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Homogenized descriptions are provided for polycrystalline solids deforming in accordance with certain crystal plasticity laws recently proposed for neutron-irradiated bainitic steels. These laws express intragranular plastic slip rates in terms of resolved shear stresses and key microstructural features, such as densities of forest dislocations and of solute clusters, for a wide range of deformation rates, temperatures, and radiation doses. The elastic domain is delimited by thresholds on the resolved stresses that depend on dislocation densities in an intricate manner, and the plastic hardening is described by evolution laws of the Mecking-Kocks type for the dislocation densities with plastic slip. However, thresholds also depend nonlinearly on the resolved stresses themselves. Full-field homogenized descriptions are generated with a Fast Fourier Transform algorithm implemented in the computer code CraFT, while mean-field homogenized descriptions are generated by means of a linear-comparison scheme based on a generalized-secant linearization of the crystal plasticity laws. Multiple ways of accounting for plastic hardening in the mean-field descriptions are explored. Sample results are reported in the form of uniaxial traction curves and concomitant dislocation density evolutions under different scenarios. Overall, the generalized-secant linearization is found to provide an appropriate compromise between precision and mathematical complexity to generate homogenized descriptions for the elastoplastic response of polycrystalline media governed by complex crystal plasticity laws.

Introduction

The elastoplastic behavior of polycrystalline alloys is often described by physically based crystal plasticity laws with complex hardening rules (e.g., [START_REF] Segurado | Computational homogenization of polycrystals[END_REF]. On the other hand, rigorous mean-field homogenization schemes for up-scaling crystal plasticity laws often neglect elastoplastic interactions and plastic hardening to enable the use of variational approximations (e.g., [START_REF] Dendievel | Bounds for the creep behaviour polycrystalline materials[END_REF][START_REF] Debotton | Variational estimates for the creep behaviour polycrystals[END_REF][START_REF] Bornert | Second-order estimates of the Self-Consistent type for viscoplastic polycrystals[END_REF][START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF][START_REF] Ponte Castañeda | Fully optimized second-order variational estimates for the macroscopic response and field statistics in viscoplastic crystalline composites[END_REF]. A few strategies to incorporate those features into variational mean-field schemes have been pursued notwithstanding, at the expense of introducing ad-hoc approximations adapted to the particular hardening rule being considered (e.g., [START_REF] Masson | An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals[END_REF][START_REF] Lebensohn | Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations[END_REF][START_REF] Suquet | Elasto-plasticity of heterogeneous materials at different scales[END_REF].

The purpose of this work is to adapt a particular mean-field homogenization scheme to crystal plasticity laws of the type proposed by [START_REF] Monnet | Multiscale modeling of crystal plasticity in Reactor Pressure Vessel steels: Prediction of irradiation hardening[END_REF] for certain neutron-irradiated bainitic steels employed in nuclear reactor pressure vessels. These laws express intragranular plastic slip rates in terms of resolved shear stresses and key microstructural features, such as densities of forest dislocations and of solute clusters, for a wide range of deformation rates, temperatures, and radiation doses. The elastic domain is delimited by thresholds on the resolved stresses that depend on dislocation densities in an intricate manner, and the plastic hardening is described by evolution laws for the dislocation densities with plastic slip of the type proposed by [START_REF] Kocks | Physics and phenomenology of strain hardening: the FCC case[END_REF]. However, thresholds also depend nonlinearly on the resolved stresses themselves. Mean-field homogenized descriptions are generated here by means of a linear-comparison scheme based on a generalized secant linearization as proposed by Ponte Castañeda (2015). When applied to crystal plasticity laws that derive from a dissipation potential, this scheme exhibits full stationarity with respect to the properties of the linear-comparison polycrystal. The stress-strain-rate relation estimated directly from the linear-comparison polycrystal is thus expected to provide meaningful predictions even when the underlying crystal plasticity law does not derive from a potential. The scheme also delivers estimates for intragranular statistics of the mechanical fields of first and second order. This additional information is required to estimate the evolution of dislocation densities and ensuing plastic hardening. Following common practice, first-order statistics of plastic slip rates are employed. However, three alternative strategies incorporating second-order statistics are explored. Elementary schemes of the Sachs and Taylor type are also considered. Finally, full-field homogenized descriptions are generated with a Fast Fourier Transform-based algorithm implemented in the computer code CraFT of Moulinec andSuquet (1994, 1998). Elementary schemes and full-field descriptions provide references against which the mean-field descriptions can be assessed. To that end, quantitative comparisons are reported in the form of uniaxial traction curves and concomitant dislocation density evolutions under different scenarios.

