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Abstract
It is well known that neural networks with many more parameters than training

examples do not overfit. Implicit regularization phenomena, which are still not well
understood, occur during optimization and ‘good’ networks are favored. Thus the
number of parameters is not an adequate measure of complexity if we do not consider
all possible networks but only the ‘good’ ones.

To better understand which networks are favored during optimization, we study the
geometry of the output set as parameters vary. When the inputs are fixed, we prove that
the dimension of this set changes and that the local dimension, called batch functional
dimension, is almost surely determined by the activation patterns in the hidden layers.
We prove that the batch functional dimension is invariant to the symmetries of the
network parameterization: neuron permutations and positive rescalings. Empirically,
we establish that the batch functional dimension decreases during optimization. As a
consequence, optimization leads to parameters with low batch functional dimensions.
We call this phenomenon geometry-induced implicit regularization.

The batch functional dimension depends on both the network parameters and inputs.
To understand the impact of the inputs, we study, for fixed parameters, the largest
attainable batch functional dimension when the inputs vary. We prove that this quantity,
called computable full functional dimension, is also invariant to the symmetries of the
network’s parameterization, and is determined by the achievable activation patterns.
We also provide a sampling theorem, showing a fast convergence of the estimation of the
computable full functional dimension for a random input of increasing size. Empirically
we find that the computable full functional dimension remains close to the number of
parameters, which is related to the notion of local identifiability. This differs from the
observed values for the batch functional dimension computed on training inputs and
test inputs. The latter are influenced by geometry-induced implicit regularization.
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†francois.malgouyres@math.univ-toulouse.fr
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1 Introduction

We introduce the context of the present article in Section 1.1, and we give a first glimpse
of the objects of study in Section 1.2. We then outline the article in Section 1.3, and we
present the related works in Section 1.4.

1.1 On the Importance of Local Complexity Measures for Neural Networks

Learning deep neural networks has a huge impact on many practical aspects of our lives.
This requires optimizing a non-convex function, in a large dimensional space. Surprisingly,
in many cases, although the number of parameters defining the neural network exceeds
by far the amount of training data, the learned neural network generalizes and performs
well with unseen data (Zhang u. a., 2021). This is surprising because in this setting the
set of global minimizers is large (Cooper, 2021; Li u. a., 2018) and contains elements that
generalize poorly (Wu u. a., 2017; Neyshabur u. a., 2017). In accordance with this empirical
observation, the good generalization behavior is not explained by the classical statistical
learning theory (e.g., Anthony und Bartlett, 2009; Grohs und Kutyniok, 2022) that considers
the worst possible parameters in the parameter set. For instance, the Vapnik-Chervonenkis
dimension of feedforward neural networks of depth L, with W parameters, with the ReLU
activation function is1 ‹O(LW ) (Bartlett u. a., 2019, 1998; Harvey u. a., 2017; Maass, 1994),
leading to an upper bound on the generalization gap of order1 ‹O(

»
LW

n ), where n is the
sample size. This worst-case analysis is not accurate enough to explain the success of deep
learning, when W ≫ n.

This leads to the conclusion that a global analysis, that applies to all global minima and
the worst possible neural network that fits the data, will not permit to explain the success
of deep learning. A local analysis is needed.

Despite tremendous research efforts in this direction (see, e.g., Grohs und Kutyniok,
2022 and references below) a complete explanation for the good generalization behavior
in deep learning is still lacking. The attempts of explanation suggest that optimization
algorithms and notably stochastic algorithms discover ‘good minima’ . These are minima
having special properties that authors would like to model using local complexity measures
that are pivotal in the mathematical explanation. Authors aim to establish that stochastic
algorithms prioritize outputs (parameterizations at convergence) with low local complexity
and to demonstrate that low local complexity explains the good generalization to unseen
data (Bartlett u. a., 2020; Chaudhari u. a., 2019; Camuto u. a., 2021; Keskar u. a., 2017).
This is sometimes also expressed as some form of implicit regularization (Imaizumi und
Schmidt-Hieber, 2023; Belkin, 2021; Neyshabur u. a., 2017).

1The notation ‹O(·) ignores logarithmic factors.
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In this spirit, many authors contend that the excellent generalization behavior can be
attributed to the fulfillment of conditions regarding the flatness of the landscape in the
proximity of the algorithm’s output (Keskar u. a., 2017; Foret u. a., 2021; Cha u. a., 2021;
Hochreiter und Schmidhuber, 1997). This is known however not to fully capture the good
generalization phenomenon (Dinh u. a., 2017). Other studies explain the good generalization
performances by constraints involving norms of the neural network parameters (Bartlett
u. a., 2020; Neyshabur u. a., 2015b; Golowich u. a., 2018; Bartlett u. a., 2017). Despite being
supported by partial arguments, none of the aforementioned local complexity measures fully
explain the experimentally observed behaviors.

This is in sharp contrast with linear networks for which implicit regularization is better
understood. The consensus is that implicit regularization constrains the rank of the prediction
matrix, the matrix obtained when multiplying all the factors of the linear network (Arora
u. a., 2019; Razin und Cohen, 2020; Saxe u. a., 2019; Gidel u. a., 2019; Gissin u. a., 2019;
Achour u. a., 2022).

1.2 Local Dimensions of the Image and Pre-image Sets

This article investigates properties and computational aspects of local geometrical complexity
measures of deep ReLU neural networks, recently introduced by Grigsby u. a. (2022). The
considered complexity measures relate to the local geometry of the image set as defined by
{fθ(X) | θ varies} and the pre-image set {θ′ | fθ′(X) = fθ(X)}, where fθ(X) is the prediction
made by the neural network of parameter θ, for an input sample X = (x(i))i∈J1,nK ∈ RN0×n,
where x(i) is the i-th column of X and the i-th input of the sample. When the differential
Dfθ(X) of θ 7−→ fθ(X) is appropriately defined, these concepts of complexity are associated
with the local dimension of these sets, see Corollary 3, and related to the rank of the
aforementioned differential, denoted rank(Dfθ(X)) and called batch functional dimension by
Grigsby u. a. (2022). Notice that, before Grigsby u. a., the batch functional dimension already
appeared in an identifiability condition introduced by Bona-Pellissier u. a. (2022).

1.3 Main Contributions and Organization of the Paper

• In Theorem 1 (Section 3), up to a negligible set, we decompose the parameter space
as a finite union of open sets. On each set, the batch functional dimension

rank(Dfθ(X))

is well defined and constant. The construction of the sets shows that almost everywhere,
the activation pattern (defined in Section 2) determines the batch functional dimension.
We also establish in Proposition 2 (Section 3) that the batch functional dimension is
invariant under the symmetries of a ReLU neural network’s parameterization, positive
rescaling and neuron permutation, as defined in Section 2. We also provide examples
in Sections 3 and 4.
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• In Section 4, we illustrate the consequences of the statements of Section 3 when learning
a deep ReLU network. In particular, we explain the links between the batch functional
dimension, and the local dimensions of the image and pre-image sets, see Corollary 3
and Figure 2. We also illustrate in this figure how the described geometry impacts
the iterates trajectory for small learning rates and we describe the geometry-induced
implicit regularization.

• In Section 5, we study the computable full functional dimension1 defined by

r∗(θ) = max
X

rank(Dfθ(X)).

The first result of the section states that the achievable activation patterns for θ
determine r∗(θ), see Theorem 6. It also shows that when more activation patterns can
be achieved, r∗ increases. As for the batch functional dimension, we establish that the
computable full functional dimension is invariant under positive rescalings and neuron
permutations. We finish the section with a connection between the computable full
functional dimension and the fat-shattering dimension of neural networks.

• In Section 6 we provide the details on the practical computation of rank(Dfθ(X)), for
given X and θ. We also establish in Theorem 11 that, for a given θ, a random X of
sufficient size can be used to compute r∗(θ). Indeed, we upper bound the probability
of not reaching r∗(θ), as a vanishing function of the number n of columns of X. The
upper bound depends on two natural quantities p and n∗(θ) (see Theorem 11 for
details).

• Finally, we provide experiments on the MNIST data set in Section 7. In Section 7.2, we
analyze the behavior of the local complexity measures when the width of the network
increases. We also describe their behavior during the learning phase in Section 7.3.
We also show in Sections 7.4 and 7.5 how they behave when the distribution of (X, Y )
is artificially complexified, Y denoting the outputs. The experiments highlight the
geometry-induced implicit regularization described in Section 4 both at the learning
and test stages. The experiments also highlight the correlation between the batch
functional dimension computed using the learning and test samples and the complexity
of the learning task. Our experiments also indicate that for corrupted or highly random
inputs, the batch functional dimension may be maximal, corresponding almost surely
to local identifiability, see Bona-Pellissier u. a. (2022).

All the proofs are in the Appendices and the codes are available at (Bona-Pellissier u. a.,
2023b).

