(j)

n

δ(b1i ,··· ,b
p
i ,u

1
i ,··· ,uk

i )
Pr(Rp+k)
−−−−−−→
n→∞

L
(
b̄j,1, · · · , b̄j,p, Z1, · · · , Zk

)
(completely)

where vector (Z1, · · · , Zk) is defined as in Theorem 1 and is independent from (b̄j,1, · · · , b̄j,p).

Proof of Corollary 2 is postponed to Section 4.5.

3. Application to theoretical ecology: equilibria of large LV systems

3.1. Large Lotka-Volterra systems. In an ecological system where there are interactions be-
tween n species, the dynamics of these species can be modeled by a set of coupled differential
equations called a Lotka-Volterra (LV) system.

Denote by xi(t) the abundance of species i at time t for i ∈ [n] and by x(t) = (xi(t))i∈[n] the
vector of abundances of all the species. Denote by r = (ri)i∈[n] the vector of intrinsic growth rates
of all the species, and by Σn the n× n interaction matrix between the species.

The LV system is written

dx

dt
(t) = x(t)⊙ (r − (In − Σn)x(t)) , x(0) ∈ (0,∞)n,
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or equivalently

dxi
dt

(t) = xi(t)

ri − xi +
∑
j∈[n]

Σijxj(t)

 , xi(0) > 0 for all i ∈ [n] .

Here Σij represents the effect of species j on the growth of species i. Notice that if Σn = 0
(no interactions), then each species is described by a logistic differential equation. The general
properties of a LV system are well-known, see for instance [Tak96, Chapter 3], notice in particular
that xn(t) > 0 (componentwise) for all t ≥ 0 if x(0) ∈ (0,∞)n.

We are interested in the regime where n is large and Σn is random. Often, the real values of
Σn are out of reach and an alternative is to choose a random model which statistical properties
would reflect a partial knowledge on the ecological interaction network. Among the various matrix
models, the Elliptic(n, ρ) model represents a good trade-off between complexity and tractability,
see [AT12, AT15, ABC+22]. We will therefore assume that

(11) κ
√
nΣn ∼ Elliptic(n, ρ) ,

Otherwise stated, Σn = An

κ where An is a normalized elliptic matrix and κ > 0 is an extra
parameter. In this case, ∥Σn∥ = O(1) as n → ∞ and the interaction matrix Σn will have a
macroscopic effect on the LV system as n→ ∞.

3.2. Existence of a stable and unique equilibrium. In [CEFN22], sufficient conditions are
provided so that system (7) eventually admits a unique and stable equilibrium.

Proposition 3.1 (Prop. 2.3 in [CEFN22]). Consider system (7) where κ
√
nΣn ∼ Elliptic(n, ρ)

and suppose that κ >
√
2(1 + ρ). Then almost surely (a.s.) eventually there exists a unique and

stable equilibrium xeq = (xeqi (n))i∈[n]. Otherwise stated, with probability one there exists N such
that for all n ≥ N , there exists a unique xeq ∈ Rn such that

x(t) −−−→
t→∞

xeq ,

where x(t) solves (7).

Remark 3.2. The fact that x(t) > 0 for all t > 0 only implies that xeq ≥ 0. A vanishing
component of xeq represents a vanishing species (whose abundance is zero at equilibrium).

Remark 3.3 (extension of the definition of xeq). Notice that in Proposition 3.1, the equilibrium
xeq is eventually defined. In fact, standard arguments yield

∥An∥
κ

a.s.−−−−→
n→∞

√
2(1 + ρ)

κ
< 1

by assumption over κ. If the condition ∥An∥
κ < 1 is met, which happens a.s. eventually, then the

existence of xeq is granted by Takeuchi’s result [Tak96, Th. 3.2]. We extend the definition of xeq

by setting

(12) x⋆ =

{
xeq if ∥An∥

κ < 1 ,

0 else .

With a slight abuse of notation, one may denote x⋆ = xeq 1{∥An∥/κ < 1}.

3.3. Statistical properties of the LV equilibrium x⋆. Once the existence of the equilibrium
is granted, we shall explore its statistical properties and address questions such as: What is the
proportion of surviving species at equilibrium? What is the distribution of surviving species? etc.
In this regard, a key device will be the study of the empirical probability measure

µx⋆

=
1

n

∑
i∈[n]

δx⋆
i (n)

,

and the design of an appropriate AMP algorithm.
We first introduce a system of three equations whose solutions will play a key role in describing

the statistical properties of the equilibrium.
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Lemma 3.4. Let ρ ∈ [−1, 1] and suppose that κ > (1 + ρ)/
√
2. Consider two independent real

random variables Z̄ and r̄ where Z ∼ N (0, 1) and r̄ ≥ 0 with finite second moment and L(r̄) ̸= δ0.
Then the system of equations

κ = δ + ρ
γ

δ
,(13a)

σ2 =
1

δ2
E
[(
σZ̄ + r̄

)2
+

]
,(13b)

γ = P
[
σZ̄ + r̄ > 0

]
,(13c)

admits an unique solution (δ, σ, γ) in (1/
√
2,∞)× (0,∞)× (0, 1).

Proof of Lemma 3.4 is deferred to Appendix A. We follow the lines of the corresponding proof
for the symmetric matrix case [ABC+22, Section 3.2] but the case ρ < 0 requires new arguments.

Remark 3.5. Notice that condition κ > (1 + ρ)/
√
2 in Lemma 3.4 is weaker than condition

κ >
√

2(1 + ρ) provided in Proposition 3.1 unless ρ = −1. Otherwise stated if κ satisfies the
condition

1 + ρ√
2

< κ ≤
√

2(1 + ρ) , (ρ > −1)

the system may admit a unique solution but the existence of a stable equilibrium is not granted.

We can now state the main result of this section.

Theorem 3. Let An be a normalized elliptic matrix, r ∈ Rn a random vector independent from
An satisfying:

µr P2(R)−−−−→
n→∞

L(r̄) (completely) ,

where r̄ ≥ 0 is a real valued random variable with finite second moment and L(r̄) ̸= δ0. Let Z̄ be
a N (0, 1) random variable independent from r̄.

Let κ >
√
2(1 + ρ) and consider the LV system (7) where Σn = An

κ . Let x⋆ be defined by (12)

and (δ, σ, γ) ∈ (1/
√
2,∞)× (0,∞)× (0, 1) be the solution of (13) in Lemma 3.4, then

(14) µx⋆ P2(R)−−−−→
n→∞

π := L
((

1 + ργ/δ2
) (
σZ̄ + r̄

)
+

)
(completely) .

Proof of Theorem 3 is outlined in Section 5.1. It closely follows the strategy developed in
[AHMN23] in the context of a symmetric interaction matrix (see in particular the outline of the
proof in [AHMN23, Section 3.1]). This strategy is adapted to the elliptic case with the help of
Theorem 1 and the existence of a unique solution to (13).

Remark 3.6 (Proportion of surviving species). Strictly speaking, the proportion of surviving
species at equilibrium is given by:

µx⋆

(0,∞) =
1

n

∑
i∈[n]

1(0,∞)(x
⋆
i ) .

As a consequence, convergence (14) in Theorem 3 does not apply for x 7→ 1(0,∞)(x) is not continu-
ous at zero, a discontinuity point of the limiting cumulative function. However for any continuous
function fε satisfying

fε(x) =

{
0 for x ≤ 0

1 for x ≥ ε

for a small ε > 0, one has 1
n

∑
i fε(x

⋆
i ) −−−−→n→∞

Efε
[(
1 + ργ/δ2

) (
σZ̄ + r̄

)
+

]
and

Efε
[(
1 + ργ/δ2

) (
σZ̄ + r̄

)
+

]
−−−→
ε→0

γ = P(σZ̄ + r̄ > 0) .

Hence γ appears as a good approximation of the proportion of surviving species. This is confirmed
by simulations, see Figure 1a.
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Remark 3.7 (Distribution of surviving species). Denote by s(x⋆) the subvector of x⋆ with the
positive components of x⋆. Its dimension |s(x⋆)| is random and the distribution of the surviving
species is given by:

µs(x⋆) =
1

|s(x⋆)|
∑

i∈[|s(x⋆)|]

δ[s(x⋆)]i .

A formal convergence of µs(x⋆
n) is out of reach (see the arguments in Remark 3.6) but a good proxy

should be

(15) L
((

1 + ργ/δ2
) (
σZ̄ + r̄

)
+

∣∣∣∣ σZ̄ + r̄ > 0

)
,

the density of which is explicit. Let

fσZ̄+r̄(y) =

∫
R

e−
(y−r)2

2σ2

√
2π σ

Pr̄(dr) and 1 + ρ
γ

δ2
=
κ

δ
,

then the density of (15) denoted by fsurv is written

(16) fsurv(y) =
δ

κ
fσZ̄+r̄

(
δ y

κ

)
1(y>0)

γ
.

One can now easily express the relation between π as defined in (14) and fsurv:

(17) π(dy) = γfsurv(y) dy + (1− γ)δ0(dy) .

Notiece that if the r.v. r̄ is constant then fsurv is the density of a truncated Gaussian distribution.

Simulations show a very good fit between this distribution and the histogram associated to
µs(x⋆) for large n, see Fig. 1b.

3.4. Propagation of chaos. Combining Theorem 3 with propagation of chaos type results
[Szn91], we are able, with extra exchangeability assumptions on the vector r ∈ Rn, to describe
the limiting behaviour of individual abundances.

We obtain two kinds of results. If r is exchangeable, then the distribution of every individual
abundance converges toward the same limit given by π in (14), see Corollary 4. If r is blockwise
exchangeable (to be defined), then within each block each abundance can have a specific limit, see
Theorem 5, which may differ from π.

Corollary 4. Consider the framework of Theorem 3 and assume moreover that vector r is ex-
changeable. Let x⋆ = (x⋆i (n)) be defined by (12) and recall the definition of the distribution π:

π = L
((

1 + ργ/δ2
) (
σZ̄ + r̄

)
+

)
.

Then (x⋆1(n), · · · , x⋆n(n)) is an exchangeable sequence and for any fixed K ≥ 1,

(x⋆1(n), · · · , x⋆K(n))
L−−−−→

n→∞
π⊗K .

Proof of Corollary 4 is postponed to Section 5.2.

Remark 3.8. This result should be compared to Geman and Hwang [GH82, Theorem 3].

For the next result, we need some extra definitions. Let q ≥ 1 be a fixed integer. Consider q
sequences n1(n), · · · , nq(n) satisfying

(18) n1 + · · ·+ nq = n and
nj
n

−−−−→
n→∞

cj ∈ (0, 1) , j ∈ [q] .