Throughout the presentation, the symbol ∇ denotes the nabla operator, the symbol "•" denotes the scalar product between vectors as well as tensors, the symbols ⊗ and ⊗ s denote the tensor product between vectors as well as tensors and its symmetric part, respectively, the symbols I and I denote the second-order and fourth-order symmetric identity tensors, J and K are the standard fourth-order hydrostatic and shear projection tensors, and the overdot ( •) denotes time differentiation.

The polycrystalline solid model

Microgeometry

Polycrystals are regarded here as random aggregates of perfectly bonded single crystals or grains. Individual grains are assumed to be of a similar size, much smaller than the specimen size and the scale of variation of the applied loads. Furthermore, the aggregates are assumed to have statistically uniform and ergodic microstructures.

Let the grain orientations within a representative volume element take on a set of N discrete values, characterized by rotation tensors Q (r) (r = 1, ..., N ) relative to a reference system. All grains with a given orientation occupy a disconnected domain Ω (r) and are collectively referred to as 'phase' r. The domain occupied by the polycrystal is then Ω = ∪ N r=1 Ω (r) . Volume averages over the aggregate Ω and over each phase Ω (r) will be denoted by ⟨•⟩ and ⟨•⟩ (r) , respectively. The domains Ω (r) can be described by a set of characteristic functions χ (r) (x), which take the value 1 if the position vector x is in Ω (r) and 0 otherwise. In view of the microstructural randomness, the functions χ (r) are random variables that must be characterized in terms of ensemble averages [START_REF] Willis | The overall elastic response of composite materials[END_REF]. Due to the assumed statistical uniformity and ergodicity, one-point probabilities can be identified with the volume fractions -or concentrationsc (r) = ⟨χ (r) (x)⟩ of each phase r, two-point probabilities can be identified with the volume averages ⟨χ (r) (x)χ (s) (x ′ )⟩, and so on.

Microscopic elastoplastic response

Grains are assumed to individually deform by multi-glide along K slip systems so that the strain rate at any given point within a crystal with orientation r is given by the additive composition

ε = εel + K k=1 γ(r,k) µ (r,k) , (1) 
where the first term refers to an elastic strain rate, and the second term refers to a plastic strain rate that results from dislocation gliding along the K slip systems with Schmid tensors µ (r,k) = m (r,k) ⊗ s n (r,k) defined in terms of the unit normals n (r,k) = Q (r) n (k) and glide directions m (r,k) = Q (r) m (k) . For simplicity, the elastic response is assumed linear and isotropic [START_REF] Monnet | Multiscale modeling of crystal plasticity in Reactor Pressure Vessel steels: Prediction of irradiation hardening[END_REF], so

εel = S σ with S = 1 3κ J + 1 2µ K, ( 2 
)
where σ is the Cauchy stress tensor, and κ and µ are the bulk and shear moduli of the crystal, respectively. The elastic response is therefore spatially homogeneous. It is emphasized that elastic anisotropy could be easily accommodated by all the homogenized descriptions considered below but would not alter the conclusions of this study. The plastic response, on the other hand, is strongly nonlinear and anisotropic.

The shear rate along any given system is taken of the peculiar form [START_REF] Monnet | Multiscale modeling of crystal plasticity in Reactor Pressure Vessel steels: Prediction of irradiation hardening[END_REF])

γ(r,k) = γ0 sinh   τ (r,k) + τ 0   sgn(σ • µ (r,k) ), (3) 
where γ0 and τ 0 denote a reference strain rate and stress, respectively, and τ (r,k) + is an effective stress that depends non-linearly on the resolved shear stress σ • µ (r,k) through the equation

τ (r,k) + = |σ • µ (r,k) | -τ (r,k) c (τ (r,k) + ) + , (4) 
where [•] + = max{•, 0} denote the Macaulay brackets. In this last expression, τ

