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Abstract

In this work we study the problem of manipulation in the framework of merging complex epistemic states.
We adopt the techniques concerning representation and impossibility in merging complex epistemic states
proposed by Mata Dı́az and Pino Pérez in 2017. We introduce here the notion of belief lifting, aiming to
capture the preferences of an agent over formulas. This allows us to define a general qualitative notion of
manipulability. We prove that, given some rational properties, a merging operator is either manipulable, with
respect to any well-behaved belief lifting, or it admits a powerful agent (a dictator or a nominator) who, in
some way, imposes his will. We also study the behaviour of some concrete epistemic state merging operators,
showing that most of them are manipulable. By means of this study, we prove that strategy-proofness cannot
be characterised in terms of dictators or nominators in this qualitative framework of manipulability.
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1. Introduction

When several sources (agents/devices) give information and we want to extract a coherent and relevant
information from this group of sources, we face a typical problem of fusion. This problem is important
in many areas (decision making, medical diagnosis, policy planning, geographical information systems,
automatic aggregation of data, etc.) and it has been studied extensively in recent years. The nature of
the data appearing in these problems can be very diverse. Numerical data and qualitative data are the
two big families of data in which different methods for merging information are developed. Our interest
is in the second family. More precisely, in understanding fusion of data having a representation close to a
logical representation. Our starting point is the logical based model of belief merging of Konieczny and Pino
Pérez [43].

In that work, they introduced belief merging with integrity constraints, a logical framework that states the
rational properties that an aggregating method of information must satisfy in order to obtain a coherent piece
of information from several sources, which might be mutually contradictory. That framework (the IC merging
framework) has been conceived as an extension of the AGM belief revision theory [1]. Indeed, it extends to
a multi-source setting, the finite version of belief revision proposed by Katsuno and Mendelzon [39], where
the pieces of information are encoded by a propositional formula (a belief base). In this setting, a belief
merging process (called an IC merging operator) aims to merge the belief bases of the agents, which are
collected in a “bag”, under an integrity constraint (also codified by a propositional formula), which has to
be satisfied by the outcome of the merging process. In order to regulate this class of processes, the authors
presented a set of rational syntactic postulates that merging operators should satisfy and stated a semantic
representation result, which is indeed an essential tool to analyse this kind of processes.

?This work is an extended version of the work presented in ECSQARU-2021 [60].
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In the present work we consider a generalization of the classical belief merging framework of Konieczny
and Pino Pérez [43]. In this generalization, proposed by Mata Dı́az and Pino Pérez [56], instead of proposi-
tional formulas, abstract objects called epistemic states, are considered. Thus, an epistemic states merging
operator receives as input a profile of epistemic states and a constraint, which is also an epistemic state
and, as output, it also produces an epistemic state. What is important is that the epistemic states have
some logical information attached which allows one to state, in logical terms, some rationality properties.
Of course, this abstraction needs to be made concrete in order to define tangible operators. A very useful
concrete realization of epistemic states will be a total preorder over interpretations. As a matter of fact, the
reader who desires to avoid abstractions, may think of epistemic states as total preorders. Even if that is
not entirely true, this is a paradigmatic and very useful example to understand the main ideas in this work.

Two aspects which deserve attention when considering methods for merging, are:

1. The methods in which an agent can impose his point of view (powerful agents).

2. The methods in which an agent can misrepresent his information in order to obtain a more advanta-
geous outcome at the end of the process (manipulator agents).

Merging methods should obey a very basic principle: the output should be in at least partial agreement
with all the different sources of information. Thus, methods in which an agent can impose his point of view
are to be avoided. In the same spirit, the misrepresentation of information in order to obtain a favorable
output is not desirable. Thus, it is important to understand which processes can avoid this.

As a matter of fact, these aspects have been studied for quite some time in social choice theory [69].
Indeed, the belief merging processes are related to the methods of preference aggregation studied in social
choice theory, as was pointed out by Konieczny and Pino Pérez [44]. Among the first works showing these
relationships we find Everaere et al. [24, 25], Eckert and Pigozzi [22], Chopra et al. [16], Gabbay et al. [31].
Thus, it is natural considering “social” features (group properties) coming from social choice theory in
merging when considering these aspects. For this reason, we have also studied some of these relations, in
particular focusing on the two aspects mentioned above. Concerning the first one, in [56, 58] and concerning
the second one, a few very preliminary steps were done in [57, 59]. In this work we deepen the study of the
second question and obtain more general and interesting results.

Let us recall that the central questions in social choice theory are the following: given a set of alternatives
and a set of voters with their preferences over the alternatives, how to select the best alternatives for the
group and in what measure a method for selecting the alternatives is good. The most general models of
election are based on social choice functions. The method for defining good (rational) social choice functions
evokes the methods for defining belief merging operators given by the representation theorem [44].

One measure of the goodness of a social choice function is the fact that it satisfies some reasonable
democracy criteria presented by Arrow [3]: non-imposition, the Pareto condition, independence of irrelevant
alternatives and absence of dictators. In his work, Arrow showed that, if a social choice function satisfies
the first three criteria, then it admits a dictator. This is his famous impossibility theorem.

Exploiting the similarities between social choice functions and belief merging operators, we translated the
Arrovian criteria to the logical framework of belief merging in [56]. This gave an answer to the first aspect
mentioned above. Additionally, in that work we showed that this type of operators meets the majority of
those criteria, stating also an impossibility result which generalises Arrow’s Theorem (cf. Theorem 3 below).

As mentioned earlier, in order to be able to carry out this study, we have adopted a more complex
representation of the information, namely, we use the notion of epistemic states. Roughly, an epistemic
state is an object with some attached logical information, called the “entrenched beliefs”.

As a matter of fact, this complex representation of information is necessary in many situations in the
study of belief dynamics. This was revealed by Darwiche and Pearl [17] in the case of revision operators
with a good iterative behaviour. In their setting, it is a key point to have the possibility that two different
objects (epistemic states) have the same logical information attached. The necessity of considering a complex
manner of representing information in belief merging was showed by us in [56], when we extended the IC
merging framework to the setting of Epistemic State Fusion (the ESF framework for short). In the ESF
framework, the agents’ information and integrity constraints are encoded in complex epistemic states (a
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complex model of representation of information stated by Benferhat et al. [11]), the IC merging postulates
are adapted to this setting and a semantic representation result was also stated.

The abstract setting of representation of information stated by Benferhat et al. captures the main idea
that an epistemic state must contain the entrenched belief of an agent as well as additional information
which is necessary for an adequate and precise evolutionary treatment of information. This setting is indeed
a formalization of the concept stated by Darwiche and Pearl [17]. The most common concrete realization of
this notion are total preorders over interpretations but it is not the only way to represent epistemic states
(see for instance [2, 65]). The notion of epistemic states can also be instantiated in other concrete models:
ranking functions [68]; rational consequence relations [50] and, of course, the classical representations of
belief bases: logical theories [1] and simple formulas [39]. However, these last two instantiations are not
adequate for the representation of our operators.

Considering (complex) epistemic states for modelling merging processes, instead of simple belief bases,
has considerable advantages. First, it is an abstract setting which allows a uniform treatment for many
structures representing pieces of information. Second, this representation allows satisfaction of some rational
properties such as the standard domain condition (which says intuitively that all the outputs are possible,
cf. Subsection 2.5), a key property for the proof of important results supporting this work. Note that in
the context of the representation of epistemic states as simple formulas, this property is not satisfied (see
[56] for details). Third, this setting allows a treatment of information richer than formulas as we can see in
the examples. Moreover, it is possible to encode in our setting problems of voting theory (see [56]). Fourth,
the setting of epistemic states allows for our merging operators to be, indeed, a generalization of revision
operators with a good iterative behaviour1 (see [55] for details).

The following example illustrates a scenario of a merging process in which the complex representation
of information plays a decisive role. This is an adaptation of Example 1 presented in [56] and it will be
formally addressed in Subsection 2.3 (cf. Example 1 revisited).

Example 1. Anne, Bob and Charles are good friends. They are discussing the divorce of a couple of friends
of them, Tom and Mary. They try to determine who’s to blame. Anne expresses that she does not belief
that Mary is to blame. To a lesser degree she believes in any other possibility. Bob, who had witnessed some
terrible fights between Tom and Mary, believes that both of them are to blame. To a lesser degree he believes
that only one is to blame and finally he does not believe at all that none is to blame for the divorce. Charles
believes, on the contrary, that none is to blame for the divorce. To a lesser degree he believes in any other
possibility. The three friends learn that, in fact, there is at least one member of the couple to blame (the
integrity constraint). Under this constraint, a reasonable fusion process will say that the more consensual
belief is that Tom is to blame, regardless of whether Mary is to blame or not. In a lesser degree, in this
process comes the belief that Mary is to blame but not Tom and, finally, that none is to blame is the less
believed fact in this process.

In order to see how a complex constraint can play an interesting role, we consider the following example
which will be formally addressed in Subsection 2.3 (cf. Example 2 revisited).

Example 2. Anne and Bob are now discussing about the replacement of two electronic devices, x and y,
necessary for the correct operation of their coffee machine. They both believe that the most advantageous
option is to replace both devices. They also believe that perhaps the replacement of the two devices can wait
a few weeks more. Finally, they don’t believe that replacing only one device is a good option. Now, an
expert of the coffee machine’s manufacturer informs them that it is not necessary to replace device y. But
if it is replaced, then device x has to be replaced too. The worst option is to replace y and not to replace
x. After that, a reasonable way to merge the beliefs of Anne and Bob under the advice of the expert (taken
as a constraint), the most consensual belief is to wait for replacing the devices. But in case of replacing, to
replace device x and not device y is better than replacing the two devices. The worst option being to replace
y and not x.

1Restricted to single-profiles, ESF operators are iterated belief revision operators in the framework of Benferhat et al. [11].
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Taking into account all the information from the expert leads one to consider that to replace device x
and not device y is better than replacing the two devices, a conclusion that can hardly be deduced from only
the fact that it is not necessary to replace device y.

We must note that it is not necessary to consider epistemic states at the level of integrity constraints in
order to state our results. However, as in the previous example, the use of complex integrity constraints is
useful to model a problem in which the constraints can be seen as an infallible agent and in this manner to
obtain a finer representation of the outputs. Thus, in this paper we adopt this point of view: all the basic
pieces of information are epistemic states.

Regarding aspect 2, mentioned before, it is indeed another interesting topic addressed in social choice
theory: the manipulability of electoral processes. Manipulation occurs when a voter, misrepresenting his
preferences obtains a result which is more advantageous for him than the result obtained when he votes
according to his true preferences. Gibbard [35] and Satterthwaite [63] are the pioneers in this topic. In
their works, they independently stated the necessary and sufficient conditions for a non-imposed (all the
alternatives have a chance of being chosen) and resolute scheme of vote (a special social choice function for
which all the alternatives are always available and only one alternative is chosen) to be nonmanipulable:
this is the case when it admits a dictator. Therefore, any natural scheme of vote is either manipulable or
dictatorial. This is the well-known Gibbard-Satterthwaite theorem [71].

Manipulability situations are also present in belief merging: an agent could “lie” in order to obtain a
result that fits better with his beliefs. The following example illustrates a manipulability situation. This is
an adaptation of Example 2 in [56], and it will be addressed in Subsection 3.3 (cf. Example 3 revisited).

Example 3. Alan and Ben have to travel from point X to point Y . There are four possible paths, which do
not meet each other: w1, w2, w3 and w4. Alan believes that the best path is w1. Actually, he believes that
wi is better than wi+1, for i = 1, 2, 3. Ben believes that w1 and w4 are the best paths, while he believes the
other two paths are indifferently less good. In this case, by consensus, they would agree in believing that the
best path to travel is w1. This agreement would fit very well with each other’s beliefs.

However, the latest news inform that path w1 is obstructed, whereas on paths w2, w3 and w4 there is
light traffic. In the light of this information, Ben estimates that they would agree in believing that w2 is the
best path to travel, if he expresses his real beliefs. His reasoning is that since w1 has to be dismissed, the
choice has to be done among w2, w3 and w4. Since Alan prefers w2 to w3 and for Ben these two paths are
indifferent, the reasonable choice between w2 and w3, is w2. And since Alan prefers w2 ‘much more’ than
w4 while Ben prefers w4 over w2 with ‘less strength’, the reasonable choice between w2 and w4, is w2. This
result would fit Alan’s beliefs, but it would clash with Ben’s more entrenched beliefs: it is better to travel
along path w1 or path w4.

Hence, searching for a result that fits better with his beliefs, Ben expresses that the best way to travel is
path w4, and that in a decreasing preference come path w1, path w3 and path w2. In this case, taking into
account the relative positions of paths, Alan and Ben should agree in believing that w4 is the best path (the
reasoning for this agreement is analogous to the case where Ben expresses his true beliefs, see Example 3
revisited in Section 3.3 for a formal treatment). This result, due to a manipulation of the merging process,
fits better with Ben’s beliefs.

An inherent issue in the study of manipulation is to measure how suitable the outcome of a merging
process is for an agent. Everaere et al. [25] stated a quantitative manner to do so, introducing the notion
of indexes of satisfaction. In their work, the manipulability of some particular classes of IC merging op-
erators (with respect to some specific indexes) was characterised, but no general manipulability result was
established. We introduce a qualitative method to measure such suitability using belief liftings.

A belief lifting is a mapping that establishes preferences over information (formulas) from preferences over
interpretations of propositional formulas, in a similar way in which a lifting over sets extends preferences over
objects to preferences over sets of objects. The idea of using liftings goes back to the work of de Finetti [28],
which provides a characterisation of qualitative probabilities. Liftings have been considered in the study of
some logical frameworks in order to state preferences over formulas: van Benthem et al. [12] stated a global
preference relation between propositions, which has an essential ceteris paribus rider; Halpern [36] extended
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preferences over worlds to a ‘likelihood’ ordering on sets of worlds, and examines the resulting logic of these
processes. Liftings have also been considered to address manipulation issues in both social choice theory and
belief merging: Barberà [4] and Kelly [40] independently showed that, if a natural social choice function is
strategy-proof with respect to a “well-behaved” lifting, then it admits a powerful voter (a nominator), who
imposes his will by always including at least one of his preferred alternatives in the outcome of the election
process.

In this work we study strategy-proofness in the extended context of the ESF framework, using belief
liftings as a tool to establish preferences over information in a qualitative manner. We would like to highlight
two important features of our work:

Firstly, the view of epistemic states considered here is more general than the propositional view, although
it preserves the main logical aspects. This abstract representation of information allows for the results stated
here to hold for any concrete instantiation of epistemic states rich enough in order to have operators satisfying
the postulates. We have to note that this view of epistemic states is even more general than total preorders
or rankings over worlds. Moreover, the voting problems of social choice theory, in particular preferences,
can be encoded faithfully in our framework [56].

Secondly, we enrich the set of rational postulates by introducing some new postulates: strong standard
domain, non-imposition, stability and absence of nominators. Although they are inspired on the classical
Arrow’s criteria, they are natural and some classical instances of ES merging operators satisfy them (cf.
Table 3).

Based on these properties, we state some general manipulability results, which show a dichotomy between
manipulability (with respect to any “well-behaved” belief lifting) and the existence of a powerful agent. Thus,
we can summarize the main contributions of this work in the following ones:

• A general definition of manipulability in the framework of ESF using the concept of belief liftings.

• A general theorem on manipulability of merging operators.

• A hierarchical classification of powerful agents.

This work is organised as follows: Section 2 contains the fundamental notions and tools that will be
used along this paper. More specifically, in that section we present some special orders (over objects and
sets of objects) that will be used throughout the paper. We give the formal concept of epistemic spaces,
epistemic states and illustrate these with some examples. We also present the concept of merging operators
of epistemic states as well as the social postulates and the main impossibility theorem stated in [56]. This
impossibility theorem is a basic tool for obtaining the new results of this work. We also introduce some
concrete examples of operators and establish their properties. These operators are used to illustrate our
concepts and results throughout the paper. Section 3 is the core of this work. Therein, we present the
notion of belief lifting, other new social postulates and we establish the main results of this paper about
nonmanipulation. Section 4 contains some results involving the powerful agents mentioned before. To do
so, we present there a taxonomic survey of the powerful agents. Section 5 contains some links with related
works. Finally, we make some concluding remarks in Section 6. Appendix A is devoted to the proofs of our
results.

2. Preliminaries

In this section we introduce succinctly the fundamental concepts and notation which is necessary for
developing the main ideas of this work. First, we present some basic notions concerning preorders and
liftings. These notions will allow the establishment of individual preferences between several pieces of
information, in a qualitative way. Later on, we present the concept of epistemic spaces, epistemic states
and then we introduce the notion of epistemic state merging operators (ES merging operators for short) and
recall some basic representation theorems. We define some concrete operators and analyse their properties.
We give some properties related to their Arrovian behaviour. Based on these properties, we present an
Arrovian impossibility result which will be very useful to establish our results about nonmanipulability.
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2.1. Orders and liftings

A preorder over a set A is a binary relation � over A which is reflexive and transitive. Its associated
strict relation, �, and indifference relation, ', are given respectively as follows: x � y iff x � y and y 6� x;
x ' y iff x � y and y � x.

A total preorder over a set A is a preorder which is total. Given a subset X of A, we say that x in X is
a maximal element of X (resp. minimal element of X), with respect to a total preorder �, if x � y (resp.
y � x), for all y in X. The set of maximal elements (resp. minimal elements) of X, with respect to �, will
be denoted by max(X,�) (resp. min(X,�)). We will write max(�) and min(�), instead of max(A,�) and
min(A,�), to respectively denote the set of maximal and minimal elements of the whole set A ,with respect
to the total preorder �. From now on, ��X denotes the restriction of � to the set X and P(A) denotes the
set of all total preorders over a set A.

Two simple instances of total preorders are linear orders and the indifference order (also called the flat
order and denoted ' by abuse of notation), for which all the elements are indifferent. Another instance of
a total preorder, which is often used in this paper, is the lexicographical combination of two total preorders,
�1 and �2, denoted �lex(�1,�2):

x �lex(�1,�2) y iff

{
x �1 y, or
x '1 y and x �2 y

Observation 1. It is easy to see that, for any pair of total preorders �1, �2, over a set A, the relation
�lex(�1,�2) is also a total preorder over A, for which the following holds:

max(�lex(�1,�2)) = max(max(�1),�2) (1)

Moreover, if either �1 or �2 is a linear order over A, then �lex(�1,�2) is also a linear order over A. In
addition, if �2 (resp. �1) is the flat order, or �1 =�2, then �lex(�1,�2) =�1 (resp. �lex(�1,�2) =�2).

A more complex example of a total preorder is the precise-leximax order introduced by Leal and Pino
Pérez [49]. It is defined over finite ordered tuples of elements of a finite set A. More precisely, given a
nonempty set A with n elements, and a total preorder � over A, we consider the set (A)� formed by all the
tuples of size less or equal to n, whose inputs are not repeated elements of A, ordered in decreasing manner
by �. Thus, given a total preorder � over A, we define the precise-leximax order �plm

� as follows, for every

pair of tuples −→x = (x1, x2, . . . , xk) and −→y = (y1, y2, . . . , ym) in (A)�:

−→x �plm
�
−→y iff

{
k ≤ m and xi ' yi, for all i ≤ k, or

there is j ≤ min{k,m} s.t. xi ' yi, for all i < j, and xj � yj

A precise-leximax order is actually a total preorder that discriminates the ordered chains by considering
the lexicographical order and privileging proper initial segments.

As usual, we think of a preorder as a preference relation over the elements of a set: x � y expresses that
x is at least as preferred as y, while x � y tell us that x is more preferred than y, and x ' y says that x and
y are indifferent.

It is possible to extend preferences over single elements of a set A to preferences over its subsets in
different rational manners. This might be done either quantitatively or qualitatively. A quantitative manner
to perform such extensions is related to probability: if p is a probability measure over a finite nonempty
set A, we can think of p as representing the preferences over A as follows: x � y iff p({x}) ≥ p({y}). As
p extends additively the preferences of points in A to subsets (events) of A, we can define the probabilistic
relation wp over P(A) (the powerset of A) as follows: X wp Y iff p(X) ≥ p(Y ). As far as we have checked,
this is historically the first method used to achieve such extensions.

The idea of using qualitative methods for extending preferences over points to preferences over sets of
points goes back to de Finetti [28]. This idea has also been considered in logical frameworks by Halpern [36]
and van Benthem et al. [12]. In this paper, these methods are called liftings over sets.
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More precisely, a lifting over sets is an application �7→w� that maps any total preorder � over a set A
into a preorder w� over P(A), which satisfies the following:

{x} w� {y} iff x � y (2)

From now on, given a total preorder �, the preorder w� is also called lifting of �, by abuse of notation.
In the literature, several specific well known liftings have been stated. The possibilistic lifting and the

pessimistic lifting are two very standard instances of liftings. The possibilistic lifting, �7→wΠ
�, was introduced

by Shackle [67] in a preliminary form, and proposed in different forms by Lewis [51], Spohn [68], Dubois
et al. [21] and Friedman and Halpern [30]. In this paper, it is defined as follows:

X wΠ
� Y iff Y = ∅, or there exists x in X such that, for all y in Y ; x � y

For a preference relation�, the preorderwΠ
� can be seen as a “comparative preference” relation associated

with �, as Dubois et al. [21] highlighted. Actually, X wΠ
� Y expresses that the “best” elements in X are at

least as good as the “best” elements in Y , with respect to �.
The pessimistic lifting, �7→wW

� , has a similar behavior to the possibilistic lifting, but in pessimistic
terms. This lifting has been addressed in social choice by Barberà et al. [5] and Taylor [70, 71], and in
logical frameworks by Lang and van der Torre [48]. It is defined as follows:

X wW
� Y iff Y = ∅, otherwise X 6= ∅ and there exists y in Y such that, for all x in X; x � y

X wW
� Y expresses that the “worst” elements in X are at least as good as the “worst” elements in Y .