Consider the following partition of [n]:

(19)

{
C

(1)
n = {1, · · · , n1} ,

C
(j)
n = {n1 + · · ·+ nj−1 + 1, · · · , n1 + · · ·+ nj} , 1 < j ≤ q

so that

[n] =

q⋃
i=1

C(j)
n and |C(j)

n | = nj , j ∈ [q] .
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(a) Experimental proportions of surviving
species vs theoretical values γ for three corre-
lation coefficients ρ = −0.7, 0, 0.4 w.r.t. the in-
teraction strength (κ).

(b) Histogram of positive abundances vs the
density function fsurv described in (16) for ρ =
0.4 with the interaction strength fixed to κ = 2.

(c) Plot of the density function fsurv for ρ =
−0.7, 0, 0.4.

Figure 1. Comparison between the theoretical solution of the fixed point equa-
tions (13) and their empirical Monte Carlo counterpart obtained by computing
equilibria x⋆ for various realizations of matrix A. Every x⋆ is the solution of
a Linear Complementarity Problem (see (44)) and is thus computed by Lemke
algorithm. For Figure 1a and Figure 1b we chose a matrix of size 200 and we
fixed the number of Monte Carlo experiments to 100 and 500 respectively.

Any Rn-valued vector v can be decomposed into q Rnj -valued subvectors v(j):

v = (v(j), j ∈ [q]) where v(j) = (vk)k∈C(j)
n
.

Given a permutation σj ∈ Snj
, we denote by v(j,σj) the vector v(j) where each component has

been permuted according to σj .
Consider now σ = (σ1, · · · , σq) where σj ∈ Snj . Given a vector v ∈ Rn we denote by vσ the

vector

vσ =
(
v(j,σj); j ∈ [q]

)
.

Example 3.9. Consider n = 6 and a number of blocks q = 2 such that n1 = 4 and n2 = 2. Let

v = (v1, v2, v3, v4, v5, v6)
⊤

and consider two permutations

σ1 =

(
1 2 3 4
3 4 1 2

)
∈ S4 and σ2 =

(
1 2
2 1

)
∈ S2 .
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Then v(1,σ1) = (v3, v4, v1, v2)
⊤
and v(2,σ2) = (v6, v5)

⊤
. Let σ = (σ1, σ2), then vσ = (v3, v4, v1, v2, v6, v5)

⊤
.

Definition 3.10. A random Rn-valued vector v is blockwise exchangeable with respect to the
partition defined in (19) if for any σ = (σ1, · · · , σq) ∈ Sn1

× · · · × Snq
,

vσ
L
= v .

Otherwise stated, for any bounded continuous test functions φj : Rnj → R with j ∈ [q],

E
(
φ1

(
v(1)

)
× · · · × φq

(
v(q)

))
= E

(
φ1

(
v(1,σ1)

)
× · · · × φq

(
v(q,σq)

))
.

If there is no confusion, we simply say that v is blockwise exchangeable.

We are now in position to state our final result.

Theorem 5. Consider the framework of Theorem 3 and let q ≥ 1 be a fixed integer. Let (nj , j ∈
[q]) and (C

(j)
n , j ∈ [q]) be given by (18)-(19). Let x⋆ be defined in (12). Assume that r is blockwise

exchangeable and that for all j ∈ [q]

µr(j) P2(R)−−−−→
n→∞

r̄j (completely)

where r̄j ≥ 0 is a random variable with finite second moment.

Then for any sequence ψn ∈ C
(j)
n where j ∈ [q] is fixed,

x⋆ψn

L−−−−→
n→∞

πj := L
((

1 + ργ/δ2
) (
σZ̄ + r̄j

)
+

)
.

Moreover, let k1, · · · , kq ≥ 1 be fixed integers and consider subsets

K(j)
n ⊂ C(j)

n with |K(j)
n | = kj and k = k1 + · · ·+ kq ,

then the Rk-valued vector

x⋆[k1,··· ,kq ] :=
(
x⋆ℓ , ℓ ∈ K(1)

n ∪ · · · ∪ K(q)
n

)
satisfies

x̃⋆[k1,··· ,kq ]
L−−−−→

n→∞

q∏
j=1

π
⊗kj
j .

Proof of Theorem 5 is postponed to Section 5.3.

Remark 3.11 (Global versus local distributions). Unlike the case where the intrinsic growth rates
vector r is exchangeable (see Corollary 4), notice now that each block of the equilibrium vector
x⋆ converges to a different law which locally depends on the structure of r. In particular the j-th
block of x⋆ converges to

πj = L
((

1 + ργ/δ2
) (
σZ̄ + r̄j

)
+

)
,

which is different than the overall asymptotic behaviour of x⋆,

π = L
((

1 + ργ/δ2
) (
σZ̄ + r̄

)
+

)
.

Simulations based on a three-block piece-wise constant vector r = (r(1), r(2), r(3)) are provided in
Figure 2.

Remark 3.12 (Distribution π is a mixture of the πj ’s). Recall the definitions of the q random
variables (r̄j)j∈[q] in Theorem 5 and the definition of r̄ in Theorem 3, we can notice that the law
of r̄ is the mixture the laws of (r̄j)j∈[q] with coefficients (cj)j∈[q], i.e.

L(r̄) =
q∑
j=1

cjL(r̄j).
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This also means that the limiting distribution of the whole equilibrium vector x⋆ is a mixture of
laws, i.e.

µx⋆ P2(R)−−−−→
n→∞

q∑
j=1

cjπj where πj = L
((

1 + ργ/δ2
) (
σZ̄ + r̄j

)
+

)
.

Remark 3.13 (surviving species within block j). From an empirical point of view, simulations
easily provide the number of surviving species within a block j of size nj, that is

#{x∗ℓ > 0, ℓ ∈ C
(j)
n }

nj
,

and the value of their positive abundance. Following Remarks 3.6 and 3.7, Theorem 5 provides
their analytical counterparts. The quantity

γj = P(σZ̄ + r̄j > 0)

is a good approximation for the proportion of surviving species within block j and the density

f jsurv(y) =
δ

κ
fσZ̄+r̄j

(
δ y

κ

)
1(y>0)

γj
where fσZ̄+r̄j (y) =

∫
R

e−
(y−r)2

2σ2

√
2π σ

Pr̄j (dr),

for the distribution of the surviving species in block j.
One can notice that fsurv is a mixture of the f jsurv’s:

fsurv(y) =

q∑
j=1

cjγj
γ

f jsurv(y) with

q∑
j=1

cjγj
γ

= 1 .

Based on a three-block piece-wise constant vector r = (r(1), r(2), r(3)), the densities f1surv, f
2
surv

and f3surv are compared to the corresponding simulation based histograms in Figure 2.

4. Proofs of Theorem 1 and Corollary 2

In Section 4.1 we provide various results related to elliptic random matrices. Sections 4.2–4.4
are devoted to the proof of Theorem 1. After introducing new notations in Section 4.2, we provide
an adaptation of Bolthausen conditioning argument to elliptic random matrices in Section 4.3,
see Propositions 4.7 and 4.8. This represents the crux of the proof of Theorem 1 and our main
contribution to this section. Section 4.4 is devoted to the end of proof of Theorem 1 and closely
follows [FVRS21]. Proof of Corollary 2 is established in Section 4.5.

4.1. Preliminary results on elliptic matrices. Let X be a n × n matrix with independent

N (0, 1) entries. If the n× n matrices G and G̃ satisfy

G
L
=

X +X⊤
√
2

and G̃
L
=

X −X⊤
√
2

,

then we say that G is a GOE matrix and G̃ an antisymmetric GOE matrix.
From the definition 1.1 of an elliptic matrix, it is easy to check that a matrixM ∼ Elliptic(n, ρ)

for ρ ∈ [−1, 1] can be characterized as

(20) M
L
=

√
1 + ρ

2
G+

√
1− ρ

2
G̃,

where G is a GOE matrix, G̃ is an antisymmetric GOE matrix, and G ⊥⊥ G̃.
We begin by two elementary results on GOE matrices:

Lemma 4.1. Let G and G̃ be respectively a symmetric and an antisymmetric n×n GOE matrix.
Consider two deterministic vectors u,v ∈ Rn, then:

(i) EGuv⊤G = (v⊤u)In + vu⊤ and E G̃uv⊤G̃ = −(v⊤u)In + vu⊤ ,

(ii) Gu ∼ N
(
0, In + uu⊤) and G̃u ∼ N

(
0, In − uu⊤) .
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(a) The density f1
surv compared to the his-

togram of surviving species in block 1.
(b) The density f2

surv compared to the his-
togram of surviving species in block 2.

(c) The density f3
surv compared to the his-

togram of surviving species in block 3.
(d) The Distribution of x⋆ as a mixture of the
three blocks’ distributions.

Figure 2. The vector r is decomposed into three consecutive blocks, for each
block we fix a constant value r1, r2, r3 = 1, 3, 6 respectively, we also choose dif-
ferent sizes of the blocks to be n/2, 3n/10, n/5. We then solve the Linear Com-
plementarity Problem problem (see (44)) with the help of Lemke algorithm for
ρ = 0 and κ = 2.

Proof. We prove the two statements for G, the corresponding results for G̃ can be shown similarly.
For (i), we start by writing E[Guv⊤G]kk =

∑
ij EGkiGkjuivj =

∑
i EG2

kiuivi = ukvk + v⊤u, and

E[Guv⊤G]kl =
∑
ij EGkiGjluivj = ulvk for k ̸= l. Thus, EGuv⊤G = (v⊤u)In + vu⊤. We

now prove (ii). As in the proof of [FVRS21, Lemma 6.14], let us complete the vector u in a

deterministic orthogonal matrix U =
[
u Ũ

]
. By the orthogonal invariance of GOE matrices, we

have

Gu
L
= UGU⊤u = UGe1 ∼ N

(
0, U(e1e

⊤
1 + In)U

⊤) = N
(
0, In + uu⊤) ,

hence the desired result. □

Using these results, we now have the two following propositions of elliptic matrices.

