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Abstract

Homogenized descriptions are provided for polycrystalline solids deforming in accordance with certain crystal
plasticity laws recently proposed for neutron-irradiated bainitic steels. These laws express intragranular plas-
tic slip rates in terms of resolved shear stresses and key microstructural features, such as densities of forest
dislocations and of solute clusters, for a wide range of deformation rates, temperatures, and radiation doses.
The elastic domain is delimited by thresholds on the resolved stresses that depend on dislocation densities
in an intricate manner, and the plastic hardening is described by evolution laws of the Mecking-Kocks type
for the dislocation densities with plastic slip. However, thresholds also depend nonlinearly on the resolved
stresses themselves. Full-field homogenized descriptions are generated with a Fast Fourier Transform algo-
rithm implemented in the computer code CraFT, while mean-field homogenized descriptions are generated
by means of a linear-comparison scheme based on a generalized-secant linearization of the crystal plasticity
laws. Multiple ways of accounting for plastic hardening in the mean-field descriptions are explored. Sample
results are reported in the form of uniaxial traction curves and concomitant dislocation density evolutions
under different scenarios. Overall, the generalized-secant linearization is found to provide an appropriate
compromise between precision and mathematical complexity to generate homogenized descriptions for the
elastoplastic response of polycrystalline media governed by complex crystal plasticity laws.

Keywords: polycrystals; elastoplasticity; neutron radiation; homogenization

1. Introduction

The elastoplastic behavior of polycrystalline alloys is often described by physically based crystal plastic-
ity laws with complex hardening rules (e.g., Segurado et al., 2018). On the other hand, rigorous mean-field
homogenization schemes for up-scaling crystal plasticity laws often neglect elastoplastic interactions and
plastic hardening to enable the use of variational approximations (e.g., Dendievel et al., 1990; DeBotton
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and Ponte Castañeda, 1995; Bornert and Ponte Castañeda, 1998; Liu and Ponte Castañeda, 2004; Ponte
Castañeda, 2015). A few strategies to incorporate those features into variational mean-field schemes have
been pursued notwithstanding, at the expense of introducing ad-hoc approximations adapted to the partic-
ular hardening rule being considered (e.g., Masson et al., 2000; Lebensohn et al., 2007; Suquet and Lahellec,
2014).

The purpose of this work is to adapt a particular mean-field homogenization scheme to crystal plasticity
laws of the type proposed by Monnet et al. (2019) for certain neutron-irradiated bainitic steels employed in
nuclear reactor pressure vessels. These laws express intragranular plastic slip rates in terms of resolved shear
stresses and key microstructural features, such as densities of forest dislocations and of solute clusters, for
a wide range of deformation rates, temperatures, and radiation doses. The elastic domain is delimited by
thresholds on the resolved stresses that depend on dislocation densities in an intricate manner, and the plastic
hardening is described by evolution laws for the dislocation densities with plastic slip of the type proposed by
Kocks and Mecking (2003). However, thresholds also depend nonlinearly on the resolved stresses themselves.
Mean-field homogenized descriptions are generated here by means of a linear-comparison scheme based on a
generalized secant linearization as proposed by Ponte Castañeda (2015). When applied to crystal plasticity
laws that derive from a dissipation potential, this scheme exhibits full stationarity with respect to the
properties of the linear-comparison polycrystal. The stress-strain-rate relation estimated directly from the
linear-comparison polycrystal is thus expected to provide meaningful predictions even when the underlying
crystal plasticity law does not derive from a potential. The scheme also delivers estimates for intragranular
statistics of the mechanical fields of first and second order. This additional information is required to
estimate the evolution of dislocation densities and ensuing plastic hardening. Following common practice,
first-order statistics of plastic slip rates are employed. However, three alternative strategies incorporating
second-order statistics are explored. Elementary schemes of the Sachs and Taylor type are also considered.
Finally, full-field homogenized descriptions are generated with a Fast Fourier Transform-based algorithm
implemented in the computer code CraFT of Moulinec and Suquet (1994, 1998). Elementary schemes
and full-field descriptions provide references against which the mean-field descriptions can be assessed. To
that end, quantitative comparisons are reported in the form of uniaxial traction curves and concomitant
dislocation density evolutions under different scenarios.

Throughout the presentation, the symbol ∇ denotes the nabla operator, the symbol “·” denotes the
scalar product between vectors as well as tensors, the symbols ⊗ and ⊗s denote the tensor product between
vectors as well as tensors and its symmetric part, respectively, the symbols I and I denote the second-order
and fourth-order symmetric identity tensors, J and K are the standard fourth-order hydrostatic and shear
projection tensors, and the overdot ˙(·) denotes time differentiation.

2. The polycrystalline solid model

2.1. Microgeometry
Polycrystals are regarded here as random aggregates of perfectly bonded single crystals or grains. In-

dividual grains are assumed to be of a similar size, much smaller than the specimen size and the scale of
variation of the applied loads. Furthermore, the aggregates are assumed to have statistically uniform and
ergodic microstructures.