Another classical lifting is the so-called Kelly lifting, �7→wK
�, which was introduced by Kelly [40]. It says

that the “worst” elements in a set X are at least as good as the “best” elements in a set Y . More precisely:

X wK
� Y iff X = Y or, for all x in X and for all y in Y, x � y

The following is the so-called precise-leximax lifting, denoted by wplm
� . This lifting was proposed by Leal

and Pino Pérez [49] as a variant of the leximax lifting [5, 13, 14, 15]. To define it, given a total preorder over
a set A, we use the precise-leximax order over (A)� and, for every subset Z of A, we consider the subset
[Z]� of (A)�, formed by all the vectors of length |Z| whose inputs are in Z.

X wplm
� Y iff for all −→y in [Y ]� there exists −→x in [X]� such that −→x �plm

�
−→y

This lifting tries to capture the idea that one has to prefer a group of alternatives which is smaller than
another group of alternatives if the alternatives of the first group are at least as preferred as the alternatives of
the second group. In order to give a real example of this kind of preference, we can imagine that alternatives
are workers and for economical reasons (e.g. economy of salaries) a corporation prefers a team of workers
with the same degree of skills than another one if the former has fewer persons.

Barberà et al. [5] characterized many natural liftings through their properties. Among them, we find a
pair of very basic properties, which were firstly stated by Gärdenfors [32]. These properties are the so-called
dominance conditions or Gärdenfors properties.

G1: {x, y} A� {y}, whenever x � y.

G2: {x} A� {x, y}, whenever x � y.

The Gärdenfors properties have a very natural interpretation: G1 expresses that “good company”
improves the group; while G2 says “bad company” worsens the group. These properties have been also
considered in the computational social choice framework by Geist and Endriss [34], whose work concerns
the automatized search of impossibility theorems.

It is not hard to see that the Kelly lifting and the precise-leximax lifting satisfy both instances of the
Gärdenfors properties, unlike the possibilistic lifting, which satisfies G1, but G2 does not hold, and the
pessimistic lifting, for which G2 holds but G1 does not. Other two liftings that also satisfy both instances
of Gärdenfors properties are Fishburn lifting [29] and Gärdenfors lifting [32] (see [5] for more examples).
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2.2. Epistemic States

In knowledge dynamics (revision, contraction, update, merging, etc.) there are many representations of
the state of information of the agents. For instance, in the AGM framework for revision [1, 33], the epistemic
states are logical theories (i.e., logically closed sets of formulas), also known as belief sets. In the Katsuno
and Mendelzon’s framework for revision [43], the epistemic states are simple propositional formulas. This
is also the case in the belief merging framework of Konieczny and Pino Pérez [43]. In Hansson’s framework
for revision [37], the epistemic states are sets of propositional formulas, not necessarily logically closed, also
known as belief bases. In the Darwiche and Pearl [17] framework for revision, the epistemic states can be
mainly thought as total preorders over interpretations, even if their framework is really much more general
(see for instance [2, 65]). Another important representation of epistemic states in revision is through the
ordinal conditional functions introduced by Spohn [68]. Conditionals are also a very useful representation of
epistemic states (see for instance Beierle and Kern-Isberner [8]). Possibilistic bases are also a representation
of epistemic states which are very useful in the treatment of conditionals as shown by Benferhat et al. [9]
and in fusion by Benferhat and Kaci [10].

The previous list, which is far from being exhaustive, gives an idea of the diversity of representations of
epistemic states. However, there are some features which these different representations have in common:
they all have some distinguished logical information attached (explicit or implicit) and an ordering relation
over the worlds (which can be also explicit or implicit). In what follows we will try to capture in an abstract
concept (epistemic state) the most representative features of these structures.

One of the ingredients of our abstract representation is a finite propositional language. More precisely,
let us consider LP , a set of non contradictory formulas built from a given finite set of atomic propositions
P, and assume that WP is its associated set of interpretations (models). If ϕ is a formula in LP , we denote
by [[ϕ]] the set of its models, that is, [[ϕ]] = {w ∈ WP : w |= ϕ}. If M is a nonempty subset of WP , ϕM
denotes a formula whose set of models is exactly M . For this case, we write ϕw and ϕw,w′ instead of ϕ{w}
and ϕ{w,w′}, respectively. We say that a formula ϕ in LP is complete if it has a unique model.

We are now going to introduce the notions of epistemic spaces and epistemic states. But before doing
that, let us say that one of the main interests of considering these abstract concepts is similar to that of
considering an abstract notion like that of vector space (in linear algebra): proving general properties about
vector spaces (the general concept) keeps us from proving the same properties in particular cases, such as
the space Rn, the space of polynomials, the space of functions, etc. We have also to say that in a similar
way in which the space Rn is considered a paradigm of vector spaces, we will have a paradigmatic structure
for the concept of epistemic space. Actually, we have already mentioned this structure: a total preorder
over interpretations.

An epistemic space is a triple (E , B,LP), where E is a nonempty set, whose elements are called epistemic
states, LP is a set of non contradictory formulas and B is a surjection from E into LP . For every E in
E , B(E) is interpreted as the belief base or the most entrenched beliefs in E.2 This abstract concept of
epistemic space was stated by Benferhat et al. [11] and, indeed, most of the concrete models proposed for
representing epistemic states are instantiations of it: belief bases [39, 43], logical theory [1] and, of course,
total preoders overWP [17]. Later, in Section 2.4 and in Examples 1 and 3 revisited (cf. Section 3), we adopt
this last concrete and well known model as our paradigm to define some specific ES merging operators and
to illustrate our general results. Moreover, this concrete model is rich enough to represent real preferences
between alternatives (see [56]).

Let us now illustrate the previous concepts.

Example 4 (Some epistemic spaces).

1. The tpo epistemic space Stpo defined by Stpo = (Etpo, Btpo,LP) where:

• Etpo is the set of all total preorders over the set of all worlds over P;

2A belief base is a finite nonempty set of formulas in LP , which encodes the set of propositions believed by an agent at some
point in time [39, 43]. Since our work is in the context of finite propositional formulas, any belief base can be identified by an
equivalent formula, if syntactic representations are not relevant.
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• Btpo is the mapping associating each total preorder � from Etpo with a formula ψ ∈ LP such that
[[ψ]] = max(�).

This will be our paradigmatic example. In this case the epistemic states are total preorders over
interpretations.

2. The epistemic space of formulas SL, defined by SL = (EL, BL,LP), with EL = LP and BL the identity
function.

3. The ocf epistemic space Socf defined by Socf = (Eocf , Bocf ,LP) where:

• An ocf κ is a function associating each world with a non-negative integer3 such that there is a
world ω such that κ(ω) = 0.

• Eocf is the set of all ocf ’s over WP ;

• Bocf is the mapping associating each ocf κ from Eocf with a formula ψ such that [[ψ]] = {w :
κ(w) = 0}.

2.3. Merging Complex Epistemic States

Having introduced the notion of epistemic states, we give the concept of Epistemic State merging oper-
ators. To do so, we first state the notions of agents, epistemic profiles and the notation that will be used
throughout this work.

Let us now consider a well ordered set (S, <), whose elements are called agents.4 A finite society (or
simply a society) is a finite and nonempty subset N = {i1, i2, . . . , in} of S, whose elements, we assume are
ordered in an increasing fashion, that is, ij < ik if j < k. A partition of a finite society N is a finite family
{N1, . . . , Nk} of pairwise disjoint societies whose union is N . F∗(S) denotes the set of all the finite societies.

In order to introduce the concept of epistemic profiles, we fix an epistemic space (E , B,LP) and a set of
agents (S, <). Given a society N of agents in S, an N -profile of epistemic states (also called epistemic profile
or N -profile for short) is a tuple Φ = (Ei1 , . . . , Ein) ordered increasingly by the elements in N . Sometimes
we will write Φ(i) in order to represent the epistemic state Ei in Φ, and we think of it as the epistemic state
of the agent i, for every i in N . Thus, an N -profile Φ collects in ordered way the information expressed by
those agents in N . Ei ∈ Φ will denote that Ei is an epistemic state in Φ and we will write

∧
Ei∈ΦB(Ei) to

denote the conjunction of all the entrenched beliefs B(Ei) of the epistemic states in Φ. If N is a singleton,
suppose N = {i}, by abuse of notation, Ei will denote the N -profile (Ei), and we will call it single-profile.
The set of all the epistemic profiles is denoted P(S, E).

In order to present some special notations for epistemic profiles, consider the societies N = {i1, . . . , in}
and M = {j1, . . . , jm}, the N -profile Φ = (Ei1 , . . . , Ein) and the M -profile Φ′ = (E′j1 , . . . , E

′
jm

).
We say that Φ and Φ′ are equivalent, denoted Φ ≡ Φ′, if n = m and Eik = E′jk , for k = 1, . . . , n. We

must note that, although the notion of equivalence of epistemic profiles suggests that, as tuples, Φ and Φ′

must be equals, as profiles they could be different. This is due to the fact that every epistemic profile is
indeed a function whose domain is a society of agents. Thus, every epistemic profile depends on the society
of agents for which it is defined (cf. [56] for more details). Note that, given two single-profiles Ei and Ej ,
we have Ei = Ej (respectively Ei 6= Ej) if and only if Ei ≡ Ej (respectively Ei 6≡ Ej).

If N and M are disjoint, we define a new (N ∪M)-profile, ΦtΦ′, as follows: (ΦtΦ′
)
(i) is Φ(i) if i ∈ N ,

otherwise it is Φ′(i). If M ⊆ N , ΦM denotes the M -profile obtained by the restriction of Φ to M .
From now on, Φ and Φ′ will denote the profiles (Ei1 , . . . , Ein) and (E′i1 , . . . , E

′
in

), respectively. In

addition, Φ[E
∗
/i] will denote the profile obtained from Φ by replacing Ei with E∗. More precisely, Φ[E

∗
/i](j)

is Φ(j) if j 6= i, otherwise it is E∗.
Now we are able to present the notion of belief merging in the complex context of epistemic states.

An Epistemic States combination operator (ES combination operator for short) is a function of the form

3Note that in the original definition [68] ocfs are defined on ordinals. But here, as in most cases, the integer restriction is
enough.

4A tuple (S, <) is a well ordered set if S is a nonempty set, < is a linear order over S and every nonempty subset of S has
a minimal element. The set of natural numbers, N, with its usual order, is an example of a well ordered set.
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∇ : P(S, E)×E −→ E , where ∇(Φ, E) is the result of combining the epistemic states in Φ under an integrity
constraint E. There is a set of postulates, which is listed below, that rules the rationality of ES combination
operators. Such postulates were proposed and widely studied in [55, 56] in the context of epistemic states.
Most of them are adapted from the IC merging postulates, proposed by Konieczny and Pino Pérez [43]. In
order to present such postulates, let N and M be any pair of finite societies of agents in S; j, k be any pair
of agents in S; {N1, N2} be any partition of N; Φ be any N -profile; Φ′ be any M -profile; Ej be any j-profile;
Ek be any k-profile; and E, E′, E′′ be any triple of epistemic states in E .

(ESF1) B
(
∇(Φ, E)

)
` B(E).

(ESF2) If Φ ≡ Φ′ and B(E) ≡ B(E′), then B
(
∇(Φ, E)

)
≡ B

(
∇(Φ′, E′)

)
.

(ESF3) If B(E) ≡ B(E′) ∧B(E′′), then B
(
∇(Φ, E′)

)
∧B(E′′) ` B

(
∇(Φ, E)

)
.

(ESF4) If B(E) ≡ B(E′)∧B(E′′) and B
(
∇(Φ, E′)

)
∧B(E′′) 6` ⊥, then B

(
∇(Φ, E)

)
` B

(
∇(Φ, E′)

)
∧B(E′′).

(ESF5) If Ej 6= Ek, then there exists E∗ in E such that B
(
∇(Ej , E

∗)
)
6≡ B

(
∇(Ek, E

∗)
)
.

(ESF6) If
∧
Ei∈ΦB(Ei) ∧B(E) 6` ⊥, then B

(
∇(Φ, E)

)
≡ ∧Ei∈ΦB(Ei) ∧B(E).

(ESF7) B
(
∇(ΦN1

, E)
)
∧B

(
∇(ΦN2

, E)
)
` B

(
∇(Φ, E)

)
.

(ESF8) If B
(
∇(ΦN1

, E)
)
∧B

(
∇(ΦN2

, E)
)
6` ⊥, then B

(
∇(Φ, E)

)
` B

(
∇(ΦN1

, E)
)
∧B

(
∇(ΦN2

, E)
)
.

(ESF8W) If B
(
∇(ΦN1 , E)

)
∧B

(
∇(ΦN2 , E)

)
6` ⊥, then B

(
∇(Φ, E)

)
` B

(
∇(ΦN1 , E)

)
∨B

(
∇(ΦN2 , E)

)
.

We must note that this enumeration, which differs from the classical organisation of IC merging postulates
[43] and AGM postulates [1, 33], was previously proposed in [55, 56]. This is due to the fact that this
organisation provides a simpler classification of the ES combination operator and an easy handling of the
merging postulates via the semantics, as we can see later in Theorems 1 and 2, and Proposition 1.

The postulates (ESF1)-(ESF4) are jointly called the basic ESF postulates. (ESF1) assures that, at
the level of the most entrenched beliefs, the output of the merging process must satisfy the restriction of the
system. (ESF2) is a weak form of the anonymity at the profile level and a syntax irrelevance property at the
level of beliefs for the integrity restrictions. (ESF3) and (ESF4) together determine the manner in which
the beliefs are chosen. These are the minimal rationality requirements that any ES combination operator
must satisfy in order to admit a preferences-based semantic representation (cf. Theorem 1), characterizing
thus an important class of ES combination operators: the basic ESF operators.

Definition 1. An ES combination operator is said to be an epistemic states basic merging operator (ES
basic merging operator for short) if it satisfies (ESF1)-(ESF4).

The postulates (ESF5)-(ESF8) and (ESF8W) describe mainly the relationships between the results
of merging as a whole society and the results of merging in its subsocieties: (ESF5) says that given two
different epistemic states, there is a restriction E that leads to different results. (ESF6) expresses that, at
the level of the most entrenched beliefs, if all the agents involved in a merging process have a consensus and
it is consistent with the restriction of the system, such consensus coincides with the output of the merging
process. (ESF7) assures that, for any partition of a group into two subgroups, the conjunction of the
beliefs resulting from applying the operator to each subgroup are logically stronger than the beliefs resulting
from applying the operator to the whole group. (ESF8) expresses that if we can divide a group into two
subgroups such that the application of the operator to each subgroup leads to beliefs which are mutually
consistent, then the conjunction of these beliefs will be the beliefs resulting from applying the operator to
the whole group. (ESF8W) is an important weakened variant of (ESF8). It says that, under the same
assumptions of (ESF8), the beliefs resulting from the merging process applied to the whole group must
satisfy the disjunction of the beliefs obtained when applying the merging operator to each subgroup. These
postulates allow introducing other two subclasses of ES combination operators:
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Definition 2 (ES merging operators). Let ∇ be an ES combination operator.

(i) ∇ is said to be an ES merging operator if it satisfies (ESF1)-(ESF8).

(ii) ∇ is said to be an ES quasi-merging operator if it satisfies (ESF1)-(ESF7) and (ESF8W).

Thus, any ES merging operator is indeed an ES quasi-merging operator and any ES (quasi-)merging
operator is actually an ES basic merging operator.

It is possible to study the semantic behaviour of an ES basic merging operator through an assignment.
An assignment is a function Φ 7→�Φ which maps each epistemic profile Φ into a total preorder �Φ over
interpretations in WP , satisfying that �Φ=�Ψ, for every pair of equivalent epistemic profiles Φ and Ψ.

The intended meaning of an assignment is to encode in terms of preferences over interpretations the
result of a merging process. This will become particularly clear when we see the statements of Theorems 1
and 2. The next list of properties aims to systematize the rational behaviour of these assignments. In order
to present it, let N be any finite society of agents in S; j, k be any pair of agents in S; {N1, N2} be any
partition of N , Φ be any N -profile, Ej be any j-profile, Ek be any k-profile, and w, w′ be any pair of
interpretations in WP .

1. If Ej 6= Ek, then �Ej 6=�Ek .

2. If
∧
Ei∈ΦB(Ei) 6` ⊥, then [[

∧
Ei∈ΦB(Ei)]] = max(�Φ).

3. If w �ΦN1
w′ and w �ΦN2

w′ then w �Φ w′.

4. If w �ΦN1
w′ and w �ΦN2

w′, then w �Φ w′.

4’. If w �ΦN1
w′ and w �ΦN2

w′, then w �Φ w′.

Property 1 expresses that different epistemic states lead to different total preorders (injectivity of the
assignment restricted to single-profiles). Property 2 assures that, at the level of the most entrenched beliefs,
the models of the conjunction of the epistemic states in the profile Φ (if they exist) are the maximal models
of the total preorder associated to this profile. Property 3 states that, if one model w is at least as preferred
as a model w′ for one group, and the same occurs for a second group, then for the group resulting of the
union of these groups, w will be at least as preferred as w′. Property 4 is similar to the previous one, except
that if there is one strict preference for one of the subgroups, this will be the case for the whole group.
Property 4’ is weaker than 4. It states that, given two alternatives, w, w′, if for two subgroups, separately
w is more preferred than w′, then, putting the groups together, w still is more preferred than w′.

Two important classes of well behaved assignments are the faithful assignments and the quasi-faithful
assignments. A faithful assignment is an assignment for which 1-4 hold, while a quasi-faithful assignment is
an assignment that satisfies 1-3 and 4’.

Observation 2. If Ei is the epistemic state of an agent i, then �Ei is a representation in terms of prefer-
ences over interpretations of the information conveyed by the agent.5 Indeed, Property 2 entails that the
most preferred models represent the most entrenched beliefs of any agent, that is, the next equality holds,
for every single-profile E: [[B(E)]] = max(�E). We call this equality the maximality condition (the max
condition for short).

The converse of this result does not hold, that is, there are some instances of assignments satisfying the
max condition for which property 2 does not hold. However, in presence of properties 3 and 4, we get that
property 2 and the max condition are equivalent (see [56] for details).

Now we are able to present some results that describe the semantic behaviour of the ES basic merging
operators at the level of the belief bases. These preference-based semantic results were proved in [56].

5For some concrete instantiations of epistemic states, for instance in terms of total preorders, �Ei will coincide with the
agent’s preferences over the worlds (see the structure preserving condition in Section 2.4).
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Theorem 1 (Weak representation of ES basic merging operators). An ES combination operator ∇ is an
ES basic merging operator iff there exists a unique assignment, Φ 7→�Φ, such that:6

[[B(∇(Φ, E))]] = max([[B(E)]],�Φ) (B-Rep)

Theorem 1 may be applied to different instantiations of epistemic states. Moreover, although this result
does not explicitly mention the additional information of epistemic states, it allows the possibility of having
postulates which capture such information. This is the case of the standard domain postulate, which is
presented in Subsection 2.5, and its new strong version, introduced in Subsection 3.2. Using this result it
is also possible to show the tight relationship between the (syntactic) postulates for ES merging operators
and the (semantic) properties for assignments. This can be seen in the next result.

Proposition 1. The following assertions hold, for every ES basic merging operator ∇ and its associated
assignment Φ 7→�Φ:

(i) ∇ satisfies (ESF5) iff Φ 7→�Φ satisfies property 1.

(ii) ∇ satisfies (ESF6) iff Φ 7→�Φ satisfies property 2.

(iii) ∇ satisfies (ESF7) iff Φ 7→�Φ satisfies property 3.

(iv) ∇ satisfies (ESF8) iff Φ 7→�Φ satisfies property 4.

(v) ∇ satisfies (ESF8W) iff Φ 7→�Φ satisfies property 4’.

Due to the one-to-one relationship between ES basic merging operators and assignments, shown in
Theorem 1 (at least at the level of the entrenched beliefs), and the duality between their properties (exposed
in Proposition 1) we can associate the max condition to ES basic merging operators. Thus, from now on we
say that an ES basic merging operator satisfies the max condition if its associated assignment satisfies it.

As a straightforward consequence of Theorem 1 and Proposition 1, we get the next representation result:

Theorem 2. The following assertions hold for every ES basic merging operator ∇, and its associated
assignment, Φ 7→�Φ:

(i) ∇ is an ES merging operator iff Φ 7→�Φ is a faithful assignment

(ii) ∇ is an ES quasi-merging operator iff Φ 7→�Φ is a quasi-faithful assignment

2.4. Some concrete merging operators

In this section we present some concrete examples of ES basic merging operators that will be used
throughout this paper in order to illustrate the properties and results presented here. In order to introduce
them, from now on we assume in this section that the epistemic space is Stpo = (Etpo, Btpo,LP) given in
Example 4 which for simplicity of notation we call (E , B,LP).

One important feature of this particular information representation framework is the fact that the whole
structure of an agent’s epistemic state can be captured by means of assignments. More precisely, we say
that an assignment Φ 7→�Φ is structure preserving if, for every single-profile �∗, we have ��∗=�∗.

Note that the structure preserving assignments are really able to encode, in a faithful manner, the
preferences of the agent. This supports in a strong way the claim made in Observation 2: in such a case
�Ei is (not only encode) the preferences of the agent i.

