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Data analysts compose various operators provided by data lakes to conduct their analyses on big data through complex analytical workflows. In this article, we present a formal framework based on type theory to prevent technical errors in such compositions of operators. This framework uses restrictions on type definitions to transform technical errors into type errors. We show how to use this framework to prevent errors related to schema or model transformations in analytical workflows. We provide an open-source implementation in Scala which can be used to detect errors at compile time.

Introduction

Data analysts use data lakes to conduct their analyses on big data. These platforms provide features to store, manage and analyse big data with a schema-onread paradigm [START_REF] Dixon | Pentaho, hadoop, and data lakes -james dixon's blog[END_REF]. In other words, heterogeneous data are ingested and stored as is and only cleansed, structured and integrated when needed. Data lakes associate datasets with insightful metadata to describe and control their content and relationships. Data lakes provide various operators to search, transform, enrich and analyse data at different levels of abstraction (data, schema, model and metadata). For example, they may provide data preparation operators to cleanse data and integrate schemas. They may also provide analytical operators like classifiers or graph miners whose results can be reused as new metadata.

Data analysts compose these various operators to build complex analytical workflows. Composed operators may act on different data models (relational, semi-structured, graph, etc.) and levels of abstraction. They may use different theoretical foundations (relational or linear algebra, graph theory, statistics, etc.) and execution paradigms (stream processing, map-reduce, GPU, etc.). Nevertheless, an invalid composition of operators can be a source of technical errors in analyses.

Therefore, a formal framework based on solid theoretical foundations is required to prevent technical errors in the compositions of operators of data lake analytical workflows. In this article, we propose to use type theory as the foundation of this formal framework. We aim to transform technical errors into type errors through type definitions. Thus, the absence of errors in a composition can be proven using type theory and verified by the compiler. We show how to use types to specify operators acting on multiple data models and levels of abstraction. We also show how our framework prevents errors in a composition of such operators.

Related Works

Introducing type safety in operators and languages to prevent errors and misuse is a recurrent solution. Functional languages like OCaml, Haskell or F# use strong static typing based on different type theories to prevent misuse through type inference. Proof assistants like Agda and Coq implement type theories, resp. the Unified Theory of dependent Types and the Calculus of Constructions. Recent analytical frameworks also include type safety. For example, type systems for linear algebra are proposed by Griffioen [START_REF] Griffioen | Type inference for array programming with dimensioned vector spaces[END_REF] and by Muranushi et al. [START_REF] Muranushi | Experience report: Type-checking polymorphic units for astrophysics research in haskell[END_REF]. The Spark framework [START_REF] Zaharia | Spark: The definitive guide[END_REF] provides advanced structures like Datasets that add type safety guarantees over DataFrames. The Tensor Data Model [START_REF] Gillet | Empowering big data analytics with polystore and strongly typed functional queries[END_REF] adds types in tensors to provide type safety and schema inference on tensor operators.

Other approaches to prevent errors and misuse of operators focus more on the data they are dealing with. Firstly, metadata can be used to understand the data better. They provide descriptions and constraints on the datasets and their relationships. Metadata models can be based on various formalisms such as logic [START_REF] Hai | Rewriting of plain so tgds into nested tgds[END_REF], graphs [START_REF] Scholly | Coining goldmedal: A new contribution to data lake generic metadata modeling[END_REF] or UML [START_REF] Zhao | A zone-based data lake architecture for iot, small and big data[END_REF]. Each formalism provides a different trade-off between expressiveness and restrictiveness. Therefore, only some metadata models can formally prevent errors and misuse through mathematical, structural or reasoning properties. Furthermore, existing metadata models are either tailored for specific use cases or not generic enough to be used in different contexts [START_REF] Scholly | Coining goldmedal: A new contribution to data lake generic metadata modeling[END_REF]. Secondly, data can be structured using pivot models with well-established algebras. Several pivot models have been proposed for heterogeneous platforms, such as the nested relational model in [START_REF] Alotaibi | Semantic Optimizations in Modern Hybrid Stores[END_REF], the JSON semi-structured model in [START_REF] Hai | Query rewriting for heterogeneous data lakes[END_REF], typed tensors in [START_REF] Gillet | Empowering big data analytics with polystore and strongly typed functional queries[END_REF] or the RDF graph model in [START_REF] Farid | Clams: bringing quality to data lakes[END_REF]. However, pivot models may hinder the flexibility required in data lakes by restricting the set of available operators. For example, languages based on the nested relational model cannot express transitive closure and, therefore, several graph operators [START_REF] Alotaibi | Semantic Optimizations in Modern Hybrid Stores[END_REF]. Finally, foundations of multi-model languages [START_REF] Koupil | A unified representation and transformation of multimodel data using category theory[END_REF][START_REF] Koupil | A universal approach for multi-model schema inference[END_REF][START_REF] Uotila | Multicategory: multi-model query processing meets category theory and functional programming[END_REF] use category theory to formally represent and control the effects of operators on data. However, this approach mainly focuses on representing different data models with a single formalism. It does not focus on the errors that can occur by composing different operators.