(r,k) c (τ (r,k) +
) is a critical stress level that depends on τ (r,k) + as

τ (r,k) c (τ (r,k) + ) = τ HP + τ 2 SC + τ (r,k) 2 self + β τ (r,k) obs -τ (r,k) + 2 + , (5) 
where β is a non-dimensional parameter introduced for numerical purposes, while

τ HP = τ cr d d 0 -1/2 and τ SC = τ cr c SC c SC0 4/7 (6)
are, respectively, characteristic stresses due to the Hall-Petch effect and the presence of solute clusters produced by the neutron radiation. These stresses are proportional to a reference critical stress τ cr , and depend on ferrite lath package size d and solute cluster concentration c SC ; d 0 and c SC0 are characteristic values for these quantities. In turn,

τ (r,k) self = τ cr a (k,k) ρ (r,k) ρ 0 1/2 and τ (r,k) obs = τ cr     K k ′ =1 k ′ ̸ =k a (k,k ′ ) ρ (r,k ′ ) ρ 0     1/2 (7)
are, respectively, stresses due to the dipolar interactions between dislocations belonging to the same slip system and to different slip systems as characterized by the interaction matrix a (k,k ′ ) and a characteristic

k 1 2 3 4 5 6 7 8 9 10 11 12 1 c 1 c 2 c 2 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 2 c 1 c 2 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 3 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 4 c 1 c 2 c 2 c 1 c 1 c 1 c 1 c 1 c 1 5 c 1 c 2 c 1 c 1 c 1 c 1 c 1 c 1 6 c 1 c 1 c 1 c 1 c 1 c 1 c 1 7 c 1 c 2 c 2 c 1 c 1 c 1 8 c 1 c 2 c 1 c 1 c 1 9 c 1 c 1 c 1 c 1 10 c 1 c 2 c 2 11 c 1 c 2 12 c 1
Table 1: Interaction matrix for the ⟨111⟩{110} slip familly dislocation density ρ 0 . The densities of dislocations ρ (r,k) belonging to each slip system, in turn, evolve with slip according to a classical Kocks-Mecking law of the form [START_REF] Kocks | Physics and phenomenology of strain hardening: the FCC case[END_REF])

ρ(r,k) = | γ(r,k) | ρ 0 A d d d 0 -1 + A SC c SC c SC0 4/7 + A self a (k,k) ρ (r,k) ρ 0 1/2 +     K k ′ =1 k ′ ̸ =k A obs a (k,k ′ ) ρ (r,k ′ ) ρ 0     1/2 -A dis ρ (r,k) ρ 0      (8) 
with non-dimensional coefficients A d , A SC , A self , A obs and A dis characterizing different interaction statistics.

Macroscopic elastoplastic response

The macroscopic response of the polycrystalline solid is defined as the relation between the time histories of the average strain ε(t) = ⟨ε(x, t)⟩ and average stress σ(t) = ⟨σ(x, t)⟩ over the representative volume element and a given time interval 0 ≤ t ≤ T (e.g., [START_REF] Michel | Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis[END_REF]. Typically, the macroscopic response is determined by prescribing one of the time histories and computing the other. If ε(t) is prescribed, σ(t) must be computed by averaging the stress field that results from solving the field equations for the displacement field u(x, t) within the representative volume element with affine boundary conditions, integrated over time from a certain initial state. Specifically, the field equations are

∇ • σ = 0, ε = ∇ ⊗ s u, u = εx + u′ , (9) 
where σ and ε must satisfy the constitutive relations spelled out in the previous subsection, and u ′ is a displacement field that vanishes on the boundary of the representative volume element. The internal state of the solid is characterized by the collection of N × K dislocation density fields {ρ (r,k) }, which play the role of internal variables evolving with a law of the form (8). The total dislocation density within the representative volume element is then given by r) . (10)