1As its name indicates, the computable full functional dimension is a variant of the full functional dimension
defined in (Grigsby u. a., 2022), that we can compute. The informal definition below does not take into
account restrictions guaranteeing that θ 7−→ fθ(X) is differentiable at θ.
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1.4 Related Works

To the best of our knowledge, the functional dimensions of deep ReLU neural networks has
only been explicitly studied by Grigsby u. a. (2022, 2023). The article Grigsby u. a. (2022) is
very rich and it is difficult to summarize it in a few lines2. The authors establish sufficient
conditions guaranteeing that θ 7−→ fθ(X) is differentiable. The conditions are comparable to
but weaker than the one presented here. The benefit of the difference is that our conditions
guarantee the value of the batch functional dimension, allowing us to make the connection
between the activation patterns and the batch functional dimension. Furthermore, Grigsby
u. a. define and provide examples to illustrate that the batch functional dimension and
the full functional dimension vary in the parameter space. They also prove that for all
narrowing architectures3, the functional dimension as defined by maxθ maxX rank(Dfθ(X))
reaches its upper-bound W − W ′ where W ′ is the number of positive rescalings. They finish
their article with several examples showing that the global structure of the pre-image set
{θ′ | fθ′(X) = fθ(X)} can vary in several regards. Grigsby u. a. prove that when the input
size lower-bounds the other widths there exist parameters for which the batch functional
dimension reaches the upper-bound W − W ′. They also numerically estimate, for several
neural network architectures, the size of the sets of parameters that reach this upper bound.

Geometric properties of the pre-image set of a global minimizer have been studied by
Cooper (2021). Topological properties of a variant of the image set included in function
spaces, {fθ | θ varies}, have been established by Petersen u. a. (2021).

There are many articles devoted to the identifiability of neural networks (Petzka u. a.,
2020; Carlini u. a., 2020; Rolnick und Kording, 2020; Stock und Gribonval, 2022; Bona-
Pellissier u. a., 2022, 2023a). For a given θ, they study conditions guaranteeing that the
pre-image set4 of fθ(X) coincides with the set obtained when considering all the positive
rescalings of θ. Of particular interest in our context, Bona-Pellissier u. a. (2022) establish
that the condition rank(Dfθ(X)) = W − W ′ is sufficient to guarantee local identifiability.
The same condition is also involved in a necessary condition of local identifiability.

Other local complexity measures, not related to the geometry of neural networks, have
been considered. There are complexity measures using the number of achievable activation
patterns Montufar u. a. (2014); Raghu u. a. (2017); Hanin und Rolnick (2019). Those based
on norms and the flatness are already mentioned in Section 1.1.

The objects studied in this article are also related to the properties of the landscape of
the empirical risk, which have been investigated in the literature. Studies of these properties
for instance permit to guarantee that first-order algorithms find a global minimizer (Soudry
und Carmon, 2016; Nguyen und Hein, 2017; Safran u. a., 2021; Du u. a., 2019), focus on the
shape at the bottom of the empirical risk (Ghorbani u. a., 2019; Sagun u. a., 2016; Gur-Ari
u. a., 2018) and (again) on flatness.

The local properties studied in the present article also have an impact on the iterates
2A weakness of it is that it considers neural networks whose last layer undergoes a ReLU activation.
3Narrowing architectures are such that widths decrease.
4In these articles X sometimes contains infinitely many examples, in which case we let fθ(X) denote the

function fθ restricted to X.
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trajectory of minimization algorithms and therefore the biases induced by the optimization
as studied in (Bartlett u. a., 2020; Chaudhari u. a., 2019; Camuto u. a., 2021; Keskar u. a.,
2017).

Finally, Arora u. a. (2018) and Suzuki u. a. (2020) establish generalization bounds of
compressed neural networks. This might provide hints for the construction of upper-bounds
of the generalization gap based on the local geometric complexity measures considered in
this article.

2 ReLU Networks and Notations

This section is devoted to introducing the formalism and notations that we use throughout
the article. In Section 2.1, we present the graph formalism that we use for neural networks,
and we specify the architectures that we study, and in Section 2.2, we construct the prediction
function implemented by a network, and we define the differential Dfθ(X) that is central in
this work. In Section 2.3, we recall the two classical symmetries of ReLU networks, namely
positive rescalings and permutations. Finally, we introduce the activation patterns in Section
2.4 and some additional notations in Section 2.5.

2.1 ReLU Network Architecture

Let us introduce our notations for deep fully-connected ReLU neural networks. In this paper,
a network is a graph (E, V ) of the following form.

• V is a set of neurons, which is divided into L + 1 layers, with L ≥ 2: V = ⋃L
ℓ=0 Vℓ. The

layer V0 is the input layer, VL is the output layer and the layers Vℓ with 1 ≤ ℓ ≤ L − 1
are the hidden layers. Using the notation |C| for the cardinality of a finite set C, we
denote, for all5 ℓ ∈ J0, LK, Nℓ = |Vℓ| the size of the layer Vℓ.

• E is the set of all oriented edges v′ → v between neurons in consecutive layers, that is

E = {v′ → v | v′ ∈ Vℓ−1, v ∈ Vℓ, for ℓ ∈ J1, LK}.

A network is parameterized by weights and biases, gathered in its parameterization θ, with

θ = ((wv′→v)v′→v∈E , (bv)v∈B) ∈ RE × RB,

where B = ⋃L
ℓ=1 Vℓ. We let W = |E| + |B|.

The activation function used in the hidden layers, and denoted σ, is always ReLU: for any
p ∈ N∗ and any vector x = (x1, . . . , xp)T ∈ Rp, we set σ(x) = (max(x1, 0), . . . , max(xp, 0))T .
Here and in the sequel, the symbol N∗ denotes the set of natural numbers without 0. We
allow the use of a specific activation σL : RNL −→ RNL for the output layer, which we
only require to be analytic. For instance, σL can be the identity, as is generally the case
in regression, or the softmax, as is generally the case in classification. The ReLU neural
network architectures considered in this article are fully characterized by a triplet (E, V, σL).

5Throughout the paper, for a, b ∈ N, a ≤ b, Ja, bK is the set of consecutive integers {a, a + 1, . . . , b}.
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2.2 ReLU Network Prediction

For a given θ, we define recursively f ℓ
θ : RV0 −→ RVℓ , for ℓ ∈ J0, LK and x ∈ RV0 , by

(f0
θ (x))v = xv for v ∈ V0,

(f ℓ
θ(x))v = σ

Ä∑
v′∈Vℓ−1

wv′→v(f ℓ−1
θ (x))v′ + bv

ä
for v ∈ Vℓ, when ℓ ∈ J1, L − 1K,

(yL
θ (x))v = ∑

v′∈VL−1 wv′→v(fL−1
θ (x))v′ + bv for v ∈ VL,

fL
θ (x) = σL(yL

θ (x)),

(1)

where the definition of fL
θ (x) takes into account that σL : RVL −→ RVL may require the

whole pre-activation output. This is for instance the case for the softmax activation function.
We define the function fθ : RV0 −→ RVL implemented by the network of parameter θ as
fθ = fL

θ . We call it the prediction.
For all n ∈ N∗, we concatenate a set of n inputs in a matrix X = (x(i))i∈J1,nK ∈ RN0×n,

where x(i) is the i-th column of X and the i-th input of the network. We also allow to write
fθ as operating on an input set X. In this case, we write fθ : RN0×n −→ RNL×n and we
define fθ(X) as the matrix gathering the outputs (fθ(x(i)))i∈J1,nK.

Among other quantities, we study in this article the set

{fθ(X) | θ ∈ RE × RB},

for X ∈ RN0×n fixed, which we call an image set. When it is differentiable at θ, we denote
by Dfθ(X) the differential, at the point θ, of the mapping

RE × RB −→ RNL×n

θ′ 7−→ fθ′(X).

We recall that the differential at θ is the linear map

Dfθ(X) : RE × RB −→ RNL×n (2)

such that, for θ′ ∈ RE × RB in a neighborhood of zero,

fθ+θ′(X) = fθ(X) + Dfθ(X)(θ′) + o(∥θ′∥). (3)

2.3 Positive rescaling and neuron permutations symmetries

Consider two parameters θ, θ̃ ∈ RE×B, with θ̃ =
Ä
(w̃v′→v)v′→v∈E , (̃bv)v∈B

ä
. We say that θ

and θ̃ are equivalent modulo positive rescaling, and we write θ ∼s θ̃, when the following
holds. There are (λv)v∈V0∪···∪VL

∈ (0, ∞)V0∪···∪VL such that λv = 1 for v ∈ V0 ∪ VL and for
ℓ ∈ J1, LK, v′ ∈ Vℓ−1, v ∈ Vℓ,

wv′→v = λv

λv′
w̃v′→v, (4)

bv = λv b̃v. (5)
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Then it is a well-known property of ReLU networks (Bona-Pellissier u. a., 2023a, 2022;
Neyshabur u. a., 2015a; Stock, 2021; Stock und Gribonval, 2022; Yi u. a., 2019) that if θ ∼s θ̃
then fθ = f

θ̃
, that is, positive rescalings are a symmetry of the network parameterization.

