
HAL Id: hal-04452461
https://hal.science/hal-04452461

Submitted on 12 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preventing Technical Errors in Data Lake Analyses
with Type Theory

Alexis Guyot, Éric Leclercq, Annabelle Gillet, Nadine Cullot

To cite this version:
Alexis Guyot, Éric Leclercq, Annabelle Gillet, Nadine Cullot. Preventing Technical Errors in Data
Lake Analyses with Type Theory. Big Data Analytics and Knowledge Discovery, Aug 2023, Penang,
Malaysia. pp.18-24, �10.1007/978-3-031-39831-5_2�. �hal-04452461�

https://hal.science/hal-04452461
https://hal.archives-ouvertes.fr


Preventing Technical Errors in Data Lake
Analyses with Type Theory

Alexis Guyot[0000−0001−5896−7693], Éric Leclercq[0000−0001−6382−2288], Annabelle
Gillet[0000−0002−4204−9262], and Nadine Cullot[0000−0003−1307−3287]

LIB, Université de Bourgogne, Dijon, France
{firstname}.{lastname}@u-bourgogne.fr

Abstract. Data analysts compose various operators provided by data
lakes to conduct their analyses on big data through complex analyti-
cal workflows. In this article, we present a formal framework based on
type theory to prevent technical errors in such compositions of opera-
tors. This framework uses restrictions on type definitions to transform
technical errors into type errors. We show how to use this framework to
prevent errors related to schema or model transformations in analytical
workflows. We provide an open-source implementation in Scala which
can be used to detect errors at compile time.

Keywords: Data Lakes · Type Theory · Big Data Analytics.

1 Introduction

Data analysts use data lakes to conduct their analyses on big data. These plat-
forms provide features to store, manage and analyse big data with a schema-on-
read paradigm [2]. In other words, heterogeneous data are ingested and stored
as is and only cleansed, structured and integrated when needed. Data lakes as-
sociate datasets with insightful metadata to describe and control their content
and relationships. Data lakes provide various operators to search, transform,
enrich and analyse data at different levels of abstraction (data, schema, model
and metadata). For example, they may provide data preparation operators to
cleanse data and integrate schemas. They may also provide analytical operators
like classifiers or graph miners whose results can be reused as new metadata.

Data analysts compose these various operators to build complex analytical
workflows. Composed operators may act on different data models (relational,
semi-structured, graph, etc.) and levels of abstraction. They may use different
theoretical foundations (relational or linear algebra, graph theory, statistics, etc.)
and execution paradigms (stream processing, map-reduce, GPU, etc.). Neverthe-
less, an invalid composition of operators can be a source of technical errors in
analyses.

Therefore, a formal framework based on solid theoretical foundations is re-
quired to prevent technical errors in the compositions of operators of data lake
analytical workflows. In this article, we propose to use type theory as the foun-
dation of this formal framework. We aim to transform technical errors into type



2 Guyot et al.

errors through type definitions. Thus, the absence of errors in a composition can
be proven using type theory and verified by the compiler. We show how to use
types to specify operators acting on multiple data models and levels of abstrac-
tion. We also show how our framework prevents errors in a composition of such
operators.

2 Related Works

Introducing type safety in operators and languages to prevent errors and misuse
is a recurrent solution. Functional languages like OCaml, Haskell or F# use
strong static typing based on different type theories to prevent misuse through
type inference. Proof assistants like Agda and Coq implement type theories,
resp. the Unified Theory of dependent Types and the Calculus of Constructions.
Recent analytical frameworks also include type safety. For example, type systems
for linear algebra are proposed by Griffioen [6] and by Muranushi et al. [12]. The
Spark framework [15] provides advanced structures like Datasets that add type
safety guarantees over DataFrames. The Tensor Data Model [5] adds types in
tensors to provide type safety and schema inference on tensor operators.