Proposition 4.2. Let M ∼ Elliptic(n, ρ). Let q ∈ Rn and U ∈ Rn×k be deterministic with
q⊤U = 0. Let P ∈ Rn×n be a deterministic matrix that satisfies PU = 0. Then

(M − ρPM⊤)q ⊥⊥
[
(M − ρM⊤)U
U⊤M⊤U

]
.
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Proof. Since the considered quantities form a Gaussian vector, it is enough to show that (M −
ρPM⊤)q is decorrelated from all columns of the two matrices (M − ρM⊤)U and U⊤M⊤U . To
this end, we use the characterization (20) and write[

M
M − ρM⊤

]
L
=

 √
1+ρ
2 G+

√
1−ρ
2 G̃,

(1− ρ)
√

1+ρ
2 G+ (1 + ρ)

√
1−ρ
2 G̃

 .
Let u be any column of U . We first show that (M −ρPM⊤)q and (M −ρM⊤)u are decorrelated.
To compute E(M−ρPM⊤)qu⊤(M−ρM⊤)⊤, we use Lemma 4.1-(i), noticing that the cross terms

involving G and G̃ in the previous characterization are zero, and that q⊤u = 0. This leads to

E(M − ρPM⊤)qu⊤(M − ρM⊤)⊤ =

(
1− ρ2

2
(I − ρP )− 1− ρ2

2
(I + ρP )

)
uq⊤

= −ρ(1− ρ2)Puq⊤ = 0 ,

by noticing that Puq⊤ = 0.
To obtain that (M −ρPM⊤)q and U⊤M⊤u are decorrelated for each column u of U , we easily

notice that E
(
M − ρPM⊤) qu⊤M = scalar × uq⊤ from the structures of M − ρM⊤ and M

provided above and from Lemma 4.1-(i). Thus, E
(
M − ρPM⊤) qu⊤MU = 0 since q⊤U = 0. □

Proposition 4.3. Let M ∼ Elliptic(n, ρ). Let q ∈ Rn be a unit-norm deterministic vector, and
let P be a deterministic orthogonal projection matrix on a subspace of Rn such that Pq = 0. Then,

(M − ρPM⊤)q ∼ N
(
0, I − ρ2P + ρqq⊤) .

Proof. Using the same principle as in the previous proof, we write

M − ρPM⊤ L
=

√
1 + ρ

2
(I − ρP )G+

√
1− ρ

2
(I + ρP )G̃.

By Lemma 4.1-(ii), we then have that

(I − ρP )Gq ∼ N
(
0, (I − ρP )2 + qq⊤) and (I + ρP )G̃q ∼ N

(
0, (I + ρP )2 − qq⊤) .

Finally, we get (M − ρPM⊤)q ∼ N (0,Σ) with

Σ =
1 + ρ

2

(
(I − ρP )2 + qq⊤)+ 1− ρ

2

(
(I + ρP )2 − qq⊤) = I − ρ2P + ρqq⊤ ,

which yields the desired result. □

4.2. Proof of Theorem 1: notations and some preparation. We introduce hereafter nota-
tions used throughout the proof.

Conditioning. The conditional equality in distribution of two random variables X and Y given a

σ-field F will be denoted as X
L
=|F Y . Formally

X
L
=|F Y iff E[φ(X) | F ] = E[φ(Y ) | F ] (a.s.)

for every non-negative measurable function φ.
The conditionnal independence of X and Y givent F will be denoted by X ⊥⊥|F Y . Formally,

X ⊥⊥|F Y iff E [φ(X)ψ(Y )| F ] = E [φ(X)| F ]E [ψ(Y )| F ] (a.s.)

for all non-negative measurable functions φ and ψ.
The following lemma will be of use later.

Lemma 4.4. Let F , G be two σ-fields and Y,X,X be random variables. Suppose that (i) Y is

F-measurable, (ii) X
L
= X and (iii) X ⊥⊥ F . Suppose moreover that for some measurable function

φ:

(iv) φ (X,Y )
L
=|F φ

(
X,Y

)
and (v) φ(X,Y ) ⊥⊥|F G .
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Let H = σ (F ∪ G), then there exists a random variable X̃ such that X̃
L
= X, X̃ ⊥⊥ H and

φ(X,Y )
L
=|H φ(X̃, Y ).

Proof. We skip all the integrability issues. Let Z be an H-measurable random variable, and ψ any
measurable function. Let Φ = ψ ◦ φ, we have

E [ZΦ (X,Y )] = E [E [ZΦ (X,Y ) | F ]]
(a)
= E [E [Z | F ]E [Φ (X,Y ) | F ]] ,

(b)
= E

[
E [Z | F ]E

[
Φ
(
X,Y

)
| F
]]
,

(c)
= E

[
E [Z | F ]EX

[
Φ
(
X,Y

)]]
,

where (a) follows from the fact that φ(X,Y ) ⊥⊥|F G implies φ(X,Y ) ⊥⊥|F H, hence φ(X,Y ) ⊥⊥|FZ
(see for instance [Kal02, Corollary 6.7]), (b) follows from assumption (ii) and (c) from (iii).

Consider now a r.v. X̃ such that X̃
L
= X and X̃ ⊥⊥ H then EX Φ(X,Y ) = EX̃Φ(X̃, Y ) and

E [ZΦ (X,Y )] = E
[
E (Z | F)EX̃Φ

(
X̃, Y

)]
= E

[
Z EX̃Φ

(
X̃, Y

)]
(d)
= E

[
ZΦ

(
X̃, Y

)]
,

where (d) follows from Fubini’s theorem. This completes the proof. □

Notational shortcuts. The following notations, related to the AMP iterations, will be of constant
use in the sequel.

qk ≜ hk
(
ukn, Bn

)
∈ Rn for k ≥ 0 and q−1 = 0n ,

Qk ≜
[
q0, · · · , qk−1

]
∈ Rn×k for k ≥ 1 ,

Uk ≜
[
u1, · · · ,uk

]
∈ Rn×k for k ≥ 1 ,

dk ≜
〈
∂1hk

(
ukn, Bn

)〉
n
∈ R for k ≥ 1, and d0 = 0 .

Using these notations, Eq. (6) can be written in the following compact form

(21) uk+1 = Aqk − ρdkq
k−1, k ≥ 0.

Projections. Denote by ΠspanQ the orthogonal projection matrix on the column span of the matrix
Q, and as ΠspanQ⊥ the orthogonal projection matrix on the orthogonal of the latter subspace. It
is well-known that

ΠspanQk
= Qk

(
Q⊤
k Qk

)†
Q⊤
k ,

where A† represents a pseudo-inverse of matrix A.
For k ≥ 1, we introduce the notations

{
Pk ≜ ΠspanQk

= Qk
(
Q⊤
k Qk

)†
Q⊤
k

P⊥
k ≜ ΠspanQk

⊥ = In − Pk
and αk ≜

(
Q⊤
k Qk

)†
Q⊤
k q

k =

α
k
1
...
αkk

 ∈ Rk.

By convention, P0 = 0n×n and P⊥
0 = In.

Filtration. We define the filtration (Fk)k≥1 by

Fk ≜ σ
(
B,u0,u1, · · · ,uk

)
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Preparing the induction. Recall the definitions of qk, Qk, Uk, Pk and αk introduced above. The
first step of the proof is to establish the following structural result.

Proposition 4.5. Let k, ℓ ≥ 1 and define the vectors

vk,ℓ ≜ U⊤
k qℓ − dℓQ

⊤
k q

ℓ−1 and Ik(A) ≜ (A− ρPkA
⊤)P⊥

k qk .

Then u1 = Aq0 = I0(A) and

uk+1 =

k∑
ℓ=1

αkℓu
ℓ + ρQk

(
Q⊤
k Qk

)†(
vk,k −

k∑
ℓ=1

αkℓv
k,ℓ−1

)
+ Ik(A) , (k ≥ 1) .

Proof of Proposition 4.5 is postponed to Appendix C.

Remark 4.6 (mesurability issues). Consider the decomposition of uk+1 in Proposition 4.5 then

k∑
ℓ=1

αkℓu
ℓ + ρQk

(
Q⊤
k Qk

)†(
vk,k −

k∑
ℓ=1

αkℓv
k,ℓ−1

)
,

is Fk–measurable while in general the term Ik(A) is not. The strategy developed by Bolthausen

amounts to replace matrix A in Ik(A) by some matrix Ã ⊥⊥|Fk
A before proceeding to the induction.

This is the goal of next section.

4.3. Proof of Theorem 1: adaptation of Bolthausen conditioning argument.

Proposition 4.7. For k ≥ 1, there exists a n× n matrix Ã such that Ã
L
= A, Ã ⊥⊥ Fk and

(A− ρPkA
⊤)P⊥

k
L
=|Fk

(Ã− ρPkÃ
⊤)P⊥

k .

In particular,

Ik(A)
L
=|Fk

Ik(Ã) .

Proposition 4.7, the proof of which is postponed to the end of Section 4.3, is a consequence of
a more general result stated in Proposition 4.8.

Recall that Qk = [q0, · · · , qk−1] and that Pk = ΠspanQk
= Qk

(
Q⊤
k Qk

)†
Q⊤
k . Denote by

(22)
⊥
qk ≜ P⊥

k qk .

Notice that
⊥
qk is Fk-measurable. Let rk be the rank of the matrix Qk - notice that rk is Fk−1–

measurable. Let Ok a Fk−1–measurable n× (n− rk) matrix which columns form an orthonormal
basis of spanQ⊥

k . Such a matrix exists: for instance, consider q0, · · · , qk−1 and the deterministic
canonical base (eℓ)ℓ∈[n] of Rn and construct by Gram-Schmidt procedure an orthonormal basis of
Rn whose first rk vectors span Qk. Build Ok out of the remaining n− rk vectors. In particular,

OkO
⊤
k = P⊥

k and O⊤
k Ok = In−rk .

Proposition 4.8. For every k ≥ 1, it holds that[
(A− ρA⊤)Ok
O⊤
k A

⊤Ok

]
L
=|Fk

[
(Ã− ρÃ⊤)Ok
O⊤
k Ã

⊤Ok

]
,

where Ã
L
= A and Ã is independent of Fk.

Proof. For A ∈ Rn×n and O ∈ Rn×n′
(n′ ≥ 1), let

K(A,O) =

[
(A− ρA⊤)O
O⊤A⊤O

]
.

We prove the statement by induction on k ≥ 1 and begin by proving it for k = 1. Notice that
Q1 = [q0], O1 has dimension n × (n − 1) and (q0)⊤O1 = 0. Recall that F1 = σ

(
B,u0,u1

)
and

u1 = Aq0. Taking into account the fact that A ⊥⊥ F0 and applying Proposition 4.2 with P (in
the proposition) equal to zero, we have:

K(A,O1) ⊥⊥|F0 u1 .
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Now consider A independent from all the considered quantities, then

K(A,O)
L
=|F0

K(A,O)

We can now apply Lemma 4.4 to prove the existence of Ã independent of F1 = σ (F0, {u1})
satisfying

K(A,O1)
L
=|F1

K(Ã, O1) .

The statement is proved for k = 1. Suppose now that

(23) K(A,Ok−1)
L
=|Fk−1

K(Ã, Ok−1)

where Ã is independent of Fk−1, and let us prove that this equality holds for k. Notice that one

can assume that Ã is independent of Fk, since this does not change the conditional distribution

of K(Ã, Ok−1) in (23).