Another classic symmetry consists in swapping neurons, and their corresponding weights,
within each hidden layer. If θ̃ stands for the permuted weights, we denote the corresponding
equivalence relation θ̃ ∼p θ. Again, when θ̃ ∼p θ, we have f

θ̃
= fθ.

We say that θ̃ ∼ θ if there exists θ′ such that θ̃ ∼p θ′ and θ′ ∼s θ. Again, if θ̃ ∼ θ, then
fθ = f

θ̃
.

2.4 Activation Patterns

For any ℓ ∈ J1, L − 1K, v ∈ Vℓ, θ ∈ RE × RB and x ∈ RN0 , we define the activation indicator
at neuron v by

av(x, θ) =
®

1 if ∑
v′∈Vℓ−1

wv′→v(f ℓ−1
θ (x))v′ + bv ≥ 0

0 otherwise.

Using (1), we have for the ReLU activation function σ, any ℓ ∈ J1, L − 1K and v ∈ Vℓ,

(f ℓ
θ(x))v = av(x, θ)

( ∑
v′∈Vℓ−1

wv′→v(f ℓ−1
θ (x))v′ + bv

)
. (6)

We then define the activation pattern as the mapping

a : RN0 ×
Ä
RE × RB

ä
−→ {0, 1}N1+···+NL−1

(x, θ) 7−→ (av(x, θ))v∈V1∪···∪VL−1 .

For X ∈ RN0×n as considered above, we let a(X, θ) ∈ {0, 1}(N1+···+NL−1)×n be defined by,
for i ∈ J1, nK and v ∈ V1 ∪ · · · ∪ VL−1, av,i(X, θ) = av(x(i), θ). By extension, we also call
activation patterns the elements of {0, 1}N1+···+NL−1 or {0, 1}(N1+···+NL−1)×n.

2.5 Further Notation

We use the notation rank(·) for the rank of linear maps and matrices. The determinant
of a square matrix M is denoted det(M). If the matrix M ∈ Ra×b for a, b ∈ N∗, then for
i ∈ J1, aK, we write Mi,: for the row i of M .

All considered vector spaces are finite dimensional and they are endowed with the
standard Euclidean topology. For a subset C ⊂ T of a topological space, we denote Int(C)
the topological interior of C, ∂C its boundary and Cc = T \ C the complement of C (the
ambient topological space T should always be clear from context). For all Euclidean space V ,
all element x ∈ V , and all real number r ≥ 0, the open Euclidean ball of radius r centered
at x is denoted by B(x, r).

8



3 Rank Properties

In this section, we give the key technical theorem, namely Theorem 1, on which the remaining
of the article relies. We then illustrate the theorem with examples showing the diversity of
situations that might occur. The theorem is composed of two parts. In the first one, we study
(X, θ) 7−→ fθ(X) over RN0×n × (RE × RB), and in the second one, we study θ 7−→ fθ(X)
over RE × RB, for X fixed. We must first introduce a few definitions.

For n ∈ N∗, the function

RN0×n × (RE × RB) −→ {0, 1}(N1+···+NL−1)×n

(X, θ) 7−→ a(X, θ)

takes a finite set of values, that we write ∆n
1 , . . . , ∆n

q . Let us write, for j ∈ J1, qK,‹On
j = Int{(X, θ) ∈ RN0×n × (RE × RB) | a(X, θ) = ∆n

j }, (7)

and let us only keep the non-empty ‹On
j . If mn ∈ J1, qK is the number of such non-empty

sets, up to a re-ordering, we can assume that we keep ‹On
1 , . . . , ‹On

mn
. As will be formally

established in Lemma 13, (i), third item, for all j ∈ J1, mnK, the function θ 7−→ fθ(X) is
differentiable at θ when (X, θ) ∈ ‹On

j . We can therefore define, for n ∈ N∗ and j ∈ J1, mnK,

rn
j = max

(X,θ)∈‹On
j

rank(Dfθ(X)). (8)

We then define the subset of ‹On
j on which the rank is maximal. For n ∈ N∗ and j ∈ J1, mnK,

On
j = {(X, θ) ∈ ‹On

j | rank(Dfθ(X)) = rn
j }. (9)

Similarly, for n ∈ N∗ and X ∈ RN0×n, the function θ 7−→ a(X, θ) takes a finite number
of values ∆X

1 , . . . , ∆X
qX , and we define, for j ∈ J1, qXK,

ŨX
j = Int{θ ∈ RE × RB | a(X, θ) = ∆X

j }. (10)

Similarly, we keep only the nonempty such sets, and if pX ∈ J1, qXK is the number of such
sets, we can assume up to a re-ordering that we keep ŨX

1 , . . . , ŨX
pX

. Again, as we will establish
in Lemma 13, (ii), third item, for all j ∈ J1, pXK, the function θ 7−→ fθ(X) is differentiable
at θ when θ ∈ ŨX

j . We can therefore define, for n ∈ N∗, X ∈ RN0×n and j ∈ J1, pXK,

rX
j = max

θ∈ŨX
j

rank(Dfθ(X)). (11)

We finally define the subset of ŨX
j on which the rank is maximal. For n ∈ N∗, X ∈ RN0×n

and j ∈ J1, pXK,
UX

j = {θ ∈ ŨX
j | rank(Dfθ(X)) = rX

j }. (12)
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The following theorem is composed of two parts, named (i) and (ii). In (i), we study
(X, θ) 7−→ fθ(X) over RN0×n ×(RE ×RB), and we provide properties of the sets On

1 , . . . , On
mn

.
In (ii), we study θ 7−→ fθ(X) over RE × RB, for X fixed, and we provide properties of the
sets UX

1 , . . . , UX
pX

. Note that for both parts (i) and (ii), Items 1, 2 and 3 hold trivially by
definition, while Items 4, 5 and 6 require detailed proofs.

Theorem 1. Consider any deep fully-connected ReLU network architecture (E, V, σL).

(i) For all n ∈ N∗, by definition,

– the sets On
1 , . . . , On

mn
are non-empty and disjoint,

– for all j ∈ J1, mnK, the function (X, θ) 7−→ a(X, θ) is constant on On
j and takes

mn distinct values on ∪mn
j=1On

j ;
– for all j ∈ J1, mnK, (X, θ) 7−→ rank(Dfθ(X)) is constant on On

j and equal to rn
j .

Furthermore,

– the sets On
1 , . . . , On

mn
are open,

–
Ä
∪mn

j=1On
j

äc
is a closed set with Lebesgue measure zero;

– for all j ∈ J1, mnK, (X, θ) 7−→ fθ(X) is an analytic function on On
j .

(ii) For all n ∈ N∗, for all X ∈ RN0×n, by definition,

– the sets UX
1 , . . . , UX

pX
are non-empty and disjoint,

– for all j ∈ J1, pXK, the function θ 7−→ a(X, θ) is constant on each UX
j and takes

pX distinct values on ∪pX
j=1UX

j ;

– for all j ∈ J1, pXK, θ 7−→ rank(Dfθ(X)) is constant on UX
j and equal to rX

j .

Furthermore,

– the sets UX
1 , . . . , UX

pX
are open,

–
Ä
∪pX

j=1UX
j

äc
is a closed set with Lebesgue measure zero;

– for all j ∈ J1, pXK, θ 7−→ fθ(X) is an analytic function on UX
j .

The proof of the theorem is in Appendix A.1.
This theorem formalizes that the sets (On

j )j∈J1,mnK (resp. (UX
j )j∈J1,pXK) almost cover

the spaces RN0×n × (RE × RB) (resp. RE × RB). Moreover, on each set On
j (resp. UX

j )
the activation pattern is constant, and the function (X, θ) 7−→ fθ(X) (resp. θ 7−→ fθ(X))
is analytic. We only state that it is analytic, but when the output activation σL is the
identity, it is in fact polynomial, and we would like to emphasize here that the structure
of the polynomial is very particular. For instance, every variable appears with a degree
at most one, and all monomials have the same degree. A more complete description of
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the polynomial structure is, for instance, given by Bona-Pellissier u. a. (2022); Stock und
Gribonval (2022).

Looking at the definition of ‹On
j (resp ŨX

j ) and On
j (resp UX

j ), using that
Ä
∪mn

j=1On
j

äc

(resp
Ä
∪pX

j=1UX
j

äc
) is a closed set with Lebesgue measure zero, we find that,

On
j is open and dense in ‹On

j and UX
j is open and dense in ŨX

j .