Other approaches to prevent errors and misuse of operators focus more on
the data they are dealing with. Firstly, metadata can be used to understand
the data better. They provide descriptions and constraints on the datasets and
their relationships. Metadata models can be based on various formalisms such as
logic [7], graphs [13] or UML [16]. Each formalism provides a different trade-off
between expressiveness and restrictiveness. Therefore, only some metadata mod-
els can formally prevent errors and misuse through mathematical, structural or
reasoning properties. Furthermore, existing metadata models are either tailored
for specific use cases or not generic enough to be used in different contexts [13].
Secondly, data can be structured using pivot models with well-established al-
gebras. Several pivot models have been proposed for heterogeneous platforms,
such as the nested relational model in [1], the JSON semi-structured model in [8],
typed tensors in [5] or the RDF graph model in [4]. However, pivot models may
hinder the flexibility required in data lakes by restricting the set of available
operators. For example, languages based on the nested relational model cannot
express transitive closure and, therefore, several graph operators [1]. Finally,
foundations of multi-model languages [10,11,14] use category theory to formally
represent and control the effects of operators on data. However, this approach
mainly focuses on representing different data models with a single formalism. It
does not focus on the errors that can occur by composing different operators.

In contrast to the existing approaches, we tackle the problem of preventing
errors in analytical workflows by controlling the heterogeneity of data models
and the navigation between different levels of abstraction (data, schemas, models,
metadata) in a unified way using type theory. This approach allows us to formally
ensure the consistency of data manipulations and transformations throughout
the data lake workflows.



Preventing Technical Errors in Data Lake Analyses with Type Theory 3

3 Type-Theoretical Framework

Type theory is a constructive formalism. It can be used to define type systems
through construction rules [3]. It defines the concepts of well-formed types and
sub-types. A well-formed type T (written T : Type) is a type having at least
one rule allowing its construction. A well-formed type S can be a sub-type of
another well-formed type T (written S <: T ). In this case, type S can be used
in every situation in which type T is required.

Type theory also defines type constructors. These allow the construction of
various composite types such as function, generic, dependent and product types.
A generic type A[B] is a type that is parameterised by another type like List[T ]
or Matrix[T ]. A dependent type Π(x:B)A(x) is a type that is parameterised
by values of another type. For example, a dependent type Π(size:Int)V ec(size)
represent vectors of a certain size. A dependent type Π(name:String)T (name)
represent attributes of type T with a certain name. For the sake of readability,
we will refer to the latter dependent type as n � T in the following. A prod-
uct type is a composite type (written A × B × ... × Z) whose elements are
heterogeneous tuples (a, b, ..., z) with a : A, b : B and z : Z.

We show how to use type theory to prevent technical errors related to schema
or model transformations in a composition of operators. Analytical workflows
often require such transformations to connect analytical operators acting on
different data models. However, transforming the schema or the model of data
may be error-prone due to the differences between models. For example, the
relational model does not allow multi-valued or nested attributes, whereas semi-
structured models such as JSON do. Inconsistencies between data schemas and
models due to transformations may result in a technical error. Therefore, we
want to verify that a composition of operators does not contain any erroneous
schema or model transformation.

Preventing such errors requires representing with types two levels of abstrac-
tion (schema, model) and at least two different data models. We propose to
represent: 1) one data model allowing multi-valued and nested attributes like
JSON, and; 2) one data model not allowing such attributes like the relational
model.

Γ ` S <: Schema
Γ ` RelationSchema[S] : Type

Γ ` Relation[S] <:Model[S]

(a) Relational model.

Γ ` S <: Schema
Γ ` JsonSchema[S] : Type

Γ ` JSON [S] <:Model[S]

(b) JSON model.

Fig. 1: Type definitions for data models.

We use products of dependent types to represent data schemas. More pre-
cisely, we use products of n � T . In schema types, using a dependent type to
combine an attribute name with its type can be useful to prevent other errors.
For example, it may allow the inference of a schema for the data returned by
operators. Analysts can use this inferred schema to prevent inconsistencies or



4 Guyot et al.

Γ ` RelationV alue[Base] : Type

(a) Type definition for RelationV alue.

Γ ` F <: n� T
Γ ` S <: Schema

Γ ` F × S <: Schema
Γ ` RelationV alue[T ] : Type
Γ ` RelationSchema[S] : Type

Γ ` RelationSchema[F × S] : Type

Γ ` F <: n� T
Γ ` RelationV alue[T ] : Type

Γ ` RelationSchema[F × SNil] : Type

(b) Type definition for RelationSchema.