Another remarkable feature of this framework is the fact that, given an assignment Φ 7→�Φ, we can
easily build an ES combination operator by means of the lexicographical combination of two total preorders:

∇(Φ,�) =�lex(�,�Φ) (3)

From the equalities (1) and (B-Rep), and the definition of the belief function, we straightforwardly get
that an operator built in this way is indeed a concrete instance of a ES basic merging operator.

In what follows, we will make use of this method in order to build our concrete examples of ES merging
operators. For simplicity, those operators and their associated assignment will be called in the same manner.

6From now on, such an assignment, Φ 7→�Φ, is so-called the assignment associated to ∇.
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Observation 3. It is worth noting that any structure preserving assignment satisfies the max condition and
Property 1. Therefore, its associated ES basic merging operators satisfy the max condition and (ESF5).

The first operator we introduce is the simplest ES combination operator that can be defined: the indif-
ference operator. This operator maps each epistemic profile and each integrity constraint into the integrity
constraint itself. More precisely:

Indifference operator: ∇Ind(Φ,�) =�

The indifference operator is actually an ES basic merging operator. Indeed, if we consider the flat order
over WP , ', from Observation 1 we obtain �lex(�,')=�. Hence, the indifference assignment, Φ 7→�Ind

Φ , is
such that �Ind

Φ =', for every epistemic profile Φ. Therefore, this assignment is not structure preserving.
Concerning the remaining merging postulates, we have the following result:

Proposition 2. The indifference operator, ∇Ind, is an ES basic merging operator for which (ESF7),
(ESF8), (ESF8W) hold, but the max condition, (ESF5) and (ESF6) do not hold.

The following is a variant of the indifference operator that we call quasi-indifference operator. For this
operator, its associated assignment has the same behaviour as the indifference assignment, except for when
it is restricted to single-profiles. In this case, it preserves the structure of the epistemic states.

Quasi-indifference operator: ∇Ind∗(Φ,�) =�lex(�,�Ind∗
Φ ); where �Ind∗

Φ =�i, if Φ has a unique input,

namely, �i; otherwise �Ind∗
Φ ='.

Since the quasi-indifference assignment is structure preserving, from Observation 3 it follows that the
quasi-indifference assignment satisfies the max condition. The next result shows which properties the quasi-
indifference operator satisfies.

Proposition 3. The quasi-indifference operator, ∇Ind∗ , is an ES basic merging operator that satisfies the
max condition, (ESF5) and (ESF7), but it does not satisfy neither (ESF6), (ESF8) nor (ESF8W).

In what follows, we will consider a class of basic merging operators called aggregation-based ES basic
merging operators. They are built from aggregation functions and they are classical in the study of belief
merging, being widely studied in [42, 43, 44, 45, 46] in the context of belief bases, and then adapted to the
ESF framework in [55, 56]. In order to introduce them, let us recall what an aggregation function is.

A (symmetric) aggregation function F is a total function which associates a nonnegative value to every
finite tuple of nonnegative numbers, and for which the following holds for any tuple x1, . . . , xn, x, y:

• F (x1, . . . , x, . . . , xn) ≥ F (x1, . . . , y, . . . , xn), whenever x ≥ y [Monotony]

• F (x1, . . . , xn) = 0 if, and only if, x1 = · · · = xn = 0 [Minimality]

• F (x) = x [Identity]

• For any permutation σ, F
(
x1, . . . , xn

)
= F

(
σ(x1, . . . , xn)

)
[Symmetry]

Well known examples of aggregation functions are the sum function,
∑

(x1, · · · , xn) =
∑
xi; the max

function, max(x1, . . . , xn) = max{x1, . . . , xn}; and the Gmax function, Gmax(x1, . . . , xn) = (y1, . . . , yn),
where (y1, . . . , yn) is the reordering of (x1, . . . , xn) decreasingly.7

Any aggregation function F induces a total preorder, �FΦ over WP , for every epistemic profile Φ. More
precisely, given an epistemic profile Φ = (�i1 , . . . ,�in), we define the total preorder �FΦ as follows:

w �FΦ w′ iff F (r�i1 (w), . . . , r�in (w)) ≥ F (r�i1 (w′), . . . , r�in (w′)) (4)

7Despite the Gmax function is defined using lexicographic sequences, it can be represented by reals to fit the above definition
(see [41] for datails).
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where, r�i is the natural ranking function of �i.8
Thus, given an aggregation function F , from (4) we build the assignment Φ 7→�FΦ and, from (3), we

build the ES basic merging operator ∇F . This method allows to define three examples of aggregation-based
ES basic merging operators: sum, max and Gmax, respectively denoted ∇Σ, ∇max and ∇Gmax.

From the identity property it straightforwardly follows that, given an aggregation function F , the as-
signment Φ 7→�FΦ is structure preserving. Therefore, these assignments also satisfy the max condition.

In addition to the basic properties of aggregation (monotony, minimality, identity and symmetry), there
are other properties that hold for some natural aggregation functions. We list three of them below:

• If F (x1, . . . , xn) ≥ F (y1, . . . , yn), then F (x1, . . . , xn, z) ≥ F (y1, . . . , yn, z). [Composition]

• If F (x1, . . . , xn, z) ≥ F (y1, . . . , yn, z), then F (x1, . . . , xn) ≥ F (y1, . . . , yn) [Decomposition]

• For any triple of nonnegative integers, x > y > z; F (x, z) ≥ F (y, z + 1). [Discreteness]

The sum and Gmax functions are classic examples of aggregation functions which satisfy each of these
properties, as can be easily shown. The max function is another classical instance of an aggregation function,
satisfying composition and discreteness, but not decomposition, as it is easy to show.

The following is an example of an aggregation function satisfying composition and decomposition, for
which discreteness does not hold: For any tuple ~x = (x1, . . . , xn) of nonnegative real values, F (~x) = x, if ~x
has a sole input, namely x; otherwise F (~x) =

∑n
i=1

√
xi. It is quite clear that F is indeed an aggregation

function for which composition and decomposition hold. To see that discreteness fails, consider x = 2, y = 1
and z = 0, and note that F (x, z) =

√
2 and F (y, z + 1) = 2. Thus, x > y > z, but F (y, z + 1) > F (x, z).

Composition and decomposition have been previously addressed in the study of belief merging [41, 46]
and, to our knowledge, discreteness is considered for the first time in this work. These properties are going
to be useful for our study. Indeed, through composition and decomposition we state the next result, which
gives a characterisation of those ES merging operators that are built from an aggregation function.

Proposition 4. Given an aggregation F , the operator ∇F is an ES merging operator iff, restricted to the
tuples (x1, . . . , xn) of nonnegative integers with |WP | ≥ xi, F satisfies composition and decomposition.

A first result of this type was stated by Konieczny et al. [41]. In their work, they used composition
and decomposition in order to characterise those IC merging operators that are built from a distance over
interpretations and an aggregation function. We do the same, but in a more general setting: that in which
a total preorder is not structured from a distance. Later, we are going to study another set of rational
properties that this kind of operators satisfies.

From Proposition 4 it straightforwardly follows that the sum and Gmax operators are two instances of
ES merging operators. For its part, the max operator is an instance of a quasi-merging operator for which
(ESF8) does not hold, as it was proved in [56].

The last class of operators to present concerns those built from a projection: the projection-based ES
basic merging operators. To do so, we denote the maximal element of any finite society N by d.

The projective operator is the first operator of this type to be addressed. For this operator, its associated
assignment is defined by the projection of any epistemic profile over its last input. More precisely:

Projective operator: ∇π(Φ,�) =�lex(�,�πΦ); where �πΦ=�d, for every profile Φ.

Hence, the output of a merging process, using the projective operator, totally depends on the epistemic
states of the agent d and the integrity constraints.

Observation 4. From its definition, it straightforwardly follows that the projective assignment is structure
preserving and, therefore, the projective operator satisfies the max condition. Concerning the remaining
merging postulates, this operator is an ES basic merging operator that satisfies the max condition, (ESF5),
(ESF7) and (ESF8W), but it does not satisfy (ESF6) nor (ESF8) as it was shown in [56].

8The natural ranking function of a preorder � is given by r�(x) = max{n ∈ N : ∃ x0, . . . , xn s.t. xk+1 �i xk and xn = x}.
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The last operator to be defined is the one we call Σ-projective operator.9 Its associated assignment is
defined by the lexicographical combination of the projective assignment and the sum assignment.

Σ-projective operator: ∇Σπ(Φ,�) =�lex(�,�Σπ
Φ ); where �Σπ

Φ =�lex(�d,�Σ
Φ).

The Σ-projective operator allows for weak participation of all the agents involved in a merging process:
the most preferred models are determined by the agent d, and the remaining agents participate in the
merging process if the agent d expresses indifference between two interpretations, breaking the tie by a
majority.

Observation 5. The Σ-projective assignment, Φ 7→�Σπ
Φ , is structure preserving. This is due to Observa-

tion 1 and the fact that the sum assignment is structure preserving. From this and Observation 3, we get
that the Σ-projective operator satisfies the max condition. Concerning the remaining merging postulates, we
have that this operator is an ES basic merging operator that satisfies (ESF5) and (ESF6), but it does not
satisfy (ESF7), (ESF8) and (ESF8W), as it was also shown in [56].

We now return to Example 1 in order to show how a rational merging operator, like the sum operator,
works.

Example 5 (Example 1 revisited). Anne, Bob and Charles try to determine who to blame in the case of
divorce of their couple of friends Tom and Mary under the constraint that there is at least one of the members
of the couple to blame. We will use a language built from the two propositional variables, m, t (considered
in that order) to model this situation: m symbolises the sentence ‘Mary is to blame’ and t represents the
sentence ‘Tom is to blame’. Thus, the interpretations are given by w1 = 00, w2 = 01, w3 = 10, w4 = 11.
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≽

1
(d) Integrity constraints

Figure 1: Representation of the individual epistemic states and the integrity constraints.

Anne believes that Mary is not to blame, regardless of whether Tom is to blame or not, and, to a lesser
degree, she believes that the remaining options are possible. Thus, her epistemic state is encoded by �A,
where w1 'A w2 �A w3 'A w4 (cf. Figure 1a). Bob believes that both are to blame; to a lesser degree,
he believes that only one is to blame and finally he doesn’t believe at all that none is to blame. Thus, his
epistemic state can be represented by �B, where w4 �B w2 'B w3 �B w1 (cf. Figure 1b). Charles believes
that none is to blame and, to a lesser degree, he believes in any other option. So, Charles’ epistemic state
can be represented by �C : w1 �C w2 'C w3 'C w4 (cf. Figure 1c). The integrity constraint, there is at
least one to blame, can be represented by � given in Figure 1d.

In this situation, the epistemic profile is given by Φ = (�A,�B ,�C). Its aggregation, using the sum
assignment, is calculated in Table 1, and the resulting epistemic state is represented in Figure 2. Recall that
the sum assignment is defined as follows: w �Σ

Φ w′ iff
∑
r�i(w) ≥∑ r�i(w

′).

9This operator is called Σ-pseudoprojective operator in [56], but we change its name and notation for simplicity.
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WP rank(�A) rank(�B) rank(�C) rank(�Σ
Φ)

w1 1 0 1 2
w2 1 1 0 2
w3 0 1 0 1
w4 0 2 0 2

Table 1: Calculation of the ranks with sum
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≽Σ
Φ

1
Figure 2: Preorder resulting from the aggregation process

The epistemic state ∇Σ(Φ,�), resulting from the merging process with the sum operator, is represented
in Figure 3. This is obtained from the lexicographical combination of the integrity constraints, �, with the
total preorder �Σ

Φ, that is: ∇Σ(Φ,�) =�lex(�,�Σ
Φ). The models of the entrenched beliefs in this epistemic

state are those pointed out on the top of the obtained preorder.

b
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w3
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∇Σ(Φ,≽)

[[B(∇Σ(Φ,≽))]]

1
Figure 3: Epistemic states resulting from the merging processes with the sum operator.

Since w2 and w4 are the models of B(∇Σ(Φ,�)), Anne, Bob and Charles should agree that the most
consensual belief is that Tom is to blame, regardless of whether Mary is to blame or not. This is due to
the fact that, among the available options, blaming Tom is the closest belief to what they really believe as a
group. Moreover, to a lesser degree, they should agree in believing that Mary is to blame but not Tom, and
finally the less believed fact is that none is to blame.

Let us now return to Example 2 in order to see more formally the role of complex constraints.

Example 6 (Example 2 revisited). Remember that Anne and Bob were discussing about replacing two
electronic devices, x and y, of their coffee machine. For modelling this problem, we will use a language built
from two variables, denoted x, y, by abuse of notation, considered in that order. The proposition x represents
the sentence ‘x should be replaced’ and proposition y symbolises ‘y should be replaced’. The interpretations
are given by w1 = 00, w2 = 01, w3 = 10, w4 = 11.

Anne believes that the most advantageous option is to replace both devices. To a lesser degree, she believes
that the replacement of the two devices can wait a few weeks more, but she does not believe that replacing
only one device is a good option. Thus, her epistemic state is encoded by �A, represented in Figure 4a.
As Bob fully agrees with Anne, his epistemic state, encoded by �B, is the same as hers, i.e. �B=�A (cf.
Figure 4b).
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(c) The expert’s Epistemic State

Figure 4: Representation of the individual epistemic states and the integrity constraints.

In this situation, the epistemic profile is given by Φ = (�A,�B). Its aggregation, using any rational
assignment Φ 7→�Φ (like sum, max and Gmax), will result in the epistemic state of Anne (the same as
Bob), that is, �Φ=�A. Thus, naturally, they should still agree on what they initially expressed.
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However, an expert from the coffee machine’s manufacturer advised them that is not necessary to replace
device y, but if it is replaced then device x has to be replaced too. The worst option is to replace y and not
to replace x. Thus, the expert’s epistemic state is encoded by �, given in Figure 4c. Due to the expert’s
knowledge, Anne and Bob should consider his advice in order to agree on what to do. In this way, the
expert’s epistemic state plays the role of integrity constraints in the merging process.

The epistemic state ∇(Φ,�), resulting from the merging process, is represented in Figure 5. This is
obtained from the lexicographical combination of the integrity constraints, �, with the total preorder �Φ,
that is: ∇(Φ,�) =�lex(�,�Φ).

b
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b
w4

b
w3

b
w1

∇(Φ,⪰)

1
Figure 5: Epistemic state resulting from the merging processes.

Since w1 is the model of B(∇(Φ,�)), Anne and Bob should agree to replace neither device x nor device
y. Moreover, since w3 �∇(Φ,�) w4 �∇(Φ,�) w2, then they should also agree on believing the following: if
they decide to replace device x, then it is better not to replace device y than to replace it. In any case, they
should furthermore agree on believing that to replace y but not x is the worst option.

2.5. Arrovian behaviour of ES merging operators

Now, we present some properties that capture the social choice principles appearing in the seminal work
of Arrow [3]: Standard domain, Pareto condition, independence of irrelevant alternatives and existence of a
dictator. These properties were earlier proposed in [56] in this setting of belief merging. In order to give a
formulation of them in logical terms, from now on we suppose that P has at least two propositional variables.
Thus, there are at least four interpretations available in WP .

(ESF-SD) For every agent i in S and every triple w, w′, w′′ in WP , the following conditions hold:

(i) There exists Ei in E such that B
(
∇(Ei, Ew,w′)

)
≡ ϕw,w′ and B

(
∇(Ei, Ew′,w′′)

)
≡ ϕw′ ,

(ii) There exists Ei in E such that B
(
∇(Ei, Ew,w′)

)
≡ ϕw and B

(
∇(Ei, Ew′,w′′)

)
≡ ϕw′,w′′ ,

(iii) There exists Ei in E such that B
(
∇(Ei, Ew,w′)

)
≡ ϕw and B

(
∇(Ei, Ew′,w′′)

)
≡ ϕw′ ,

where Ew,w′ and Ew′,w′′ in E are such that [[B(Ew,w′)]] = {w,w′} and [[B(Ew′,w′′)]] = {w′, w′′}.

(ESF-P) For all N in F∗(S), every N -profile Φ in P(S, E) and every pair of epistemic states E, E′ in E , if∧
Ei∈ΦB

(
∇(Ei, E)

)
6` ⊥ and B

(
∇(Ei, E)

)
∧B(E′) ` ⊥, for all i in N , then B

(
∇(Φ, E)

)
∧B(E′) ` ⊥.

(ESF-I) For every N in F∗(S), each pair of N -profiles Φ, Φ′ and every E in E , B
(
∇(Φ, E)

)
≡ B

(
∇(Φ′, E)

)
,

whenever B
(
∇(Ei, E

′)
)
≡ B

(
∇(E′i, E

′)
)
, for every i in N , and every E′ in E , with B(E′) ` B(E).

(ESF-D) For every N in F∗(S) there exists an agent d in N such that B
(
∇(Φ, E)

)
` B

(
∇(Ed, E)

)
, for all

N -profile Φ and every E in E .

(ESF-SD) is the standard domain condition. It expresses that, given an integrity constraint whose
beliefs have at most two models, an agent may express an epistemic state in order to obtain a resulting
epistemic state such that the models of its beliefs could be any subset of the set of models, stating thus some
“richness” in the results of a merging process. (ESF-P) is referred to as the Pareto condition. This property
expresses that, at the level of the most entrenched beliefs, if all the agents reject a piece of information, and
all the agents have a consensus, such information will be rejected by the result of merging. (ESF-I) is the
independence condition. It captures the following principle: the merging process depends only on how the
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restrictions in the individual epistemic states are related. This property essentially expresses that, given
an integrity constraint, if each agent in a merging process has two possible choices of epistemic states, and
if revising such epistemic states by integrity constraints having beliefs stronger than the original integrity
constraint, the beliefs of the resulting epistemic states coincide, then the result of the merging process is
the same, at the level of entrenched beliefs, regardless of the choice of the epistemic state made by each
agent. It is worth mentioning that the independence condition was also addressed by Schwind et al. [64],
characterizing the distance-based merging operators that satisfy it.10 (ESF-D) evokes the existence of a
dictator, that is, an agent (an Arrovian dictator) that always imposes his will. This is the property that
good operators should avoid. Operators satisfying this property are called dictatorial operators, while those
for which it does not hold are called non-dictatorial operators.

Observation 6. Any ES (quasi)merging operator satisfies the Pareto Condition. This is because (ESF7)
and (ESF8W) entail (ESF-P). Moreover, any dictatorial operator also satisfies the Pareto Condition,
since (ESF-D) straightforwardly entails (ESF-P) (see [56] for details).

Each aforementioned Arrovian property has a semantic counterpart, which is listed below. These prop-
erties will be useful in order to study the operators presented in Section 2.4.

(SD) For every total preorder � over WP (except perhaps the flat order) and for every triple of interpre-
tations w, w′, w′′ in WP , there exists a single-profile Ei in P(S, E) s.t. �Ei�{w,w′,w′′}=��{w,w′,w′′}

(P) If w �Ei w′, for all i in N , then w �Φ w′

(I) If �Ei�{w,w′}=�E′i�{w,w′}, for all i in N , then �Φ�{w,w′}=�Φ′�{w,w′}

(D) For every N in F∗(S) there exists d in N s.t. for every N -profile Φ, if w �Ed w′ then w �Φ w′

The next result collects certain results in [56], which show that, modulo the basic merging postulates,
the Arrovian properties and their semantic counterparts are indeed in a one-to-one relationship.

Proposition 5. The following assertions hold for every ES basic merging operator ∇ and its associated
assignment Φ 7→�Φ:

(i) ∇ satisfies (ESF-SD) iff Φ 7→�Φ satisfies (SD)

(ii) ∇ satisfies (ESF-P) iff Φ 7→�Φ satisfies (P)

(iii) ∇ satisfies (ESF-I) iff Φ 7→�Φ satisfies (I)

(iv) ∇ satisfies (ESF-D) iff Φ 7→�Φ satisfies (D)

The next result shows which Arrovian properties are satisfied by each of those merging operators that
were presented in Subsection 2.4. We should mention that the Arrovian behaviour of the sum, the max,
the projective and the Σ-projective operators, which is pointed out in this result, was previously studied
in [56]. Concerning the indifference operator, the quasi-indifference operator, and every ES aggregation
based-merging operator in general, their Arrovian behaviour is addressed for the first time in this work.

Proposition 6. In the context of the tpo epistemic space, Stpo, the following assertions hold:

(i) An ES basic merging operator satisfies (ESF-SD), if its associated assignment is structure preserving.
Therefore, (ESF-SD) holds for the quasi-indifference operator, ∇Ind∗, the projective operator, ∇π,
the Σ-projective operator, ∇Σπ, and every aggregation-based ES basic merging operator; in particular,
for the sum operator, ∇Σ, the Gmax operator, ∇Gmax, and the max operator, ∇max. In contrast,
(ESF-SD) does not hold for the indifference operator, ∇Ind.

10A distance-based merging operator is a merging operator defined using a distance over interpretations and an aggregation
function (cf. [41, 43, 64]).
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(ii) (ESF-P) holds for the indifference operator, ∇Ind, the max operator, ∇max, the projective operator,
∇π, the Σ-projective operator, ∇Σπ, and every aggregation-based ES basic merging operator, ∇F ,
defined by means of an aggregation function, F , satisfying composition and decomposition; in particular,
for the sum operator, ∇Σ, and the Gmax operator, ∇Gmax. In contrast, (ESF-P) does not hold for
the quasi-indifference operator, ∇Ind∗.

(iii) (ESF-I) holds for the indifference operator, ∇Ind, the quasi-indifference operator, ∇Ind∗, and the
projective operator, ∇π. In contrast, (ESF-I) does not hold for the max operator, ∇max, the Σ-
projective operator, ∇Σπ, and any aggregation-based ES basic merging operator, ∇F , defined by means
of an aggregation function F satisfying composition, decomposition and discreteness; in particular, for
the sum operator, ∇Σ, and the Gmax operator, ∇Gmax.