In other words, modulo negligible sets, the activation pattern determines rank(Dfθ(X)).
Finally, the conclusions concerning rank(Dfθ(X)) have direct consequences on the dimensions
of the image {fθ′(X) | θ′ ∈ B(θ, ε)} and the pre-image {θ′ ∈ B(θ, ε) | fθ′(X) = fθ(X)},
where ε > 0 is small enough. The consequences and their implications in machine learning
applications are described in greater detail in the next sections.

When compared to existing similar statements (Stock und Gribonval, 2022; Grigsby u. a.,
2022; Bona-Pellissier u. a., 2022; Grigsby und Lindsey, 2022), the particularity of Theorem 1
is that the construction of the sets On

j and UX
j permits to include, in the third item of (i)

and (ii), a statement on rank(Dfθ(X)). To the best of our knowledge, this quantity appears
for the first time in conditions of local parameter identifiability introduced by Bona-Pellissier
u. a. (2022). It appears independently a few months later, as the core quantity of a study
dedicated to the geometric analysis of neural networks carried out by Grigsby u. a. (2022).
In the latter article, this quantity is called the ‘batch functional dimension’ and we will use
this name in this article.

Because the input space of Dfθ(X) is always RE × RB, the quantity rank(Dfθ(X)) is
upper bounded by the number of parameters |E|+|B|. Furthermore, as formalized by Grigsby
u. a. (2022), because of the invariance by positive rescaling, see the definition and discussion
of the relation ∼s in Section 2, we even have rank(Dfθ(X)) ≤ |E| + |B| − N1 − · · · − NL−1.
In fact, when rank(Dfθ(X)) = |E| + |B| − N1 − · · · − NL−1, under mild conditions on θ,
the network function is locally identifiable around θ. That is, fθ(X) = fθ′(X) and ∥θ − θ′∥
small enough imply θ ∼s θ′ (see Bona-Pellissier u. a., 2022).

Beyond the case of maximal rank value, rank(Dfθ(X)) = |E| + |B| − N1 − · · · − NL−1,
leading to local identifiability, examples of non-identifiable neural networks and rank deficient
parameters are in Grigsby u. a. (2022); Bona-Pellissier u. a. (2023a); Grigsby u. a. (2023);
Sonoda u. a. (2021). Let us emphasize a simple example illustrating that several rank values
can be achieved.
Examples 1. Consider L ≥ 3, any neuron v ∈ Vℓ, for ℓ ∈ {2, . . . , L − 1}, and θ ∈ RE × RB

such that
bv < 0 and wv′→v < 0, for all v′ ∈ Vℓ−1. (13)

Because of the ReLU activation function, for all x ∈ RN0 and all v′ ∈ Vℓ−1, we have
(f ℓ−1

θ (x))v′ ≥ 0, and (1) and (13) guarantee that (f ℓ
θ(x))v = 0. This holds for all θ in

the open set defined by (13). In this set, the parameters (wv′→v)v′∈Vℓ−1 and bv have no
impact on fθ(X), which leads to a rank deficiency of Dfθ(X). Going further, consider any
θ ∈ RE × RB. According to the above remark, to diminish rank(Dfθ(X)), we can change
the weights arriving to a given neuron v, and assign them negative values so that (13)

11



holds. We can redo this operation to many neurons to diminish the rank further. As a
conclusion to the example, many values of rank(Dfθ(X)) are reached at different places in
the parameter/input space.

Let us conclude the section by showing that the quantity rank(Dfθ(X)) is invariant with
respect to the positive rescaling and/or neuron permutation symmetries defined in Section 2.

Proposition 2. Consider any deep fully-connected ReLU network architecture (E, V, σL).
Let θ, θ̃ ∈ RE × RB such that θ ∼ θ̃. Then, for any n ∈ N∗ and X ∈ RN0×n, Dfθ(X) is
defined if and only if Df

θ̃
(X) is defined, and in that case we have

rank
(
Df

θ̃
(X)

)
= rank(Dfθ(X)).

The proof of the proposition is in Appendix A.2. In this appendix, we provide Propo-
sition 14, which includes Proposition 2 as its first statement. Two other statements in
Proposition 14 provide invariance properties of the sets ‹On

1 , . . . , ‹On
mn

and On
1 , . . . , On

mn
with

respect to positive rescalings and neuron permutations.
The invariance in Proposition 2 is a benefit of the complexity measure rank(Dfθ(X)).

For instance, it does not hold for the local flatness of the empirical risk function studied by
Cha u. a. (2021); Foret u. a. (2021); Hochreiter und Schmidhuber (1997); Keskar u. a. (2017).
This leads to undesired behaviors (Dinh u. a., 2017). Similarly, complexity measures defined
by norms (Bartlett u. a., 2017, 2020; Golowich u. a., 2018; Neyshabur u. a., 2015b) are not
invariant to positive rescalings6.

4 Geometric Interpretation when X is Fixed

The statement of Theorem 1, (i) is used in Section 5. In this section, we mostly describe the
consequences of Theorem 1, (ii). The next corollary is a straightforward consequence of the
constant rank theorem and Theorem 1, (ii).

Corollary 3. Consider any deep fully-connected ReLU network architecture (E, V, σL).
For any n ∈ N∗, X ∈ RN0×n, j ∈ J1, pXK and θ ∈ UX

j , there exists εX,θ > 0 such that

• the local image set
{fθ′(X) ∈ RNL×n | ∥θ′ − θ∥ < εX,θ}

is a smooth manifold of dimension rank(Dfθ(X));

• the local pre-image set

{θ′ ∈ RE × RB | fθ′(X) = fθ(X) and ∥θ′ − θ∥ < εX,θ}

is a smooth manifold of dimension |E| + |B| − rank(Dfθ(X)).
6For both flatness and norms, it is, of course, possible to consider the minimum of the complexity criterion

over the equivalence class of a θ element. However, this is an additional burden that is not necessary for
criteria based on the functional dimension.
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4.1 Example

We show on Figure 1 the sets ŨX
j (left) and their image fŨX

j
(X) = {fθ(X) | θ ∈ ŨX

j }
(right), for j ∈ J1, 6K, for a one-hidden-layer neural network of widths (1, 1, 1), with the
identity activation function on the last layer. To simplify notations, we denote the weights
and biases θ = (a, b, c, d) ∈ R4 so that fθ(x) = bσ(ax + c) + d, for all x ∈ R. We consider
X = (0, 1, 2) ∈ R1×3 and

fθ(X)T =

Ñ
bσ(c) + d

bσ(a + c) + d
bσ(2a + c) + d

é
.

For any j ∈ J1, 6K, the sets ŨX
j depend on the activations in the hidden layer. They are

separated by the hyperplanes c = 0, a + c = 0, 2a + c = 0. The conditions only depend on a
and c. We represent the projection of the sets ŨX

j and the lines c = 0, a + c = 0, 2a + c = 0
in the plane (a, c), on the left of Figure 1.

Similarly, for any j ∈ J1, 6K, the image set fŨX
j

(X) ⊆ R3 is invariant to translations by a
vector (d, d, d), for d ∈ R. On the right of Figure 1, we represent for all j the intersection
Vj = fŨX

j
(X) ∩ P between the image set fŨX

j
(X) and the linear plane P orthogonal to

(1, 1, 1), generated by the vectors 1√
6(1, 1, −2) and 1√

2(−1, 1, 0). The calculations leading to
the construction of the figure are in Appendix B.

4.2 Geometry-induced Implicit Regularization

Corollary 3 is illustrated in Figure 2. There we consider a regression problem with a fixed
target data matrix Y ∈ RNL×n corresponding to the input matrix X ∈ RN0×n. We consider
the square loss ∥Y − fθ(X)∥2, for θ ∈ RE × RB, where ∥ · ∥ is the Euclidean (Frobenius)
norm. We also consider θ∗ minimizing the square loss.

In Figure 2, we display a (fictive) illustrative case, that can be considered as representative
of the practice of deep neural networks, and of our numerical experiments in Section 7.