Let the grain orientations within a representative volume element take on a set of N discrete values,
characterized by rotation tensors Q(r) (r = 1, ..., N) relative to a reference system. All grains with a given
orientation occupy a disconnected domain Ω(r) and are collectively referred to as ‘phase’ r. The domain
occupied by the polycrystal is then Ω = ∪N

r=1Ω
(r). Volume averages over the aggregate Ω and over each

phase Ω(r) will be denoted by ⟨·⟩ and ⟨·⟩(r), respectively. The domains Ω(r) can be described by a set of
characteristic functions χ(r)(x), which take the value 1 if the position vector x is in Ω(r) and 0 otherwise. In
view of the microstructural randomness, the functions χ(r) are random variables that must be characterized
in terms of ensemble averages (Willis, 1983). Due to the assumed statistical uniformity and ergodicity,
one-point probabilities can be identified with the volume fractions —or concentrations— c(r) = ⟨χ(r)(x)⟩ of
each phase r, two-point probabilities can be identified with the volume averages ⟨χ(r)(x)χ(s)(x′)⟩, and so
on.
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2.2. Microscopic elastoplastic response
Grains are assumed to individually deform by multi-glide along K slip systems so that the strain rate at

any given point within a crystal with orientation r is given by the additive composition

ε̇ = ε̇el +

K∑
k=1

γ̇(r,k)µ(r,k), (1)

where the first term refers to an elastic strain rate, and the second term refers to a plastic strain rate that
results from dislocation gliding along the K slip systems with Schmid tensors µ(r,k) = m(r,k)⊗sn

(r,k) defined
in terms of the unit normals n(r,k) = Q(r)n(k) and glide directions m(r,k) = Q(r)m(k). For simplicity, the
elastic response is assumed linear and isotropic (Monnet et al., 2019), so

ε̇el = Sσ̇ with S =
1

3κ
J+

1

2µ
K, (2)

where σ is the Cauchy stress tensor, and κ and µ are the bulk and shear moduli of the crystal, respectively.
The elastic response is therefore spatially homogeneous. It is emphasized that elastic anisotropy could
be easily accommodated by all the homogenized descriptions considered below but would not alter the
conclusions of this study. The plastic response, on the other hand, is strongly nonlinear and anisotropic.
The shear rate along any given system is taken of the peculiar form (Monnet et al., 2019)

γ̇(r,k) = γ̇0 sinh

√
τ
(r,k)
+

τ0

 sgn(σ · µ(r,k)), (3)

where γ̇0 and τ0 denote a reference strain rate and stress, respectively, and τ
(r,k)
+ is an effective stress that

depends non-linearly on the resolved shear stress σ · µ(r,k) through the equation

τ
(r,k)
+ =

[
|σ · µ(r,k)| − τ (r,k)c (τ

(r,k)
+ )

]
+
, (4)

where [·]+ = max{·, 0} denote the Macaulay brackets. In this last expression, τ (r,k)c (τ
(r,k)
+ ) is a critical stress

level that depends on τ
(r,k)
+ as

τ (r,k)c (τ
(r,k)
+ ) = τHP +

√
τ2SC + τ

(r,k)2

self + β
[
τ
(r,k)
obs − τ

(r,k)
+

]2
+
, (5)

where β is a non-dimensional parameter introduced for numerical purposes, while

τHP = τcr

(
d

d0

)−1/2

and τSC = τcr

(
cSC

cSC0

)4/7

(6)

are, respectively, characteristic stresses due to the Hall-Petch effect and the presence of solute clusters
produced by the neutron radiation. These stresses are proportional to a reference critical stress τcr, and
depend on ferrite lath package size d and solute cluster concentration cSC ; d0 and cSC0 are characteristic
values for these quantities. In turn,

τ
(r,k)
self = τcr

(
a(k,k)

ρ(r,k)

ρ0

)1/2

and τ
(r,k)
obs = τcr

 K∑
k′=1
k′ ̸=k

a(k,k
′) ρ

(r,k′)

ρ0


1/2

(7)

are, respectively, stresses due to the dipolar interactions between dislocations belonging to the same slip
system and to different slip systems as characterized by the interaction matrix a(k,k

′) and a characteristic
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k 1 2 3 4 5 6 7 8 9 10 11 12
1 c1 c2 c2 c1 c1 c1 c1 c1 c1 c1 c1 c1
2 c1 c2 c1 c1 c1 c1 c1 c1 c1 c1 c1
3 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1
4 c1 c2 c2 c1 c1 c1 c1 c1 c1
5 c1 c2 c1 c1 c1 c1 c1 c1
6 c1 c1 c1 c1 c1 c1 c1
7 c1 c2 c2 c1 c1 c1
8 c1 c2 c1 c1 c1
9 c1 c1 c1 c1
10 c1 c2 c2
11 c1 c2
12 c1

Table 1: Interaction matrix for the ⟨111⟩{110} slip familly

dislocation density ρ0. The densities of dislocations ρ(r,k) belonging to each slip system, in turn, evolve with
slip according to a classical Kocks-Mecking law of the form (Kocks and Mecking, 2003)

ρ̇(r,k) = |γ̇(r,k)| ρ0

[(
Ad

d

d0

)−1

+

(
ASC

cSC

cSC0

)4/7

+

(
Aselfa

(k,k) ρ
(r,k)

ρ0

)1/2

+

 K∑
k′=1
k′ ̸=k

Aobsa
(k,k′) ρ

(r,k′)

ρ0


1/2

−Adis
ρ(r,k)

ρ0

 (8)

with non-dimensional coefficients Ad, ASC , Aself , Aobs and Adis characterizing different interaction statistics.