(iv) (ESF-D) holds for the indifference operator, ∇Ind, the projective operator, ∇π, and the Σ-projective
operator, ∇Σπ. In addition, every agent in a finite society N is a dictator for the indifference operator.
In contrast, (ESF-D) does not hold for the max operator, ∇max, the quasi-indifference operator, ∇Ind∗,
and any aggregation-based ES basic merging operator, ∇F , defined by means of an aggregation function
F satisfying composition, decomposition and discreteness; in particular, for the sum operator, ∇Σ, and
the Gmax operator, ∇Gmax.

Now we present an Arrovian impossibility theorem, which is similar to that stated by Sen [66] for social
choice functions. This result expresses that standard domain, the Pareto condition, independence and
absence of dictators cannot be satisfied jointly. This theorem was proved in [56], and it will be very useful
to state our manipulability results.

Theorem 3 (Main impossibility theorem). Every ES basic merging operator that satisfies (ESF-SD),
(ESF-P) and (ESF-I) also satisfies (ESF-D).

(ESF-SD), (ESF-P) and (ESF-I) are only sufficient conditions for an ES basic merging operator to
admit a dictator, as was pointed out in [56]. Indeed, as we saw in Proposition 6, there exist two instances of
dictatorial ES basic merging operators for which either the standard domain condition or the independence
condition does not hold: The first example is the Σ-projective operator that satisfies (ESF-SD), (ESF-P)
and (ESF-D), but does not satisfy (ESF-I). The other example is the indifference operator, which satisfies
(ESF-P), (ESF-I) and (ESF-D), but does not satisfy (ESF-SD). As a matter of fact, for the indifference
operator, any agent involved in the merging process is an Arrovian dictator, as can be easily shown from its
definition. However, as it is shown in the proof of Theorem 3 in [56], modulo the basic ESF postulates and
the Arrovian properties (standard domain, the Pareto condition and independence), the Arrovian dictator
is unique. We wonder if (ESF-SD) is the reason for such uniqueness.

3. On manipulability of ES merging operators

In this section we deal with another interesting issue which is present in the logical framework of belief
merging, namely, manipulability of merging information processes. In general, surveys on manipulability
address situations under which an agent (the manipulator) obtains a result which is more advantageous
for him when he expresses an information that he does not truly believe. Some preliminary studies on
manipulability have been carried out in the framework of logic-based belief merging by Everaere et al.
[24, 25] and more recently by us [57, 59]. Continuing with these studies, in this section we state the
necessary conditions to ensure that a merging process of epistemic states cannot be manipulated. To do so,
firstly, we are going to present a qualitative method for establishing preferences over information (formulas),
namely, belief liftings. Then, we will carry out a study on other rational properties that any rational belief
merging operator must satisfy: the strong standard domain condition, non-imposition, stability and absence
of nominator.

3.1. Belief liftings
One issue that arises from the study of the manipulation of a merging operator lies in determining

when the outcome of a merging process is better for an agent than other. Everaere et al. [25] proposed a
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quantitative method to do so, via the satisfaction indexes. In this work, we suggest a qualitative method to
solve this issue, namely, belief liftings.

A belief lifting is a mapping �7→w� that associates a preorder w� over LP to each total preorder � over
WP , which satisfies the following: ϕw w� ϕw′ iff w � w′; and ϕ '� ψ if ϕ ≡ ψ.

Belief liftings extend individual preferences over interpretations to individual preferences over informa-
tion as follows: as we mentioned earlier in Subsection 2.3, a total preorder �Ei semantically encodes the
preferences of an agent i whose epistemic state is Ei, via an assignment. Then, the preorder w�Ei transfers
the preferences encoded in �Ei to a preference over formulas, establishing thus a preference over informa-
tion: ϕ w�Ei ψ expresses that, for the agent i, the information encoded in ϕ is at least as preferred as
the one encoded in ψ, while ϕ A�Ei ψ says that, for i, ϕ is more preferred than ψ. Thus, this method
for establishing preferences over formulas depends partly on the way in which the beliefs of the agent i are
semantically encoded in �Ei . Actually, the only constraint on this preference is that it has to coincide with
the relation of the agent on the complete information (a coherence condition), that is ϕw w� ϕw′ iff w � w′.
In any other aspect the preference relation w�Ei has a lot of freedom. The best way to think about it, is
as a qualitative way that the agent i has to determine when a formula is more advantageous for him than
another. Above all, it should not be thought of as a relation coding the beliefs of the agent i.

Through a lifting over subsets ofWP , �7→wWP� , it is possible to define a belief lifting �7→wLP� , as follows:

ϕ wLP� ψ iff [[ϕ]] wWP� [[ψ]] (5)

Indeed, the relationship established in (5) between lifting over subsets of WP and belief liftings is one-
to-one. Thus, we can translate the Gärdenfors properties (cf. Section 2.1) into the logical setting as follows:

G1: ϕw,w′ A� ϕw′ , whenever w � w′.

G2: ϕw A� ϕw,w′ , whenever w � w′.

We think that these are the most basic and natural properties that any well-behaved belief lifting must
satisfy. From now on, we say that a belief lifting is a G-belief lifting if it satisfies both instances.

The relationship established in (5) also allows us to define four concrete instances of belief lifting from the
liftings presented in Section 2.1: the possibilistic belief lifting, �7→wΠ

�; the pessimistic belief lifting, �7→wW
� ;

the Kelly belief lifting, �7→wK
�; the precise-leximax belief lifting, �7→wplm

� . We must note that Kelly belief
lifting and precise-leximax belief lifting are examples of G-belief liftings, in contrast to the possibilistic and
the pessimistic belief liftings (cf. Subsection 2.1).

3.2. Other rational properties of merging

Now we introduce other properties that will be very useful in order to state our general manipulability
results: strong standard domain condition, non-imposition, stability and absence of nominator.

The first property to be introduced is the strong standard domain condition:

(ESF-SSD) For every agent i in S and every total preorder � over WP , there exists an i-profile Ei such
that [[B(∇(Ei, E))]] = max([[B(E)]],�), for all E in E .

Semantically, (ESF-SSD) captures the fact that, restricted to single-profiles, the assignment associated
to a merging operator ∇, which satisfies such property, is a surjective function, as we see in the next result.
Thus, any total preorder is a semantic encoding of an epistemic state.

Proposition 7. An ES basic merging operator ∇ satisfies (ESF-SSD) iff Φ 7→�Φ, the assignment associ-
ated to ∇ by Theorem 1, satisfies the following:

(SSD) For every agent i in S and every total preorder � overWP , there is an i-profile Ei such that �Ei=�.
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Observation 7. Note that (ESF-SSD) is stronger than (ESF-SD), modulo the basic ESF postulates. This
is due to Propositions 5 and 7 and the fact that, as it is quite clear, (SSD) is stronger than (SD). As
a matter of fact, there are some instances of ES basic merging operators satisfying (ESF-SD) for which
(ESF-SSD) does not hold. To show this, consider T(WP), the set of all the total preorders � over WP
with at most three levels, and note that, if the set of epistemic states E is such that |E| ≥ |T(WP)|,11 then
we can consider a surjection E 7→�∗E that associates a total preorder �∗E in T(WP) to each epistemic state
E in E.

Thus, consider the assignment Φ 7→�∗Φ that maps every epistemic profile Φ = (Ei1 , Ei2 , . . . , Ed) into the
total preorder �∗Φ=�∗Ed . It is easy to see from its definition that this assignment satisfies (SD), but (SSD)
does not hold. Now, if for every epistemic profile Φ and every epistemic state E we assume E(Φ,E) in E
such that [[B(E(Φ,E))]] = max([[B(E)]],�∗Φ), then the operator ∇∗, defined by putting ∇∗(Φ, E) = E(Φ,E), is
an ES basic merging operator that satisfies (ESF-SD), but it does not satisfy (ESF-SSD).

The next result states which of those operators in Subsection 2.4 satisfy the strong standard domain
condition. This result straightforwardly follows from structure preserving and Proposition 7.

Proposition 8. In the context of the tpo epistemic space, Stpo, if the associated assignment of an ES
basic merging operator is structure preserving, then the ES basic merging operator satisfies (ESF-SSD).
In particular, the quasi-indifference operator, ∇Ind∗, the projective operator, ∇π, the Σ-projective operator,
∇Σπ, and every aggregation-based ES basic merging operator, ∇F , satisfy this property. In contrast, the
indifference operator, ∇Ind, does not satisfy (ESF-SSD).

Another quite natural property is non-imposition. This property expresses the fact that, if a complete
information entails the entrenched belief of the integrity constraint, then it can be the entrenched belief of
one possible output of the merging process. More precisely, we have the following:

(ESF-NI) For every N in F∗(S), every E in E and every w in WP there exists an N -profile Φ in P(S, E)
such that B

(
∇(Φ, E)

)
≡ ϕw, whenever w |= B(E).

We say that an ES combination operator is non-imposed if (ESF-NI) holds, otherwise it is imposed.
The next result establishes a semantic characterisation of non-imposition.

Proposition 9. An ES basic merging operator ∇ satisfies (ESF-NI) iff its associated assignment, Φ 7→�Φ,
satisfies the following property:

(NI) For every N in F∗(S) and every w inWP , there exists an N -profile Φ in P(S, E) s.t. max(�Φ) = {w}.

It is not hard to see that every ES (quasi)merging operator is non-imposed, as the next result reveals.

Proposition 10. If (ESF6) holds, then (ESF-NI) also holds.

Another instance of a non-imposed operator is the projective operator, as we show in the next result.
Indeed, this is an example of a non-imposed operator for which (ESF6) does not hold (cf. Observation 4).
This shows that the converse of Proposition 10 does not hold and, therefore, (ESF6) is stronger than
(ESF-NI). In this result we also show that many of the merging operators defined in Subsection 2.4 are
non-imposed, especially the most rational.

Proposition 11. In the context of the tpo epistemic space, Stpo, (ESF-NI) holds for the max operator,
∇max, the projective operator, ∇π, the Σ-projective operator, ∇Σπ, and every aggregation-based ES basic
merging operator, ∇F , defined by means of an aggregation function F satisfying composition and decompo-
sition; in particular, for the sum operator, ∇Σ, and the Gmax operator, ∇Gmax. In contrast, (ESF-NI)
does not hold for the indifference operator, ∇Ind, and the quasi-indifference operator, ∇Ind∗.

11This is the case of the tpo epistemic space, Stpo, which was presented in Subsection 2.2.
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The next property to be presented is stability.12 This property captures the fact that, at the level of
entrenched beliefs, if the revised beliefs of an agent by the restriction of a merging process coincide with the
belief of such restriction, then the agent can change his mind expressing a new epistemic state, and thus any
information accepted by both the outcome of the original merging process (when the agent expresses his
true beliefs) and the revision of the new epistemic state with the same restriction, will remain accepted by
the outcome of the merging process obtained when the agent expresses the new epistemic state. Formally:

(ESF-S) For allN in F∗(S), everyN -profile Φ in P(S, E) and every pair E, E∗ in E , if B(∇(Ei, E)) ≡ B(E),
then B

(
∇(Φ, E)

)
∧B

(
∇(E∗, E)

)
` B(∇(Φ[E

∗
/i], E)).

We say that an ES combination operator is stable if (ESF-S) holds, otherwise we say that it is unstable.
In order to illustrate the rationality of the stability criteria let us revisit Example 1, using again the sum

operator as a rational instance of an ES merging operator.

Example 7 (Example 1 revisited). As we said previously, Anne, Bob and Charles have considered
determining who to blame in the case of divorce of their pair of friends, Tom and Mary, under the constraint
that there is at least one of the members of the couple to blame. This situation have been modeled by means
of the propositional language LP , which is built from the variables m (Mary is to blame) and t (Tom is
to blame), considered in that order and whose interpretations are given by w1 = 00, w2 = 01, w3 = 10,
w4 = 11.

In Example 5, Anne’s epistemic state is encoded by �A, where w1 'A w2 �A w3 'A w4, while Bob’s
and Charles’ epistemic states are respectively encoded by �B and �C , where w4 �B w2 'B w3 �B w1 and
w1 �C w2 'C w3 'C w4. The integrity constraint is encoded by the total preorder �, which is defined by
w2 ' w3 ' w4 � w1, and the epistemic profile is given by Φ = (�A,�B ,�C) (cf. Figure 1).

In Example 5, we also saw that, under this situation, Anne, Bob and Charles should agree on the fact
that the most consensual belief is that Tom is to blame, regardless of whether Mary is to blame or not. This
is due to the fact that w2 and w4 are the models of B(∇Σ(Φ,�)), the entrenched belief of the epistemic state
resulting from the merging process.

Now, suppose that Anne and Bob are still expressing their beliefs, but Charles changes his mind and
expresses that he fervently beliefs that Tom is to blame but not Mary – that is, his epistemic state �∗ is
such that w2 �∗ wi, for i = 3, 4, and therefore w2 |= B(∇Σ(Φ,�)) ∧ B(∇Σ(�∗,�)) – then Charles’ new
entrenched belief, modeled by w2, also satisfies the entrenched belief of the new epistemic state resulting
from the merging processes when Charles expresses his new belief, that is, w2 |= B(∇Σ(Φ[�

∗
/C ],�)). This

is due to the following: (1) Anne and Bob are still expressing their true epistemic states; (2) w2 is on the
top of �Σ

Φ (cf. Figure 2); (3) in Charles’ original epistemic state, �C , w2 is indifferent to all the available
models (those in [[B(�)]] = max(�); cf. Figure 1); and (4) in Charles’ new epistemic state, �∗, w2 is more
preferred than the remaining available models. Thus, the rank value of w2 cannot be downgraded in �Σ

Φ[�∗/C ]
,

that is, w2 �Σ
Φ[�∗/C ]

w, for all w |= B(�). This can be seen in the next result, which involves a semantic

characterisation of our stability criteria.

Proposition 12. An ES basic merging operator ∇ satisfies (ESF-S) iff Φ 7→�Φ, the assignment associated
to ∇ by Theorem 1, satisfies the following property:

(S) For all N in F∗(S), every N -profile Φ in P(S, E), every E∗ in E and every pair w, w′ in WP , if
w �Φ w′, w 'Ei w′ and w �E∗ w′, then w �Φ[E∗/i] w

′.

Another hint that lead us to consider stability as a rational property, is the fact that some natural
operators, like sum and Gmax, satisfy it. Indeed, every ES merging operator is stable, as the following
result shows:

12Preliminary versions of stability were previously proposed in [57] and [60]. The version of stability proposed in [57] seems
not to be so rational, since some classic and natural operators do not satisfy it. This is the case with the sum operator, as it
was pointed out in that work. The version of stability proposed in [60] is less compact than the version proposed here, but
they are equivalent, as can be easily verified.
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Proposition 13. If (ESF1), (ESF7) and (ESF8) hold, then (ESF-S) holds.

There are some important remarkable facts concerning Proposition 13, which are addressed in what
follows:

Observation 8. On one hand, one might be tempted to substitute (ESF8) for its weaker version, (ESF8W),
in Proposition 13. However, as we will see in the next result, the max operator is an operator for which
(ESF1), (ESF7) and (ESF8W) hold, but it does not satisfy (ESF-S). This shows that Proposition 13
does not hold for ES quasi-merging operators, but for its strong counterpart: the ES merging operators.

On the other hand, the converse of Proposition 13 does not hold, that is, there exist some instances
of ES combination operators for which the converse of this result does not hold. Indeed, as we see in the
next result, the Σ-projective operator is a stable ES basic merging operator for which neither (ESF7) nor
(ESF8) hold (cf. Observation 5). This shows that modulo the basic ESF postulates, (ESF7) and (ESF8)
are jointly stronger than (ESF-S).

The following result shows which of those operators presented in Subsection 2.4 are stable.

Proposition 14. In the context of the tpo epistemic space, Stpo, (ESF-S) holds for the indifference op-
erator, ∇Ind, the quasi-indifference operator, ∇Ind∗, the projective operator, ∇π, the Σ-projective operator,
∇Σπ, and every aggregation-based ES basic merging operator, ∇F , which is defined by means of an aggrega-
tion function F satisfying composition and decomposition; in particular, for the sum operator, ∇Σ, and the
Gmax operator, ∇Gmax. In contrast, (ESF-S) does not hold for the max operator, ∇max.

The last property to be presented aims at capturing the notion of nominator. The “good” operators are
those that do not satisfy the following:

(ESF-N) For all N in F∗(S), there exists d in N such that, B
(
∇(Φ, E)

)
∧ B

(
∇(Ed, E)

)
6` ⊥, for every

N -profile Φ in P(S, E) and every E in E .

An operator satisfying (ESF-N), admits an agent (called a nominator) in any society, which has a similar
behaviour to that of dictators by imposing their will, but in a weaker manner: at the level of the entrenched
beliefs, the revision of the nominator’s epistemic state with the integrity constraint is consistent with the
outcome of the whole merging process under such restriction, regardless of the epistemic states expressed by
the remaining agents. We say that an ES combination operator admits a nominator if it satisfies (ESF-N),
otherwise we say that it does not admit any.

The next proposition establishes a semantic characterisation of (ESF-N).

Proposition 15. An ES basic merging operator ∇ satisfies (ESF-N) iff its associated assignment, Φ 7→�Φ,
satisfies the following property:

(N) For every society of agents N in F∗(S) there exists an agent d in N such that, for every N -profile Φ
in P(S, E) and every couple of interpretations w, w′ in WP , if w �Ed w′ then w �Φ w′.

Observation 9. From the consistency of the merging processes at the level of entrenched beliefs it straight-
forwardly follows that (ESF-D) entails (ESF-N). As a matter of fact, if d is a dictator for a merging
operator, then d is also a nominator for it. However, the converse of the last assertion is not true. Indeed,
as we will see in the next result, the quasi-indifference operator is a non-dictatorial operator (cf. Proposition
6) for which any agent involved in the merging process is a nominator.

The following result shows which of those operators in Subsection 2.4 admit a nominator.

Proposition 16. In the context of the tpo epistemic space, Stpo, (ESF-N) holds for the indifference
operator, ∇Ind, the quasi-indifference operator, ∇Ind∗, the projective operator, ∇π and the Σ-projective
operator, ∇Σπ. Furthermore, every agent in a finite society N is a nominator for the indifference operator
and the quasi-indifference operator. In contrast, (ESF-N) does not hold for the max operator, ∇max, and
any aggregation-based ES basic merging operator, ∇F , which is defined by means of an aggregation function
F satisfying composition, decomposition and discreteness; in particular, neither the sum operator, ∇Σ, nor
the Gmax operator, ∇Gmax, satisfies it.
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3.3. Some general results on manipulability

In what follows, we present some general results of manipulability through belief liftings. To do so, we
first present the notion of manipulability in the ESF framework, based on belief lifting. An ES basic merging
operator is manipulable by an agent if such an agent, knowing the restriction of the merging process and
the information that will be expressed by the other agents, changes his mind in order to obtain a result that
“fits” better his true beliefs. More precisely:

Definition 3. An ES basic merging operator ∇ is manipulable if there exist a belief lifting �7→w�, a finite
society N in F∗(S), an N -profile Φ, an agent i in N and a pair of epistemic states E, E∗ in E , such that:

B
(
∇(Φ[E

∗
/i], E)

)
A�Ei B

(
∇(Φ, E)

)
In this case, ∇ is said to be manipulable with respect to the belief lifting �7→w�, while the tuple formed

by N , Φ, i, E, E∗ is called a manipulability situation for ∇ with respect to �7→w�.

We say that ∇ is absolutely manipulable (resp. absolutely G-manipulable) if it is manipulable with respect
to any belief lifting (resp. to any G-belief lifting). We also say that ∇ is strategy-proof or nonmanipulable if
the statement in Definition 3 does not hold. If ∇ does not admit a manipulability situation with respect to
a prefixed belief lifting, we say that ∇ is strategy-proof with respect to that belief lifting.

Let us make a comment on our definition of manipulability. Note that in the setting of Stpo, that is, the
setting in which the epistemic states are preferences over worlds, �Ei is actually the preferences of agent
i when the assignment is structure preserving. Thus, Definition 3 is natural and really very close to the
definition of manipulation in social choice theory. In the fully abstract case, we rely on the representation
theorem (Theorem 1) in order to have a way for ‘materializing’ the preferences of agent i. This is done via
the total preorder �Ei given by the assignment.

Later, we present some results that state the condition in order for an ES basic merging operator to be
absolutely G-manipulable (cf. Theorems 4-6). For the moment, we illustrate the notion of manipulability
by revisiting Example 3. To do so, we will use the sum operator.

Example 8 (Example 3 revisited.). Alan and Ben have to travel from point X to point Y . There are
four paths to accomplish the trip: w1, w2, w3 and w4. We will use a language built from four propositional
variables {p1, ..., p4}. Since no path meets with another, by abuse of notation, we assume that wi is the
model of the sentence “to travel only path wi”, that is, w1 = 1000, w2 = 0100, w3 = 0010, w4 = 0001.

On one hand, Alan believes that wi is better than wi+1, for i = 1, 2, 3. Thus, Alan’s epistemic state can
be represented by �A, given in Figure 6a. On the other hand, as Ben believes that the best paths to travel
are w1 and w4, while he believes that the other two paths are really equally bad, then his epistemic state
is encoded by �B, represented in Figure 6b. In addition, since the last traffic news inform that path w1 is
obstructed, whereas on paths w2, w3 and w4 there is light traffic, the integrity constraint is encoded by �,
given in Figure 6c. The thick line at the bottom of each ordering in Figure 1 represents the interpretations
different from w1, w2, w3 and w4.
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(a) Alan’s Epistemic State
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(b) Ben’s Epistemic State
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w2

b
w1
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(c) Integrity constraints

Figure 6: Representation of the individual epistemic states and the integrity constraints.
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The preorder obtained from the aggregation of Φ = (�A,�B) using sum assignment is graphically repre-
sented in Figure 7, and its calculations are given in Table 2.