Recall that
⊥
qk = P⊥

k qk, and observe that the event

Ek ≜ {rk = rk−1 + 1} ∈ Fk−1

coincides with the event {⊥qk−1 ̸= 0}. Define the matrix Wk such that Wk ≜
[
⊥
qk−1 |Ok

]
on Ek

and Wk ≜ Ok on Eck. The random matrix Wk is Fk−1-measurable, so is O⊤
k−1Wk. Moreover,

P⊥
k−1Wk =Wk. Write[

(A− ρA⊤)Wk

W⊤
k A

⊤Wk

]
=

[
(A− ρA⊤)P⊥

k−1Wk

(P⊥
k−1Wk)

⊤A⊤P⊥
k−1Wk

]
(a)
=

[
(A− ρA⊤)Ok−1

(
O⊤
k−1Wk

)(
O⊤
k−1Wk

)⊤
O⊤
k−1A

⊤Ok−1

(
O⊤
k−1Wk

)] ,
where equality (a) holds because P⊥

k−1Wk =Wk, then using the induction hypothesis (23), we get[
(A− ρA⊤)Wk

W⊤
k A

⊤Wk

]
L
=|Fk−1

[
(Ã− ρÃ⊤)Wk

W⊤
k Ã

⊤Wk

]
,

Substituting by the expression of Wk, we have proved that:

(24)

 (A− ρA⊤)
⊥
qk−1 (A− ρA⊤)Ok

(
⊥
qk−1)⊤A⊤⊥

qk−1 (
⊥
qk−1)⊤A⊤Ok

O⊤
k A

⊤⊥
qk−1 O⊤

k A
⊤Ok

1Ek

L
=|Fk−1

 (Ã− ρÃ⊤)
⊥
qk−1 (Ã− ρÃ⊤)Ok

(
⊥
qk−1)⊤Ã⊤⊥

qk−1 (
⊥
qk−1)⊤Ã⊤Ok

O⊤
k Ã

⊤⊥
qk−1 O⊤

k Ã
⊤Ok

1Ek
,

and

(25)

[
(A− ρA⊤)Ok
O⊤
k A

⊤Ok

]
1Ec

k

L
=|Fk−1

[
(Ã− ρÃ⊤)Ok
O⊤
k Ã

⊤Ok

]
1Ec

k
.

Recall that Fk = σ
(
Fk−1, {uk}

)
, let us study the quantity uk.

uk = Aqk−1 − dk−1q
k−2

= APk−1q
k−1 +AP⊥

k−1q
k−1 − dk−1q

k−2

= APk−1q
k−1 + ρ (APk−1)

⊤ ⊥
qk−1 − dk−1q

k−2 +
(
A− ρPk−1A

⊤) ⊥
qk−1.

We can re-write this expression as
uk = mk−1 + zk,

with
zk ≜

(
A− ρPk−1A

⊤) ⊥
qk−1 and mk−1 is Fk−1-measurable.

We now want to prove that

(26) uk ⊥⊥|Fk−1
K(A,Ok),

which is equivalent to

(27) zk ⊥⊥|Fk−1
K(A,Ok),
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which can also be reduced into two smaller problems (see, e.g., [FVRS21, Lemma 7.9.a]),

zk1Ek
⊥⊥|Fk−1

K(A,Ok)1Ek
,(28)

zk1Ec
k
⊥⊥|Fk−1

K(A,Ok)1Ec
k
.(29)

Let us begin by showing (28). By Equation (24) we have the following equality of joint laws,(
zk1Ek

, K(A,Ok)1Ek

) L
=|Fk−1

(
zk1Ek

, K(Ã, Ok)1Ek

)
,

so in order to show (28), it suffices to show that

zk1Ek
⊥⊥|Fk−1

K(Ã, Ok)1Ek
.

But since Ã is independent of Fk−1, this is a direct consequence of Proposition 4.2. Similarly,
by noticing that zk1Ec

k
= 0 and using Equation (25) and the fact that 0 is independent of any

gaussian vector we can prove (29). Now using (26) and the induction hypothesis (23) we can
finally apply Lemma 4.4 to complete the proof. □

We are now in position to prove Proposition 4.7.

Proof of Proposition 4.7. To prove Proposition 4.7 using Proposition 4.8, we write (A−ρPkA⊤)P⊥
k =

(A − ρA⊤)OkO
⊤
k + ρOkO

⊤
k A

⊤OkO
⊤
k , and we use Proposition 4.8 along with the following well-

known result (see, e.g., [FVRS21, Lemma 7.6.c]): If X, X ′, and Y are random vectors on a prob-

ability space, and F is a σ–field on this space such that X
L
=|F X ′ and that Y is F–measurable,

then, for each measurable function φ, it holds that φ(X,Y )
L
=|F φ(X ′, Y ). □

Taking advantage of Proposition 4.7, we can improve Proposition 4.5 by replacing Ik(A) by

Ik(Ã). We also replace some random quantities by their deterministic equivalents.
Recall the definition of matrices Rk given by the Density Evolution equations (3), we define

three related quantities σ2
k ∈ R+,

⊥
σk ∈ R+ and ᾱk ∈ Rk, such as

σ2
k = Rk,k ,(30)

⊥
σ2
k+1 = σ2

k+1 −
(
Rk+1

[k],k+1

)⊤ (
Rk
)−1

(
Rk+1

[k],k+1

)
,(31)

ᾱk =
(
Rk
)−1

Rk+1
[k],k+1 .(32)

Remark 4.9. Notice that
⊥
σ2
k+1 is the Schur complement of Rk in the matrix Rk+1. One should

think of
⊥
σk and ᾱk as the deterministic equivalents of ∥⊥qk∥√

n
and αk respectively when n is large.

Proposition 4.10. Using the previous notations we have the following decomposition of uk+1.

uk+1 L
=|Fk

k∑
ℓ=1

αkℓu
ℓ + ρQk

(
Q⊤
k Qk

)†(
vk,k −

k∑
ℓ=1

αkℓv
k,ℓ−1

)
+ (Ã− ρPkÃ

⊤)
⊥
qk

L
=|Fk

ūk+1 +∆k+1,

where

(33) ūk+1 ≜
k∑
ℓ=1

ᾱkℓu
ℓ +

⊥
σkξ

k+1 ,

and ∆k+1 is defined on the events Ek ≜ {⊥qk ̸= 0} and Eck = {⊥qk = 0} by

∆k+1 ≜
k∑
ℓ=1

(
αkℓ − ᾱkℓ

)
uℓ + ρQk

(
Q⊤
k Qk

)†(
vk,k −

k∑
ℓ=1

αkℓv
k,ℓ−1

)

+

(
∥⊥qk∥√
n

− ⊥
σk

)
ξk+1 +

(√
1− ρ2 − 1

) ∥⊥qk∥√
n
Pkξ

k+1 +
(√

1 + ρ− 1
) ⊥
qk(

⊥
qk)⊤

√
n∥⊥qk∥

ξk+1
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and

∆k+1 ≜
k∑
ℓ=1

(
αkℓ − ᾱkℓ

)
uℓ + ρQk

(
Q⊤
k Qk

)†(
vk,k −

k∑
ℓ=1

αkℓv
k,ℓ−1

)
,

respectively.

A very similar result is obtained in [FVRS21, Section 6.4].

Remark 4.11. The aim of this proposition is to approximate the asymptotic behavior of the
distribution of the iterates uk+1 with the distribution of ūk+1 which is easier to handle provided
that ᾱkℓ and

⊥
σk are deterministic quantities. This is achieved by proving that the difference ∆k+1

is asymptotically negligible.

Proof. We only address the case where
⊥
qk ̸= 0. In the other case, the term (Ã − ρPkÃ

⊤)
⊥
qk = 0

does not need to be handled. The starting point is the decomposition of uk+1 in Proposition 4.5.

By Proposition 4.3, the conditional distribution of (Ã−ρPkÃ⊤)P⊥
k qk = (Ã−ρPkÃ⊤)

⊥
qk given Fk

is

L
(
(Ã− ρPkÃ

⊤)
⊥
qk | Fk

)
= N

(
0,

1

n
∥⊥qk∥2

(
I − ρ2Pk + ρ

⊥
qk(

⊥
qk)⊤/∥⊥qk∥2

))
.

Therefore, letting ξk+1 ∼ N (0, In) be independent of Fk, it holds by Proposition 4.7 that

(A− ρPkA
⊤)P⊥

k qk
L
=|Fk

1√
n
∥⊥qk∥

(
I − ρ2Pk + ρ

⊥
qk(

⊥
qk)⊤/∥⊥qk∥2

)1/2
ξk+1.

It is clear that we can take(
I − ρ2Pk + ρ

⊥
qk(

⊥
qk)⊤/∥⊥qk∥2

)1/2
= I +

(√
1− ρ2 − 1

)
Pk +

(√
1 + ρ− 1

)
⊥
qk(

⊥
qk)⊤/∥⊥qk∥2 .

The proof of the proposition is completed. □

4.4. Proof of Theorem 1: end of proof. The remainder of the proof of Theorem 1 follows
almost verbatim the proof provided by [FVRS21, Section 6]. For completeness, we provide here
the important steps of the proof without rigorously justifying all technical details.

We will proceed by induction on k ≥ 1. Suppose that for any pseudo-Lipschitz function φ,

(Hk)
1

n

n∑
i=1

φ(Bi,∗, u
1
i , · · · , uki )

c−−−−−→
n→+∞

E
[
φ(b̄, Z1, · · · , Zk)

]
,

and we want to prove this same convergence for k + 1.
To do this, fix any pseudo-Lipschitz function ψ and consider the following random variable

S =
1

n

n∑
i=1

ψ(Bi,∗, u
1
i , · · · , uki , uk+1

i ).

Recall the definition (33) of ūk+1 and write S as follows:

S
L
=|Fk

1

n

n∑
i=1

ψ(Bi,∗, u
1
i , · · · , uki , ūk+1

i )

+
1

n

(
n∑
i=1

ψ(Bi,∗, u
1
i , · · · , uki , uk+1

i )−
n∑
i=1

ψ(Bi,∗, u
1
i , · · · , uki , ūk+1

i )

)
,

where uk+1 L
=|Fk

ūk+1 +∆k+1. The idea will be then to prove that

S1 ≜
1

n

n∑
i=1

ψ(Bi,∗, u
1
i , · · · , uki , ūk+1

i )
c−−−−−→

n→+∞
E
[
ψ(b̄, Z1, · · · , Zk)

]
,(34)

S2 ≜
1

n

(
n∑
i=1

ψ(Bi,∗, u
1
i , · · · , uki , uk+1

i )−
n∑
i=1

ψ(Bi,∗, u
1
i , · · · , uki , ūk+1

i )

)
c−−−−−→

n→+∞
0.(35)

Let us begin by proving the convergence in (34). This proof can be decomposed into two steps,
the first step is to prove that the conditional expectation E[S1 | Fk] converges to the desired limit,
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and the second step (which is omitted) is to show that S1 concentrates around its conditional
expectation.

In the sequel, we shall rely on the following notation. Let X a random variable and X ⊥⊥ Y .
We denote by EX the expectation with respect to the distribution of X. In particular,

EXf(X,Y ) =

∫
f(x, Y )PX(dx) = E(f(X,Y ) | Y ) .