2.3. Macroscopic elastoplastic response
The macroscopic response of the polycrystalline solid is defined as the relation between the time histo-

ries of the average strain ε(t) = ⟨ε(x, t)⟩ and average stress σ(t) = ⟨σ(x, t)⟩ over the representative volume
element and a given time interval 0 ≤ t ≤ T (e.g., Michel and Suquet, 2004). Typically, the macroscopic
response is determined by prescribing one of the time histories and computing the other. If ε(t) is pre-
scribed, σ(t) must be computed by averaging the stress field that results from solving the field equations
for the displacement field u(x, t) within the representative volume element with affine boundary conditions,
integrated over time from a certain initial state. Specifically, the field equations are

∇ · σ = 0, ε̇ = ∇⊗s u̇, u̇ = ε̇x+ u̇′, (9)

where σ and ε̇ must satisfy the constitutive relations spelled out in the previous subsection, and u′ is a
displacement field that vanishes on the boundary of the representative volume element. The internal state of
the solid is characterized by the collection of N ×K dislocation density fields {ρ(r,k)}, which play the role of
internal variables evolving with a law of the form (8). The total dislocation density within the representative
volume element is then given by

ρ(t) =

N∑
r=1

K∑
k=1

c(r)⟨ρ(r,k)(x, t)⟩(r). (10)

2.4. Material parameters for untextured bainitic steels at low temperatures
The present study is restricted to untextured equi-axed polycrystals. Thus, volume fractions are set to

c(r) = 1/N , multi-point probabilities are assumed isotropic functions of relative positions within the repre-
sentative volume element, and rotation tensors Q(r) are specified in terms of Euler angles set in accordance
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symbol parameter value unit

κ bulk modulus 175 GPa

µ shear modulus 81 GPa

γ̇0 reference slip rate 6.3× 10−16 s−1

τ0 reference viscous shear stress 94 kPa

τcr reference critical shear stress 300 MPa

d/d0 ferrite lath package size parameter 8.3 –

ρ0 characteristic dislocations density 2.24 1014 m−2

Ad grain size obstacle 0.015 –

ASC solute clusters obstacle 94.8 –

Aself dislocation obstacle (same system) 11.9 –

Aobs dislocation obstacle (different systems) 107.4 –

Adis thermal activation and anhilation parameter 5.93 –

c1 interaction matrix coefficient 0.1 –

c2 interaction matrix coefficient 0.7 –

Table 2: Material parameters

with a Sobol sequence of N entries (e.g., Lebensohn et al., 2011). The number of grain orientations is set
to N = 100. The above crystal plasticity law pertains to neutron-irradiated bainitic steels deforming at
subfreezing temperatures. Thus, crystals are assumed to glide along the twelve slip systems ⟨111⟩{110}
(K = 12) and numerical values for the various material parameters are taken from the works of Monnet et
al. (2019) and Chaix (2023) for -100◦C and are quoted in Tables 1 & 2. The ratio cSC/cSC0, in turn, is set
in Section 5 below for specific radiation doses. Material behavior at such low temperatures is particularly
relevant for characterizing ductile-to-brittle transitions (e.g., Chakraborty and Biner, 2014). Finally, the
original law of Monnet et al. (2019) defines the critical stress (5) with β = 1, but the lower value β = 0.7 is
adopted here to ease numerical computations. In this connection, it is noted that expression (5) produces a
critical stress level that varies with resolved shear stress from an initial value

τ (r,k)c = τHP +

√
τ2SC + τ

(r,k)2

self + βτ
(r,k)2

obs (11)

to a saturation value

τ (r,k)c = τHP +

√
τ2SC + τ

(r,k)2

self . (12)

Thus, the incremental response is independent of the coefficient β deep in the plastic range.

3. Full-field descriptions based on a Fast Fourier Transform algorithm

Full-field descriptions for the above polycrystalline solids are generated here by regarding them as periodic
media with unit cells of cubic shape and sufficient microgeometrical intricacy. Granular morphologies are
generated by Voronoi tessellations with N = 100 seeds distributed in such a way as to optimize uniformity
of volume fractions among grains. Each grain is then randomly assigned one of the crystal orientations of
the Sobol sequence. Figure 1 shows ten unit cells with different microgeometries.

Following Moulinec and Suquet (1994), the equilibrium equations of Section 2.3, with the crystal plasticity
law of Section 2.2 and periodicity conditions on u′, are then discretized in time and space, and solved by a
fixed-point method using an implicit Euler scheme and a Fast Fourier Transform algorithm with a cubic grid
as implemented in the computer code CraFT. The so-called ‘basic’ scheme of the code allowing for mixed
loading conditions is employed to ensure strain compatibility.
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Figure 1: Ten microgeometries employed for the full-field descriptions.