WP rank(�A) rank(�B) rank(�Σ
Φ)

w1 4 2 6
w2 3 1 4
w3 2 1 3
w4 1 2 3

Table 2: Calculation of the ranks

b
w1

b
w2

b
w4b

w3

�Σ
Φ

Figure 7: Preorder obtained from the aggregation process

The epistemic state resulting from the merging process using the sum operator can graphically be repre-
sented by Figure 8. We must recall that the sum operator is defined by putting ∇Σ(Φ,�) =�lex(�,�Σ

Φ).

b
w2

b
w4b

w3

b
w1

∇Σ(Φ,�)

[[B(∇Σ(Φ,�))]]

Figure 8: Epistemic state resulting from the merging process.

Based on the fact that B(∇Σ(Φ,�)) ≡ ϕw2
, Ben estimates that they should agree that path w2 is the best

option for travelling. This is not Ben’s most entrenched belief.
However, as Ben really believes that w4 is one of the best paths to travel, he lies and says that he really

believes that path w4 is the best one, and that the others paths are in decreasing order of goodness w1, w3

and w2 (cf. Figure 9a).
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(a) Ben’s lie
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∗
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(b) Outcome of the merging process when Ben lies

Figure 9: Ben’s lie and manipulated outcome of the merging process.

In this case, based on the outcome of the merging process with sum, which is given in Figure 9b, Alan
and Ben should agree that w4 is the best path to travel from X to Y , that is, B(∇Σ(Φ[�

∗
/B ],�)) ≡ ϕw4

. This
result fits very well with Ben’s beliefs. As a matter of fact, given a belief lifting �7→w�, since w4 �Σ

B w2,
we have B(∇Σ(Φ[�

∗
/B ],�)) A�Σ

B
B(∇Σ(Φ,�)). Then, Ben has manipulated the merging process.

The situation given in Example 8 is indeed an absolute manipulability situation for the sum operator.
This is also a manipulability situation for the Gmax and max operators, as we can see after some simple
calculations. Concerning the manipulation of the remaining operators presented in Subsection 2.4, we have
the following result:

Proposition 17. In the context of the tpo epistemic space, Stpo, the following holds:
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(i) The indifference operator, ∇Ind, is strategy-proof.

(ii) The quasi-indifference operator, ∇Ind∗, and the projective operator, ∇π, are both manipulable with
respect to the precise-leximax belief lifting, but they are strategy-proof with respect to the possibilistic,
the pessimistic and the Kelly belief liftings.

(iii) Given an aggregation function F , the aggregation-based ES basic merging operator ∇F is absolutely
G-manipulable, if F satisfies composition, decomposition and discreteness.

(iv) The sum operator, ∇Σ, the Gmax operator, ∇Gmax, the max operator, ∇max and the Σ-projective
operator, ∇Σπ, are absolutely manipulable.

Thus, the quasi-indifference operator and the projective operator are two instances of merging operators
that are manipulable but not absolutely manipulable. The Σ-projective operator is an interesting instance
of a merging operator, since it is indeed a dictatorial operator which is absolutely manipulable. This leads
us to avoid thinking that a gauge for the goodness of a belief lifting is the strategy behaviour of a merging
operator, which we expect to be nonmanipulable. This is the case with dictatorial operators.

Table 3 summarises all the results presented along this work about the behaviour of the concrete operators
introduced in Subsection 2.4, thus offering a landscape of those rational properties satisfied by each of them
and their manipulation with respect to the belief lifting presented in Subsection 3.1. In this table, for the
operators pointed in the first row, each X denotes the satisfaction of the property indicated in the first
column, while 5 denotes that such property does not hold.

Operators ∇Ind ∇Ind∗ ∇Σ ∇Gmax ∇max ∇π ∇Σπ

Properties

Max condition 5 X X X X X X

(ESF5) 5 X X X X X X

(ESF6) 5 5 X X X 5 X

(ESF7) X X X X X X 5

(ESF8) X 5 X X 5 5 5

(ESF8W) X 5 X X X X 5

(ESF-SD) 5 X X X X X X

(ESF-P) X 5 X X X X X

(ESF-I) X X 5 5 5 X 5

(ESF-D) X 5 5 5 5 X X

(ESF-SSD) 5 X X X X X X

(ESF-NI) 5 5 X X X X X

(ESF-S) X X X X 5 X X

(ESF-N) X X 5 5 5 X X

Strategy-Proofness

�7→wΠ
� X X 5 5 5 X 5

�7→wW
� X X 5 5 5 X 5

�7→wK
� X X 5 5 5 X 5

�7→wplm
� X 5 5 5 5 5 5

Table 3: Behaviour of the concrete basic merging operators that were introduced in Subsection 2.4.

Strategy-proofness entails some rational properties when other good properties are involved. This can
be seen through the following result.
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Proposition 18. The following assertions hold for every ES basic merging operator ∇, which is strategy-
proof with respect to a G-belief lifting:

(i) If ∇ satisfies (ESF-NI), then it also satisfies (ESF-P).
(ii) ∇ satisfies (ESF-S) iff it also satisfies (ESF-I).

We must note that the converse of Proposition 18, Part (i), fails: the indifference operator is an instance
of a strategy-proof operator satisfying (ESF-P) for which (ESF-NI) does not hold, as can be verified in
Table 3. Another example is the sum operator, which satisfies (ESF-P) and (ESF-NI), but is absolutely
manipulable. The converse of Proposition 18, Part (ii), also fails: the max operator is an operator for which
neither (ESF-S) nor (ESF-I) hold, but it is absolutely manipulable, as we can also verify in Table 3.

We are now able to state our main strategy-proofness results. The first of them is a straightforward
corollary of Theorem 3 and Proposition 18, establishing a dichotomy between absolute G-manipulability
and the existence of an Arrovian dictator.

Theorem 4. Any ES basic merging operator satisfying (ESF-SD), (ESF-NI) and (ESF-S) is either
absolutely G-manipulable, or it satisfies (ESF-D).

In particular, if a non-imposed and stable ES basic merging operator that satisfies the standard domain
condition is strategy-proof (with respect to a G-belief lifting), then it admits an Arrovian dictator. The
converse of this assertion fails. Indeed, as it is exposed in Table 3, the Σ-projective operator is an example
of a non-imposed, stable ES basic merging operator satisfying the standard domain condition, which is
dictatorial, but it is absolutely manipulable. Moreover, in Table 3 we can also see that the projective operator
is a non-imposed, stable and dictatorial basic merging operator that satisfies the standard domain condition,
which is strategy-proof with respect to a G-belief lifting, namely, the Kelly lifting, but it is manipulable
with respect to the precise-leximax lifting. Thus, Theorem 4 heavily relies on the lifting chosen.

The next result is a corollary of Propositions 10 and 13 and Theorem 4. It shows that any non-dictatorial
ES merging operator satisfying standard domain is absolutely G-manipulable.

Theorem 5. An ES merging operator satisfying (ESF-SD) is either absolutely G-manipulable, or it satisfies
(ESF-D).

Proposition 13 is widely used in the proof of Theorem 5 in order to obtain (ESF-S) from (ESF7)
and (ESF8). However, as we mentioned in Observation 8, (ESF8) cannot be replaced by (ESF8W) in
Proposition 13 in order to obtain stability. Therefore, Theorem 5 cannot be applied in general to ES quasi-
merging operators. In order to fix this issue, we state the following strategy-proofness result, which can be
applied to a wider range of merging operators: those for which stability does not hold.

Theorem 6. If an ES basic merging operator satisfies (ESF-SSD) and (ESF-NI), then it is either abso-
lutely G-manipulable, or it satisfies (ESF-N).

Theorem 6 also leads us to state that any non-imposed and strategy-proof (with respect to a G-belief
lifting) ES basic merging operator satisfying the strong standard domain condition, admits a nominator.
The converse of this fact does not hold, as can easily be shown through the Σ-projective operator: this is
a non-imposed ES basic merging operator satisfying the strong standard domain condition, which admits a
nominator but is absolutely manipulable (cf. Table 3).

Our last strategy-proofness result is a straightforward corollary of Proposition 10 and Theorem 6. Similar
to Theorem 5, this result shows that, under the strong standard domain condition, any ES quasi-merging
operator, which does not admit a nominator, is absolutely G-manipulable.

Theorem 7. An ES quasi-merging operator satisfying (ESF-SSD) is either absolutely G-manipulable, or
it satisfies (ESF-N).

Theorems 5 and 7 provide two powerful tools to determine if an ES (quasi)merging operator is manipu-
lable with respect to any G-belief lifting. This is the case when the operator satisfies the (strong) standard
domain condition but it does not admit a nominator. We wonder if there is an ES (quasi)merging operator
satisfying both properties. If the answer to this question is “No” (as we think), then any ES (quasi)merging
operator satisfying (strong) standard domain is absolutely G-manipulable.
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4. More on powerful agents

In [57], we introduced a notion of powerful agents, who have a behaviour which is similar to that of
Arrovian dictators and nominators who impose their beliefs, but differ in the way they do so. Such agents,
called weak-dictators, can express an epistemic state that allows a prefixed interpretation to always satisfy
the entrenched beliefs resulting from a merging process, regardless of the epistemic states expressed by the
remaining agents and the integrity constraint, which the interpretation must satisfy. More precisely:

(ESF-WD) For every society N , there exists an agent d in N (called weak-dictator) for which the following
assertion holds: for all interpretation w in WP there exists an epistemic state Ew in E such that
w |= B

(
∇(Φ[E

w

/d], E)
)
, for every N -profile Φ and every epistemic state E in E , with w |= B(E).

An ES combination operator is said to be weak-dictatorial if it satisfies (ESF-WD), otherwise we say
that it is not weak-dictatorial.

Although the notion of weak-dictator seems to be unnatural, it is closely related with the notions of Arro-
vian dictator and nominator in the presence of some rational properties. In order to show such relationships,
in the following we present a taxonomic survey on these three types of powerful agents.

The next result states a strict hierarchy between Arrovian dictators, nominators and weak-dictators. In
order to establish such a hierarchy, we group the ES basic merging operators that satisfy the max condition
and admit this type of powerful agents, in the following three classes: D, the class of the ES basic merging
operators that satisfy the max condition and admit Arrovian dictators; N, the class formed by all of the ES
basic merging operators for which the max condition holds and admit a nominator; and W, the class of all
the weak-dictatorial ES basic merging operators satisfying the max condition.

Theorem 8. The following inclusions hold: D ( N ( W. Moreover, if ∇ is an ES basic merging operator
satisfying the max condition, then every Arrovian dictator for ∇ is also a nominator for ∇, and every
nominator for ∇ is also a weak-dictator for ∇.

If we remove the max condition from this classification, then the inclusions stated in Theorem 8 do
not hold. Now we present an example of a dictatorial ES basic merging operator, which is not a weak-
dictatorial operator. To do so, consider again the tpo epistemic space, Stpo, given in Example 4, and prefix
an interpretation w∗ in WP . In this example, d denotes again the maximal element of any society N .

∇w∗(Φ,�) =�lex(�,�w
∗

d ), where �w∗d is such that min(�w∗d ) = {w∗} and �w∗d �WP\{w∗}=�d�WP\{w∗}
It is quite clear that this is an ES basic merging operator for which the max condition does not hold.

Moreover, from its definition it straightforwardly follows that ∇w∗ also satisfies (ESF-D), and then (ESF-
N) also holds (cf. Observation 9). In order to show that (ESF-WD) does not hold, we only have to note
that, if � is a total preorder over WP with at least two models at its top level, then for every society N ,
every agent i in N , every N -profile Φ and every epistemic state �∗, we obtain w∗ 6|= B(∇w∗(Φ[�

∗
/i],�)).

Although the inclusions of the classes given in Theorem 8 are strict, under certain hypotheses the classes
N and W collapse. The next result establishes precisely the hypothesis under which such a collapse occurs.
In order to state this result, let us consider the following classes of ES basic merging operators: D∗, formed
by those operators in D that are strategy-proof with respect to a belief lifting satisfying G1; N∗, the subclass
of N of all those operators which are strategy-proof with respect to a belief lifting satisfying G1; and W∗,
the class of all the operators in W which are strategy-proof with respect to a belief lifting satisfying G1.

Theorem 9. The following inclusions hold: D∗ ( N∗ = W∗. Moreover, if ∇ is an ES basic merging
operator satisfying the max condition which is strategy-proof with respect to a believe lifting satisfying G1,
then an agent d is a nominator for ∇ if, and only if, d is a weak-dictator for ∇.

Figure 10 summarises Theorems 8 and 9 jointly, providing a graphical representation of the taxonomy
of powerful agents presented in this paper. This shows that the rational ES basic merging operators that
are nonmanipulable with respect to a well-behaved belief lifting are concentrated in N, the class of those
operators that admit a nominator.
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Figure 10: Diagram summarising the taxonomy of powerful agents in belief merging

In [57], there was also presented a preliminary result on manipulability via belief liftings, similar to
the ones presented here (Theorems 4 and 6), but involving weak-dictators instead of Arrovian dictators or
nominators. That result is as follows:

Let ∇ be an ES basic merging operator satisfying the max condition (restricted to single-profiles
with complete beliefs), (ESF-SD) and (ESF-NI). If ∇ is strategy-proof with respect to a G-belief
lifting, then ∇ is a weak dictatorial operator.

However, we have found some problems when we look closely at the sketch of the proof proposed in
that work. In that proof, a complete ES basic merging operator ∇′ is built from a prefixed ES basic
merging operator ∇ (which is strategy-proof with respect to a G-belief lifting) by forcing an alignment of
the assignment associated to∇.13 That deformation of the original assignment makes it impossible to deduce
the strategy-proofness of ∇′ from the strategy-proofness of ∇ due to the following three reasons: (1) The
alignment of the assignment breaks the indifferences in the original preferences, leading to define a totally new
merging operator; (2) the preference over the outcomes of a merging operator depend on the way in which
the individual epistemic states are semantically encoded, as we mentioned in Subsection 3.1. Therefore, the
two liftings that encode the preferences over information of an agent (each of which respectively corresponds
to the total preorders resulting from the original assignment and its deformation) are different in general;
and (3) the Gärdenfors properties do not provide any information about the preference between two non-
equivalent formulas ϕ and ψ, with ϕ ` ψ.

To solve these problems, we replace the standard domain condition by the strong standard domain
condition. More specifically, we present the following result which, by Theorem 9, is equivalent to Theorem 6.

Theorem 10. If an ES basic merging operator satisfies (ESF-SSD), (ESF-NI) and the max condition,
then it is either absolutely G-manipulable, or it satisfies (ESF-WD).

5. Related Works

Manipulability and the existence of a powerful agent are two issues that have been historically considered
as inherent to electoral processes and, as such, have been widely studied in social choice theory. However,
as we mentioned earlier, these problems might also arise when a group of agents, in search of a consensus,
“aggregate” their individual considerations (preference, belief or acceptation) about certain information. In
this way, both of these issues, manipulability and the existence of a powerful agent, have also been addressed
in other aggregation settings. Namely in belief merging the problem of manipulation is studied and also
in judgment aggregation. These two different approaches have in common the fact of being logic-based
frameworks of aggregating information.

13We say that ∇′ is a complete ES basic merging operator if B(∇′(Φ, E)) is a complete formula, for every epistemic profile
Φ and every epistemic state E.
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Everaere, Konieczny and Marquis [24, 25] and, later, Haret and Wallner [38], addressed the manipula-
tion issue in belief merging from a quantitative view, using satisfaction indexes in order to measure how
suitable the outcome of a merging process is for an agent. The nature of epistemic states they consider,
simply formulas, make this choice very natural. In their framework the notion of preferences of an agent is
absent. In our framework, this can be represented by means of tight articulations between the operators and
assignments. In some cases, as in the paradigmatic instantiation of epistemic states in the space Stpo, these
representations coincide totally with the preferences of the agents. We use these representations together
with the notion of lifting to define our ordinal notion of satisfaction.

Another difference concerns the obtained results. In contrast to ours, which search for general properties
that any epistemic state merging operator must satisfy in order to be nonmanipulable (or strategy-proof),
Everaere et al. [24, 25] and Haret and Wallner [38] characterize the nonmanipulation of the sum, max and
Gmax operators, with respect to some specific indexes, by means of the number of agents involved in the
merging process, the existence of an integrity constraint and the completeness of the real belief base of the
manipulator agent. In the case of Everaere et al., they considered the weak drastic, the strong drastic and the
probabilistic indexes, which are closely related to the notion of satisfaction of information, while Haret and
Wallner consider other two indexes which are closely related to the notions of skepticism and credulity. We
must note that, in [59], we showed that, in the setting of distance-based IC merging operators, manipulation
via the possibilistic belief lifting and a refined variant of this (the refined possibilistic belief lifting) generalize
the manipulation via weak drastic and strong drastic indexes, respectively.

Another important aspect in our work which is not considered by Everaere et al. [24, 25] nor Haret and
Wallner [38] in their respective works, is the study of powerful agents and their connection with manipula-
bility.

In Judgment aggregation, another logical-based framework in which the task of aggregating information
coming from several sources is present, problems of impossibility and manipulability have been studied.
This framework was introduced by List and Pettit [52, 53] and then addressed by Eckert and Pigozzi [22],
Dietrich and List [19, 20], Nehring and Puppe [61], Lang, Pigozzi, Slavkovik and van der Torre [47], Everaere,
Konieczny and Marquis [26, 27] and others. In its generalised form, proposed by Dietrich [18], it consists of
associating a set of collective judgment with a profile of n individual judgments, similar to a voting processes.
In this setting, the judgment Ai of an agent i is a subset of a set of logical formulas X (in a fixed logic).
The fact that p ∈ Ai captures the support (acceptance) of the formula p by the agent i.

Beyond the differences in the nature of their inputs and outputs, judgment aggregation functions and
belief merging operators (specially the ESF operators) differ in the nature of their properties, as Everaere,
Konieczny and Marquis pointed out in [27]. Indeed, as highlighted earlier, in belief merging some sets of
postulates characterize the behaviour of rational operators, and semantic representations have been also
established. In judgment aggregation, some properties have been identified as well, most of them inspired
by voting theory (none related to the existence of a powerful agent) and introduced in the seminal work of
List and Pettit [52, 53] and also by Dietrich and List [20] and Everaere et al. [26, 27].

In spite of these differences, some links between these two settings have been established, specifically
with the IC merging framework. For instance, Eckert and Pigozzi [22], and then Pigozzi [62], used the
distance-based sum IC merging operator to build a judgment aggregation function and dissolved the doctrinal
paradox.14 Based on this idea, we might think that there is a duality between these two frameworks of
aggregating information. However, Everaere et al. [26] proved that there is not such a duality, showing also
the conditions under which this duality could arise.

Some impossibility results have been stated in judgment aggregation. For instance, List and Pettit [53]
showed that there is no judgment aggregation function satisfying all the properties that they consider rational
for this type of function. In contrast to our impossibility result (Theorem 3), which involves the existence of
a powerful agent and generalizes Arrow’s Theorem [56], their impossibility result is not related to powerful
agents.

14The doctrinal paradox is a problem that arises when majority voting is applied to propositions. The result obtained by
this method may be in contradiction with the doctrine [52, 53, 22, 62].
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Manipulation has also been addressed in judgment aggregation. Dietrich and List [20] were the first
in addressing this issue in this framework. In that work, they established two notions of manipulation for
judgment aggregation functions. The first one concerns the acceptance of a piece of information; the second
one is similar to our notion of manipulation, using a specific lifting which is defined by means of their
acceptance-based notion of manipulability. Dietrich and List show that these two notions of manipulability
are equivalent. Furthermore, they also show that these notions are equivalent to other properties of judgment
aggregation functions; none of them related with the existence of powerful agents unlike our results. Thus,
our manipulation results and those established by Dietrich and List are quite different.

As a matter of fact, our results on manipulability and impossibility are more related with the properties
and techniques studied in social choice theory in which there are tight links between powerful agents,
impossibility theorems and manipulability.

Baumeister, Rothe and Selker [7] study computational aspects of manipulation in judgment aggregation
processes. They presented a survey on complexity of manipulation of judgment aggregation processes based
on the work of Dietrich and List [20]. An interesting work in perspective is a study on the complexity of
manipulation in the ESF framework.

6. Final remarks

We have stated some general results on manipulability for ES basic merging operators that show a
dichotomy between absolute G-manipulation and the existence of a powerful agent (a dictator, a nomina-
tor or even a weak-dictator) when some rational properties are involved. One very interesting feature of
our approach is that it allows instantiating the strategy-proofness theorems to different representations of
epistemic states: ordinal conditional functions, rational relations, and of course total preorders. However,
with the representation of epistemic states as formulas, our results do not hold because it is impossible to
have the standard domain property in the presence of a good representation of beliefs, namely, the max
condition [56, 58]. This fact highlights the necessity of using complex epistemic states if we want properties
like standard domain to hold.

Exploiting the dichotomy obtained from the manipulability results, it is possible to determine when an
ES merging operator is absolutely G-manipulable – exactly when it satisfies the standard domain condition
and it does not admit Arrovian dictators (cf. Theorem 5) – and more generally, when an ES quasi-merging
operator is absolutely G-manipulable – exactly when it satisfies the strong standard domain condition and
it does not admit a nominator. This technique leads us to determine that ES merging operators with good
behaviour, like sum, Gmax and even max, are absolutely G-manipulable.