Fig. 2: Restrictions of the relational model on schemas.

Γ ` JsonV alue[Base] : Type

Γ ` T : Type
Γ ` JsonV alue[T ] : Type

Γ ` List[T ] : Type

Γ ` JsonV alue[List[T ]] : Type

Γ ` S <: Schema
Γ ` JsonSchema[S] : Type

Γ ` JsonV alue[S] : Type

(a) Type definition for JsonV alue.

Γ ` F <: n� T
Γ ` S <: Schema

Γ ` F × S <: Schema
Γ ` JsonV alue[T ] : Type
Γ ` JsonSchema[S] : Type

Γ ` JsonSchema[F × S] : Type

Γ ` JsonSchema[SNil] : Type

(b) Type definition for JsonSchema.

Fig. 3: Restrictions of the JSON model on schemas.

misuses in the analytical workflow. We define a super-type Schema and two
sub-types SNil and F × S, with F <: n� T and S <: Schema. This definition
allows the construction of schema types with any number of attributes: SNil is
the type of empty schemas, F × SNil is the type of schemas with one attribute
of type F , F × S is the type of schemas with at least one attribute of type F .
In the following, and for the sake of readability, we assume the existence of a
super-type Base for the main data types like numbers, strings, booleans, dates,
etc.

We use generic types parameterised with schema types to represent data
models. We define a super-type Model[S] and two sub-types Relation[S] and
JSON [S], with S <: Schema. Figure 1 presents type definitions for these three
types. For a given schema type S, type Relation[S] (resp., JSON [S]) is well-
formed if type RelationSchema[S] (resp., JsonSchema[S]) is well-formed.

We define generic types RelationSchema[S] and RelationV alue[T ] (resp.,
JsonSchema[S] and JsonV alue[T ]), with S <: Schema and T : Type (fig-
ures 2 and 3). These types link the two levels of abstraction by specifying



Preventing Technical Errors in Data Lake Analyses with Type Theory 5

the restrictions that the models apply to schemas. RelationSchema[S] (resp.,
JsonSchema[S]) recursively ensures that all the attributes of the schema con-
form to the model. RelationV alue[T ] (resp., JsonV alue[T ]) defines value types
that the model allows. The relational model only allows attributes with scalar
values (figure 2a). The JSON model allows attributes with scalar, multi-valued
and nested values (figure 3a).

Γ ` S1 <: Schema
Γ ` S2 <: Schema

Γ `M1[S1] <:Model[S1]
Γ `M2[S2] <:Model[S2]

Γ `M1[S1]⇒M2[S2] : Type

(a) Operators.

Γ `M1[S1] <:Model[S1]
Γ `M2[S2] <:Model[S2]
Γ `M3[S3] <:Model[S3]
Γ ` f :M1[S1]⇒M2[S2]
Γ ` g :M2[S2]⇒M3[S3]

Γ ` safeCompo(f, g) :M1[S1]⇒M3[S3]

(b) Composition of operators.

Fig. 4: Type definitions for operators and compositions.

We represent operators with function types acting on models. Therefore,
a composition of operators is a function type taking as inputs two operator
types and returning a new operator type if their composition is not erroneous.
Figure 4 presents type definitions for operators and compositions. The type
of a composition is well-formed if its inputs are well-formed, i.e. if a series of
construction rules leads to the composition. Any error, for example an erroneous
schema or model transformation, breaks the series of rules and results in a type
error. According to type theory, a complete series of construction rules leading
to a well-formed type is proof of the absence of error.

Compilers can detect type errors. Therefore, we propose an open-source im-
plementation in Scala of the types presented in this article1. The implementation
uses the rich typing features provided by Scala and the Shapeless library2. It can
be used to encapsulate operators in analytical workflows and verify the absence
of errors related to schema or model transformations at compile time.