4. Mean-field descriptions

Mean-field descriptions for the above polycrystalline solids are confected here by resorting to two simpli-
fying approximations of common use. Firstly, the homogenization operation on the elastoplastic response
is carried out in a decoupled fashion wherein the elastic and plastic deformations are treated separately.
Secondly, the dislocation density fields are assumed uniform within all grains with a given orientation r. To
expound the rationale behind these approximations, the elastoplastic strain rate (1) at a given instant of
the deformation process within any given crystal with orientation r is written as

ε̇ =
σ̇m

3κ
I+

1

2µ
σ̇d +

K∑
k=1

γ̇(r,k)
(
σd · µ(r,k), {ρ(r,k)}

)
µ(r,k) (13)

where σm = trσ/3 and σd = σ − σmI are the mean and deviatoric parts of the stress, respectively, and the
functions γ̇(r,k) give the plastic slip rates in terms of the resolved shear stresses and dislocation densities
{ρ(r,k)} by the constitutive relations (3)-(7). The concomitant evolution laws for the dislocation densities
are in turn written as

ρ̇(r,k) =
∣∣∣γ̇(r,k)

(
σd · µ(r,k), {ρ(r,k)}

)∣∣∣ R(k)
({

ρ(r,k)
})

, (14)

where the functions R(k) are defined by the right-hand side of (8).
Expression (13) is now averaged over the representative volume element to obtain the macroscopic strain-

rate-stress relation

ε̇ =
σ̇m

3κ
I+

1

2µ
σ̇d + Ė

[
σd,

{
ρ(r,k)

}]
(15)

with

Ė
[
σd,

{
ρ(r,k)

}]
=

N∑
r=1

K∑
k=1

c(r)
〈
γ̇(r,k)

(
σd · µ(r,k), {ρ(r,k)}

)
µ(r,k)

〉(r)

. (16)

Then, the macroscopic strain-rate-stress relation (15) is approximated by a similar relation but with the
functional (16) replaced by the function

˙̃
E
(
σd,

{
ρ(r,k)

})
=

N∑
r=1

K∑
k=1

c(r)
〈
γ̇(r,k)

(
σd · µ(r,k), {ρ(r,k)}

)
µ(r,k)

〉(r)

, (17)
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where the pointwise varying fields ρ(r,k) have been replaced by the piecewise uniform fields
∑N

r=1 χ
(r)(x)ρ(r,k),

the deviatoric stress field σd(x) is now solution to the equilibrium equations in an elastically rigid poly-
crystal with ⟨σd⟩ = σd and intraphase isochoric strain rates given by the averaged terms in (16), and the
dislocation densities evolve with some approximation of (14) in terms of piecewise uniform slip-rate measures∑N

r=1 χ
(r)(x)Γ̇

(r,k)
, to be suitably chosen, according to

ρ̇
(r,k)

= Γ̇
(r,k)

R(k)
({

ρ(r,k)
})

. (18)

Approximate stress-strain-rate relations can now be generated by estimating the function (17) with nonlinear
homogenization schemes for N -phase media. These schemes can also deliver estimates for the first and second
moments of the intraphase field distributions. Estimates for the first and second moments of the intraphase
plastic slips can thus be employed in the choice of slip-rate measures for the evolution of the dislocation
densities. On the other hand, it is noted that the approximation (17) entails a separate treatment of elastic
and plastic deformations in the homogenization process; mean-field descriptions based on this decoupling
approximation are therefore unable to provide rigorous intragranular statistics of the strain and stress fields
(e.g., Idiart and Lahellec, 2016; Zecevic and Lebensohn, 2020).

4.1. Elementary schemes of the Sachs and Taylor type
Elementary schemes provide simple references against which other schemes can be compared. The

elementary scheme of the Sachs type amounts to evaluating the function (17) and concommitant evolution
law (18) at a uniform stress field given by its macroscopic value σd. Thus, the function (17) is approximated
by

˙̃
ES

(
σd,

{
ρ(r,k)

})
=

N∑
r=1

K∑
k=1

c(r)γ̇(r,k)
(
σd · µ(r,k), {ρ(r,k)}

)
µ(r,k), (19)

and the slip-rate measures in (18) are identified with

Γ̇
(r,k)

S =
∣∣∣γ̇(r,k)

(
σd · µ(r,k), {ρ(r,k)}

)∣∣∣ . (20)

In turn, the elementary scheme of the Taylor type amounts to evaluating the function (17) and concommi-
tant evolution law (18) at a uniform plastic strain field. Thus, the function (17) is in this case approximated
by a function ˙̃

ET (σd, {ρ(r,k)}) defined through the system of algebraic equations

N∑
r=1

c(r)σ
(r)
d = σd and

K∑
k=1

γ̇(r,k)
(
σ

(r)
d · µ(r,k), {ρ(r,k)}

)
µ(r,k) =

˙̃
ET r = 1, ..., N, (21)

for the function value ˙̃
ET and the average deviatoric stresses σ

(r)
d , and the slip-rate measures in (18) are

identified with

Γ̇
(r,k)