Although our results also reveal that, under rational properties, strategy-proofness entails the existence
of a powerful agent (an Arrovian dictator or even a nominator), it is surprising to find a dictatorial operator
which is absolutely manipulable, namely the Σ-projective operator. This fact shows that strategy-proofness
cannot be characterised in terms of either Arrovian dictators or nominators.

In this work, we adopt the generalized logic based merging approach of epistemic states. In this framework
we have considered, together with the reformulations of classical IC merging postulates, social postulates
which are indeed natural postulates given that most of them are entailed by the usual merging postulates.
This framework has allowed to establish in the past a general impossibility result which is “polymorph”
in the sense that it applies to different types of structures in which some kinds of epistemic states can be
realized. Now, in this work, we have established a general result of manipulation which is also “polymorph”.
A by-product is a manipulability result in social choice which can be obtained when epistemic states are
instantiated in the epistemic space of total preorders.
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Appendix A. Proofs

Proof of Proposition 2. Let us show that the indifference operator, ∇Ind, satisfies (ESF7), (ESF8)
and (ESF8W), but it does not satisfy neither the max condition, (ESF5) nor (ESF6).

From the definition of ∇Ind, we straightforwardly get that (ESF7), (ESF8) and (ESF8W) hold. From
this we also get B(∇Ind(�i,�)) ≡ B(∇Ind(�j ,�)), for �i 6=�j . This shows that (ESF5) does not hold.

In order to show that the max condition does not hold, note that, given a total preorder � over WP ,
max(�Ind

� ) = WP . This is due to the fact that �Ind
� is indeed the flat order, for every total preorder �.

Then, if we consider a total preorder � such that B(�) 6=WP , we obtain B(�) 6= max(�Ind
� ), as desired.

Now, since the indifference operator is an ES basic merging operator for which (ESF7) and (ESF8)
hold, from Proposition 1 it follows that the indifference assignment satisfies properties 3 and 4. Hence, since
this assignment does not satisfy the max condition, from Observation 2 we obtain that property 2 does not
hold. From this, by Proposition 1, we get that (ESF6) does not hold either.

Proof of Proposition 3. Let us show that the quasi-indifference operator, ∇Ind∗ , satisfies the max con-
dition, (ESF5) and (ESF7), but it does not satisfy (ESF6), (ESF8) and (ESF8W).

Since the quasi-indifference assignment, Φ 7→�Ind∗
Φ , is structure preserving, from Observation 3 it follows

that the quasi-indifference operator satisfies the max condition and (ESF5).
In order to show that (ESF7) holds, by Proposition 1, we only have to see that the quasi-indifference

assignment satisfies property 3. To do so, let us consider a society of agents N , a partition {N1, N2} of N ,
an N -profile Φ and a pair of alternatives w, w′, and suppose that w �Ind∗

ΦN1
w′ and w �Ind∗

ΦN2
w′. Since N1 and

N2 are disjoint nonempty sets, then N has at least two agents. From this it follows that �Ind∗
Φ is the flat

order over WP . Therefore, w �Ind∗
Φ w′, as desired.

To show that neither (ESF6), (ESF8) nor (ESF8W) hold, by Proposition 1, we only have to see that
the quasi-indifference assignment does not satisfy the properties 2, 4 and 4’.

Firstly, we are going to show that property 2 does not hold. To do so, we only have to consider the finite
society N = {1, 2} and a N -profile Φ = (�1,�2) such that �1=�2 and [[B(�i)]] 6= WP , for i = 1, 2. Thus,
[[
∧
�i∈ΦB(�i)]] 6=WP , but �Ind∗

Φ is the flat order. Therefore, [[
∧
�i∈ΦB(�i)]] 6= max(�Ind∗

Φ ), as desired.
To show that neither property 4 nor property 4’ hold, consider again the society N = {1, 2}, and also

consider a N -profile Φ = (�1,�2) and a couple of interpretations w, w′ in WP such that w �1 w′ and
w �2 w

′. Since Φ 7→�Ind∗
Φ is structure preserving, we get that w �Ind∗

�1
w′ and w �Ind∗

�2
w′, but as �Ind∗

Φ is

the flat order, we get w 'Ind∗
Φ w′. Therefore, w 6�Ind∗

Φ w′, showing that neither 4 nor 4’ hold.

Proof of Proposition 4. Let F be an aggregation function. Let us first show that ∇F is an ES merging
operator (that is,∇F satisfies (ESF1)-(ESF8)) iff F satisfies composition and decomposition, at least when
it is restricted to the set of all the finite tuples (x1, . . . , xn) for which |WP | ≥ xi.

In order to show this, by Theorem 2, we only have to prove that Φ 7→�FΦ is a faithful assignment iff
F satisfies composition and decomposition, at least when it is restricted to the set of all the finite tuples
(x1, . . . , xn) for which |WP | ≥ xi. To do so, consider the following two remarks:

Remark 1. F (x1, . . . , xn, w1, . . . , wm) ≥ F (y1, . . . , yn, z1, . . . , zm), whenever F (x1, . . . , xn) ≥ F (y1, . . . , yn)
and F (w1, . . . , wm) ≥ F (z1, . . . , zm).

Remark 2. F (x1, . . . , xn, w1, . . . , wm) > F (y1, . . . , yn, z1, . . . , zm), whenever F (x1, . . . , xn) ≥ F (y1, . . . , yn)
and F (w1, . . . , wm) > F (z1, . . . , zm).

Remark 1 straightforwardly follows from composition and symmetry. To show Remark 2, assume
F (x1, . . . , xn) ≥ F (y1, . . . , yn) and F (w1, . . . , wm) > F (z1, . . . , zm) and, toward a contradiction, suppose
F (y1, . . . , yn, z1, . . . , zm) ≥ F (x1, . . . , xn, w1, . . . , wm). On one hand, from the hypothesis and Remark 1,
we have F (x1, . . . , xn, w1, . . . , wm) ≥ F (y1, . . . , yn, z1, . . . , zm). From this and our assumption we obtain
F (y1, . . . , yn, z1, . . . , zm) = F (x1, . . . , xn, w1, . . . , wm). On the other hand, from composition and the fact
that F (x1, . . . , xn) ≥ F (y1, . . . , yn), we obtain F (x1, . . . , xn, w1, . . . , wm) ≥ F (y1, . . . , yn, w1, . . . , wm). From
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this and the equality above we get F (y1, . . . , yn, z1, . . . , zm) ≥ F (y1, . . . , yn, w1, . . . , wm). Thus, by symmetry
and decomposition, F (z1, . . . , zm) ≥ F (w1, . . . , wm), a contradiction.

Continuing with the main proof, let us show the if part of this result. Suppose that F satisfies compo-
sition and decomposition, at least when it is restricted to tuples whose inputs are not greater than |WP |.
Note that, for every epistemic profile Φ = (�i1 , . . . ,�in) and every interpretation w in WP , the tuple
(r�i1 (w), . . . , r�in (w)) is such that |WP | ≥ r�i(w). Thus, Remarks 1 and 2 lead us to the fact that Φ 7→�FΦ
satisfies properties 3 and 4. Additionally, since Φ 7→�FΦ is structure preserving, by Observation 3, prop-
erty 1 holds. Moreover, by the same reason, this assignment satisfies the max condition. From this and
Observation 2 it follows that property 2 also holds. This shows that Φ 7→�FΦ is a faithful assignment.

To prove the only if part, we suppose that Φ 7→�FΦ is a faithful assignment and will show that the
aggregation function F satisfies composition and decomposition, if we restrict to tuples whose inputs are
not greater than |WP |. Let x1, . . . , xn, y1, . . . , yn, z be a list of non-negative integers of this type. Note
that, given a finite society N = {i1, . . . , in+1} and a pair of interpretations w, w′ in WP , we can build
an N -profile Φ = (�i1 , . . . ,�in+1

) such that r�ik (w) = xk and r�ik (w′) = yk, for k = 1, . . . , n, and
r�in+1

(w) = r�in+1
(w′) = z. Consider {N1, N2}, a partition of N , with N1 = {i1, . . . , in} and N2 = {in+1}.

Thus, if F (x1, . . . , xn) ≥ F (y1, . . . , yn), from (4) and identity we get w �FΦN1
w′ and w �FΦN2

w′,

respectively. Therefore, by property 3, w �FΦ w′, that is, F (x1, . . . , xn, z) ≥ F (y1, . . . , yn, z). This shows that
composition holds. To show that decomposition also holds, assume that F (x1, . . . , xn, z) ≥ F (y1, . . . , yn, z)
and, toward a contradiction, suppose that F (y1, . . . , yn) > F (x1, . . . , xn). From (4) and identity it follows
that w′ �FΦN1

w and w′ �FΦN2
w. Then, by property 4, w′ �FΦ w, that is, F (y1, . . . , yn, z) > F (x1, . . . , xn, z),

a contradiction. Therefore, decomposition also holds.

Proof of Proposition 6. Suppose that the epistemic space is given by the tpo epistemic space, Stpo. A
survey on the Arrovian behaviour of the sum operator, ∇Σ, the Gmax operator, ∇Gmax, the max operator,
∇max, the projective operator, ∇π, the Σ-projective operator, ∇Σπ, was presented in [56]. Thus we are
going to study the Arrovian behaviour of the indifference operator, ∇Ind, the quasi-indifference operator
∇Ind∗, and the aggregation-based ES basic merging operators, ∇F :

(i) Let us study first the satisfaction of (ESF-SD). It is quite clear that any structure preserving assign-
ment also satisfies (SD). From this, by Proposition 5, we obtain that the quasi-indifference operator
and any aggregation-based ES basic merging operators satisfy (ESF-SD). It is also clear that the indif-
ference assignment does not satisfy (SD). Thus, from Proposition 5 it also follows that the indifference
operator does not satisfy (ESF-SD).

(ii) Now we are going to study the satisfaction of (ESF-P). By vacuity, the indifference assignment satisfies
(P). This is due to the fact that �Ind

� is the flat order, for every epistemic state (total preorder) �.
Thus, from Proposition 5 we obtain that the indifference operator satisfies (ESF-P).
Now, if an aggregation function F satisfies composition and decomposition, from Proposition 4 and
Observation 6 it straightforwardly follows that the aggregation-based operator ∇F satisfies (ESF-P).
To show that the quasi-indifference operator does not satisfy (ESF-P), we proceed in a similar manner
to that in the Proof of Proposition 3, where it is proved that neither (ESF8) nor (ESF8W) hold for
this operator.

(iii) Let us study now the satisfaction of (ESF-I). It is quite clear that the indifference assignment and the
quasi-indifference assignment satisfy (I). From this, by Proposition 5, we get that both the indifference
operator and the quasi-indifference operator satisfy (ESF-I).
Now suppose that an aggregation function F satisfies composition, decomposition and discreteness. As
we will see below in the proof of part (iv) of this result, the operator ∇F does not satisfy (ESF-D).
Therefore, since ∇F satisfies (ESF-SD) and (ESF-P), but (ESF-D) does not hold, from Theorem
3 it follows that ∇F does not satisfy (ESF-I).

(iv) Finally, we study the satisfaction of (ESF-D). From its definition it straightforwardly follows that the
indifference operator satisfies (ESF-D). Moreover, given a finite society N , it is easy to see that every
agent in N is an Arrovian dictator for ∇Ind.
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To show that the quasi-indifference operator does not satisfy (ESF-D), by Observation 6, we only
have to note that (ESF-P) does not hold, as we have shown in the part (ii) of this result.
Let us show now that, given an aggregation function F satisfying composition, decomposition and
discreteness, the aggregation-based operator ∇F does not satisfy (ESF-D). This is a straightforward
consequence of the next remark:

Remark 3. If F is an aggregation function satisfying composition, decomposition and discreteness,
then there is no finite society N , with at least two agents, that admits an Arrovian dictator for ∇F .

To show this, suppose that LP is a language built from two variables, and assumeWP = {w1, w2, w3, w4}.
Based on an inductive argument on the size of the finite societies, firstly, we assume N = {1, 2}, and
consider the N -profile Φ = (�1,�2) and the epistemic state �, which are represented in Figure A.11.
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Figure A.11: Representation of the individual epistemic states and the integrity constraints.

On the one hand, since Φ 7→�FΦ is structure preserving, from (B-Rep) we get B(∇F (�2,�)) ≡ ϕw2 .
On the other hand, note that r�1(w1) > r�1(w3) > r�1(w2) and r�1(w2) = r�2(w2) = r�2(w1) + 1.
From this, by Remark 2 and the identity property, we have:

F (r�1(w1), r�2(w1)) > F (r�1(w3), r�2(w1)) (A.1)

Since r�1(w3) > r�1(w2) > r�2(w1), from the discreteness property it straightforwardly follows that
F (r�1(w3), r�2(w1)) ≥ F (r�1(w2), r�2(w1) + 1), that is, F (r�1(w3), r�2(w1)) ≥ F (r�1(w2), r�2(w2)).
From this and the inequality (A.1) we obtain F (r�1

(w1), r�2
(w1)) > F (r�1

(w2), r�2
(w2)). Thus,

w1 �FΦ w2 and, by structure preserving, w2 �F�2
w1. From this, by (B-Rep), we get B(∇F (Φ,�)) ≡ ϕw1

and B(∇F (�2,�)) ≡ ϕw2 . Therefore, B(∇F (Φ,�)) 6` B(∇F (�2,�)), showing that agent 2 is not an
Arrovian dictator for ∇F . From this and the symmetry of F we also get that agent 1 is not an Arrovian
dictator for ∇F , by switching the epistemic states of the two agents.
Now, assume N = {1, 2, . . . , n}, with n > 2, and consider the N -partition {N1, N2}, where N1 = {1, 2}
and N2 = N \ N1. Also consider the N -Profile Φ = (�1,�2, . . . ,�n) and the epistemic state �,
where �i is given in Figure A.11a, for all i 6= 2, and �2 and � are given in Figures A.11b and A.11c,
respectively.
On the one hand, as we saw in the previous case, w1 �FΦN1

w2. On the other hand, as (ESF-P) holds,

by Proposition 5, Φ 7→�FΦ satisfies (P). Hence, from structure preserving and since w1 �i w2, for all i
in N2, we have w1 �FΦN2

w2. From this and (B-Rep) we get B(∇F (ΦN1
,�)) ≡ B(∇F (ΦN2

,�)) ≡ ϕw1
,

following from (ESF7) and (ESF8) that B(∇F (Φ,�)) ≡ ϕw1 and, as we show in the previous case,
B(∇F (�2,�)) ≡ ϕw2

. Therefore, B(∇F (Φ,�)) 6` B(∇F (�2,�)), showing that agent 2 is not a dictator
for ∇F . To show that any other agent in N is not a dictator for ∇F either, by the symmetry of F , we
only have to switch the epistemic state of any agent i in N with that of agent 2.

Proof of Proposition 7. To show the only if part, suppose that ∇ is an ES basic merging operator
satisfying (ESF-SSD) and let us see that its associated assignment, Φ 7→�Φ, satisfies (SSD). To do so,
consider an agent i in S, a total preorder � over WP and, toward a contradiction, assume that �E∗i 6=�, for
every i-profile E∗i .
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By (ESF-SSD), let us consider an i-profile Ei such that [[B(∇(Ei, E))]] = max([[B(E)]],�), for every
epistemic state E in E . Now, since �Ei 6=�, there exist a couple of interpretations w, w′ in WP such that
w �Ei w′ and w′ � w, or w �Ei w′ and w′ � w. In any case, if we consider an epistemic state E in E such
that [[B(E)]] = {w,w′}, from (B-Rep) we get [[B(∇(Ei, E))]] 6= max([[B(E)]],�), a contradiction.

The if part straightforwardly follows from (B-Rep) and the assumption of (SSD).

Proof of Proposition 8. Suppose that the epistemic space is given by the tpo epistemic space, Stpo. Let
us show that if the assignment associated to an ES basic merging operator is structure preserving, then such
operator satisfies (ESF-SSD). In particular, the quasi-indifference operator, ∇Ind∗ , the projective operator,
∇π,the Σ-projective operator, ∇Σπ, and every aggregation-based ES basic merging operator satisfy (ESF-
SSD). In addition, we also show that the indifference operator, ∇Ind, does not satisfy it.

It is quite clear that, in this context of representation of epistemic states, if an assignment is structure
preserving, then it is a surjection when it is restricted to the set of single-profiles. Therefore, such assignment
satisfies (SSD) and, by Proposition 7, (ESF-SSD) holds for its associated ES basic merging operator. From
this we straightforwardly get that the quasi-indifference operator, the projective operator, the Σ-projective
operator and every aggregation-based ES basic merging operator satisfy (ESF-SSD).

To show that the indifference operator does not satisfy (ESF-SSD), by Proposition 7, we only have
to show that the indifference assignment does not satisfy (SSD), that is, the indifference assignment is
not a surjection when it is restricted to single-profiles. But this follows from the fact that the indifference
assignment maps every epistemic state into the flat order.

Proof of Proposition 9. Let ∇ be an ES basic merging operator, and suppose that Φ 7→�Φ is its
associated assignment. We show that ∇ satisfies (ESF-NI) iff Φ 7→�Φ satisfies (NI). To do so, let us fix a
society N in F∗(S).

To show the only if part, let us consider an interpretation w in WP and an epistemic state E in E such
that B(E) ≡ >. Thus, by (ESF-NI), if we consider an N -profile Φ such that B(∇(Φ, E)) ≡ ϕw, from
(B-Rep) we get max(�Φ) = {w}, as desired.

To show the if part, let us consider an epistemic state E in E and a model w of B(E). Thus, by (NI),
if Φ is an N -profile such that max(�Φ) = {w}, from (B-Rep) we also get B(∇(Φ, E)) ≡ ϕw, as desired.

Proof of Proposition 10. Let ∇ be an ES combination operator satisfying (ESF6). To show that ∇
satisfies (ESF-NI), given a society N in F∗(S), an epistemic state E in E and a model w of B(E), it is
enough to consider an N -profile Φ such that [[B(Ei)]] = {w}, for all i in N . Then, apply (ESF6).

Proof of Proposition 11. Let us show that the max operator, ∇max, the projective operator, ∇π, the
Σ-projective operator, ∇Σπ, and every aggregation-based ES basic merging operator ∇F (defined from an
assignment F satisfying composition and decomposition) satisfy (ESF-NI), but neither the indifference
operator, ∇Ind, nor the quasi-indifference operator, ∇Ind∗ , satisfy it.

Note that (ESF6) holds for the max operator, the Σ-projective operator and every aggregation-based
ES basic merging operator ∇F , that has been defined from an assignment F satisfying composition and
decomposition. From this, by Proposition 10, we get that (ESF-NI) holds for these operators.

To show that the projective operator satisfies (ESF-NI), we only have to see that the projective assign-
ment satisfies (NI), that is, it satisfies the following: given a finite society N and an interpretation w in
WP , there exists an N -profile Φ such that max(�πΦ) = {w}. To do so, given a finite society N , we only have
to consider an N -profile Φ such that max(�d) = {w}, where �d is its last input. The result follows from
the fact that �πΦ=�d.

To prove that neither the indifference operator nor the quasi-indifference operator satisfy (ESF-NI),
by Proposition 9, we only have to show that there exist a finite society N and an interpretation w in WP
such that, for every N -profile Φ, max(�Ind

Φ ) 6= {w} (resp. max(�Ind∗
Φ ) 6= {w}). To do so, we only have to

consider a finite society N with at least two agents and any interpretation w in WP , and note that, for any
N -profile Φ, both �Ind

Φ and �Ind∗
Φ are the flat order.

35



Proof of Proposition 12. Let ∇ be an ES basic merging operator, and suppose that Φ 7→�Φ is its
associated assignment. We will show that ∇ satisfies (ESF-S) iff Φ 7→�Φ satisfies (S). In order to do this,
let N be a society in F∗(S), i be an agent in N , Φ be an N -profile and E∗ be an epistemic state in E .

To show the only if part, consider a couple of interpretations w, w′ in WP such that w �Φ w′, w 'Ei w′
and w �E∗ w′, and let us show that w �Φ[E∗/i] w

′. Let us consider an epistemic state E in E such that
[[B(E)]] = {w,w′} and note that, by (B-Rep), B(∇(Ei, E)) ≡ B(E) and w |= B(∇(Φ, E)) ∧ B(∇(E∗, E)).
From this and (ESF-S), we obtain w |= B(∇(Φ[E

∗
/i], E)). The result follows from (B-Rep).

To show the if part, we assume that E is an epistemic state in E such that B(∇(Ei, E)) ≡ B(E). We must
show that B(∇(Φ, E))∧B(∇(E∗, E)) ` B(∇(Φ[E

∗
/i], E)). If B(∇(Φ, E))∧B(∇(E∗, E)) is inconsistent, then

the result is straightforward. Then, assume that B(∇(Φ, E))∧B(∇(E∗, E)) is consistent, and consider w, a
model of B(∇(Φ, E))∧B(∇(E∗, E)). Thus, by (ESF1), w is a model of B(E). Now, if w′ is a model of B(E),
from (B-Rep) we get that w �Φ w′ , w 'Ei w′ and w �E∗ w′. From this and (S), we obtain w �Φ[E∗/i] w

′.

Again, by (B-Rep), w |= B(∇(Φ[E
∗
/i], E)). Therefore B(∇(Φ, E)) ∧B(∇(E∗, E)) ` B(∇(Φ[E

∗
/i], E)).