ρ(t) = N r=1 K k=1 c (r) ⟨ρ (r,k) (x, t)⟩ (

Material parameters for untextured bainitic steels at low temperatures

The present study is restricted to untextured equi-axed polycrystals. Thus, volume fractions are set to c (r) = 1/N , multi-point probabilities are assumed isotropic functions of relative positions within the representative volume element, and rotation tensors Q (r) with a Sobol sequence of N entries (e.g., [START_REF] Lebensohn | Dilatational viscoplasticity of polycrystalline solids with intergranular cavities[END_REF]. The number of grain orientations is set to N = 100. The above crystal plasticity law pertains to neutron-irradiated bainitic steels deforming at subfreezing temperatures. Thus, crystals are assumed to glide along the twelve slip systems ⟨111⟩{110} (K = 12) and numerical values for the various material parameters are taken from the works of [START_REF] Monnet | Multiscale modeling of crystal plasticity in Reactor Pressure Vessel steels: Prediction of irradiation hardening[END_REF] and [START_REF] Chaix | Modélisation micromécanique du comportement viscoplastique d'un polycristal[END_REF] for -100 • C and are quoted in Tables 1 &2. The ratio c SC /c SC0 , in turn, is set in Section 5 below for specific radiation doses. Material behavior at such low temperatures is particularly relevant for characterizing ductile-to-brittle transitions (e.g., [START_REF] Chakraborty | A unified cohesive zone approach to model the ductile to brittle transition of fracture toughness in reactor pressure vessel steels[END_REF]. Finally, the original law of [START_REF] Monnet | Multiscale modeling of crystal plasticity in Reactor Pressure Vessel steels: Prediction of irradiation hardening[END_REF] defines the critical stress (5) with β = 1, but the lower value β = 0.7 is adopted here to ease numerical computations. In this connection, it is noted that expression (5) produces a critical stress level that varies with resolved shear stress from an initial value

τ (r,k) c = τ HP + τ 2 SC + τ (r,k) 2 self + βτ (r,k) 2 obs (11)
to a saturation value

τ (r,k) c = τ HP + τ 2 SC + τ (r,k) 2 self . (12) 
Thus, the incremental response is independent of the coefficient β deep in the plastic range.

Full-field descriptions based on a Fast Fourier Transform algorithm

Full-field descriptions for the above polycrystalline solids are generated here by regarding them as periodic media with unit cells of cubic shape and sufficient microgeometrical intricacy. Granular morphologies are generated by Voronoi tessellations with N = 100 seeds distributed in such a way as to optimize uniformity of volume fractions among grains. Each grain is then randomly assigned one of the crystal orientations of the Sobol sequence. Figure 1 shows ten unit cells with different microgeometries.

Following [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear properties of composites[END_REF], the equilibrium equations of Section 2.3, with the crystal plasticity law of Section 2.2 and periodicity conditions on u ′ , are then discretized in time and space, and solved by a fixed-point method using an implicit Euler scheme and a Fast Fourier Transform algorithm with a cubic grid as implemented in the computer code CraFT. The so-called 'basic' scheme of the code allowing for mixed loading conditions is employed to ensure strain compatibility. 

Mean-field descriptions

Mean-field descriptions for the above polycrystalline solids are confected here by resorting to two simplifying approximations of common use. Firstly, the homogenization operation on the elastoplastic response is carried out in a decoupled fashion wherein the elastic and plastic deformations are treated separately. Secondly, the dislocation density fields are assumed uniform within all grains with a given orientation r. To expound the rationale behind these approximations, the elastoplastic strain rate (1) at a given instant of the deformation process within any given crystal with orientation r is written as

ε = σm 3κ I + 1 2µ σd + K k=1 γ(r,k) σ d • µ (r,k) , {ρ (r,k) } µ (r,k) (13) 
where σ m = trσ/3 and σ d = σ -σ m I are the mean and deviatoric parts of the stress, respectively, and the functions γ(r,k) give the plastic slip rates in terms of the resolved shear stresses and dislocation densities {ρ (r,k) } by the constitutive relations (3)-( 7). The concomitant evolution laws for the dislocation densities are in turn written as

ρ(r,k) = γ(r,k) σ d • µ (r,k) , {ρ (r,k) } R (k) ρ (r,k) , (14) 
where the functions R (k) are defined by the right-hand side of (8). Expression ( 13) is now averaged over the representative volume element to obtain the macroscopic strainrate-stress relation

ε = σm 3κ I + 1 2µ σd + Ė σ d , ρ (r,k) (15) 
with

Ė σ d , ρ (r,k) = N r=1 K k=1 c (r) γ(r,k) σ d • µ (r,k) , {ρ (r,k) } µ (r,k) (r) . (16) 
Then, the macroscopic strain-rate-stress relation ( 15) is approximated by a similar relation but with the functional (16) replaced by the function