Let us compute the conditional expectation of S1 given Fk.

E [S1 | Fk] =
1

n
E

[
n∑
i=1

ψ

(
Bi,∗, u

1
i , · · · , uki ,

k∑
l=1

ᾱkl u
l
i +

⊥
σk+1ξ

k+1
i

)∣∣∣∣∣ Fk

]

=
1

n

n∑
i=1

Eξk+1
i

[
ψ

(
Bi,∗, u

1
i , · · · , uki ,

k∑
l=1

ᾱkl u
l
i +

⊥
σk+1ξ

k+1
i

)]

≜
1

n

n∑
i=1

Ψ
(
Bi,∗, u

1
i , · · · , uki

)
.

By [FVRS21, Lemma 7.23], Ψ is also a pseudo-lipschitz function, thus using the induction hypoth-
esis (Hk) we can write

1

n

n∑
i=1

Ψ
(
Bi,∗, u

1
i , · · · , uki

) c−−−−−→
n→+∞

E [Ψ (Z1, · · · , Zk)] .

Now, given a random variable Z̃ ∼ N (0, 1) independent of Fk we can write

E [Ψ (Z1, · · · , Zk)] = E

[
EZ̃

[
ψ

(
Z1, · · · , Zk,

k∑
ℓ=1

ᾱkℓZℓ +
⊥
σk+1Z̃

)]]
,

Put Zk+1 ≜
∑k
ℓ=1 ᾱ

k
ℓZℓ +

⊥
σk+1Z̃, and observe that (Z1, · · · , Zk+1) ∼ N

(
0, Rk+1

)
, then

E [Ψ (Z1, · · · , Zk)] = E [ψ (Z1, · · · , Zk+1)] .

Now let us give some proof elements for the convergence in (35). The idea is to simply use
the pseudo-Lipschitz property and bound the term S2 by the distance ∥uk - ūk∥. Thus the main
ingredient of this proof is to show that

(36)
1√
n
∥∆k+1∥ c−−−−−→

n→+∞
0.

Recall the expression of ∆k+1 in Proposition 4.10 which can be written as the sum of five terms:

(37) ∆k+1 = ∆(1) +∆(2) +∆(3) +∆(4) +∆(5),

where

∆(1) =

k∑
ℓ=1

(
αkℓ − ᾱkℓ

)
uℓ

∆(2) = ρQk
(
Q⊤
k Qk

)†(
vk,k −

k∑
ℓ=1

αkℓv
k,ℓ−1

)

∆(3) =

(
1√
n
∥⊥qk∥ − ⊥

σk

)
ξk+1

∆(4) =
(√

1− ρ2 − 1
) 1√

n
∥⊥qk∥Pkξk+1

∆(5) =
(√

1 + ρ− 1
) ⊥
qk(

⊥
qk)⊤

√
n∥⊥qk∥

ξk+1.

(38)
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In order to prove (36), it suffices to show that the normalized norm of each of {∆(j), j ∈ [5]}
converges to 0. The key arguments of this proof can be summarized in the following lemma which
are direct consequences of the induction hypothesis (Hk).

Proposition 4.12. Let k ≥ 1 be a fixed integer and suppose that the induction hypothesis (Hk)
is satisfied for rank k, i.e.

∀φ ∈ PL2

(
Rp+k

) 1

n

n∑
i=1

φ
(
Bi,∗, u

1
i , · · · , uki

) c−−−−−→
n→+∞

E
[
φ
(
b̄, Z1, . . . , Zk

)]
where (Z1, · · · , Zk) is a centered gaussian vector of covariance matrix Rk ∈ Rk×k which is defined
recursively using the Density Evolution equations (3). Then we have the following consequences

(c-1) For all j ≤ k, 1
n∥u

j∥2 c−−−−−→
n→+∞

E
[
Z2
j

]
.

(c-2) For all j ≤ k, 1
n∥q

j∥2 c−−−−−→
n→+∞

E
[
hj
(
Zj , b̄

)2]
.

(c-3) For all i, j ≤ k, 1
n ⟨q

i−1, qj−1⟩ c−−−−−→
n→+∞

E
[
hi−1

(
Zi−1, b̄

)
hj−1

(
Zj−1, b̄

)]
= Rki,j.

(c-4) 1
nQ

⊤
k Qk =

(
1
n ⟨q

i−1, qj−1⟩
)
1≤i,j≤k

c−−−−−→
n→+∞

Rk.

(c-5) αk =
(
Q⊤
k Qk

)†
Q⊤
k q

k c−−−−−→
n→+∞

(
Rk
)−1

Rk+1
[1,k],k+1 = ᾱk.

(c-6) 1
n∥

⊥
qk∥2 c−−−−−→

n→+∞
⊥
σ
2

k+1.

(c-7) For j ≤ k, dj =
1
n

∑n
i=1 h

′
j

(
uji , Bi,∗

)
c−−−−−→

n→+∞
E
[
h′j
(
Zj , b̄

)]
≜ d̄j.

Using this proposition, we can already see that from (c-1) and (c-5) we have 1√
n
∥∆(1)∥ c−−−−−→

n→+∞

0 and from (c-2) we have 1√
n
∥∆(3)∥ c−−−−−→

n→+∞
0. The quantities ∆(4) and ∆(5) are small rank

projections of some gaussian vectors and thus their normalized norms converge to 0. It remains
to show that the term

(39) ∆(2) = Qk

(
1

n
Q⊤
k Qk

)†
(
1

n
vk,k − 1

n

k∑
ℓ=1

αkℓv
k,ℓ−1

)
,

has a normalized norm that converges to 0. This can be achieved by showing that

1

n
vk,ℓ

c−−−−−→
n→+∞

0.

The j-th row of 1
nv

k,ℓ can be written as:

1

n
vk,ℓj =

1

n
⟨uj , qℓ⟩ − 1

n
dℓ⟨qj−1, qℓ−1⟩,

where ⟨u, v⟩ = u⊤v. By Proposition 4.12 we have:

• dℓ
c−−−−−→

n→+∞
d̄ℓ,

• 1
n ⟨q

j−1, qℓ−1⟩ c−−−−−→
n→+∞

Rkj,ℓ,

• 1
n ⟨u

j , qℓ⟩ = 1
n

∑n
i=1 u

j
ihℓ(u

ℓ
i)

c−−−−−→
n→+∞

E (Zjhℓ(Zℓ)).

Using Stein’s integration by parts formula and the density evolution equations we get:

E (Zjhℓ(Zℓ)) = E (ZjZℓ)E (h′ℓ(Zℓ))

= E (hj−1(Zj−1)hℓ−1(Zℓ−1)) d̄ℓ

= d̄ℓR
k
j,ℓ.

Which leads us to the desired result 1
nv

k,ℓ c−−−−−→
n→+∞

0.

This completes the proof of Theorem 1.
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4.5. Proof of Corollary 2: blockwise convergence of AMP. Assume (A1), (A2′) and (A3)
- (A5). To prove Corollary 2 for a parameter matrix B of size n×p we will have to use Theorem 1
for an augmented parameter matrix B′ = [B | s] of size n× (p+1), where s represents a “selector
vector”. This explains the utility of presenting our main Theorem 1 using multiple parameter
vector (b1, · · · , bp) in (5) instead of a single one as what we usually see in the literature.
Recall the partition defined in (10), and let s ∈ Rn be a blockwise constant vector with q different
values s̃1, · · · , s̃q such that

(40) si = s̃j if and only if i ∈ C(j)
n for i ∈ [n] and j ∈ [q].

Put B′ = [s | B] and re-write the AMP iteration defined in (6) as

uk+1 = Ahk
(
uk, B′)− ρ

〈
∂1hk

(
uk, B′)〉

n
hk−1

(
uk−1, B′) ,

where we abuse the notation for hk which will depend only on the first p + 1 coordinates. In
this setting, the Density Evolution equations (8) remain unchanged. To use Theorem 1 we should
verify that the parameter matrix B′ satisfies Assumption (A2).

Lemma 4.13. Assume that (u0, B) satisfies Assumption (A2′) and let s be defined by (40). Then
(u0, B′) satisfies Assumption (A2), i.e. there exists a vector (ū, b̄1, · · · , b̄p, s̄) whose distribution
belongs to P2

(
Rp+2

)
such that

µu0,B′
= µu0,b1,··· ,bp,s

Pr(Rp+2)
−−−−−−→
n→∞

L
(
(ū, b̄1, · · · , b̄p, s̄)

)
.

In this case L
(
ū, b̄1, · · · , b̄p, s̄

)
=
∑q
j=1 cjL

(
ūj , b̄j,1, · · · , b̄j,p

)
⊗ δs̃j , and in particular

s̄ ∼
q∑
j=1

cjδs̃j ū ∼
q∑
j=1

cjL(ūj), and b̄ℓ ∼
q∑
j=1

cjL(b̄j,ℓ) for all ℓ ∈ [p].

Proof. Let Υ be a pseudo-Lipschitz test function, we want to show the existence of
(
ū, s̄, b̄1, · · · , b̄p

)
such that

1

n

n∑
i=1

Υ
(
u0i , b

1
i , · · · , b

p
i , si

) c−−−−−→
n→+∞

E
[
Υ
(
ū, b̄1, · · · , b̄p, s̄

)]
.

The previous sum can be expressed with respect to the partition (10) as

1

n

n∑
i=1

Υ
(
u0i , b

1
i , · · · , b

p
i , si

)
=

q∑
j=1

nj
n

1

nj

∑
i∈C(j)

n

Υ
(
u0i , b

1
i , · · · , b

p
i , si

)
=

q∑
j=1

nj
n

1

nj

∑
i∈C(j)

n

Υ
(
u0i , b

1
i , · · · , b

p
i , s̃j

)
.

Thus using Assumption (A2′) with the test function Υ (· · · , s̃j) yields

1

n

n∑
i=1

Υ
(
u0i , b

1
i , · · · , b

p
i , si

) c−−−−−→
n→+∞

q∑
j=1

cjE
[
Υ
(
ūj , b̄j,1, · · · , b̄j,p, s̃j

)]
.

Let
(
ū, b̄1, · · · , b̄p, s̄

)
∼
∑q
j=1 cjL

(
ūj , b̄j,1, · · · , b̄j,p

)
⊗ δs̃j , we have

q∑
j=1

cjE
[
Υ
(
ūj , b̄j,1, · · · , b̄j,p, s̃j

)]
= E

[
Υ
(
ū, b̄1, · · · , b̄p, s̄

)]
,

hence the result. □

We can now apply Theorem 1 which gives the following convergence result

(41) µB
′,u1,··· ,uk Pr(Rp+k+1)

−−−−−−−−→
n→∞

L ((B′, Z1, · · · , Zk)) (completely)
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Fix j to be an integer in [q], let φ be any pseudo-Lipschitz function on Rp+k and let ψ be a
continuous bounded function defined on R such that:

(42) ψ(s̃ℓ) =

{
1 if ℓ = j,

0 otherwise.