T =
∣∣∣γ̇(r,k)

(
σ

(r)
d · µ(r,k), {ρ(r,k)}

)∣∣∣ . (22)

4.2. A linear-comparison scheme of the Self-Consistent type
Elementary schemes of the Sachs and Taylor type depend on intragranular field statistics of first order

only. To improve accuracy, refined schemes incorporate statistics of second order. In this work we employ the
fully optimized second-order homogenization scheme of Ponte Castañeda (2015). This scheme approximates
the function (17) by

˙̃
EFOSO

(
σd,

{
ρ(r,k)

})
= M̃

(
σd,

{
ρ(r,k)

})
σd + η̃

(
σd,

{
ρ(r,k)

})
, (23)
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where the tensor functions M̃ and η̃ represent the effective properties of a linear-comparison polycrystal
with the same microgeometry as the original polycrystal but with linear local responses of the form ε̇d =
M(r)σd + η(r) characterized by

M(r) =

K∑
k=1

1

2m(r,k)
µ(r,k) ⊗ µ(r,k) and η(r) =

K∑
k=1

η(r,k)µ(r,k) (24)

with

1

2m(r,k)
=

γ̂(r,k) − γ̆(r,k)

τ̂ (r,k) − τ̆ (r,k)
and η(r,k) = γ̆(r,k) − τ̆ (r,k)

2m(r,k)
. (25)

In these last expressions, the various resolved stresses and slip rates depend on σd and
{
ρ(r,k)

}
through the

first and second moments of the stress field within the grains; they can be written as

τ̂ (r,k) = τ (r,k) +

√
τ
(r,k)2 − τ (r,k)

2 and τ̆ (r,k) = τ (r,k) −
√
τ
(r,k)2 − τ (r,k)

2
, (26)

γ̂(r,k) = γ̇(r,k)
(
τ̂ (r,k), {ρ(r,k)}

)
and γ̆(r,k) = γ̇(r,k)

(
τ̆ (r,k), {ρ(r,k

′)}
)
, (27)

where

τ (r,k) = µ(r,k) · ⟨σd⟩(r) and τ
(r,k)

=
√
µ(r,k) · ⟨σd ⊗ σd⟩(r)µ(r,k). (28)

The local crystal plasticity law in this linear-comparison polycrystal is of the form γ̇(r,k) = σd·µ(r,k)/(2m(r,k))+
η(r,k). Thus, relations (25) constitute a secant linearization of the non-linear stress-slip-rate response of the
crystals that incorporates intragranular stress statistics of up to second order through the standard devia-
tions of the resolved shear stresses SD(r,k)(τ) = (τ

(r,k)2 − τ (r,k)
2

)1/2, see fig. 2. These stress statistics can
be computed from the effective properties of the linear-comparison polycrystal through the identities

⟨σd⟩(r) =
1

c(r)
∂ũ

∂η(r)
and ⟨σd ⊗ σd⟩(r) =

2

c(r)
∂ũ

∂M(r)
, (29)

where ũ is an effective stress potential of the linear-comparison polycrystal of the form

ũ
(
σd, {M(r)}, {η(r)}

)
=

1

2
σd · M̃σd + η̃ · σd +

1

2
g̃. (30)

The effective properties M̃, η̃ and g̃ must be estimated by some suitable linear homogenization scheme
for N -phase media. The so-called Self-Consistent scheme of Laws (1973) and Willis (1981) is known to be
particularly suitable for polycrystalline media of the type considered in this work; expressions are recalled
in Appendix A for convenience. Finally, the first and second moments of the intragranular slip rates can be
computed as

γ(r,k) =
τ (r,k)

2m(r,k)
+ η(r,k) and γ

(r,k)
=

√
τ
(r,k)2

4m(r,k)2
+

η(r,k) τ (r,k)

m(r,k)
+ η(r,k)2 . (31)

Therefore, the mathematical structure of this second-order homogenization scheme suggests four natural

choices for the slip-rate measures Γ̇
(r,k)

FOSO dictating the evolution of dislocation densities: |γ(r,k)|, |γ̆(r,k)|,
|γ̂(r,k)|, and γ

(r,k). Each choice generates a different set of predictions as discussed in Section 5 below. Note
that the nonlinear local behavior of the grains enter the homogenization scheme only through relations (27)
and evolution equations (18); the scheme is thus easily adapted to other types of local behaviors.

Evaluating the function (23) requires, therefore, the solution of a system of non-linear algebraic equations
for the 2×N ×K linear-comparison local properties m(r,k) and η(r,k), coupled with the system of non-linear
algebraic equations for the linear-comparison effective properties (A.5). Fixed-point methods are employed
for that purpose in the present study. In turn, time integration of the evolution equations (18) is carried
out by means of an implicit Euler scheme with fixed time stepping.
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Figure 2: Schematic of the linearization employed by the second-order homogenization scheme of Ponte Castañeda (2015).