˙ E σ d , ρ (r,k) = N r=1 K k=1 c (r) γ(r,k) σ d • µ (r,k) , {ρ (r,k) } µ (r,k) (r) , (17) 
where the pointwise varying fields ρ (r,k) have been replaced by the piecewise uniform fields N r=1 χ (r) (x)ρ (r,k) , the deviatoric stress field σ d (x) is now solution to the equilibrium equations in an elastically rigid polycrystal with ⟨σ d ⟩ = σ d and intraphase isochoric strain rates given by the averaged terms in ( 16), and the dislocation densities evolve with some approximation of ( 14) in terms of piecewise uniform slip-rate measures

N r=1 χ (r) (x) Γ(r,k)
, to be suitably chosen, according to

ρ(r,k) = Γ(r,k) R (k) ρ (r,k) . ( 18 
)
Approximate stress-strain-rate relations can now be generated by estimating the function ( 17) with nonlinear homogenization schemes for N -phase media. These schemes can also deliver estimates for the first and second moments of the intraphase field distributions. Estimates for the first and second moments of the intraphase plastic slips can thus be employed in the choice of slip-rate measures for the evolution of the dislocation densities. On the other hand, it is noted that the approximation (17) entails a separate treatment of elastic and plastic deformations in the homogenization process; mean-field descriptions based on this decoupling approximation are therefore unable to provide rigorous intragranular statistics of the strain and stress fields (e.g., [START_REF] Idiart | Estimates for the overall linear properties of pointwise heterogeneous solids with application to elasto-viscoplasticity[END_REF][START_REF] Zecevic | New robust self-consistent homogenization schemes of elasto-viscoplastic polycrystals[END_REF].

Elementary schemes of the Sachs and Taylor type

Elementary schemes provide simple references against which other schemes can be compared. The elementary scheme of the Sachs type amounts to evaluating the function ( 17) and concommitant evolution law (18) at a uniform stress field given by its macroscopic value σ d . Thus, the function ( 17) is approximated by

˙ E S σ d , ρ (r,k) = N r=1 K k=1 c (r) γ(r,k) σ d • µ (r,k) , {ρ (r,k) } µ (r,k) , (19) 
and the slip-rate measures in (18) are identified with

Γ(r,k) S = γ(r,k) σ d • µ (r,k) , {ρ (r,k) } . ( 20 
)
In turn, the elementary scheme of the Taylor type amounts to evaluating the function ( 17) and concommitant evolution law (18) at a uniform plastic strain field. Thus, the function ( 17) is in this case approximated by a function ˙ E T (σ d , {ρ (r,k) }) defined through the system of algebraic equations

N r=1 c (r) σ (r) d = σ d and K k=1 γ(r,k) σ (r) d • µ (r,k) , {ρ (r,k) } µ (r,k) = ˙ E T r = 1, ..., N, (21) 
for the function value ˙ E T and the average deviatoric stresses σ (r)

d , and the slip-rate measures in ( 18) are identified with

Γ(r,k) T = γ(r,k) σ (r) d • µ (r,k) , {ρ (r,k) } . ( 22 
)
4.2. A linear-comparison scheme of the Self-Consistent type Elementary schemes of the Sachs and Taylor type depend on intragranular field statistics of first order only. To improve accuracy, refined schemes incorporate statistics of second order. In this work we employ the fully optimized second-order homogenization scheme of Ponte [START_REF] Ponte Castañeda | Fully optimized second-order variational estimates for the macroscopic response and field statistics in viscoplastic crystalline composites[END_REF]. This scheme approximates the function ( 17) by

˙ E F OSO σ d , ρ (r,k) = M σ d , ρ (r,k) σ d + η σ d , ρ (r,k) , ( 23 
)
where the tensor functions M and η represent the effective properties of a linear-comparison polycrystal with the same microgeometry as the original polycrystal but with linear local responses of the form εd = M (r) σ d + η (r) characterized by r,k) .