We consider here that in Corollary 3, pX = 7. Hence, there are 7 sets UX
1 , . . . , UX

7 forming
a partition of RE × RB. On Figure 2, for j ∈ J1, 7K, the image of UX

j , {fθ(X) | θ ∈ UX
j },

is drawn with the same color as UX
j . Locally, it has the structure of a smooth manifold of

dimension rX
j . The rank values are rX

1 = 1, rX
2 = 2, rX

3 = 1, rX
4 = 0, rX

5 = 1, rX
6 = 1, rX

7 = 1
and thus the full image set {fθ(X) | θ ∈ RE ×RB} is a two-dimensional object. In the figure,
this full image set is mainly covered by the two-dimensional image set {fθ(X) | θ ∈ UX

2 }, and
the six other image sets {fθ(X) | θ ∈ UX

j }, j ∈ J1, 7K \ {2}, of dimension one or zero, are at
the boundary of {fθ(X) | θ ∈ RE × RB}. Hence, intuitively they are ‘exposed’, meaning in
particular that if Y does not belong to the full image set, then the optimal prediction fθ∗(X)
is in one of the smaller dimensional {fθ(X) | θ ∈ UX

j }, j ∈ J1, 7K\ {2}. This is an illustration
of the geometry-induced implicit regularization phenomenon put to evidence in this
article. In practice, parameters found by minimizing the empirical risk numerically tend to
have a small complexity as measured by rank(Dfθ(X)), where X is the learning sample.
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c

a

a + c = 0

2a + c = 0

c = 0

ŨX
1

ŨX
2

ŨX
3 ŨX

4

ŨX
5

ŨX
6

θ = (a, b, c, d) ∈ R4
fθ(X)

R1×3
restrict to P

R2

y

x

x +
√

3y = 0

√
3x + y = 0

y = 0•

Figure 1: Representation of the sets ŨX
j in the space (a, c) (left) and restriction to P of the

corresponding image sets {fθ(X) | θ ∈ ŨX
j }, j ∈ J1, 6K (right). We have rX

1 = 1, rX
2 = 2,

rX
3 = 3, rX

4 = 2, rX
5 = 3, rX

6 = 2. The image of ŨX
1 such that rX

1 = 1 is reduced to (0, 0)
(right). The images of the sets ŨX

j with rX
j = 2 (i.e. j = 2, 4, 6) are represented with thick

lines of their respective colors (right). The images of ŨX
3 , with rX

3 = 3, and ŨX
5 , with rX

5 = 3,
are represented by dashed areas, with the corresponding colors (right).
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θ ∈ RE × RB

UX
1

UX
2

UX
3

UX
4

UX
5

UX
6

θ∗×

UX
7

fθ(X)
RNL×n

Y × ×fθ∗(X)

•
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Figure 2: Schematic representation of the sets UX
j (left) and the corresponding local image

sets {fθ(X) | θ ∈ UX
j }, j ∈ J1, 7K (right). We have rX

1 = 1, rX
2 = 2, rX

3 = 1, rX
4 = 0,

rX
5 = 1, rX

6 = 1, rX
7 = 1. The image of UX

2 is the curved diamond-shaped area, hatched in
cyan (right). The images of the sets UX

j with rX
j = 1 are represented with lines of their

respective colors (right). The image of UX
4 with rX

4 = 0 is represented by a magenta bullet
point (right). We consider the square loss in RNL×n. The target Y ∈ RNL×n and the global
solution fθ∗(X) of the regression problem are represented (right). The pre-image of fθ∗(X)
is displayed in brown (left). A minimizing sequence is represented by gray stars, in the
parameter space (left) and the image space (right).
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The illustrative situation in Figure 2 corresponds to the empirical observations made
in Section 7.2 for the MNIST classification problem. In this section, we even observe that,
consistently in our experiments, a larger optimal loss leads to a smaller batch functional
dimension. We will also see empirically in Section 7.2 that for large parameter complexities
(W large), the batch functional dimension computed on the learning sample remains moderate.
There are two complementary explanations. First, even though the predictions are correct for
all training examples, because of the soft-max activation on the last layer, the cross-entropy
loss slightly differs from zero. Secondly, although there may exist θ for which the loss is
exactly zero, this θ is apparently not in the convergence basin in which the local search
algorithm optimizes.

4.3 Influence of the Geometry on the Optimization Trajectory

In Figure 2, we also display a (fictive) minimizing sequence, that is a set of pairs (θn, fθn(X))n∈N
obtained by a numerical gradient-descent-based optimization procedure. This sequence is
initialized in UX

2 , then passes in UX
5 and then UX

6 , where the optimal solution lies. This
illustrative example is an illustration of the experimental results of Section 7.3. There,
during the learning phase, the sequence (rank(Dfθn(X)))n∈N typically decreases. According
to Corollary 3, this corresponds to an objective landscape that becomes flatter and flatter,
in the sense that the local dimension of the pre-image of fθn(X) increases. Locally in the
parameter space, the objective function is constant along a smooth manifold of a larger
dimension. This new notion of flatness resembles but slightly differs from the notion of ‘flat
minima’ usually considered to explain the good generalization properties of deep learning
(Keskar u. a., 2017; Dinh u. a., 2017; Foret u. a., 2021; Cha u. a., 2021; Hochreiter und
Schmidhuber, 1997).

5 Rank Saturating X, when θ is Fixed

In this section, we define a dense subset of RE ×RB , and for θ in this subset, we analyze the
maximum value of rank(Dfθ(X)), for any X of any size, in a dense set. This is a natural
notion of complexity, that we call ‘computable full functional dimension’. In particular, it is
independent of X and measures the expressive potential of the neural network defined by
θ. It is linked to the full functional dimension defined by Grigsby u. a. (2022), but can be
computed (see Section 6.2), thus the name. After giving the main definitions and establishing
the first properties of the considered mathematical objects, we give the main result of this
section (Theorem 6), which states that the computable full functional dimension depends
only on the attainable activation patterns for the considered θ, when X varies. We also
show the invariance of the computable full functional dimension with respect to neuron
permutations and positive rescalings. We finally establish a simple link with the (local and
global) fat-shattering dimensions of the ReLU neural networks of architecture (E, V, σL).

For a fixed θ ∈ RE × RB and any activation pattern δ ∈ {0, 1}N1+···+NL−1 , we denote

Dδ(θ) = {x ∈ RN0 | a(x, θ) = δ}. (14)
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It is well known (among many others, see Bona-Pellissier u. a., 2023a) that the restriction
of the function x 7−→ fθ(x) to Dδ(θ) is affine. It is therefore smooth in Int(Dδ(θ)) but,
generically, the function is not differentiable at the boundary of Dδ(θ). For any θ ∈ RE ×RB,
following Stock und Gribonval (2022), we also define the achievable activation patterns

A(θ) = {δ ∈ {0, 1}N1+···+NL−1 | Int(Dδ(θ)) ̸= ∅} (15)

and
Xθ =

⋃
δ∈A(θ)

Int(Dδ(θ)).

It is well known that the pieces Dδ(θ) are polyhedral (see for instance Bona-Pellissier u. a.
2023a). Hence the complement set X c

θ is included in a finite union of hyperplanes. Hence,
the set Xθ is dense (and open) in RN0 .

We extend this definition to samples and set, for n ∈ N∗ and θ ∈ RE × RB,

X n
θ = {X ∈ RN0×n | ∀i ∈ J1, nK, x(i) ∈ Xθ}. (16)

The set X n
θ is the nth order tensor product of the set Xθ with itself. By construction, the

set X n
θ is open and dense in RN0×n, for all n and θ.

The results of this section will apply to all θ ∈ RE × RB except those in a subset Z,
which will turn out to be of Lebesgue measure zero – see Proposition 4. To define the set Z,
we first define, for all n ∈ N∗ and all θ ∈ RE × RB,

zn(θ) =
¶

X ∈ RN0×n | (X, θ) ∈
Ä
∪mn

j=1On
j

äc©
, (17)

where On
1 , . . . , On

mn
are defined in (9) and described in Theorem 1. The set zn(θ) is closed

and therefore Lebesgue measurable. We write, for all n ∈ N∗,

Zn =
¶

θ ∈ RE × RB | zn(θ) has positive Lebesgue measure in RN0×n
©

(18)

and Z = ∪n∈N∗ Zn. We state in the following proposition the most important properties of
Z, used in the remaining of the article.

Proposition 4. Consider any deep fully-connected ReLU network architecture (E, V, σL).

(i) For all n ∈ N∗, the set Zn is Lebesgue measurable and has Lebesgue measure zero on
RE × RB.

(ii) The set Z is Lebesgue measurable and has Lebesgue measure zero on RE × RB.

(iii) For all θ ∈ (RE × RB) \ Z, all n ∈ N∗, and all X ∈ X n
θ , the function θ′ 7−→ fθ′(X) is

analytic in a neighborhood of θ and it is therefore differentiable at the point θ.
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The proof of the proposition is in Appendix C.1.
Using Proposition 4, (iii), we can define, for all n ∈ N∗ and all θ ∈ (RE × RB) \ Z, the

main objects studied in this section

r∗
n(θ) = max

X∈X n
θ

rank(Dfθ(X)), (19)

and the computable full functional dimension

r∗(θ) = max
n∈N∗

r∗
n(θ). (20)

Notice that, although X n
θ is open and dense in RN0×n and the rank is lower semi-

continuous, the existence of X ∈ RN0×n \ X n
θ such that Dfθ(X) is well defined and

rank(Dfθ(X)) > r∗
n(θ) is not excluded. The computable full functional dimension r∗(θ)

therefore may slightly differ from the full functional dimension defined by Grigsby u. a.
(2022). It lower bounds the full functional dimension. We will see in Section 6.2 that its
advantage is that it can be computed with a random X. Notice finally that in Examples 1
the rank deficiency caused by negative weights is independent of X. Therefore, r∗(θ) achieves
several values, as θ varies.