4 Conclusion

In this article, we have presented a formal framework to prevent technical errors
in data lake analytical workflows by finely controlling the compositions of oper-
ators. This framework is based on type theory. It uses types to represent data in
different models and levels of abstraction and to express restrictions on operator
inputs and outputs. We have proposed an open-source implementation in Scala
using the compiler to prevent errors. The current limits of our approach are
the lack of representation for constraints that apply to data (e.g., ensuring the
uniqueness of values for an attribute) and the lack of representation for meta-
data. Therefore, as perspectives for future works, we plan to extend our formal

1 https://github.com/AlexisGuyot/type_safe_compo
2 https://github.com/milessabin/shapeless

https://github.com/AlexisGuyot/type_safe_compo
https://github.com/milessabin/shapeless


6 Guyot et al.

framework to support more constraints on data, schemas, models and metadata.
As implied by the Curry-Howard isomorphism [9], there is a correspondence
between formulae in intuitionistic first-order logic and types (propositions-as-
types). Therefore, we should be able to handle more logical constraints with new
types.

References

1. Alotaibi, R.B.M.: Semantic Optimizations in Modern Hybrid Stores. Ph.D. thesis,
University of California, San Diego (2022)

2. Dixon, J.: Pentaho, hadoop, and data lakes — james dixon’s blog (2010)
3. Dybjer, P., Palmgren, E.: Intuitionistic Type Theory. In: Zalta, E.N., Nodelman,

U. (eds.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, Spring 2023 edn. (2023)

4. Farid, M., Roatis, A., Ilyas, I.F., Hoffmann, H.F., Chu, X.: Clams: bringing quality
to data lakes. In: International Conference on Management of Data, SIGMOD’16.
pp. 2089–2092 (2016)

5. Gillet, A., Leclercq, E., Savonnet, M., Cullot, N.: Empowering big data analytics
with polystore and strongly typed functional queries. In: International Database
Engineering & Applications Symposium, IDEAS’20. pp. 1–10 (2020)

6. Griffioen, P.: Type inference for array programming with dimensioned vector
spaces. In: Symposium on the Implementation and Application of Functional Pro-
gramming Languages, IFL’15. pp. 1–12 (2015)

7. Hai, R., Quix, C.: Rewriting of plain so tgds into nested tgds. Proceedings of the
VLDB Endowment 12(11), 1526–1538 (2019)

8. Hai, R., Quix, C., Zhou, C.: Query rewriting for heterogeneous data lakes. In:
Advances in Databases and Information Systems, ADBIS’18, Proceedings 22. pp.
35–49. Springer (2018)

9. Howard, W.A.: The formulae-as-types notion of construction. To HB Curry: essays
on combinatory logic, lambda calculus and formalism 44, 479–490 (1980)

10. Koupil, P., Holubová, I.: A unified representation and transformation of multi-
model data using category theory. Journal of Big Data 9(1), 61 (2022)

11. Koupil, P., Hricko, S., Holubová, I.: A universal approach for multi-model schema
inference. Journal of Big Data 9(1), 1–46 (2022)

12. Muranushi, T., Eisenberg, R.A.: Experience report: Type-checking polymorphic
units for astrophysics research in haskell. ACM SIGPLAN Notices 49(12), 31–38
(2014)

13. Scholly, E., Sawadogo, P., Liu, P., Espinosa-Oviedo, J.A., Favre, C., Loudcher, S.,
Darmont, J., Noûs, C.: Coining goldmedal: A new contribution to data lake generic
metadata modeling. In: 23rd International Workshop on Design, Optimization,
Languages and Analytical Processing of Big Data (DOLAP@ EDBT/ICDT 2021).
vol. 2840, pp. 31–40 (2021)

14. Uotila, V., Lu, J., Gawlick, D., Liu, Z.H., Das, S., Pogossiants, G.: Multicategory:
multi-model query processing meets category theory and functional programming.
Proceedings of the VLDB Endowment 14(12), 2663–2666 (2021)

15. Zaharia, M., Chambers, B.: Spark: The definitive guide. O’Reilly Media Sebastopol,
CA (2018)

16. Zhao, Y., Megdiche, I., Ravat, F., Dang, V.n.: A zone-based data lake architecture
for iot, small and big data. In: International Database Engineering & Applications
Symposium, IDEAS’21. pp. 94–102 (2021)


	Preventing Technical Errors in Data Lake Analyses with Type Theory