Proof of Proposition 13. Let∇ be an ES combination operator satisfying (ESF1), (ESF7) and (ESF8).
Let us show that ∇ satisfies (ESF-S). To do so, let us show that, given a society N in F∗(S), an N -profile Φ
and a couple of epistemic states E, E∗ in E , we get B(∇(Φ, E))∧B(∇(E∗, E)) ` B(∇(Φ[E

∗
/i], E)), whenever

B(∇(Ei, E)) ≡ B(E).
Suppose then B(∇(Ei, E)) ≡ B(E). If Φ is a single-profile, the result straightforwardly follows from

the assumption and (ESF1). Thus, suppose that Φ has at least two inputs and consider M = N \ {i}.
Since B(∇(Ei, E)) ≡ B(E), by (ESF1) we get B(∇(ΦM , E)) ∧ B(∇(Ei, E)) ≡ B(∇(ΦM , E)). Moreover,
B(∇(ΦM , E))∧B(∇(Ei, E)) 6` ⊥, (ESF7) and (ESF8) entail B(∇(ΦM , E))∧B(∇(Ei, E)) ≡ B(∇(Φ, E)).
Thus, B(∇(ΦM , E)) ≡ B(∇(Φ, E)). Now, by (ESF7), B(∇(ΦM , E)) ∧ B(∇(E∗, E)) ` B(∇(Φ[E

∗
/i], E)).

From this, we obtain that B(∇(Φ, E)) ∧B(∇(E∗, E)) ` B(∇(Φ[E
∗
/i], E)), as desired.

Proof of Proposition 14. Let us show that the indifference operator, ∇Ind, the quasi-indifference oper-
ator, ∇Ind∗ , the projective operator, ∇π, the Σ-projective operator, ∇Σπ, and every aggregation-based ES
basic merging operator ∇F (defined from an aggregation function F satisfying composition and decomposi-
tion) satisfy (ESF-S), but the max operator, ∇max, does not satisfy it.

As we see in Propositions 2 and 4, (ESF7) and (ESF8) hold for the indifference operator and for any
aggregation-based ES basic merging operator ∇F , defined by means of an aggregation function F satisfying
composition and decomposition. Thus, from Proposition 13 it follows that they satisfy (ESF-S).

Let us show now that the quasi-indifference operator and the Σ-projective operator satisfy (ESF-S).
To do so, it suffices to show that their respective associated assignments satisfy (S). Let us consider thus
a finite society N , an agent i in N , a N -profile Φ, an epistemic state (total preorder) �∗, and a pair of
interpretations w, w′ in WP .

To show that the quasi-indifference assignment, Φ 7→�Ind∗
Φ , satisfies (S), suppose that w �Ind∗

Φ w′ and

w �Ind∗
�∗ w′. We have to prove that w �Ind∗

Φ[�∗/i]
w′. To do so let us consider the following two cases about the

number of agents in N : (1) N has a sole agent, and (2) N has at least two agents.

Case 1 [N has a sole agent]: In this case Φ[�
∗
/i] =�∗. Thus, since the quasi-indifference assignment is

structure preserving, we have �Ind∗
Φ[�∗/i]

=�∗ and �Ind∗
�∗ =�∗. From this and the fact that w �Ind∗

�∗ w′,

we obtain w �Ind∗
Φ[�∗/i]

w′.

Case 2 [N has at least two agents]: In this case, by the definition of the quasi-indifference assignment
we obtain that �Ind∗

Φ[�∗/i]
is the flat order. From this we straightforwardly get that w �Ind∗

Φ[�∗/i]
w′.

In any case we have got w �Ind∗
Φ[�∗/i]

w′. This shows that the quasi-indifference operator satisfies (S).

To show that the Σ-projective assignment, Φ 7→�Σπ
Φ , also satisfies (S), assume w �Σπ

Φ w′ and w �Σπ
�∗ w

′.

We have to see that w �Σπ
Φ[�∗/i]

w′.

To do so, assume first that i 6= d. Thus, from the definition of the lexicografical preorder, since w �Σπ
Φ w′

and �Σπ
Φ =�lex(�d,�Σ

Φ), we get the following two cases: (3) w �d w′, and (4) w 'd w′ and w �Σ
Φ w′.

36



Case 3 [w �d w′]: In this case, since i 6= d, we get w �lex(�d,�Σ

Φ[�∗/i]
)
w′, that is, w �Σπ

Φ[�∗/i]
w′.

Case 4 [w 'd w′ and w �Σ
Φ w′]: In this case, since w 'Σπ

�i w′, w �Σπ
�∗ w′, by structure preserving, we

obtain w 'i w′ and w �∗ w′. Thus, r�i(w) = r�i(w
′), r�∗(w) ≥ r�∗(w

′) and from the definition
of the sum assignment we get

∑
r�j (w) ≥ ∑ r�j (w

′). From this, by addition properties, we obtain
r�∗(w) +

∑
j 6=i r�j (w) ≥ r�∗(w

′) +
∑
j 6=i r�j (w

′), that is, w �Σ
Φ[�∗/i]

w′. Therefore, w 'd w′ and

w �Σ
Φ[�∗/i]

w′. This leads us to w �Σπ
Φ[�∗/i]

w′.

Now, suppose i = d and note that, by our assumption, we have w 'Σπ
�d w

′, w �Σπ
�∗ w

′ and w �Σπ
Φ w′.

From this, by structure preserving, we obtain w 'd w′, w �∗ w′. Moreover, since �Σπ
Φ =�lex(�d,�Σ

Φ), we get
w �Σ

Φ w′. Thus, since w �∗ w′, we have the following two cases: (5) w �∗ w′, and (6) w '∗ w′.

Case 5 [w �∗ w′]: In this case, we straightforwardly get w �lex(�∗,�Σ

Φ[�∗/d]
)
w′, that is, w �Σπ

Φ[�∗/d]
w′.

Case 6 [w '∗ w′]: In this case, we proceed in a similar way to that in Case 4 to obtain w �Σ
Φ[�∗/d]

w′. From

this and the fact that w '∗ w′, we get w �Σπ
Φ[�∗/i]

w′.

In any case, we have got w �Σπ
Φ[�∗/i]

w′. This shows that the Σ-projective assignment satisfies (S).

Finally, let us prove that the max operator does not satisfy (ESF-S). To do so, by Proposition 12,
we only have to show that the max assignment, Φ 7→�max

Φ , does not satisfy (S). Consider thus the set of
interpretations WP = {w1, w2, w3, w4} of a finite propositional language LP built from two propositional
variables. Let N = {1, 2} be a society of agents and consider the N -profile Φ given in Figure A.12a, and the
epistemic state �∗ represented in Figure A.12b.

bw1 bw4

bw2

bw3

≽1

bw4

bw3

bw1 bw2

≽2

1
(a) N-profile Φ

bw1 bw2

bw3 bw4

≽∗

1
(b) New epistemic state

Figure A.12: Instability situation for the max operator

From structure preserving we get w1 'max
�2

w2 and w1 'max
�∗ w2, and some simple calculations lead us

to w1 'max
Φ w2 and w2 �max

Φ[�∗/2]
w1. From this we obtain w1 �max

Φ w2, w1 'max
�2

w2 and w1 �max
�∗ w2, but

w2 �max
Φ[�∗/2]

w1. This shows that (S) does not hold.

Proof of Proposition 15. Let ∇ be an ES basic merging operator, and suppose that Φ 7→�Φ is its
associated assignment. We will show that ∇ satisfies (ESF-N) iff Φ 7→�Φ satisfies (N). To do so, let us
consider a society N in F∗(S).

In order to show the only if part, let us suppose that ∇ satisfies (ESF-N) and assume that d in N is a
nominator for ∇. Let us consider w, w′ in WP such that w �Ed w′ and, toward a contradiction, suppose
that w′ �Φ w. Thus, if E in E is an epistemic state such that [[B(E)]] = {w,w′}, from (B-Rep) we get that
B(∇(Φ, E)) and B(∇(Ed, E)) are inconsistent, a contradiction.

To show the if part, assume that Φ 7→�Φ satisfies (N). Thus, there exists an agent d in N such that, if
w �E∗d w′, then w �Φ∗ w

′, for every N -profile Φ∗ and every pair of interpretations w, w′ in WP . Toward a
contradiction, suppose that d is not a nominator for ∇. Then, there exist an N -profile Φ in P(S, E) and an
epistemic state E in E such that B(∇(Ed, E)) ∧ B(∇(Φ, E)) ` ⊥. Let us consider thus w, w′ in WP such
that w |= B(∇(Ed, E)) and w′ |= B(∇(Φ, E)). From (B-Rep) we get w �Ed w′ and w′ �Φ w. But, since
w �Ed w′, from (N) we get w �Φ w′, a contradiction.
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Proof of Proposition 16. Let us show that (ESF-N) holds for the indifference operator, ∇Ind, the
quasi-indifference operator, ∇Ind∗, the projective operator, ∇π and the Σ-projective operator, ∇Σπ, but it
does not hold for the max operator, ∇max or for any aggregation-based ES basic merging operators, ∇F ,
which is defined through an aggregation function F satisfying composition, decomposition and discreteness;
in particular, nor the sum operator, ∇Σ, nor the Gmax operator, ∇Gmax, satisfy it.

As the indifference operator, the projective operator and the Σ-projective operator are dictatorial ES
basic merging operators (cf. Proposition 6), from Observation 9 we get that (ESF-N) holds for them. In
order to prove that the quasi-indifference operator satisfies (ESF-N), consider a finite society N and let us
prove that there exists an agent d in N such that B(∇Ind∗(Φ,�))∧B(∇Ind∗(�d,�)) 6` ⊥, for every N -profile
Φ and every epistemic state �. If N has a unique agent, then the result is straightforward. Suppose, then,
that N has at least two agents. Thus, �Ind∗

Φ is the flat order over WP . From this, by (B-Rep), we get
B(∇Ind∗(Φ,�)) ≡ B(�). Thus, by (ESF1), we obtain B(∇Ind∗(Φ,�)) ∧ B(∇Ind∗(�d,�)) 6` ⊥, for every
agent d in N . This also shows that every agent in N is a nominator for ∇Ind∗ .

The next remark shows that (ESF-N) does not hold for any aggregation-based ES basic merging operator
∇F , built from the max function or an aggregation function F satisfying composition, decomposition and
discreteness.

Remark 4. If F is the max function or an aggregation function satisfying composition, decomposition and
discreteness, then there is no finite society N , with at least two agents, that admits a nominator for ∇F .

To show this remark, we proceed in a similar way to that of the proof of Remark 3 (cf. Proof of
Proposition 6), by noting that, in any of the cases presented there, B(∇F (Φ,�)) ∧B(∇F (�d,�)) ` ⊥.

Proof of Proposition 17. Let us study the manipulability of the indifference operator, ∇Ind, the quasi-
indifference operator, ∇Ind∗ , the max operator, ∇max, the projective operator, ∇π, the Σ-projective operator,
∇Σπ, and every aggregation-based ES basic merging operator ∇F , defined from an aggregation function F
for which composition, decomposition and discreteness hold; especially the sum operator, ∇Σ, and the Gmax
operator, ∇Gmax.

(i) Let us show that the indifference operator, ∇Ind, is strategy-proof. To do so note that, given a
finite society N , an N -profile Φ, an agent i in N and a couple of epistemic states �, �∗, we have
B(∇Ind(Φ,�)) ≡ B(∇Ind(Φ[�

∗
/i],�)). Therefore, B(∇Ind(Φ,�)) w�Ind

�i
B(∇Ind(Φ[�

∗
/i],�)), for every

belief lifting �7→w�, every finite society N , every N -profile Φ, every agent i in N and every couple of
epistemic states �, �∗. This shows the strategy-proofness of the indifference operator.

(ii) Let us show now that the quasi-indifference operator, ∇Ind∗, and the projective operator, ∇π, are both
strategy-proof with respect to the possibilistic, the pessimistic and Kelly belief liftings, but they are
manipulable with respect to the precise-leximax belief lifting.
To show the strategy-proofness of the quasi-indifference operator with respect to the possiblilistic belief
lifting, �7→wΠ

�, consider a finite society N , an N -profile Φ, an agent i in N , a couple of epistemic states
�, �∗ in E , and consider the following two cases concerning the size of N : (1) N has a sole agent, and
(2) N has at least two agents.

Case 1 [N has a sole agent]: In this case, N is formed by the agent i, Φ =�i and Φ[�
∗
/i] =�∗.

By (B-Rep), because Φ 7→�Ind∗
Φ is structure preserving, we get w �Ind∗

�i w′, for very couple of

interpretations w, w′ inWP , with w |= B(∇Ind∗(Φ,�)) and w′ |= B(∇Ind∗(Φ[�
∗
/i],�)). Therefore,

from the definition of the possibilistic lifting, we haveB(∇Ind∗(Φ,�)) wΠ
�Ind∗
�i

B(∇Ind∗(Φ[�
∗
/i],�)).

Case 2 [N has at least two agents]: In this case, from the definition of the quasi-indifference op-
erator we obtain B(∇Ind∗(Φ[�

∗
/i],�)) ≡ B(∇Ind∗(Φ,�)). From this it straightforwardly follows

that B(∇Ind∗(Φ,�)) wΠ
�Ind∗
�i

B(∇Ind∗(Φ[�
∗
/i],�)).

In any case, we have got B(∇Ind∗(Φ,�)) wΠ
�Ind∗
�i

B(∇Ind∗(Φ[�
∗
/i],�)), showing the strategy-proofness

of the quasi-indifference operator with respect to the possibilistic belief lifting.
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Similarly, one can show the strategy-proofness of the quasi-indifference operator with respect to the
pessimistic belief lifting and Kelly belief lifting.
To show that the quasi-indifference operator is manipulable with respect to the precise-leximax belief
lifting, �7→wplm

� , consider a pair of interpretations w, w′ in WP , a single-profile Φ =�i and a couple
of epistemic states �, �∗ such that w 'i w′, w �∗ w′ and [[B(�)]] = {w,w′}. Since the quasi-
indifference assignment is structure preserving, from (B-Rep) we get B(∇Ind∗(Φ,�)) ≡ ϕw,w′ and

B(∇Ind∗(Φ[�
∗
/i],�)) ≡ ϕw. Moreover, because w 'i w′, we have w 'Ind∗

�i w′. From this and the

definition of the precise-leximax order, we obtain (w) �plm

�Ind∗
�i

(w,w′) and (w) �plm

�Ind∗
�i

(w′, w). Thus, by

the definition of the precise-leximax belief lifting, B(∇Ind∗(Φ[�
∗
/i],�)) Aplm

�Ind∗
�i

B(∇Ind∗(Φ,�)).

Now, let us show that the projective operator, ∇π, is strategy-proof with respect to the possibilistic,
the pessimistic and Kelly belief liftings and its manipulation with respect to the precise-leximax lifting.
To show that ∇π is strategy-proof with respect to the possibilistic lifting, �7→wΠ

�, consider a finite
society N , an agent i in N , an N -profile Φ, a couple of epistemic states �, �∗, and consider the
following two cases for i: (3) i 6= d, and (4) i = d; where d = max(N).

Case 3 [i 6= d]: In this case, by definition of the projective operator, B(∇π(Φ,�)) ≡ B(∇π(Φ[�
∗
/i],�).

From this we straightforwardly get B(∇π(Φ,�)) wΠ
�π�i

B(∇π(Φ[�
∗
/i],�)).

Case 4 [i = d]: In this case, from structure preserving and the definition of the projective assignment,
we obtain �π�d=�π�Φ

. Thus, if w, w′ in WP are interpretations such that w |= B(∇π(Φ,�)) and

w′ |= B(∇π(Φ[�
∗
/i],�)), by (B-Rep), w �πΦ w′, that is, w �π�d w′. Then, from the definition of

the possibilistic belief lifting we obtain B(∇π(Φ,�)) wΠ
�π�i

B(∇π(Φ[�
∗
/i],�)).

Therefore, in any case we have got B(∇π(Φ,�)) wΠ
�π�i

B(∇π(Φ[�
∗
/i],�)). This shows the strategy-

proofness of the projective operator with respect to the possibilistic lifting.
Using a similar argument to the previous one, we can show that ∇π is strategy-proof with respect to the
pessimistic and Kelly belief liftings. Furthermore, similarly to how we have proved the manipulation
of the quasi-indifference operator with respect to the precise-leximax belief lifting, we can show the
manipulation of the projective operator with respect to that belief lifting.

(iii) Let us show that, for any aggregation function F satisfying composition, decomposition and discrete-
ness, the aggregation-based ES basic merging operator ∇F is absolutely G-manipulable. To do so,
note that, by Propositions 4 and 6, ∇F is an ES basic merging operator for which (ESF-D) does not
hold. From this, by Theorem 4, we get that ∇F is absolutely G-manipulable.

(iv) Finally, let us see that the sum operator, ∇Σ, the Gmax operator, ∇Gmax, the max operator, ∇max

and the Σ-projective operator, ∇Σπ, are absolutely manipulable.
As we highlighted earlier, the situation given in Example 8 is an absolute manipulability situation for
the sum operator, as well as for the Gmax and max operators, as it might be seen after some simple
calculations. Thus, we only have to show that the Σ-projective operator is absolutely manipulable.
Assume that WP = {w1, w2, w3, w4} is the set of interpretations of a language LP , and consider
the following manipulability situation: the society N = {1, 2, 3}, the N -profile Φ = (�1,�2,�3)
represented in Figure A.13a, the epistemic state �∗ given in Figure A.13b, and a restriction � such
that [[B(�)]] = {w,w′}.15

Some simple calculations lead us to w2 �Σ
Φ w1 and w1 �Σ

Φ[�∗/1]
w2. Thus, since w1 '3 w2 and

�Σπ
Φ =�lex(�3,�Σ

Φ), we obtain w2 �Σπ
Φ w1 and w1 �Σπ

Φ[�∗/1]
w2. From this, by (B-Rep), we have

B(∇Σπ(Φ,�)) ≡ ϕw2 and B(∇Σπ(Φ[�
∗
/1],�)) ≡ ϕw1 . Then, since w1 �1 w2, from structure preserving

we get w1 �Σπ
�1

w2. Thus, for any belief lifting �7→w�, B(∇Σπ(Φ[�
∗
/1],�)) A�Σπ

�1

B(∇Σπ(Φ,�)).

Proof of Proposition 18. Let ∇ be an ES basic merging operator, assume that Φ 7→�Φ is its associated
assignment and suppose that ∇ is nonmanipulable with respect to a G-belief lifting �7→w�.

15We may also use this situation to show the absolute manipulation of the sum, the Gmax and the max operators.
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Figure A.13: Manipulability situation for the Σ-projective operator

(i) In order to show that (ESF-NI) entails (ESF-P), assume that ∇ satisfies (ESF-NI) and, towards a
contradiction, suppose that (ESF-P) does not hold. Thus, there exist a finite society N , an N -profile
Φ and a pair of epistemic states E, E′ in E such that, for every agent i, B(∇(Ei, E)) ∧ B(E′) ` ⊥,∧
Ei∈ΦB(∇(Ei, E)) 6` ⊥, but B(∇(Φ, E)) ∧B(E′) 6` ⊥.

Consider then a couple of models w, w′ such that w |= ∧
Ei∈ΦB(∇(Ei, E)) and w′ |= B(∇(Φ, E)) ∧

B(E′) and an epistemic state E′′ in E such that [[B(E′′)]] = {w,w′}. Note that, by (ESF1), B(E′′) `
B(E) and therefore B(E′′) ≡ B(E) ∧ B(E′′). Then, given an agent i in N , since w |= B(∇(Ei, E)),
B(∇(Ei, E)) ∧ B(E′) ` ⊥ and w′ |= B(E′), then B(∇(Ei, E)) ∧ B(E′′) has a sole model, namely w.
Furthermore, from (ESF3) and (ESF4) we get B(∇(Ei, E

′′)) ≡ B(∇(Ei, E)) ∧ B(E′′). Thus, w is
the unique model of B(∇(Ei, E

′′)), for all i in N . Moreover, since w′ |= B(∇(Φ, E)) ∧ B(E′′), from
(ESF3) and (ESF4) we have B(∇(Φ, E′′)) ≡ B(∇(Φ, E)) ∧ B(E′′). Therefore, w′ |= B(∇(Φ, E′′)),
that is, B(∇(Φ, E′′)) 6≡ ϕw.
Now, by (ESF-NI), we can consider an N -profile Φ∗ such that B(∇(Φ∗, E′′)) ≡ ϕw. Let us define

then the sequence Φ0,Φ1, . . . ,Φn as follows: Φ0 = Φ and Φt = Φt−1[E
∗
it/it ], for t > 0. Note that

Φn = Φ∗. Then B(∇(Φ0, E
′′)) 6≡ ϕw and B(∇(Φn, E

′′)) ≡ ϕw.
Let Φk be the first in the sequence such that B(∇(Φk, E)) ≡ ϕw, and note that k > 0. Let us assume
r = k − 1 and i = ik. Then, Φk = Φr[

E∗i/i] and, B(∇(Φr, E)
)
≡ ϕw′ or B

(
∇(Φr, E)

)
≡ ϕw,w′ . Since

w is the unique model of B(∇(Ei, E
′′)), from (B-Rep) we get w �Ei w′. Thus, ϕw A�Ei ϕw′ and

from G2 we get ϕw A�Ei ϕw,w′ . Therefore, for the two possible outcomes of B
(
∇(Φr, E)

)
, we obtain

B
(
∇(Φr[

E∗i/i], E)
)
A�Ei B

(
∇(Φr, E)

)
. This shows the manipulation of ∇, a contradiction.