Notice also that, although we take the maximum over all n ∈ N∗, we know that since,
for all n ∈ N∗ and all X ∈ RN0×n, θ 7−→ Dfθ(X) always has the same input dimension
|E| + |B|, see (2), the maximum is reached for n ≤ |E| + |B| (see also Proposition 9 below).

The following proposition states that r∗
n(θ) equals the largest of all the rn

j , as defined in
(8), that are reachable when X varies, for the given θ.

Proposition 5. Consider any deep fully-connected ReLU network architecture (E, V, σL).
For any θ ∈ (RE × RB) \ Z and n ∈ N∗,

r∗
n(θ) = max

j∈In(θ)
rn

j ,

where
In(θ) = {j ∈ J1, mnK | ∃X ∈ RN0×n, (X, θ) ∈ On

j }. (21)

The proposition is proved in Appendix C.2.
The following theorem states that the achievable activation patterns A(θ), as defined in

(15), determine r∗(θ). It also states that when the prediction has more affine areas, that is
for a fixed θ, X 7−→ fθ(X) is piece-wise affine with more pieces, then this prediction is more
complex, in the sense of r∗.

Theorem 6. Consider any deep fully-connected ReLU network architecture (E, V, σL).
For any θ and θ′ in (RE × RB) \ Z,

if A(θ) ⊆ A(θ′) then r∗(θ) ≤ r∗(θ′);

as a consequence,
if A(θ) = A(θ′) then r∗(θ) = r∗(θ′).
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The proof of the theorem is in Appendix C.3.
Next, we show that r∗

n(θ), r∗(θ) and Z are invariant by neuron permutation and positive
rescaling (recall the relations ∼, ∼s and ∼p presented in Section 2).

Proposition 7. Let θ ∈ RE × RB and θ̃ ∼ θ. Then θ ∈ Z ⇐⇒ θ̃ ∈ Z. Also, if
θ ∈ (RE × RB) \ Z, r∗

n(θ) = r∗
n(θ̃) for all n ∈ N∗ and r∗(θ) = r∗(θ̃).

The proof of the proposition is in Appendix C.4.
Let us conclude this section by showing that r∗(θ) provides lower-bounds on various

fat-shattering dimensions for neural networks. The fat-shattering dimension of a family
of regression functions is a well-known measure of complexity (see for instance Anthony
und Bartlett 2009, Chapter 11). In the rest of the section, we let NL = 1 and, for a
subset A ⊆ RE × RB, for γ > 0, the fat-shattering dimension of the family {fθ | θ ∈ A},
that we write fSA,γ , is defined as follows. It is the largest n ∈ N∗ such that there exist
x(1), . . . , x(n) ∈ RN0 and t1, . . . , tn ∈ R such that for all I ⊆ J1, nK, there is θ ∈ A such that
for i ∈ I, fθ(x(i)) ≥ ti + γ and for i ∈ J1, nK \ I, fθ(x(i)) ≤ ti − γ. If this property holds for
all n then we let fSA,γ = ∞.

The intuition is that fSA,γ is the largest number n of input points for which all 2n

combinations of being above or below the threshold ti by a margin γ, i ∈ J1, nK, can be
reached by the functions in {fθ | θ ∈ A} (see Anthony und Bartlett 2009). When A is
a small ball centered at a parameter of interest we shall call fSA,γ a local fat-shattering
dimension, and when A = RE × RB, we shall call fSA,γ a global fat-shattering dimension.
We also consider the case where A is the set of parameters yielding a given computable
full functional dimension, where we refer to fSA,γ as the fixed-rank fat-shattering dimension.
The next proposition shows the announced lower bounds.

Proposition 8. Consider any deep fully-connected ReLU network architecture (E, V, σL)
such that NL = 1.

Let θ ∈ (RE × RB) \ Z. Then for any ε > 0, there is γ > 0 such that we have the
following lower bound on the local fat-shattering dimension,

fSB(θ,ε),γ ≥ r∗(θ). (22)

As a first consequence, there is γ′ > 0 such that the global fat-shattering dimension is lower
bounded as follows,

fSRE×RB ,γ′ ≥ max
θ∈(RE×RB)\Z

r∗(θ).

As a second consequence, the fixed-rank fat-shattering dimension is lower bounded as follows.
Consider r ∈ J1, |E| + |B| − N1 − · · · − NL−1K. Let Ar = {θ ∈ (RE × RB) \ Z | r∗(θ) = r}.
If Ar has non-empty interior, there is γ′′ > 0 such that

fSAr,γ′′ ≥ r.

The proof of the proposition is in Appendix C.5.
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It consists first in obtaining local continuous differentiability, with an invertible square
Jacobian matrix and second in applying the inverse function theorem. Variations of this
second step were already carried out in the literature, in particular by Erlich u. a. (1997).

Remark that the same proof would also apply to other measures of complexity, for
instance the Vapnik–Chervonenkis (VC) dimension (Anthony und Bartlett, 2009, Chapter
3) of the binary classifiers indexed by θ and obtained by taking the sign of fθ − fθ0 for any
fixed θ0 ∈ (RE × RB) \ Z (with σL as the identity).

Our motivation, for studying the fat-shattering dimension (or the VC-dimension), is their
relationships with notions of generalization errors in machine learning, and with uniform
convergence in probability and statistics, (see in particular Alon u. a. 1997; Bartlett und
Long 1998; Colomboni u. a. 2023; Vapnik und Chervonenkis 1971 and references therein).
In particular, Proposition 8 indicates that the computable full functional dimension r∗(θ)
can be seen as relevant for studying the generalization error of neural networks in machine
learning.

Finally, remark that Bartlett u. a. (2019, 1998); Harvey u. a. (2017); Maass (1994) relate
the global VC dimension of neural networks to their number of parameters (and their depths)
while in Proposition 8 we consider local or global dimensions and relate them to the (smaller)
computable full functional dimension.

6 Computational Considerations

In this section, we describe how to compute the quantities of this article in practice. In
Section 6.1, we describe how one can efficiently compute rank(Dfθ(X)) for a given X, and
in Section 6.2 we explain how this allows to compute r∗(θ) by sampling, for a sufficient
number of samples.

6.1 How to Compute rank(Dfθ(X))

For a given X ∈ RN0×n and a given θ ∈ RE × RB, rank(Dfθ(X)) is computed using the
backpropagation and numerical linear algebra tools computing the rank of a matrix. To
justify the computations, let us first recall the classical backpropagation algorithm for
computing the gradients with respect to the parameters of the network, for a given loss
Lo : RNL × RNL −→ R. We will then describe how to use the backpropagation to compute
rank(Dfθ(X)). We conclude with implementation recommendations.

For a given input x ∈ RN0 and a given output y ∈ RNL , backpropagation computes the
gradient ∇Lo(fθ(x), y) of the function θ 7−→ Lo(fθ(x), y). To do so, it first computes fθ(x)
and stores the intermediate pre-activation values (yℓ

θ)v = ∑
v′∈Vℓ−1

wv′→v(f ℓ−1
θ (x))v′ + bv, for

ℓ ∈ J1, LK and v ∈ Vℓ. This is known as the ‘forward pass’. Then, backpropagation computes
the vector of errors ηL

θ defined by

ηL
θ =
Ä
JσL(yL

θ )
äT ∂Lo

∂y1
(fθ(x), y),
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where ∂Lo
∂y1

(fθ(x), y) ∈ RNL is the gradient of y1 7−→ Lo(y1, y), at the point (fθ(x), y), and
JσL(yL

θ ) is the Jacobian matrix of yL 7→ σL(yL), at yL
θ . This vector is then backpropagated,

from ℓ = L to ℓ = 1 thanks to the equation

∀v′ ∈ Vℓ−1
Ä
ηℓ−1

θ

ä
v′ = σ′

ÄÄ
yℓ−1

θ

ä
v′

ä ∑
v∈Vℓ

wv′→v

Ä
ηℓ

θ

ä
v
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where σ′(t) = 1 if t > 0 and σ′(t) = 0 if7 t ≤ 0. This allows to recursively obtain the error
vectors ηℓ

θ ∈ RNℓ , for all ℓ ∈ J1, LK. We deduce the partial derivatives thanks to the formulas

∀ℓ ∈ J1, LK, ∀v′ ∈ Vℓ−1, ∀v ∈ Vℓ,
∂Lo(fθ(x), y)

∂wv′→v
= σ
ÄÄ

yℓ−1
θ

ä
v′

ä Ä
ηℓ

θ

ä
v

and
∀ℓ ∈ J1, LK, ∀v ∈ Vℓ,

∂Lo(fθ(x), y)
∂bv

=
Ä
ηℓ

θ

ä
v

.