4.3. A simpler linear-comparison scheme of the Self-Consistent type
A simpler version of the above linear-comparison homogenization scheme is available from the earlier

work of DeBotton and Ponte Castañeda (1995). This simpler scheme employs a secant linearization about
the second moments of the intraphase stresses rather than the generalized-secant linearization (25) based
on first and second moments. It approximates the function (17) by

˙̃
ESEC

(
σd,

{
ρ(r,k)

})
= M̃

(
σd,

{
ρ(r,k)

})
σd, (32)

where the tensor function M̃ is given by the Self-Consistent estimate (A.5) for the effective property of a
linear-comparison polycrystal with the same microgeometry as the original polycrystal but with linear local
responses of the form ε̇d = M(r)σd with M(r) characterized by the above formulae with τ̆ (r,k) = 0 and
τ̂ (r,k) = τ

(r,k). The dislocation densities can then be updated by identifying slip-rate measures Γ
(r,k)

SEC with
|γ(r,k)| as given by (31)1.

5. Sample results and discussion

Sample results are reported for specimens subject to uniaxial tension under four different scenarios: (a)
unirradiated specimens loaded at a low rate, (b) irradiated specimens loaded at a low rate, (c) unirradiated
specimens loaded at a high rate, (d) irradiated specimens loaded at a high rate. Unirradiated specimens
have no solute clusters so that cSC = 0, while irradiated specimens have a solute cluster content cSC =
8.8 × 10−2cSC0 associated with a high fluence. In turn, the low and high loading rates are respectively
σ̇e = µε̇0 and σ̇e = 100µε̇0, ε̇0 = 2 × 1010γ̇0 is a characteristic macroscopic strain rate. Henceforth,
σe =

√
(3/2)σd · σd and εe =

√
(2/3)εd · εd denote the von Mises equivalent stress and strain, respectively.

Initially, undeformed specimens are free of residual stresses and contain an equal amount of dislocation
densities ρinit = 2.0× 10−2ρ0 on all slip systems.

Full-field simulations for unirradiated specimens subject to uniaxial tension at low loading rate are shown
in fig. 3. Traction curves in the form of equivalent stress versus equivalent strain, respectively normalized by
τcr and γcr = τcr/µ, together with the concomitant evolution of total dislocation density, normalized by its
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a) b)

c) d)

Figure 3: Full-field simulations for unirradiated specimens subject to uniaxial tension at low loading rate: (a) traction curves
and (b) total dislocation densities for a single realization discretized with 93, 193, 283, 373, 473, and 563 voxels per unit cell;
(c) traction curves and (d) total dislocation densities for ten realizations discretized with 473; symbols correspond to the most
representative realization.
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initial value ρinit = 12ρinit, are displayed in parts (a) & (b) for the first realization of fig. 1 discretized with
93 (23), 193 (43), 283 (63), 373 (83), 473 (103), and 563 (123) voxels per unit cell (per grain), respectively.
Convergence tolerances of 10−3 were required on equilibrium and loading conditions. A weak sensitivity to
discretization is observed. It is concluded that 473 voxels per unit cell suffices for the purposes of this study.
Corresponding curves are thus displayed in parts (c) & (d) for the ten realizations of fig. 1, discretized with
473 voxels. The spread among responses is seen to be quite small. Thus, the most representative realization
of the ensemble is identified and exclusively considered in the comparisons henceforth.

Traction curves for the four scenarios are displayed in fig. 4. In turn, the slopes of these curves and the
concomitant evolutions of total dislocation density are displayed in figs. 5 and 6, respectively. The second-
order (FOSO) homogenization scheme is compared with the elementary homogenization schemes of Sachs
and Taylor along with the full-field simulations (FFT). We begin by noting that full-field simulations exhibit
traction curves with pronounced elastoplastic transitions and subsequent plastic hardening. Stresses at which
elastoplastic transitions occur show an appreciable increase with loading rate and radiation dose, while plastic
hardening rates deep in the plastic range show a similar trend albeit of weaker magnitude. Plastic flow is
seen to be accompanied by a pronounced non-convex growth of dislocation densities. This growth becomes
approximately linear with overall deformation deep in the plastic range, and is faster under radiation but
quite indifferent to loading rate, at least when evaluated versus macroscopic deformation. Relative to these
numerically exact predictions, approximate mean-field predictions delivered by the elementary schemes of
Sachs and Taylor are seen to be quite inaccurate. It is recalled that, for certain classes of constitutive
laws, these elementary schemes deliver lower and upper bounds on the macroscopic flow stress, and the
gap between the bounds can be regarded as a measure of local constitutive heterogeneity (e.g., Ponte
Castañeda and Suquet, 1998). In the present context, elementary estimates differ appreciably not only in
terms of the initial flow stresses but also in terms of the plastic hardening rates. Thus, differences between
the predicted flow stresses intensify with deformation. Interestingly, the hardening rates exhibited by the
Taylor bound can evolve non-monotonically during the elastoplastic transition. This non-monotonocity
could be ascribed to the presence of an ‘apparent’ macroscopic hardening associated with microstructural
heterogeneity alongside the strain hardening associated with the evolution of dislocation densities. The
Sachs bound, by contrast, does not incorporate an apparent hardening due to the assumed uniformity of
the underlying stress field and therefore exhibits a monotonically decreasing slope in all cases. Similar
trends are observed in the corresponding estimates for the total dislocation densities. To further assess the
need of refined schemes to properly describe these material systems, figs. 4a & 6a also display predictions
generated by the secant linear-comparison scheme (SEC) of Section 4.3. It is recalled that, for certain
classes of constitutive laws, this scheme delivers upper bounds on the flow stresses predicted by any other
linear-comparison scheme of the Self-Consistent type (e.g., Ponte Castañeda and Suquet, 1998). This is
the reason why the resulting predictions are closer to those of the Taylor scheme than to those of the full-
field descriptions. Similar trends result from the use of the first-order homogenization scheme of Berveiller
and Zaoui (1978) as reported by Monnet et al. (2019). The potential benefits of a refined, albeit more
complicated, second-order homogenization scheme are therefore evident.