(ii) Let us show now that (ESF-S) holds iff (ESF-I) also holds.
In order to show the only if part, assume that (ESF-S) holds and, towards a contradiction, suppose
that (ESF-I) does not hold. Consider thus a pair of epistemic profiles Φ = (Ei1 , . . . , Ein) and
Φ∗ = (E∗i1 , . . . , E

∗
in

), and an epistemic state E in E such that B(∇(Ei, E
′)) ≡ B(∇(E∗i , E

′)), for every
E′ in E , with B(E′) ` B(E), but B(∇(Φ, E)) 6≡ B(∇(Φ∗, E)).
Suppose B(∇(Φ, E)) 6` B(∇(Φ∗, E)) (the other case is analogous) and consider a pair w, w′ in WP
such that w |= B(∇(Φ, E))∧¬B(∇(Φ∗, E)) and w′ |= B(∇(Φ∗, E)). Let E′′ in E be an epistemic state
such that [[B(E′′)]] = {w,w′}. Thus, from (ESF1), we get B(E′′) ≡ B(E) ∧B(E′′).
Since w |= B(∇(Φ, E))∧B(E′′), by (ESF3) and (ESF4), B(∇(Φ, E′′)) ≡ B(∇(Φ, E))∧B(E′′). Thus,
w |= B(∇(Φ, E′′)). Similarly, because w′ |= B(∇(Φ∗, E))∧B(E′′), again, from (ESF3) and (ESF4),
we get B(∇(Φ∗, E′′)) ≡ B(∇(Φ∗, E))∧B(E′′). Indeed, w′ is the unique model of B(∇(Φ∗, E′′)). Thus,
we have B(∇(Φ, E′′)) 6≡ ϕw′ and B(∇(Φ∗, E′′)) ≡ ϕw′ .
Consider thus the sequence Φ0,Φ1, . . . ,Φn built as in part (i): Φ0 = Φ and Φt = Φt−1[E

∗
it/it ], for t > 0.

Then, Φn = Φ∗, B(∇(Φ0, E
′′)) 6≡ ϕw′ and B(∇(Φn, E

′′)) ≡ ϕw′ .
Let Φk be the first term of the sequence such that B(∇(Φk, E

′′)) ≡ ϕw′ , and note that k > 0. Then,
if r = k − 1 and i = ik, we obtain B(∇(Φr[

E∗i/i], E
′′)) ≡ ϕw′ and B(∇(Φr, E

′′)) 6≡ ϕw′ , that is,
B(∇(Φr, E

′′)) ≡ ϕw or B(∇(Φr, E
′′)) ≡ ϕw,w′ .

Consider now the following cases forB(∇(E∗i , E
′′)): (1) w 6|= B(∇(E∗i , E

′′)), and (2) w |= B(∇(E∗i , E
′′)).

Case 1 [w 6|= B(∇(E∗i , E
′′))]: Since B(∇(E∗i , E

′′)) ≡ B(∇(Ei, E
′′)), from (B-Rep) we get w′ �Ei w.

Thus, ϕw′ A�Ei ϕw and, by G2, ϕw′ A�Ei ϕw,w′ . Therefore, for any of the two possible

outcomes of B(∇(Φr, E
′′)), we have B(∇(Φr[

E∗i/i], E
′′)) A�Ei B(∇(Φr, E

′′)), contradicting the
non-manipulation of ∇.
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Case 2 [w |= B(∇(E∗i , E
′′))]: In this case we get w |= B(∇(Φr, E

′′))∧B(∇(E∗i , E
′′)). From this and

since B(∇(Φr[
E∗i/i], E

′′)) ≡ ϕw′ , we have B(∇(Φr, E
′′)) ∧ B(∇(E∗i , E

′′)) 6` B(∇(Φr[
E∗i/i], E

′′)).
Thus, from (ESF-S) we obtainB(∇(Ei, E

′′)) 6≡ B(E′′) and, sinceB(∇(Ei, E
′′)) ≡ B(∇(E∗i , E

′′)),
we also have w′ 6|= B(∇(E∗i , E

′′)). Then, by (B-Rep), w �E∗i w′. From this we get ϕw A�E∗
i
ϕw′

and, by G1, ϕw,w′ A�E∗
i
ϕw′ . Now, since Φr = Φk[Ei/i], we get B(∇(Φk[Ei/i], E

′′)) ≡ ϕw or

B(∇(Φk[Ei/i], E
′′)) ≡ ϕw,w′ . Thus, for any of the two possible outcomes of B(∇(Φk[Ei/i], E

′′)) we
obtain B(∇(Φk[Ei/i], E

′′)) A�E∗
i
B(∇(Φk, E

′′)), contradicting the non-manipulation of ∇.

In any case, we have obtained a contradiction. Therefore (ESF-S) entails (ESF-I).

To show the if part, assume that (ESF-I) holds and, towards a contradiction, suppose that (ESF-S)
does not hold. Consider then a society N , an agent i in N , an N -profile Φ and a pair of epistemic
states E, E∗ in E such that B(∇(Ei, E)) ≡ B(E) and B(∇(Φ, E))∧B(∇(E∗, E)) 6` B(∇(Φ[E

∗
/i], E)).

Let w, w′ be a pair of models in WP such that w |= B(∇(Φ, E)) ∧ B(∇(E∗, E)) ∧ ¬B(∇(Φ[E
∗
/i], E))

and w′ |= B(∇(Φ[E
∗
/i], E)), and let E′′ be an epistemic state in E such that [[B(E′′)]] = {w,w′}.

Let us note that, by (ESF1), B(E′′) ≡ B(E) ∧ B(E′′). Moreover, since B(∇(Ei, E)) ≡ B(E),
w′ |= B(∇(Φ[E

∗
/i], E)) ∧ B(E′′) and w |= B(∇(E∗, E)) ∧ B(∇(Φ, E)) ∧ B(E′′), from (ESF3) and

(ESF4) we have the following equivalences:

• B(∇(Ei, E
′′)) ≡ B(E′′),

• B(∇(Φ, E′′)) ≡ B(∇(Φ, E)) ∧B(E′′),

• B(∇(E∗, E′′)) ≡ B(∇(E∗, E)) ∧B(E′′), and

• B(∇(Φ[E
∗
/i], E

′′)) ≡ B(∇(Φ[E
∗
/i], E))∧B(E′′)

From this we get w |= B(∇(Φ, E′′)) ∧ B(∇(E∗, E′′)) and w′ is the sole model of B(∇(Φ[E
∗
/i], E

′′)).
Furthermore, B(∇(Φ, E′′)) 6≡ B(∇(Φ[E

∗
/i], E

′′)).
Since w |= B(∇(E∗, E′′)), from (B-Rep) we get the following cases: (3) w 'E∗ w′, and (4) w �E∗ w′.
Case 3 [w 'E∗ w′]: In this case note that, by (B-Rep), B(∇(Ei, E

′)) ≡ B(∇(E∗, E′)), for every E′

in E , with B(E′) ` B(E′′). As a matter of fact, if B(E′) has a unique model, by (ESF1), both
B(∇(Ei, E

′)) and B(∇(E∗, E′)) are equivalent to B(E′). If B(E′) has two models, from (B-Rep)
we obtain that both B(∇(Ei, E

′)) and B(∇(E∗, E′)) are equivalent to B(E′′). Therefore, from
(ESF-I) we have B(∇(Φ, E′′)) ≡ B(∇(Φ[E

∗
/i], E

′′)), a contradiction.

Case 4 [w �E∗ w′]: In this case, assume Φ∗ = Φ[E
∗
/i] and note that Φ∗[Ei/i] = Φ. Thus, we have

B(∇(Φ∗, E′′)) ≡ ϕw′ and, B(∇(Φ∗[Ei/i], E
′′)) ≡ ϕw or B(∇(Φ∗[Ei/i], E

′′)) ≡ ϕw,w′ . Now, since
w �E∗ w′, we have ϕw A�E∗ ϕw′ and, by G1, ϕw,w′ A�E∗ ϕw′ . Therefore, for any of the
two possible outcomes of B(∇(Φ∗[Ei/i], E

′′)), we get B(∇(Φ∗[Ei/i], E
′′)) A�E∗ B(∇(Φ∗, E′′)),

contradicting the non-manipulation of ∇.

In any case, we have obtained a contradiction. Then (ESF-I) entails (ESF-S), as desired.

Proof of Theorem 6. To show this result, let us first state the following remark which will be very useful
for this purpose.

Remark 5. If an ES basic merging operator ∇ is strategy-proof with respect to a belief lifting satisfying
the (G2) property, then ∇ also satisfies the following:

If B(∇(Φ, E)) ≡ ϕw and E∗ in E is such that max(�E∗) = {w}, then B(∇(Φ[E
∗
/i], E)) ≡ ϕw.

In order to prove Remark 5, suppose that ∇ is strategy-proof with respect to a belief lifting �7→w�
satisfying the (G2) property. Assume that B(∇(Φ, E)) ≡ ϕw, E∗ in E is such that max(�E∗) = {w} and,
toward a contradiction, suppose B(∇(Φ[E

∗
/i], E)) 6≡ ϕw.

Let w′ be a model of B(∇(Φ[E
∗
/i], E)), with w′ 6= w, and consider an epistemic state E′ in E such

that [[B(E′)]] = {w,w′}. By (ESF1), we get B(E′) ≡ B(E) ∧ B(E′), B(∇(Φ, E)) ∧ B(E′) 6` ⊥ and
B(∇(Φ[E

∗
/i], E)) ∧ B(E′) 6` ⊥. From this, by (ESF3) and (ESF4), we obtain B(∇(Φ, E′)) ≡ ϕw and

B(∇(Φ[E
∗
/i], E

′)) 6≡ ϕw, that is, B(∇(Φ[E
∗
/i], E

′)) ≡ ϕw′ or B(∇(Φ[E
∗
/i], E

′)) ≡ ϕw,w′ .
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Put Φ∗ = Φ[E
∗
/i], and note that Φ∗[Ei/i] = Φ. Thus, B(∇(Φ∗[Ei/i], E

′)) ≡ ϕw, and B(∇(Φ∗, E′)) ≡ ϕw′

or B(∇(Φ∗, E′)) ≡ ϕw,w′ .
Now, since w �E∗ w′, we have ϕw A�E∗ ϕw′ and, by the (G2) property , ϕw A�E∗ ϕw,w′ . Therefore,

B(∇(Φ∗[Ei/i], E
′)) A�E∗ B(∇(Φ∗, E′)), for any of the two possible outcomes of B(∇(Φ∗, E′)). This shows

the manipulation of ∇ with respect to �7→w�, a contradiction.

Continuing with the proof of Theorem 6, suppose that ∇ is a strategy-proof ES basic merging with
respect to a G-belief lifting �7→w�, and assume that Φ 7→�Φ is its associated assignment. Consider also
the new set of epistemic states E∗ formed by all the epistemic states E in E such that �E is a linear order
over WP . Note that, since ∇ satisfies (ESF-SSD), the set of epistemic states E∗ is not empty.

Aiming to show that ∇ satisfies (ESF-N), let us consider the operator ∇∗ : P(S, E∗)× E −→ E defined
by ∇∗(Φ, E) = ∇(Φ, E), and note that Φ 7→�Φ also is the associated assignment to ∇∗, when the assignment
is restricted to P(S, E∗). Also note that, since ∇ is strategy-proof with respect to �7→w�, ∇∗ also is. Now,
let us see that ∇∗ satisfies part (iii) of (ESF-SD), as well as (ESF-P) and (ESF-I).

Since ∇ satisfies (ESF-SSD), we straightforwardly get that ∇∗ satisfies the part (iii) of (ESF-SD).
To show that ∇∗ satisfies (ESF-P), it suffices to prove that ∇ satisfies it; but this fact straightforwardly
follows from Proposition 18, since ∇ satisfies (ESF-NI) and it is nonmanipulable with respect to a G-belief
lifting, namely, �7→w�.

In order to show that ∇∗ satisfies (ESF-I), by Proposition 18, we only have to show that ∇∗ satisfies
(ESF-S), since ∇∗ is strategy-proof with respect to the G-belief lifting �7→w�. Before that, we must note
that Proposition 18 also holds when we restrict the whole set P(S, E) to the set P(S, E∗). The reader may
replicate the proof of Proposition 18 for this case.

Let us then show that (ESF-S) is fulfilled for ∇∗. To do so, consider a society N , an N -profile Φ
in P(S, E∗), and a couple of epistemic states, E in E and E′ in E∗, such that B(∇∗(Ei, E)) ≡ B(E).
Since Φ is in P(S, E∗), then �Ei is a linear order over WP . From this and (B-Rep), we get that both
B(∇∗(Ei, E)) and B(E) are complete. Thus, from (ESF1) we get B(∇∗(Φ, E)) ∧ B(∇∗(E∗, E)) ≡ B(E)
and B(∇∗(Φ[E

∗
/i], E)) ≡ B(E). Therefore, B(∇∗(Φ, E)) ∧B(∇∗(E∗, E)) ` B(∇∗(Φ[E

∗
/i], E)), as desired.

Now, since ∇∗ satisfies part (iii) of (ESF-SD), (ESF-P) and (ESF-I), from Theorem 3, we have that
∇∗ is a dictatorial operator – the reader can also replicate the proof of Theorem 3 in [56] to show that this
result also holds if one considers P(S, E∗) instead of the whole set P(S, E).

Finally, let us show that ∇ satisfies (ESF-N). To do so we only have to show that every dictator for ∇∗,
is also a nominator for ∇. Consider then a society N , an N -dictator d for ∇∗ and, toward a contradiction,
suppose that d is not a nominator for ∇. Thus, there exist an N -profile Φ in P(S, E) and an epistemic state
E in E such that B(∇(Φ, E)) ∧B(∇(Ed, E)) ` ⊥.

Let w be a model of B(∇(Ed, E)) and w′ be a model of B(∇(Φ, E)), and consider an epistemic state
E′ in E such that [[B(E′)]] = {w,w′}. Thus, B(E′) ≡ B(E) ∧ B(E′), B(∇(Ed, E)) ∧ B(E′) 6` ⊥ and
B(∇(Φ, E))∧B(E′) 6` ⊥. From this, by (ESF3) and (ESF4), we have B(∇(Ed, E

′)) ≡ B(∇(Ed, E))∧B(E′)
and B(∇(Φ, E′)) ≡ B(∇(Φ, E)) ∧B(E′). Therefore, B(∇(Φ, E′)) ≡ ϕw′ and, by (B-Rep), w �Ed w′.

Let Φ∗ be an N -profile in P(S, E) such that for all i in N \ {d}, E∗i is an epistemic state in E∗, max(�E∗i
) = {w′}, and E∗d = Ed. Thus, from Remark 5, we obtain B(∇(Φ∗, E′)) ≡ ϕw′ .

If E∗ in E∗ is such that max(�E∗) = {w}, then both E∗ and Φ∗[E
∗
/d] are epistemic profiles in P(S, E∗)

and, by (B-Rep), B(∇∗(E∗, E′)) ≡ ϕw. Moreover, because d is a dictator for ∇∗, from (ESF-SD) we get
B(∇∗(Φ[E

∗
/d], E

′)) ` B(∇∗(E∗, E′)). From this, we have B(∇(Φ∗[E
∗
/d], E

′)) ≡ ϕw. Now, since w �Ed w′,
we get ϕw A�Ed ϕw′ , that is, B(∇(Φ∗[E

∗
/d], E

′)) A�Ed B(∇(Φ∗, E′)). This shows the manipulation of ∇
with respect to �7→w�, a contradiction.

Proof of Theorem 8. Consider D, the set of all dictatorial ES basic merging operators that satisfy the
max condition; N the set of all the ES basic merging operators that admit nominators and for which the
max condition holds; and W the set of all the weak-dictatorial ES basic merging operators satisfying the
max condition. Let us show that D ( N ( W.

From what we highlighted in Observation 9, it straightforwardly follows that D ⊂ N. To show that
N 6⊂ D, we only have to consider the quasi-indifference operator. As we saw in Propositions 3, 6 and 16, this
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operator satisfies the max condition and (ESF-N), but (ESF-D) does not hold. Thus the quasi-indifference
operator is in N, but it is not in D. This shows D ( N.

Now, let us show N ( W. In order to show N ⊂W, assume that ∇ is an ES basic merging operator in N,
and suppose that Φ 7→�Φ is its associated assignment. Also suppose that d, in a society N , is a nominator
for ∇. Let us prove that d is also a weak-dictator for ∇. To do so, let us consider an interpretation w in
WP . We have to show that there exists an epistemic state E∗ in E such that w |= B(∇(Φ[E

∗
/d], E)), for

every N -profile Φ and every epistemic state E in E , for which w |= B(E).
Consider an epistemic state E∗ in E such that [[B(E∗)]] = {w}. Since ∇ satisfies the max condition,

we have max(�E∗) = {w}. Thus, from (B-Rep) we obtain [[B(∇(E∗, E′))]] = {w}, for every E′ in E , with
w |= B(E′). We claim that w |= B(∇(Φ[E

∗
/d], E)), for every N -profile Φ and every E in E , with w |= B(E).

In effect, let Φ be any N -profile and E in E be any epistemic state such that w |= B(E). Since d in N is a
nominator for ∇, then B(∇(Φ′, E′))∧B(∇(E′d, E

′)) 6` ⊥, for every N -profile Φ′ = (Ei1 , . . . , E
′
d, . . . , Ein) and

every epistemic state E′ in E ; especially for Φ′ = Φ[E
∗
/d] and E′ = E. Therefore, since B(∇(Φ[E

∗
/d], E)) ∧

B(∇(E∗, E′)) 6` ⊥ and w is the unique model of B(∇(E∗, E)), we get w |= B(∇(Φ[E
∗
/d], E)), as desired.

To show W 6⊂ N, consider the epistemic space given in Section 2.4 and, for every finite society N , assume
d = max(N). Based on this, we define the following ES basic merging operator:

∇(Φ,�) =�lex(�,�Φ), where �Φ=�d, if Φ is a singleton, namely, �d, otherwise w �Φ w′ iff w′ �d w.

Since the assignment Φ 7→�Φ is structure preserving, then∇ satisfies the max condition, as we highlighted
in Observation 3. In order to show that (ESF-WD) holds, given a finite society N and an interpretation
w in WP , we only have to consider an epistemic state �∗ in E such that max(�∗) = {w}, if N has a sole
agent, namely d; otherwise min(�∗) = {w}. Hence, by (B-Rep), in any case we have w |= B(∇(Φ[�

∗
/d],�)),

for every N -profile Φ and every epistemic state � in E , with w |= B(�).
To show that (ESF-N) does not hold, consider the finite society N = {1, 2}, two interpretations w, w′

in WP , an N -profile Φ = (�1,�2), such that w �i w′, for i = 1, 2, and an epistemic state � in E such that
[[B(�)]] = {w,w′}. Let us note that w′ �Φ w. Thus, from (B-Rep) it follows that, w is the sole model of
B(∇(�i,�)), for i = 1, 2; while w′ is the unique model of B(∇(Φ,�)). Therefore, for every agent i in N we
have B(∇(�i,�)) is inconsistent with B(∇(Φ,�)).

Proof of Theorem 9. Consider the following sets: D∗, formed by those dictatorial operators satisfying
the max condition that are strategy-proof with respect to a belief lifting satisfying G1; N∗, the class of all
those operators having nominators, satisfying the max condition and are strategy-proof with respect to a
belief lifting satisfying G1; and W∗, the class of all those operators in W, which admit a weak dictator,
satisfy the max condition and are strategy-proof with respect to a belief lifting satisfying G1. Let us show
that D∗ ( N∗ = W∗.

From Theorem 8 follows that D∗ ⊂ N∗ ⊂ W∗. To show that N∗ 6⊂ D∗, consider again the quasi-
indifference operator, and note that this is an operator that satisfies the max condition, (ESF-N) (cf.
Proposition 16) and it is strategy-proof with respect to a belief lifting satisfying G1, (namely the possi-
bilistic belief lifting and the Kelly belief lifting; cf. Proposition 17), for which (ESF-D) does not hold (cf.
Proposition 6).

To prove W∗ ⊂ N∗, by Theorem 8, it is sufficient to show that, if d is a weak-dictator for an ES basic
merging operator ∇ in W∗, then d is also a nominator for ∇.

Assume that an agent d in a society N is a weak-dictator for an operator ∇ in W, and suppose that
∇ is strategy-proof with respect to a belief lifting �7→w� satisfying G1. Toward a contradiction, also
suppose that d is not a nominator for ∇. Thus, there exists an N -profile Φ and an epistemic state E′ in
E such that B(∇(Φ, E′)) ∧ B(∇(Ed, E

′)) ` ⊥. Let us consider two interpretations w, w′ in WP such that
w |= B(∇(Ed, E

′)) and w′ |= B(∇(Φ, E′)) and suppose that Φ 7→�Φ is the assignment associated to ∇.
Thus, from (B-Rep) we get w �Ed w′ and w′ �Φ w.

Since d is a weak-dictator for ∇, there is an epistemic state Ew in E such that w |= B(∇(Φ∗[E
w

/d], E)),
for every N -profile Φ∗ and every epistemic state E in E , with w |= B(E). Let us thus consider an epistemic
state E in E such that [[B(E)]] = {w,w′}, and note that, by (ESF1), either [[B(∇(Φ[E

w

/d], E)]] = {w} or
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[[B(∇(Φ[E
w

/d], E)]] = {w,w′}. Also note that, by (B-Rep), [[B(∇(Φ, E))]] = {w′}. Now, since w �Ed w′, we
get ϕw A�Ed ϕw′ and, by (G1), ϕw,w′ A�Ed ϕw′ . Then, for the two possible outcomes of B(∇(Φ[E

w

/d], E)),

we have B(∇(Φ[E
w

/d], E)) A�Ed B(∇(Φ, E)). This shows the manipulation of ∇ with respect to �7→w�, a
contradiction.
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