M (r) = K k=1 1 2m (r,k) µ (r,k) ⊗ µ (r,k) and η (r) = K k=1 η (r,k) µ (r,k) (24) with 1 2m (r,k) = γ(r,k) -γ(r,k) τ (r,k) -τ (r,k) and η (r,k) = γ(r,k) - τ (r,k) 2m (
(25)

In these last expressions, the various resolved stresses and slip rates depend on σ d and ρ (r,k) through the first and second moments of the stress field within the grains; they can be written as

τ (r,k) = τ (r,k) + τ (r,k) 2 -τ (r,k) 2 and τ (r,k) = τ (r,k) -τ (r,k) 2 -τ (r,k) 2 , ( 26 
) γ(r,k) = γ(r,k) τ (r,k) , {ρ (r,k) } and γ(r,k) = γ(r,k) τ (r,k) , {ρ (r,k ′ ) } , (27) 
where

τ (r,k) = µ (r,k) • ⟨σ d ⟩ (r) and τ (r,k) = µ (r,k) • ⟨σ d ⊗ σ d ⟩ (r) µ (r,k) . ( 28 
)
The local crystal plasticity law in this linear-comparison polycrystal is of the form γ(r,k) = σ d •µ (r,k) /(2m (r,k) )+ η (r,k) . Thus, relations (25) constitute a secant linearization of the non-linear stress-slip-rate response of the crystals that incorporates intragranular stress statistics of up to second order through the standard deviations of the resolved shear stresses SD (r,k) 

(τ ) = (τ (r,k) 2 -τ (r,k) 2 ) 1/2 , see fig.
2. These stress statistics can be computed from the effective properties of the linear-comparison polycrystal through the identities

⟨σ d ⟩ (r) = 1 c (r)
∂ u ∂η (r) and

⟨σ d ⊗ σ d ⟩ (r) = 2 c (r) ∂ u ∂M (r) , ( 29 
)
where u is an effective stress potential of the linear-comparison polycrystal of the form

u σ d , {M (r) }, {η (r) } = 1 2 σ d • Mσ d + η • σ d + 1 2 g. ( 30 
)
The effective properties M, η and g must be estimated by some suitable linear homogenization scheme for N -phase media. The so-called Self-Consistent scheme of [START_REF] Laws | On the thermostatics of composite materials[END_REF] and [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF] is known to be particularly suitable for polycrystalline media of the type considered in this work; expressions are recalled in Appendix A for convenience. Finally, the first and second moments of the intragranular slip rates can be computed as

γ (r,k) = τ (r,k) 2m (r,k) + η (r,k) and γ (r,k) = τ (r,k) 2 4m (r,k) 2 + η (r,k) τ (r,k) m (r,k) + η (r,k) 2 . ( 31 
)
Therefore, the mathematical structure of this second-order homogenization scheme suggests four natural choices for the slip-rate measures Γ(r,k) F OSO dictating the evolution of dislocation densities: |γ (r,k) |, |γ (r,k) |, |γ (r,k) |, and γ (r,k) . Each choice generates a different set of predictions as discussed in Section 5 below. Note that the nonlinear local behavior of the grains enter the homogenization scheme only through relations ( 27) and evolution equations (18); the scheme is thus easily adapted to other types of local behaviors.

Evaluating the function (23) requires, therefore, the solution of a system of non-linear algebraic equations for the 2 × N × K linear-comparison local properties m (r,k) and η (r,k) , coupled with the system of non-linear algebraic equations for the linear-comparison effective properties (A.5). Fixed-point methods are employed for that purpose in the present study. In turn, time integration of the evolution equations ( 18) is carried out by means of an implicit Euler scheme with fixed time stepping. 

A simpler linear-comparison scheme of the Self-Consistent type

A simpler version of the above linear-comparison homogenization scheme is available from the earlier work of [START_REF] Debotton | Variational estimates for the creep behaviour polycrystals[END_REF]. This simpler scheme employs a secant linearization about the second moments of the intraphase stresses rather than the generalized-secant linearization (25) based on first and second moments. It approximates the function (17) by

˙ E SEC σ d , ρ (r,k) = M σ d , ρ (r,k) σ d , (32) 
where the tensor function M is given by the Self-Consistent estimate (A.5) for the effective property of a linear-comparison polycrystal with the same microgeometry as the original polycrystal but with linear local responses of the form εd = M (r) σ d with M (r) characterized by the above formulae with τ (r,k) = 0 and τ (r,k) = τ (r,k) . The dislocation densities can then be updated by identifying slip-rate measures Γ (r,k)

SEC with |γ (r,k) | as given by (31) 1 .