Song and Ponte Ponte Castañeda (2018) found that the second-order homogenization scheme of Section
4.2 can reproduce full-field simulations for the viscoplastic flow of hexagonal polycrystals quite accurately.
Previous works such as that of Lebensohn et al. (2007) had already found an earlier version of this second-
order scheme capable of reproducing full-field simulations for the viscoplastic flow of hexagonal as well as
cubic polycrystals. In line with those findings, the most accurate predictions for all scenarios considered in
the present context are seen indeed to be those generated by that second-order homogenization scheme, re-
gardless of the choice of slip-rate measure employed for the evolution of dislocation densities. We refer to the
four variants of these second-order estimates as FOSO(γ), FOSO(γ̆), FOSO(γ̂) and FOSO(γ), see Section
4.2. These variants are seen to be indistinguishable during the elastic response and the initial elastoplastic
transition, but are seen to diverge from one another as plastic deformations develop. In fact, the FOSO(γ)
and FOSO(γ) estimates exhibit non-monotonic hardening rates like the Taylor bound, while the FOSO(γ̆),
FOSO(γ̂) estimates exhibit monotonic hardening rates like the FFT results. Interestingly, their relative
merits depend on the standpoint adopted. The FOSO(γ) estimates based on standard first-order intra-
granular statistics delivers the most accurate predictions for the macroscopic flow stress deep in the plastic
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a) b)

c) d)

Figure 4: Traction curves for: (a) unirradiated specimens loaded at a low rate, (b) irradiated specimens loaded at a low
rate, (c) unirradiated specimens loaded at a high rate, (d) irradiated specimens loaded at a high rate. Full-field simulations
(FFT) are compared with elementary homogenization schemes of the Sachs and Taylor types, and the second-order (FOSO)
homogenization scheme of the Self-Consistent type. Also included in part (a) is the secant (SEC) homogenization scheme of
the Self-Consistent type.
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a) b)

c) d)

Figure 5: Slopes of traction curves for: (a) unirradiated specimens loaded at a low rate, (b) irradiated specimens loaded at a
low rate, (c) unirradiated specimens loaded at a high rate, (d) irradiated specimens loaded at a high rate. Full-field simulations
(FFT) are compared with elementary homogenization schemes of the Sachs and Taylor types, and the second-order (FOSO)
homogenization scheme of the Self-Consistent type.
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a) b)

c) d)

Figure 6: Total dislocation densities, normalized by its initial value, for: (a) unirradiated specimens loaded at a low rate, (b)
irradiated specimens loaded at a low rate, (c) unirradiated specimens loaded at a high rate, (d) irradiated specimens loaded
at a high rate. Full-field simulations (FFT) are compared with elementary homogenization schemes of the Sachs and Taylor
types, and the second-order (FOSO) homogenization scheme of the Self-Consistent type.
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a) b)

Figure 7: Maximum and minimum values among all (a) resolved stresses and (b) slip rates employed by the FOSO(γ̆) (continuous
lines) and FOSO(γ̂) (dotted lines) estimates in unirradiated specimens loaded at a low rate.

range, at least for the range of deformations considered. However, this is probably due to a compensation of
inaccuracies. Indeed, all second-order estimates overestimate flow stresses in the elastoplastic transition as
a consequence of the decoupled homogenization of elastic and plastic deformations. The FOSO(γ) estimates
compensate this overestimation with the peculiar evolution of the plastic hardening rate. By contrast, the
alternative FOSO(γ̆) and FOSO(γ̂) estimates based on intragranular slip rate fluctuations deliver somewhat
less accurate predictions for the flow stress but the most accurate predictions for the plastic hardening
rate deep in the plastic range. Thus, this accurate hardening rate does not compensate the inaccuracies
induced on flow stresses by the elastoplastic decoupling. From a practical standpoint prioritizing accuracy
of flow stresses, FOSO(γ) estimates appear to be preferable; from a theoretical standpoint, however, the
alternative FOSO(γ̆) and FOSO(γ̂) estimates should be regarded as most befitting. If combined with a
coupled homogenization of elastic and plastic deformations (e.g., Lahellec and Suquet, 2013; Das and Ponte
Castañeda, 2021), the alternative choices γ̆ and γ̂ for updating dislocation densities are likely to generate
the most accurate predictions. In fact, these alternative estimates are already seen to deliver the most
accurate predictions for the total dislocation density within the entire range of loading rates and radiation
doses considered. Figure 7 shows plots for the maximum and minimum values among all resolved stresses
(
{
τ̆ (r,k)