In contrast to the existing approaches, we tackle the problem of preventing errors in analytical workflows by controlling the heterogeneity of data models and the navigation between different levels of abstraction (data, schemas, models, metadata) in a unified way using type theory. This approach allows us to formally ensure the consistency of data manipulations and transformations throughout the data lake workflows.

Type-Theoretical Framework

Type theory is a constructive formalism. It can be used to define type systems through construction rules [START_REF] Dybjer | Intuitionistic Type Theory[END_REF]. It defines the concepts of well-formed types and sub-types. A well-formed type T (written T : T ype) is a type having at least one rule allowing its construction. A well-formed type S can be a sub-type of another well-formed type T (written S <: T ). In this case, type S can be used in every situation in which type T is required.

Type theory also defines type constructors. These allow the construction of various composite types such as function, generic, dependent and product types. A generic type A[B] is a type that is parameterised by another type like List[T ] or M atrix[T ]. A dependent type Π (x:B) A(x) is a type that is parameterised by values of another type. For example, a dependent type Π (size:Int) V ec(size) represent vectors of a certain size. A dependent type Π (name:String) T (name) represent attributes of type T with a certain name. For the sake of readability, we will refer to the latter dependent type as n T in the following. A product type is a composite type (written A × B × ... × Z) whose elements are heterogeneous tuples (a, b, ..., z) with a : A, b : B and z : Z.

We show how to use type theory to prevent technical errors related to schema or model transformations in a composition of operators. Analytical workflows often require such transformations to connect analytical operators acting on different data models. However, transforming the schema or the model of data may be error-prone due to the differences between models. For example, the relational model does not allow multi-valued or nested attributes, whereas semistructured models such as JSON do. Inconsistencies between data schemas and models due to transformations may result in a technical error. Therefore, we want to verify that a composition of operators does not contain any erroneous schema or model transformation.

Preventing such errors requires representing with types two levels of abstraction (schema, model) and at least two different data models. We propose to represent: 1) one data model allowing multi-valued and nested attributes like JSON, and; 2) one data model not allowing such attributes like the relational model. We use products of dependent types to represent data schemas. More precisely, we use products of n T . In schema types, using a dependent type to combine an attribute name with its type can be useful to prevent other errors. For example, it may allow the inference of a schema for the data returned by operators. Analysts can use this inferred schema to prevent inconsistencies or Fig. 3: Restrictions of the JSON model on schemas. misuses in the analytical workflow. We define a super-type Schema and two sub-types SN il and F × S, with F <: n T and S <: Schema. This definition allows the construction of schema types with any number of attributes: SN il is the type of empty schemas, F × SN il is the type of schemas with one attribute of type F , F × S is the type of schemas with at least one attribute of type F . In the following, and for the sake of readability, we assume the existence of a super-type Base for the main data types like numbers, strings, booleans, dates, etc.

We use generic types parameterised with schema types to represent data models. We define a super-type M odel[S] and two sub-types Relation[S] and JSON [S], with S <: Schema. We represent operators with function types acting on models. Therefore, a composition of operators is a function type taking as inputs two operator types and returning a new operator type if their composition is not erroneous. Figure 4 presents type definitions for operators and compositions. The type of a composition is well-formed if its inputs are well-formed, i.e. if a series of construction rules leads to the composition. Any error, for example an erroneous schema or model transformation, breaks the series of rules and results in a type error. According to type theory, a complete series of construction rules leading to a well-formed type is proof of the absence of error.