Sample results and discussion

Sample results are reported for specimens subject to uniaxial tension under four different scenarios: (a) unirradiated specimens loaded at a low rate, (b) irradiated specimens loaded at a low rate, (c) unirradiated specimens loaded at a high rate, (d) irradiated specimens loaded at a high rate. Unirradiated specimens have no solute clusters so that c SC = 0, while irradiated specimens have a solute cluster content c SC = 8.8 × 10 -2 c SC0 associated with a high fluence. In turn, the low and high loading rates are respectively σe = µ ε0 and σe = 100µ ε0 , ε0 = 2 × 10 10 γ0 is a characteristic macroscopic strain rate. Henceforth, σ e = (3/2)σ d • σ d and ε e = (2/3)ε d • ε d denote the von Mises equivalent stress and strain, respectively. Initially, undeformed specimens are free of residual stresses and contain an equal amount of dislocation densities ρ init = 2.0 × 10 -2 ρ 0 on all slip systems.

Full-field simulations for unirradiated specimens subject to uniaxial tension at low loading rate are shown in fig. 3. Traction curves in the form of equivalent stress versus equivalent strain, respectively normalized by τ cr and γ cr = τ cr /µ, together with the concomitant evolution of total dislocation density, normalized by its range, at least for the range of deformations considered. However, this is probably due to a compensation of inaccuracies. Indeed, all second-order estimates overestimate flow stresses in the elastoplastic transition as a consequence of the decoupled homogenization of elastic and plastic deformations. The FOSO(γ) estimates compensate this overestimation with the peculiar evolution of the plastic hardening rate. By contrast, the alternative FOSO(γ) and FOSO(γ) estimates based on intragranular slip rate fluctuations deliver somewhat less accurate predictions for the flow stress but the most accurate predictions for the plastic hardening rate deep in the plastic range. Thus, this accurate hardening rate does not compensate the inaccuracies induced on flow stresses by the elastoplastic decoupling. From a practical standpoint prioritizing accuracy of flow stresses, FOSO(γ) estimates appear to be preferable; from a theoretical standpoint, however, the alternative FOSO(γ) and FOSO(γ) estimates should be regarded as most befitting. If combined with a coupled homogenization of elastic and plastic deformations (e.g., [START_REF] Lahellec | Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings[END_REF][START_REF] Das | Differential variational estimates for the macroscopic response and field statistics of elastoviscoplastic polycrystals[END_REF], the alternative choices γ and γ for updating dislocation densities are likely to generate the most accurate predictions. In fact, these alternative estimates are already seen to deliver the most accurate predictions for the total dislocation density within the entire range of loading rates and radiation doses considered. Figure 7 shows plots for the maximum and minimum values among all resolved stresses ( τ (r,k) , τ (r,k) ) and slip rates ( γ(r,k) , γ(r,k) ) associated with the FOSO(γ) and FOSO(γ) estimates in unirradiated specimens loaded at a low rate. An approximately specular symmetry about zero is observed between the two sets of curves. This is a consequence of the opposing signs in the definitions (26) for the resolved stresses τ (r,k) and τ (r,k) , and, together with the fact that dislocation density rates are proportional to the absolute values |γ (r,k) | or |γ (r,k) |, it explains the similitudes between predictions generated by the two types of estimates. Finally, the FOSO(γ) estimates based on the second moments of the intragranular slip rates are seen to be the least accurate among the second-order estimates: they overestimate plastic hardening rate and therefore flow stresses deep in the plastic range, and significantly overestimate the total dislocation density, even in excess of the Taylor estimates. Additional comparisons have also been performed with an alternative set of material parameters corresponding to higher subfreezing temperatures.

The FOSO(γ) and FOSO(γ) estimates are found to outperform the other estimates even more notably, providing accurate predictions not only for the hardening rates but also for the flow stresses [START_REF] Chaix | Modélisation micromécanique du comportement viscoplastique d'un polycristal[END_REF].