}
,
{
τ̂ (r,k)

}
) and slip rates (

{
γ̆(r,k)

}
,
{
γ̂(r,k)

}
) associated with the FOSO(γ̆) and FOSO(γ̂) estimates

in unirradiated specimens loaded at a low rate. An approximately specular symmetry about zero is observed
between the two sets of curves. This is a consequence of the opposing signs in the definitions (26) for the
resolved stresses τ̆ (r,k) and τ̂ (r,k), and, together with the fact that dislocation density rates are proportional
to the absolute values |γ̆(r,k)| or |γ̂(r,k)|, it explains the similitudes between predictions generated by the
two types of estimates. Finally, the FOSO(γ) estimates based on the second moments of the intragranular
slip rates are seen to be the least accurate among the second-order estimates: they overestimate plastic
hardening rate and therefore flow stresses deep in the plastic range, and significantly overestimate the total
dislocation density, even in excess of the Taylor estimates. Additional comparisons have also been per-
formed with an alternative set of material parameters corresponding to higher subfreezing temperatures.
The FOSO(γ̆) and FOSO(γ̂) estimates are found to outperform the other estimates even more notably,
providing accurate predictions not only for the hardening rates but also for the flow stresses (Chaix, 2023).
It is noted, however, that the most relevant choice of slip-rate measures for the description of hardening may
be contingent on the specific crystal plasticity law. For instance, Suquet and Lahellec (2014) have advocated
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for the use of the second moments of intragranular plastic slip and have verified its suitability for certain
crystal plasticity laws describing transient creep in ice. On the other hand, Castelnau et al. (2006) reported
mean-field descriptions of the self-consistent type for two-dimensional model polycrystals exhibiting linearly
viscous slip rates with linearly hardening flow stresses and observed that the predicted stress-strain response
was relatively insensitive to the use of slip-rate measures employing statistical information beyond the first
moments. It would not be surprising that higher-order slip-rate measures may result progressively more
relevant as the crystal plasticity law is increasingly nonlinear.

In conclusion, second-order homogenization estimates based on a generalized-secant linearization are
found to provide an appropriate compromise between precision and mathematical complexity to generate
mean-field descriptions for the elastoplastic response of polycrystalline media governed by complex crystal
plasticity laws. Most accurate descriptions should result from the combined use of a generalized-secant
linearization of the crystal plasticity law, a slip-rate measure incorporating information on intragranular slip-
rate fluctuations for the evolution of the dislocation densities, and a coupled homogenization of the elastic
and plastic deformations. Strategies to incorporate this last feature in the above mean-field descriptions for
neutron-irradiated bainitic steels are currently under investigation.
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Appendix A. The Self-Consistent scheme

Self-consistent estimates for thermoelastic systems are available from the works of Laws (1973) and Willis
(1981). They can be written as

M̃ =

N∑
r=1

c(r)M(r)B(r), η̃ =

N∑
r=1

c(r)B(r)T η(r), and g̃ =

N∑
r=1

c(r)b(r) · η(r), (A.1)

where B(r) and b(r) are concentration tensors given by

B(r) =
(
M(r) + M̃∗

)−1 (
M̃+ M̃∗

)
and b(r) =

(
M(r) + M̃∗

)−1 (
η̃ − η(r)

)
. (A.2)

In this last expression, M̃∗ = Q̃−1 − M̃ where Q̃ is a microstructural tensor that depends on M̃ and on the
‘shape’ of the two-point correlation functions for the distribution of the grain orientations. The polycrystals
considered in this work are ‘equi-axed’ and untextured so that the two-point correlation functions exhibit
isotropic symmetry. In this case,

Q̃ = L̃− L̃P̃L̃ with P̃ =
1

4π

∫
|ξ|=1

H̃(ξ) dS, (A.3)

where L̃ = M̃−1, and the components of H̃(ξ) are given in terms of the components of the accoustic tensor
K̃ik = L̃ijklξjξl by

H̃klmn = K̃−1
km ξl ξn −

K̃−1
ko K̃

−1
mp ξo ξp ξl ξn

ξaK̃
−1
ab ξb

∣∣∣∣∣
(kl)(mn)

. (A.4)

Finally, M̃ solves the implicit equation

(
M̃+ M̃∗

)−1

=

N∑
r=1

c(r)
(
M(r) + M̃∗

)−1

, (A.5)

which follows from the combination of expressions (A.1)1 and (A.2)1. In all the above expressions, the
inverse of fourth-order tensors is defined in the subset of incompressible compliance tensors. Expressions for
the derivatives required by the identities (29) can be found in Liu (2003).
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