Finally, consider the test function ϕ ∈ PLr
(
Rp+k+1

)
defined as

ϕ (x,y) = ψ(x)φ(y) ∀(x,y) ∈ R× Rp+k,
and apply the result in (41) to get

(43)
1

n

n∑
i=1

ϕ
(
s̃i, b

1
i , · · · , b

p
i , u

1
i , · · · , uki

) c−−−−−→
n→+∞

E
[
ϕ
(
s̄, b̄1, · · · , b̄p, Z1, · · · , Zk

)]
,

where
(
s̄, b̄1, · · · , b̄p

)
is defined as in Lemma 4.13 and (Z1, · · · , Zk) is an independent gaussian

vector that satisfies the Density evolution equations (8) that depend only on
(
ū, b̄1, · · · , b̄p

)
. The

structure of ψ in (42) implies that the left hand side of (43) can be expressed as

1

n

n∑
i=1

ϕ
(
s̃i, b

1
i , · · · , b

p
i , u

1
i , · · · , uki

)
=
nj
n

1

nj

∑
i∈C(j)

n

φ
(
b1i , · · · , b

p
i , u

1
i , · · · , uki

)
thus

1

nj

∑
i∈C(j)

n

φ
(
b1i , · · · , b

p
i , u

1
i , · · · , uki

) c−−−−−→
n→+∞

1

cj
E
[
ϕ
(
s̄, b̄1, · · · , b̄p, Z1, · · · , Zk

)]
,

Now recall the law of the vector (s̄, b̄) =
(
s̄, b̄1, · · · , b̄p

)
which is independent of Z = (Z1, · · · , Zk),

we have

E
[
ϕ
(
s̄, b̄1, · · · , b̄p, Z1, · · · , Zk

)]
= E(s̄,b̄)

[
EZ

[
ϕ
(
s̄, b̄1, · · · , b̄p, Z1, · · · , Zk

)]]
=

q∑
ℓ=1

cℓE(b̄,Z)

[
ϕ
(
s̃ℓ, b̄ℓ,1, · · · , b̄ℓ,p, Z1, · · · , Zk

)]
= cjE(b̄,Z)

[
φ
(
b̄j,1, · · · , b̄j,p, Z1, · · · , Zk

)]
.

Finally, we get

1

nj

∑
i∈C(j)

n

φ
(
b1i , · · · , b

p
i , u

1
i , · · · , uki

) c−−−−−→
n→+∞

E(b̄,Z)

[
φ
(
b̄j,1, · · · , b̄j,p, Z1, · · · , Zk

)]
,

which ends the proof.

5. Remaining proofs of Section 3

5.1. Proof of Theorem 3: AMP algorithm to describe the LV equilibrium’s statistics.
Notice that the existence of an equilibrium x⋆n is granted by Proposition 3.1 under the condition

κ ≥
√

2(1 + ρ). The rest of the proof follows very closely [AHMN23, Section 3.3] with Theorems
1 and 3 to handle the elliptic case. We shall often drop subscript n to lighten the notations.

Related Linear Complementarity Problem. For a LV system, it is well-known that the equilibrium
satisfies a non-linear optimization problem called Linear Complementarity Problem (LCP), see
[Tak96]. The LCP problem LCP (I − Σ,−r) with parameters matrices I,Σ ∈ Rn×n and vector
r ∈ Rn consists in finding a vector x⋆ satisfying

(44)

 x⋆i ≥ 0 ,
x⋆i (ri − [(I − Σ)x⋆]i) = 0 ,
ri − [(I − Σ)x⋆]i ≤ 0 ,

for i ∈ [n] .

If such a vector exists, we write x⋆ ∈ LCP (I − Σ,−r). The first condition follows from the
fact that xn(t) is always (component-wise) positive for a LV system, the second condition simply
express the nullity of the derivative at equilibrium. The last condition is a necessary condition (see
for instance [Tak96, Th. 3.2.5]) for Lyapunov stability and has also an ecological interpretation
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of non-invasibility (see [ABC+22, Section 3(a)]). In [AHMN23, Prop. 4], it is proved that the
solution of a LCP (I − Σ,−r) equivalently satisfies a fixed point equation in the sense that:

(45) z = Σz+ + rn ⇔ z+ ∈ LCP (I − Σ,−r) .

Otherwise stated, in case of uniqueness, z+ = x⋆.

An AMP algorithm. Let (δ, σ, γ) be the solution of System (13). Define the activation function
hk by:

hk(u, a) =
(u+ a)+

δ
for k ≥ 0 with ∂1hk(u, a) =

1(u+a>0)

δ
,

and consider the following AMP algorithm

(46) uk+1 =
An
δ

(
uk + a

)
+
− ρ

⟨1(uk+a>0)⟩n
(
uk−1 + a

)
+

δ2
,

where {
u0 = 1n

a =
(
1 + ρ γδ2

)
r = κ

δ r
.

Notice that by Assumption µa P2(R)−−−−→
n→∞

ā where ā =
(
1 + ρ γδ2

)
r̄. We can easily check that As-

sumptions(A1)-(A5) are satisfied and hence can apply Theorem 1. If one is only interested in the

limiting law of µuk

, the DE equations write

(47)

{
θ21 = 1

δ2E(1 + ā)2+
θ2k+1 = 1

δ2E(θkZ̄ + ā)2+
,

where Z̄ ∼ N (0, 1) is independent from ā. Theorem 1 yields

µuk P2(R)−−−−→
n→∞

Zk ∼ N (0, θ2k) .

Departing from (46), we establish a perturbed LCP with respect to (45). Denote

ξk = uk + a and γk = ⟨1(uk+a>0)⟩n .

Taking advantage of the definition of a and the relations between δ, σ and γ from (13), easy (but
lengthy) computations yield

ξk+ −
ξk−

1 + ρ γδ2
= Σξk+ + r +

εk

1 + ρ γδ2
,

where

εk =
ργ

δ2

(
ξk+ − ξk−1

+

)
+

ρ

δ2
(γ − γk)ξk−1

+ +
(
ξk − ξk+1

)
.

Defining zk = ξk+ − ξk
−

1+ρ γ

δ2
and ε̃k = εk

1+ρ γ

δ2
, we remark that zk+ = ξk+ and end up with the

fixed-point equation zk = Σnz
k
+ + r + ε̃k. Otherwise stated

(48) zk+ ∈ LCP(I − Σ,−r − ε̃k) .

We first focus on the asymptotic distribution of µzk
+ . Setting

σk =
δ

κ
θk

and noticing that function (u+ a)+ is Lipschitz, we obtain by Theorem 1 that

µzk
+

P2(R)−−−−→
n→∞

L
((

1 +
ργ

δ2

)
(σkZ̄ + r̄)+

)
.

Replacing θk by σk in the DE equations yields the equation

σ2
k+1 =

1

δ2
E(σkZ̄ + r̄)2+
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which by [AHMN23, Lemma 2] yields that σk −−−−→
k→∞

σ, the solution of (13b). Hence

(49) L
((

1 +
ργ

δ2

)
(σkZ̄ + r̄)+

) P2(R)−−−−→
k→∞

L
((

1 +
ργ

δ2

)
(σZ̄ + r̄)+

)
.

The arguments to establish convergence (14) in Theorem 3 from (45), (48) and (49) follow exactly
those in [AHMN23, Section 3.4] and are thus omitted.

5.2. Proof of Corollary 4. We rely on the following result, see Sznitman [Szn91]:

Proposition 5.1. Chaos propagation, [Szn91] Let (X1, · · · , Xn) be a random vector of law Pn
and let µn be its empirical measure µn = 1

n

∑n
i=1 δXi

∈ P(R). Assume the following

(i) There exists an probability measure µ ∈ P(R), such that the random probability measure
µn converges to µ in law.

(ii) The vector (X1, · · · , Xn) is exchangeable, that is for each permutation σ ∈ Sn:(
Xσ(1), · · · , Xσ(n)

) L
= (X1, · · · , Xn) .

Under these assumptions, the probability distribution Pn is µ-chaotic, that is for each fixed
integer K we have

(X1, · · · , XK)
L−−−−→

n→∞
µ⊗K .

Corollary 4 is a direct consequence of Proposition 5.1, we only need to verify that x⋆ =
(x⋆1, · · · , x⋆n) satisfies the two assumptions.

Proof of Assumption (i). By Theorem 3 we have the following convergence

µx⋆ P2(R)−−−−→
n→∞

π := L
((

1 + ργ/δ2
) (
σZ̄ + r̄

)
+

)
(completely) ,

which implies the convergence in probability of µx⋆

and thus the convergence in law.

Proof of Assumption (ii). We now prove that x⋆ is exchangeable. Let the permutation σ ∈ Sn be
fixed and Pσ ∈ Rn×n its associated permutation matrix. We introduce the set

E(A) =
{
∥A∥
κ

< 1

}
.

Suppose now that ∥A∥
κ < 1 then x⋆ = x⋆ = z+ where z = Σz+ + r. The function

y 7→ Σy+ + r

is Lipschitz with Lipschitz parameter ∥Σ∥ < 1 hence z = limp z(p) where z(p) is defined by:{
z(0) = 0 ,

z(p+ 1) = Σz+(p) + r .

Consider the following notations:

Aσ = P−1
σ APσ , yσ = Pσy for any y ∈ Rn .

At first, we consider the z(p)’s regardless of the condition ∥A∥
κ < 1 and prove by induction that

(50) ∀ p ≥ 0 , L(z(p), A, r) = L(zσ(p), Aσ, rσ) .

Since Pσ is orthogonal, the invariance property of elliptic matrices implies that Aσ
L
= A. For

p = 1, z(1) = r and L(rσ, Aσ) = L(r, A) (recall that r ⊥⊥ A) hence the induction property. Now

L(z(p+ 1), A, r) = L(Az+(p) + r, A, r)
(a)
= L(Aσzσ+(p) + r, A, rσ) = L(zσ(p+ 1), Aσ, rσ) ,

where (a) follows from the induction hypothesis. Eq.(50) is proved.
We can now transfer the exchangeability to z conditionnally on E(A). Notice that E(A) = E(Aσ)

and take any bounded continuous test function Φ, then

EΦ(z(p))1E(A) = EΦ(zσ(p))1E(Aσ) .



ELLIPTIC APPROXIMATE MESSAGE PASSING 27

Letting p→ ∞ yields

(51) L(z | E(A)) = L(zσ | E(A))

Now if ∥A∥
κ > 1 then x⋆ = 0 and Pσx

⋆ = 0. Combining this remark with (51) finally yields that
L(x⋆) = L(Pσx⋆). The exchangeability of x⋆ is proved.

5.3. Proof of Theorem 5. We follow the same strategy as in the proof of Corollary 4 except
that we need the blockwise form of the AMP theorem (see Corollary 2) and a the generalized
version of Proposition 5.1 stated hereafter.