It is noted, however, that the most relevant choice of slip-rate measures for the description of hardening may be contingent on the specific crystal plasticity law. For instance, [START_REF] Suquet | Elasto-plasticity of heterogeneous materials at different scales[END_REF] have advocated for the use of the second moments of intragranular plastic slip and have verified its suitability for certain crystal plasticity laws describing transient creep in ice. On the other hand, [START_REF] Castelnau | The effect of strain heterogeneity on the work hardening of polycrystals predicted by mean-field approaches[END_REF] reported mean-field descriptions of the self-consistent type for two-dimensional model polycrystals exhibiting linearly viscous slip rates with linearly hardening flow stresses and observed that the predicted stress-strain response was relatively insensitive to the use of slip-rate measures employing statistical information beyond the first moments. It would not be surprising that higher-order slip-rate measures may result progressively more relevant as the crystal plasticity law is increasingly nonlinear.

In conclusion, second-order homogenization estimates based on a generalized-secant linearization are found to provide an appropriate compromise between precision and mathematical complexity to generate mean-field descriptions for the elastoplastic response of polycrystalline media governed by complex crystal plasticity laws. Most accurate descriptions should result from the combined use of a generalized-secant linearization of the crystal plasticity law, a slip-rate measure incorporating information on intragranular sliprate fluctuations for the evolution of the dislocation densities, and a coupled homogenization of the elastic and plastic deformations. Strategies to incorporate this last feature in the above mean-field descriptions for neutron-irradiated bainitic steels are currently under investigation.
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 1 Figure 1: Ten microgeometries employed for the full-field descriptions.

Figure 2 :

 2 Figure 2: Schematic of the linearization employed by the second-order homogenization scheme of Ponte Castañeda (2015).

Figure 3 :

 3 Figure 3: Full-field simulations for unirradiated specimens subject to uniaxial tension at low loading rate: (a) traction curves and (b) total dislocation densities for a single realization discretized with 9 3 , 19 3 , 28 3 , 37 3 , 47 3 , and 56 3 voxels per unit cell; (c) traction curves and (d) total dislocation densities for ten realizations discretized with 47 3 ; symbols correspond to the most representative realization.
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 4567 Figure 4: Traction curves for: (a) unirradiated specimens loaded at a low rate, (b) irradiated specimens loaded at a low rate, (c) unirradiated specimens loaded at a high rate, (d) irradiated specimens loaded at a high rate. Full-field simulations (FFT) are compared with elementary homogenization schemes of the Sachs and Taylor types, and the second-order (FOSO) homogenization scheme of the Self-Consistent type. Also included in part (a) is the secant (SEC) homogenization scheme of the Self-Consistent type.

Table 2 :

 2 are specified in terms of Euler angles set in accordance Material parameters

	symbol parameter	value	unit
	κ	bulk modulus	175	GPa
	µ	shear modulus	81	GPa
	γ0	reference slip rate	6.3 × 10 -16	s -1
	τ 0	reference viscous shear stress	94	kPa
	τcr	reference critical shear stress	300	MPa
	d/d 0	ferrite lath package size parameter	8.3	-
	ρ 0	characteristic dislocations density	2.24 10 14	m -2
	A d	grain size obstacle	0.015	-
	A SC	solute clusters obstacle	94.8	-
	A self	dislocation obstacle (same system)	11.9	-
	A obs	dislocation obstacle (different systems)	107.4	-
	A dis	thermal activation and anhilation parameter 5.93	-
	c 1	interaction matrix coefficient	0.1	-
	c 2	interaction matrix coefficient	0.7	-
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Appendix A. The Self-Consistent scheme Self-consistent estimates for thermoelastic systems are available from the works of [START_REF] Laws | On the thermostatics of composite materials[END_REF] and [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF]. They can be written as r) , and g

where B (r) and b (r) are concentration tensors given by

In this last expression, M * = Q -1 -M where Q is a microstructural tensor that depends on M and on the 'shape' of the two-point correlation functions for the distribution of the grain orientations. The polycrystals considered in this work are 'equi-axed' and untextured so that the two-point correlation functions exhibit isotropic symmetry. In this case,

where L = M -1 , and the components of H(ξ) are given in terms of the components of the accoustic tensor

Finally, M solves the implicit equation

which follows from the combination of expressions (A.1) 1 and (A.2) 1 . In all the above expressions, the inverse of fourth-order tensors is defined in the subset of incompressible compliance tensors. Expressions for the derivatives required by the identities (29) can be found in [START_REF] Liu | Macroscopic Behavior, Field Fluctuations and Texture Evolution in Viscoplastic Polycrystals[END_REF].