Compilers can detect type errors. Therefore, we propose an open-source implementation in Scala of the types presented in this article1 . The implementation uses the rich typing features provided by Scala and the Shapeless library2 . It can be used to encapsulate operators in analytical workflows and verify the absence of errors related to schema or model transformations at compile time.

Conclusion

In this article, we have presented a formal framework to prevent technical errors in data lake analytical workflows by finely controlling the compositions of operators. This framework is based on type theory. It uses types to represent data in different models and levels of abstraction and to express restrictions on operator inputs and outputs. We have proposed an open-source implementation in Scala using the compiler to prevent errors. The current limits of our approach are the lack of representation for constraints that apply to data (e.g., ensuring the uniqueness of values for an attribute) and the lack of representation for metadata. Therefore, as perspectives for future works, we plan to extend our formal framework to support more constraints on data, schemas, models and metadata. As implied by the Curry-Howard isomorphism [START_REF] Howard | The formulae-as-types notion of construction. To HB Curry: essays on combinatory logic[END_REF], there is a correspondence between formulae in intuitionistic first-order logic and types (propositions-astypes). Therefore, we should be able to handle more logical constraints with new types.
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  S <: Schema Γ RelationSchema[S] : T ype Γ Relation[S] <: M odel[S] (a) Relational model. Γ S <: Schema Γ JsonSchema[S] : T ype Γ JSON [S] <: M odel[S] (b) JSON model.
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 1 Fig. 1: Type definitions for data models.
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 1 presents type definitions for these three types. For a given schema type S, type Relation[S] (resp., JSON [S]) is wellformed if type RelationSchema[S] (resp., JsonSchema[S]) is well-formed. We define generic types RelationSchema[S] and RelationV alue[T ] (resp., JsonSchema[S] and JsonV alue[T ]), with S <: Schema and T : T ype (figures 2 and 3). These types link the two levels of abstraction by specifying Γ saf eCompo(f, g) : M 1[S1] ⇒ M 3[S3] (b) Composition of operators.
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 4 Fig. 4: Type definitions for operators and compositions.

Guyot et al. Γ RelationV alue[Base] : T ype (a) Type definition for RelationV alue. Γ F <: n T Γ S <: Schema Γ F × S <: Schema Γ RelationV alue[T ] : T ype Γ RelationSchema[S] : T ype Γ RelationSchema[F × S] : T ype Γ F <: n T Γ RelationV alue[T ] : T ype Γ RelationSchema[F × SN il] : T ype (b) Type definition for RelationSchema.Fig. 2: Restrictions of the relational model on schemas. Γ JsonV alue[Base] : T ype Γ T : T ype Γ JsonV alue[T ] : T ype Γ List[T ] : T ype Γ JsonV alue[List[T ]] : T ype Γ S <: Schema Γ JsonSchema[S] : T ype Γ JsonV alue[S] : T ype (a) Type definition for JsonV alue. Γ F <: n T Γ S <: Schema Γ F × S <: Schema Γ JsonV alue[T ] : T ype Γ JsonSchema[S] : T ype Γ JsonSchema[F × S] : T ype Γ JsonSchema[SN il] : T ype (b) Type definition for JsonSchema.

the restrictions that the models apply to schemas. RelationSchema[S] (resp., JsonSchema[S]) recursively ensures that all the attributes of the schema conform to the model. RelationV alue[T ] (resp., JsonV alue[T ]) defines value types that the model allows. The relational model only allows attributes with scalar values (figure2a). The JSON model allows attributes with scalar, multi-valued and nested values (figure3a).Γ S1 <: Schema Γ S2 <: Schema Γ M 1[S1] <: M odel[S1] Γ M 2[S2] <: M odel[S2] Γ M 1[S1] ⇒ M 2[S2] : T ype (a) Operators. Γ M 1[S1] <: M odel[S1] Γ M 2[S2] <: M odel[S2] Γ M 3[S3] <: M odel[S3] Γ f : M 1[S1] ⇒ M 2[S2] Γ g : M 2[S2] ⇒ M 3[S3]
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