Proposition 5.2. Consider the partition
{
C

(j)
n

}
j∈[q]

defined by (18)-(19). Let X = (X1, · · · , Xn)

be a random vector of law Pn and let µ
(1)
n , · · · , µ(q)

n ∈ P (R) be the empirical measures of the q
blocks of X respectively, i.e.

µ(j)
n ≜

1

nj

∑
i∈C(j)

n

δXi
for all j ∈ [q].

Assume the following

(i) There exist q probability measures µ1, · · · , µq ∈ P (R) such that the random vector(
µ(1)
n , · · · , µ(q)

n

)
converges in law to the vector µ = (µ1, · · · , µq) in the product space P (R)q.

(ii) The vector X = (X1, · · · , Xn) is blockwise exchangeable (see Definition 3.10), that is for

each permutations σ = (σ1, · · · , σq) ∈ Sn1
× · · · × Snq

we have the following Xσ L
= X.

Under these assumptions, the probability distribution Pn is µ-chaotic, that is for each fixed
q-uplet of integers (k1, · · · , kq) ∈ [n1]× · · · ,×[nq] we have

X[k1,··· ,kq ]
L−−−−→

n→∞

q∏
j=1

µ
⊗kj
j ,

where X[k1,··· ,kq ] is the k1 + · · · + kq-dimensional vector obtained by a concatenation the vectors

(Xi)i∈K(1)
n
, · · · , (Xi)i∈K(q)

n
such that K(j)

n is the subset of the kj first elements of C
(j)
n .

Proof of Proposition 5.2 is postoned to Appendix B.
Theorem 5 is a direct consequence of Proposition 5.2 and we only need to check that vector

x⋆ = (x⋆1, · · · , x⋆n) satisfies assumptions (i) and (ii).

Proof of Assumption (i). Consider the empirical measure of the coordinates of the j-th block of
x⋆

µ(j)
n =

1

nj

∑
i∈C(j)

n

δx⋆
i
.

By blockwise AMP we already have

µ(j)
n

P2(R)−−−−→
n→∞

πj (completely) .

If we endow the space of probability measures with the following distance

d̃(µ, ν) := sup
ψ

∣∣∣∣∫
R
ψdµ−

∫
R
ψdν

∣∣∣∣ ,
then we also have convergence in probability of the sequence of measures

(
µ
(j)
n

)
n
(considered as

random variables living in the space of probability measures) to πj , the underlying distance is d̃,

µ(j)
n

P,d̃−−−−−→
n→+∞

πj ,
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the convergence in probability of the components
(
µ(j)

)
j∈[q]

implies the joint convergence in prob-

ability (
µ(1)
n , · · · , µ(q)

n

)
P,d−−−−−→

n→+∞
(µ1, · · · , µq)

where the underlying distance d is a distance on the product of q probability measure spaces.
Finally, and in particular we have convergence in law.

Proof of Assumption (ii). The proof that x⋆ = (x⋆1, · · · , x⋆n) is blockwise exchangeable closely
follows the lines of the proof of exchangeability presented in Section 5.2 and is thus omitted.
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Appendix A. Proof of Lemma 3.4

Recall the assumptions of Lemma 3.4 and system (13a)-(13c).
Notice that [AHMN23, Section 3.2] give the proof of existence and uniqueness of a solution

(δ, σ, γ) in the case where ρ = 1 and a careful reading indicates that the proof remains true for
ρ ≥ 0. We thus assume ρ ∈ [−1, 0) in the sequel.

We remind a few facts from [AHMN23, Lemma 2] which concern Eq. (13b)-(13c) and remain
true for ρ < 0:

- For every δ > 1/
√
2, the solution σ(δ) of (13b) exists,

- For every δ > 1/
√
2, inequality γ(δ) < δ2 holds true,

- Function δ 7→ σ(δ) is a decreasing function such that limδ→(1/
√
2)+ σ(δ) = +∞.

Given δ we obtain σ(δ) by solving (13b) and γ(δ) by (13c). In order to find a solution δ which
satisfies (13a), we study function

h(δ) = δ + ρ
γ(δ)

δ

and prove that there exists a unique δ⋆ ∈ (1/
√
2,∞) such as h(δ⋆) = κ. The existence of δ⋆ is

easy to establish. In fact, function δ 7→ h(δ) is continuous,

lim
δ→∞

h (δ) = +∞ > κ and lim
δ→(1/

√
2)+

h(δ) =
1√
2
+ ρ

1/2

1/
√
2
=

1 + ρ√
2

< κ ,

which implies the existence of some δ⋆ satisfying h(δ⋆) = κ. Now in order to prove the uniqueness

of δ⋆, it suffices to prove that h is strictly increasing. For ρ < 0 and δ > 1/
√
2 we have

(52) h′(δ) = 1 + ρ
γ′(δ)

δ
− ρ

γ(δ)

δ2
≥ 1 + ρ

γ′(δ)

δ
≥ 1− γ′(δ)

δ
.

In order to prove that h is increasing, it suffices to establish the following inequality:

Lemma A.1. Let δ ∈ (1/
√
2,+∞) then γ′ (δ) < δ.

Before proceeding to the proof of Lemma A.1, we introduce auxiliary functions that will simplify
the forthcoming computations. Let

Q(x) =

∫ +∞

x

e−t
2/2

√
2π

dt , f(x) =
(
1 + x2

)
Q(x)− x× e−x

2/2

√
2π

,

the derivative of which are given by:

Q′(x) = −e
−x2/2

√
2π

, f ′(x) = 2

(
xQ(x)− e−x

2/2

√
2π

)
.

We consider the change of variable

x(δ) = − 1

σ(δ)
< 0

and rewrite the system of equations (13a)-(13c) using Q, f and x(δ):

κ = δ + ρ
γ (δ)

δ
,(53)

δ2 = E [f(r̄x (δ))] ,(54)

γ (δ) = E [Q(r̄x (δ))] ,(55)
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with (δ, x, γ) ∈ (1/
√
2,∞)×(−∞, 0)×(0, 1). In order to obtain Eq.(54), we start from (13c) which

is rewritten as

δ2 =
1

σ2
E
∫ ∞

− r̄
σ

(σ2t2 + 2σtr̄ + r̄2)
e−

t2

2

√
2π

dt = E
∫ ∞

xr̄

(t2 − 2tr̄x+ (xr̄)2)
e−

t2

2

√
2π

dt ,

= E(xr̄)2Q(xr̄) + E
∫ ∞

xr̄

(t2 − 2xtr̄)
e−

t2

2

√
2π

dt ,

= E(1 + (xr̄)2)Q(xr̄)− Exr̄
e−

(xr̄)2

2

√
2π

,(56)

where the last equality follows from an integration by parts.
With notations Q, f , x(δ) and equation (55) at hand, notice that γ depends on δ via x. The

next lemma expresses the derivatives of x and γ.

Lemma A.2. Let δ > 1/
√
2 then x and γ’s derivatives with respect to δ write:

x′ (δ) =
δx (δ)

δ2 − E [Q (r̄x (δ))]
, γ′ (δ) = − δx (δ)

δ2 − E [Q (r̄x (δ))]
×

E
[
r̄e−(r̄x(δ))2/2

]
√
2π

.

Momentarily assuming Lemma A.2, we are now in position to prove Lemma A.1.

Proof of Lemma A.1. For δ > 1√
2
, using Lemma A.2 and Eq. (56) we get

γ′(δ)

δ
=

1− E
[(

1 + (r̄x (δ))
2
)
Q(r̄x(δ))

δ2

]
1− E

[
Q(r̄x(δ))

δ2

] .

The inequality γ′ (δ) < δ is equivalent to

1− E
[(

1 + (r̄x (δ))
2
) Q (r̄x (δ))

δ2

]
< 1− E

[
Q (r̄x (δ))

δ2

]
⇔ 0 < E

[
(r̄x (δ))

2 Q (r̄x (δ))

δ2

]
,

the last inequality being true because L(r̄) ̸= δ0. □

Proof of Lemma A.2. By differentiating (54) with respect to δ we get:

2δ = x′ (δ)E [r̄f ′ (r̄x (δ))] ,

from which we extract x′(δ). Using the explicit form of f ′ yields:

x′ (δ) =
δ

E [r̄2x (δ)Q (r̄x (δ))]− E
[(
r̄/
√
2π
)
e−(r̄x(δ))2/2

] .
From (54) and (56), we get:

E

[
r̄e−(r̄x(δ))2/2

√
2π

]
= E

[(
1

x (δ)
+ r̄2x (δ)

)
Q (r̄x (δ))

]
− δ2

x (δ)
,

thus

x′ (δ) =
δ

E [r̄2x (δ)Q (r̄x (δ))]− E
[(

1
x(δ) + r̄2x (δ)

)
Q (r̄x (δ))

]
+ δ2

x(δ)

=
δx (δ)

δ2 − E [Q (r̄x (δ))]
.

□

Proof of Lemma 3.4 is completed.

Appendix B. Generalized propagation of chaos

In this section we prove the generalized version of Sznitman’s propagation of chaos result
presented in section 5.3 (see Proposition 5.2) to cover the case of blockwise structured random
vectors.

We provide the following proof of Proposition 5.2 that follows the same ideas of [Szn91].
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Proof of Proposition 5.2. We want to prove that for any test functions φ(1), · · · , φ(q) where

φ(j) is the tensor product of kj test functions φ
(j)
1 , · · · , φ(j)

kj
we have the following limit

(57) E
[
φ(1)

(
X(1)

)
× · · · × φ(q)

(
X(q)

)]
−−−−→
n→∞

k1∏
i=1

E
[
φ
(1)
i

(
X̃1

)]
× · · · ×

kq∏
i=1

E
[
φ
(q)
i

(
X̃q

)]
,

where (X̃1, · · · , X̃q) ∈ Rq is a random vector having the law µ. The term φ(j)
(
X(j)

)
is equal to

the following product

φ(j)
(
X(j)

)
= φ

(j)
1

(
X

(j)
1

)
× · · · × φ

(j)
kj

(
X

(j)
kj

)
.

In order to prove (57), we will consider the following intermediate term

Bn = E

 k1∏
k=1

(
1

n1

n1∑
i=1

φ
(1)
k

(
X

(1)
i

))
× · · · ×

kq∏
k=1

(
1

nq

nq∑
i=1

φ
(q)
k

(
X

(q)
i

)) ,
we will also denote the left hand side and the right hand side of (57) by An and Cn respectively.
So it is sufficient to prove that An −Bn −−−−→

n→∞
0 and Bn − Cn −−−−→

n→∞
0.

Lemma B.1. We have Bn − Cn −−−−→
n→∞

0.