This allows computing the gradients for one example (x, y). For a batch, the algorithm
is repeated for each example (x(i), y(i)), and the average of the so obtained gradients is
computed.

Let us now make the connection between backpropagation and the computation of
rank(Dfθ(X)). Vectorizing both the input and output spaces of θ 7−→ fθ(X), we first notice
that rank(Dfθ(X)) = rank(Jfθ(X)), where the Jacobian matrix Jfθ(X) ∈ RnNL×(|E|+|B|)

takes the form

Jfθ(X) =

Ö
Jfθ(x(1))

...
Jfθ(x(n))

è
and, for all i ∈ J1, nK, Jfθ(x(i)) ∈ RNL×(|E|+|B|) is the Jacobian matrix of θ 7−→ fθ(x(i)). We
construct the matrix Jfθ(X) by successively computing each of its lines, i.e. computing
each line of Jfθ(x(i)) for all i ∈ J1, nK.

For a given i ∈ J1, nK and v ∈ VL, the line corresponding to v of Jfθ(x(i)) is indeed
simply obtained as the transpose of ∇Lov(fθ(x(i)), y(i)) for the function Lov : RNL ×
RNL −→ R defined by Lov(y1, y2) = (y1)v, for all (y1, y2) ∈ RNL × RNL . We indeed have
Lov(fθ′(x(i)), y(i)) = fθ′(x(i))v for all θ′. The gradient ∇Lov(fθ(x(i)), y(i)) is obtained using
the backpropagation algorithm described above. Notice that when σL is the identity, for
a given v ∈ VL, using the definition of Lov, we always have (ηL

θ )v = 1 and (ηL
θ )v′ = 0 for

all v′ ̸= v. We need however to compute the forward pass in order to compute the vectors
yℓ

θ, for ℓ ∈ J0, L − 1K. Finally, once Jfθ(X) is computed its rank is obtained using standard
linear algebra algorithms.

Our implementation uses the existing automatic differentiation of Tensorflow. It is
possible to call the method GradientTape.gradients, which computes Jfθ(x) for a single

7Neural networks libraries such as Tensorflow set σ′(0) = 0 and we adopt this convention in this calculus.
Due to numerical imprecision, we rarely have yℓ−1

θv = 0 in practice. In the theoretical sections of this article,
the situation σ′(0) never occurs for the cases where Dfθ(X) is considered.
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example x, and to repeat it for each example x(i). However, it is more efficient to use
GradientTape.jacobian which allows to compute directly Jfθ(X). We do not report the
details of the experiments here but we found even more efficient to cut X in sub-batches
and repeatedly call GradientTape.jacobian, when appropriately choosing the size of the
sub-batches.

Once Jfθ(X) built, the value of rank(Jfθ(X)) can be computed with the np.linalg.rank
function of Numpy, or using the accelerated rank computation of Pytorch with a GPU,
which improves the speed by some factors. Note that the limiting factor when computing
rank(Jfθ(X)) for large networks and/or n large is the computation of the rank and not the
construction of Jfθ(X).

The codes are available at (Bona-Pellissier u. a., 2023b).

6.2 How to Compute r∗(θ)
In this section, our goal is to estimate the maximal rank r∗(θ), see (20), from rank(Dfθ(X)),
where X ∈ RN0×n is a random data set composed of n i.i.d samples. Such an estimate
is already considered by Grigsby u. a. (2023). Intuitively, the bigger n is, the better the
estimation. Indeed, we provide an upper bound on the probability that rank(Dfθ(X)) < r∗(θ)
as a function of n, see Theorem 11. This probability also depends on the probability of
generating an example in the least probable linear region of x 7−→ fθ(x). This result can be
compared to the smallest possible sample size n∗(θ) obtained if an optimal X ∈ RN0×n∗(θ)

was provided by an oracle, see Proposition 9.
This proposition proves that this smallest possible sample size n∗(θ) has the order of

magnitude of r∗(θ). Before stating the proposition, we remind that, since the input space of
Dfθ(X) is always RE × RB, we always have8 r∗(θ) ≤ |E| + |B|.

Proposition 9. Consider any deep fully-connected ReLU network architecture (E, V, σL).
Let θ ∈ (RE × RB) \ Z. Consider the sequence (r∗

n(θ))n∈N∗. There exists (a unique)
n∗(θ) ∈ N∗ such that this sequence is increasing for 1 ≤ n ≤ n∗(θ) and stationary (constant)
for n∗(θ) ≤ n. Furthermore, if r∗(θ) ̸= 0, we also have

r∗(θ)
NL

≤ n∗(θ) ≤ r∗(θ).

The proof of the proposition is in Appendix D.1.
As its proof shows, the following proposition is a direct consequence of Proposition 5.

It already guarantees that, without any knowledge of the problem, a random X following
a sufficiently spread distribution can be used to calculate r∗

n(θ) and therefore r∗(θ). Its
purpose is to illustrate how the statements in the previous sections can be used to calculate
r∗(θ). A better statement is given in Theorem 11.

Proposition 10. Consider any deep fully-connected ReLU network architecture (E, V, σL).
8A tighter upper-bound taking into account the positive rescaling invariance of ReLU networks is given by

Grigsby u. a. (2022), as discussed in Section 3.

22



Let θ ∈ (RE × RB) \ Z. Let n ∈ N∗. The set {X ∈ X n
θ | rank(Dfθ(X)) = r∗

n(θ)} has
non-zero Lebesgue measure (on RN0×n).

Proof of Proposition 10. From Proposition 5, there exists j ∈ In(θ) such that rn
j = r∗

n(θ).
We then have the inclusion

{X ∈ X n
θ | (X, θ) ∈ On

j } ⊆ {X ∈ X n
θ | rank(Dfθ(X)) = r∗

n(θ)}.

Since On
j is open, the left-hand set above is an open set, which is non-empty by definition of

In(θ), in (21). Hence, the right-hand set above has a non-zero Lebesgue measure.

Theorem 11. Consider any deep fully-connected ReLU network architecture (E, V, σL).
Let us consider a distribution G over RN0, that is absolutely continuous with respect

to Lebesgue measure, with (strictly) positive density. Assume we sample randomly and
independently the vectors x(i) ∈ RN0 , i ∈ J1, nK, following the distribution G, for some
n ∈ N∗.

Let θ ∈ (RE × RB) \ Z and

p = min
δ∈A(θ)

P
Ä
x(1) ∈ Int Dδ(θ)

ä
,

where A(θ) and Dδ(θ) are defined in (15) and (14). Note that we have p > 0, because A(θ)
is finite and, for all δ ∈ A(θ), Dδ(θ) has nonempty interior.

Then the following holds.

1. Consider i.i.d. Bernoulli random variables B1, . . . , Bn, with P(B1 = 1) = p and
P(B1 = 0) = 1 − p. We have

P
Ä
rank
Ä
Dfθ

Ä
(x(i))1≤i≤n

ää
< r∗(θ)

ä
≤ P(B1 + · · · + Bn < n∗(θ)).

2. As a consequence, if n ≥ 2n∗(θ)/p,

P
Ä
rank
Ä
Dfθ

Ä
(x(i))1≤i≤n

ää
< r∗(θ)

ä
≤ 4

np
.

The proof of the theorem is in Appendix D.2.
A first consequence of the theorem is that if one simply adds columns to an input

matrix X randomly and independently, the corresponding value of rank(Dfθ (X)) will reach
the computable full functional dimension, almost surely (this consequence alone could be
seen/proved more simply). This can for instance help understand the experimental results
of Grigsby u. a. (2023).

The theorem then provides two upper bounds (Items 1 and 2) on the probability of not
reaching the computable full functional dimension, as a vanishing function of the number
of columns n. A beneficial feature of these upper bounds is that they are based on p,
the smallest probability of reaching a given region Int Dδ(θ), relative to a given activation
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pattern δ, for a single column sample. Importantly, the probabilities of reaching several
given activation patterns simultaneously over multiple samplings of the columns, which
would be typically much smaller than p, are not involved.

Also, the upper bounds are based on n∗(θ), the smallest number of columns for X such
that we can have rank(Dfθ (X)) = r∗(θ). This is natural since the larger n∗(θ), the more
samples we need to have a non-zero probability of reaching the computable full functional
dimension. Typically, for n of the order of magnitude of n∗(θ) (for instance such that
np ≳ 2n∗(θ)), since n∗(θ) is usually large, we already have a high probability that the
lower-bound rank

Ä
Dfθ

Ä
(x(i))1≤i≤n

ää
coincides with r∗(θ).

The first upper bound (Item 1) is the tightest and most general. The second one (Item
2) simply follows from Chebyshev’s inequality and is provided for the sake of obtaining a
straightforward compact bound. Other upper bounds could be obtained simply from Item 1,
using for instance the Hoeffding inequality.