Proof. This immediate by Assumption (i). In fact, consider the continuous bounded test function
F : P(R)q → R defined for any q-uplet of probability measures (ν1, · · · , νq) by

F (ν1, · · · , νq) =
k1∏
i1=1

(∫
R
φ
(1)
i1
dν1

)
× · · · ×

kq∏
iq=1

(∫
R
φ
(q)
iq
dνq

)
.

Using Assumption (i) yields to the desired result. □

Lemma B.2. We have An −Bn −−−−→
n→∞

0

Proof. We have

An = E

 k1∏
i1=1

φ
(1)
i1

(
X

(1)
i1

)
× · · · ×

kq∏
iq=1

φ
(q)
iq

(
X

(q)
iq

) .
By Assumption (ii) we can re-write An as follows

An =
1∏q

j=1 (nj !)

∑
σ1∈S1,··· ,σq∈Sq

E

 k1∏
i1=1

φ
(1)
i1

(
X

(1)
σ1(i1)

)
× · · · ×

kq∏
iq=1

φ
(q)
iq

(
X

(q)
σq(iq)

) ,
Now observe that in the j-th factor in the formula above, the product is taken only over the subset
[kj ] of [nj ], thus we consider the equivalence relation ∼j defined on Sj by

∀σ, ν ∈ Snj [σ ∼j ν] ⇔ [σ(i) = ν(i), ∀i ∈ [kj ]] ,

in oder words, we will identify permutations that agree on the set [kj ], this means that for all
j ∈ [q], if σj ∼j νj then

k1∏
i1=1

φ
(1)
i1

(
X

(1)
σ1(i1)

)
× · · · ×

kq∏
iq=1

φ
(q)
iq

(
X

(q)
σq(iq)

)
=

k1∏
i1=1

φ
(1)
i1

(
X

(1)
ν1(i1)

)
× · · · ×

kq∏
iq=1

φ
(q)
iq

(
X

(q)
νq(iq)

)
.

Now consider the quotient group of Snj
with respect to ∼j denoted as S̃j , then we have the

following:

An =

 q∏
j=1

(nj − kj)!

nj !

 ∑
σ1∈S̃1,··· ,σq∈S̃q

E

 k1∏
i1=1

φ
(1)
i1

(
X

(1)
σ1(i1)

)
× · · · ×

kq∏
iq=1

φ
(q)
iq

(
X

(q)
σq(iq)

) .
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Now let us analyse the term Bn. If we develop the products inside the E symbol, we get

Bn = E

 1

nk11

n1∑
i
(1)
1 ,··· ,i(1)k1

=1

k1∏
ℓ=1

φ
(1)
ℓ

(
X

(1)

i
(1)
ℓ

)
× · · · × 1

n
kq
q

nq∑
i
(q)
1 ,··· ,i(q)kq

=1

kq∏
ℓ=1

φ
(q)
ℓ

(
X

(q)

i
(q)
ℓ

)
=

1∏q
j=1 n

kj
j

∑
i
(1)
1 ,··· ,i(1)k1

∈[n1]

...
i
(q)
1 ,··· ,i(q)kq

∈[nq ]

E

 k1∏
ℓ=1

φ
(1)
ℓ

(
X

(1)

i
(1)
ℓ

)
× · · · ×

kq∏
ℓ=1

φ
(q)
ℓ

(
X

(q)

i
(q)
ℓ

)

For all j ∈ [q], let Sj be the subset of [nj ]
kj of kj-uplets with different elements. The sum in Bn

is over the grid [n1]
k1 × · · · × [nq]

kq , we will decompose it into a sum over S1 × · · · ×Sq and a sum
over the complementary set [n1]

k1 × · · · × [nq]
kq \ S1 × · · · × Sq, let us denote these two sums by

B′
n and B′′

n respectively. We will show that

An −B′
n −−−−→

n→∞
0 and B′′

n −−−−→
n→∞

0.

Let us first prove that An −B′
n −−−−→

n→∞
0. We have

B′
n =

1∏q
j=1 n

kj
j

∑
(i

(1)
1 ,··· ,i(1)k1

)∈S1

...
(i

(q)
1 ,··· ,i(q)kq

)∈Sq

E

 k1∏
ℓ=1

φ
(1)
ℓ

(
X

(1)

i
(1)
ℓ

)
× · · · ×

kq∏
ℓ=1

φ
(q)
ℓ

(
X

(q)

i
(q)
ℓ

) .

Observe now that we can identify each kj-uplet (i
(j)
1 , · · · , i(j)kj ) of Sj with an element σj ∈ S̃j ,

and this is because by definition of the set Sj the indices {i(j)1 , · · · , i(j)kj } are different, i.e. one can

construct σj ∈ S̃j such that

σj (ℓ) = i
(j)
ℓ ∀ℓ ∈ [kj ],

this essentially means that we can index the sum in B′
n using permutations,

B′
n =

1∏q
j=1 n

kj
j

∑
σ1∈S̃1,··· ,σq∈S̃q

E

 k1∏
ℓ=1

φ
(1)
ℓ

(
X

(1)
σ1(ℓ)

)
× · · · ×

kq∏
ℓ=1

φ
(q)
ℓ

(
X

(q)
σq(ℓ)

) .
Except the multiplicative factor, the terms An and B′

n are exactly the same, so let us consider the
difference

An −B′
n =

 q∏
j=1

(nj − kj)!

nj !
− 1∏q

j=1 n
kj
j


×

∑
σ1∈S̃1,··· ,σq∈S̃q

E

 k1∏
ℓ=1

φ
(1)
ℓ

(
X

(1)
σ1(ℓ)

)
× · · · ×

kq∏
ℓ=1

φ
(q)
ℓ

(
X

(q)
σq(ℓ)

) ,
denoteM an upper bound of the test functions φ

(1)
1 , · · · , φ(q)

kq
and notice that the set S̃1×· · ·×S̃q

is of cardinal
∏q
j=1 nj !/

∏q
j=1(nj − kj)!, thus we get

|An −B′
n| ≤

 q∏
j=1

(nj − kj)!

nj !
− 1∏q

j=1 n
kj
j

 q∏
j=1

nj !

(nj − kj)!

Mk1+···+kq

=

1−
q∏
j=1

nj !

n
kj
j (nj − kj)!

Mk1+···+kq .
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Recall that when n → ∞ we also have nj(n) → ∞ because cj > 0. As kj ≤ nj is a constant
integer we have

nj !

n
kj
j (nj − kj)!

−−−−→
n→∞

1 ∀j ∈ [q],

finally we get An −B′
n −−−−→

n→∞
0. It remains to show that B′′

n −−−−→
n→∞

0. Now, B′′
n is a sum over the

complementary part of S1 × · · · × Sq in [n1]
k1 × · · · × [nq]

kq , this complementary subset is of size

nk11 × · · · × nkqq − n1!× · · · × nq!

(n1 − k1)!× · · · × (nq − kq)!
,

if we upper bound the test functions by M again, we obtain the following inequality

|B′′
n| ≤

1−
q∏
j=1

nj !

n
kj
j (nj − kj)!

Mk1+···+kq ,

thus B′′
n −−−−→

n→∞
0. □

In summary, we have proved that each term of the following expression:

An − Cn = (An −B′
n) +B′′

n + (Bn − Cn)

converges to 0, which ends the proof of Proposition 5.2.

Appendix C. Proof of Proposition 4.5

Define the matrix

Dk ≜


d0

d1
. . .

dk−1

 for k ≥ 1,

Recall the compact form of the AMP iteration (21)

uk+1 = Aqk − ρdkq
k−1, k ≥ 0.

Considering the iterates u1, . . . ,uk provided by the previous equation and using the notations we
just introduced, it is easy to see that

AQk = Uk + ρ
[
0 Qk−1

]
Dk, k ≥ 1,

where Q0 is by convention the empty matrix, (i.e.
[
0 Q0

]
= [0] ∈ R1×1). For k ≥ 1, we now

write

uk+1 = Aqk − ρdkq
k−1 = A(Pk + P⊥

k )qk − ρdkq
k−1

= APkq
k +AP⊥

k qk + ρ(APk)
⊤P⊥

k qk − ρ(APk)
⊤P⊥

k qk − ρdkq
k−1

= APkq
k + ρ(APk)

⊤P⊥
k qk − ρdkq

k−1 + Ik(A).

The first term at the right hand side can be rewritten as

APkq
k = AQk

(
Q⊤
k Qk

)†
Q⊤
k q

k =
(
Uk + ρ

[
0 Qk−1

]
Dk

)
αk,

and the next term is rewritten as

ρ(APk)
⊤P⊥

k qk = ρ
(
AQk

(
Q⊤
k Qk

)†
Q⊤
k

)⊤
P⊥
k qk

= ρ
((
Uk + ρ

[
0 Qk−1

]
Dk

) (
Q⊤
k Qk

)†
Q⊤
k

)⊤
P⊥
k qk

= ρQk
(
Q⊤
k Qk

)† (
U⊤
k P

⊥
k qk + ρD⊤

k

[
0 Qk−1

]⊤
P⊥
k qk

)
= ρQk

(
Q⊤
k Qk

)†
U⊤
k P

⊥
k qk,
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since P⊥
k Qk−1 = 0. This gives

(58) uk+1 =

k∑
l=1

αkl u
l + ρ

[
0 Qk−1

]
Dkα

k + ρQk
(
Q⊤
k Qk

)†
U⊤
k P

⊥
k qk − ρdkPkq

k−1 + Ik(A),

since qk−1 ∈ spanPk. Developing in turn the three middle terms at the right hand side of this
equation, and observing that Pkq

l = ql for each l ≤ k − 1, we obtain

ρ
[
0 Qk−1

]
Dkα

k = ρ

k∑
l=1

αkl dl−1q
l−2 = ρPk

k∑
l=1

αkl dl−1q
l−2 = ρQk

(
Q⊤
k Qk

)† k∑
l=1

αkl dl−1Q
⊤
k q

l−2

(with q−1 = 0),

ρQk
(
Q⊤
k Qk

)†
U⊤
k P

⊥
k qk = Qk

(
Q⊤
k Qk

)† (
U⊤
k qk − U⊤

k Pkq
k
)

= ρQk
(
Q⊤
k Qk

)† (
U⊤
k qk − U⊤

k Qkα
k
)

= ρQk
(
Q⊤
k Qk

)†(
U⊤
k qk −

k∑
l=1

αkl U
⊤
k ql−1

)
,

and
−ρdkPkqk−1 = −ρdkQk

(
Q⊤
k Qk

)†
Q⊤
k q

k−1.

Injecting these equations into (58), we obtain

uk+1 =

k∑
l=1

αkl u
l+ρQk

(
Q⊤
k Qk

)†(
U⊤
k qk − dkQ

⊤
k q

k−1 −
k∑
l=1

αkl
(
U⊤
k ql−1 − dl−1Q

⊤
k q

l−2
))

+Ik(A),

which is the equation provided in the statement of the proposition.
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