7 Experiments

The experiments emphasize several aspects of the geometry-induced implicit regularization
illustrated in Figure 2. The setting of the experiments is described in Section 7.1. In Section
7.2, we describe the results of an experiment in which we compute the functional dimensions
as the number of parameters of the network grows. In Section 7.3, we compute functional
dimensions throughout the learning phase. In Section 7.4, we investigate the impact of the
corruption of the inputs of the learning sample on the functional dimensions. In Section 7.5,
we perform the same experiment but corrupt the outputs of the learning sample.

The Python codes implementing the experiments described in this section are available
at (Bona-Pellissier u. a., 2023b).

7.1 Experiments Description

In the experiments of Section 7.2, 7.3, 7.4 and 7.5, we evaluate the behavior of different
complexity measures for the classification of a subpart of the MNIST data set.

We consider a fully-connected feed-forward ReLU network of depth L = 4, of widths
(N0, N1, N2, N3, N4) = (784, w, w, w, 10), for different values of w ∈ J1, 60K. The tested
values of w depend on the experiment/section. The hidden layers (1, 2, 3) include a
ReLU activation function. The last layer includes a soft-max activation function. We
randomly extract a training sample (Xtrain, Ytrain), containing 6 000 images and a test sample
(Xtest, Ytest) containing 20 000 images from MNIST.

For given w and (Xtrain, Ytrain), we tune the parameters of the network to minimize the
cross-entropy. This is achieved using the Glorot uniform initialization for the weights while
initializing the biases to 0, and using the stochastic gradient descent ‘sgd’ as optimizer
with a learning rate of 0.1 and a batch size of 256. The number of epochs depends on the
experiment/section.

In the figures presenting the results of the experiments, we display the following quantities:
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• Max rank: the maximal theoretically possible value of rank(Dfθ(X)) for any sample
X and parameter θ. It is equal to |E| + |B| − N1 − · · · − NL−1 = N0N1 + N1N2 + · · · +
NL−1NL+NL (see the bound provided by Grigsby u. a. (2022), Theorem 7.1). With the
architecture described above, for a given w, the Max_rank is equal to 2w2 + 794w + 10.
This is very close to the number of parameters 2w2 + 797w + 10. Furthermore, with
the values of w considered in the forthcoming experiments, the predominant term is
794w.

• Rank X_random: an estimation of the computable full functional dimension, according
to the statement of Section 6.2, by computing rank(Dfθ(Xrandom)) with a random i.i.d.
sample Xrandom, where each example of the sample is a Gaussian random vector. The
number of examples is equal to 20 000 or 40 000 depending on the experiment/section.

• Rank X_test: It corresponds to rank(Dfθ(Xtest)), where Xtest is the test sample of
size 20 000 introduced above. Note that the test set is bigger than the train set, in
contrast to classical settings. Indeed, the test set serves two purposes here: it is
classically used to compute the classification accuracy, but it is also meant to provide
an estimation of the functional dimension over the distribution of the inputs (the
MNIST images). The latter estimation differs from the estimation with Xrandom which
samples images outside the distribution of the inputs.

• Rank X_train: It corresponds to rank(Dfθ(Xtrain)), where Xtrain is the training sample
of size 6 000 mentioned above. This quantity is the batch functional dimension.

• Train loss: the value of the training loss at the end of the training (resp. at the current
epoch) in Sections 7.2, 7.4 and 7.5 (resp. in Section 7.3).

• Test error: the proportion of images of Xtest that are misclassified by the network.

• Train error: the proportion of images of Xtrain that are misclassified by the network.

7.2 Behavior of the Functional Dimensions as the Network Width In-
creases

In this experiment, we evaluate the functional dimensions when the width w varies between
1 and 85. More precisely, we test all w between 1 and 9, then all w between 10 and 18 with
an increment of 2, and then all w between 20 and 85 with an increment of 5. Overall, the
number of parameters of the network varies between 809 and 82 205

As described in Section 7.1, we randomly extract a training sample (Xtrain, Ytrain) of size
6 000 and a test sample (Xtest, Ytest) of size 20 000 from MNIST. The size of the i.i.d Gaussian
sample Xrandom is 40 000. We optimize the network parameters during 1 000 epochs.

The results of the experiment are in Figure 3. When increasing the number of parameters,
the train loss, the train error and the test error decrease. For w ≥ 12, i.e. when the number
of parameters is superior or equal to 9 862, the train error is equal to 0: the network is able
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Figure 3: Behavior of different complexity measures as the size of the network increases.
The values of the several ranks are to be read on the left axis, titled ‘functional dimension’.
The values for the test and train errors and the train loss are to be read on the right axis.

to fit perfectly the training images. However, the test error continues to decrease even after
the train error reaches 0: from 0.101 when w = 12 to 0.058 when w = 85.

As we can see, the quantity rank(Dfθ(Xrandom)) in the case of the 40 000 inputs generated
as Gaussian vectors, Xrandom, is nearly always equal to its maximum theoretical value
Max_rank. This indicates first that r∗(θ) is equal to its maximal theoretical value, and
second that rank(Dfθ(Xrandom)) provides here a good estimation of r∗(θ). Furthermore,
according to Bona-Pellissier u. a. (2022), the networks parameters are locally identifiable
from Xrandom in this case.

The ranks rank(Dfθ(Xtrain)) and rank(Dfθ(Xtest)) are nearly equal when the number
of parameters is smaller than 21 185 (w = 25). For these sizes, it seems to indicate that
rank(Dfθ(Xtest)) is indeed equal to the functional dimension over the distribution of inputs,
and that rank(Dfθ(Xtrain)) already attains it, which means that adding MNIST images
to Xtrain would not increase rank(Dfθ(Xtrain)). It thus also suggests that the functional
dimension over the distribution of inputs (the MNIST images) is smaller than r∗(θ) which
consider all X inside but also outside of this distribution, and which, as we have seen in the
previous paragraph, is maximal here. In the light of Bona-Pellissier u. a. (2022), this also
shows that θ is not locally identifiable from Xtrain nor Xtest. This suggests that for these
networks and the MNIST dataset, using only samples of the input distribution does not
allow to identify the parameters of a network, and one needs to add examples outside the
input distribution.

Then, for more than 21 185 parameters, a gap appears between the two ranks rank(Dfθ(Xtrain))
and rank(Dfθ(Xtest)), i.e. rank(Dfθ(Xtrain)) is smaller than the functional dimension over
the distribution of the inputs. Furthermore, while both ranks are not far from the maximum
rank for small numbers of parameters, the gap increases with the number of parameters, to
the point where the shape of the curves seem to diverge: while the maximum rank is nearly
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Figure 4: Behavior of different complexity measures during training. The values of the
different ranks are to be read on the left axis, titled ‘functional dimension’. The values of
the train loss (on the left figure), and the values of the test and train errors (on the right
figure) are to be read on the right axis.

proportional to the number of parameters, the ranks rank(Dfθ(Xtrain)) and rank(Dfθ(Xtest))
seem to increase less and less with the number of parameters. This is the consequence of
the geometry-induced implicit regularization described in Section 4.2 and Figure 2. The
regularization on the training sample seems to also concern the input distribution in general
as the curve rank(Dfθ(Xtest)) indicates.

7.3 Behavior of the Functional Dimensions During Training

We consider the setting described in Section 7.1, where we fix the value of w to 30. For
this experiment, we keep the original MNIST images and labels in (Xtrain, Ytrain) and
(Xtest, Ytest) and we set the size of the random set Xrandom to 20 000. The architecture is
(784, 30, 30, 30, 10), which corresponds to a total number of parameters equal to 25 720. The
quantities plotted in the previous experiment (see Figure 3) are computed after the training
is done. In contrast, here, we fix a total number of epoch to 3 000 and we compute the same
quantities during training, throughout the epochs.

More precisely, we study the quantities Max rank, Rank X_random, Rank X_test, Rank
X_train, Train loss, Test error and Train error, as described in Section 7.1. They are com-
puted at the epochs {40, 80, 120, 160, 200, 240, 280, 320, 360, 400}∪{600, 800, 1000, 1200, 1400}∪
{1800, 2200, 2600, 3000}. We plot these quantities in Figure 4.

We plot the train loss (on the left), which decreases throughout the epochs, and the train
error (on the right), which decreases and reaches 0 at epoch 120, after which all training
images are always correctly classified. The test error decreases the most in the first 80
epochs, after which it continues to decrease, although at a slower pace.

At the beginning of the training, the quantity rank(Dfθ(Xrandom)) is equal to the
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Figure 5: Effect of the noise on a MNIST image for different amplitudes. From left to right,
a MNIST image to which has been added a Gaussian noise, of amplitude 10−2, 10−1, 5×10−1

and 100 respectively.

maximum rank, here equal to 25 630, and it decreases to reach 24 769 at the end of the
training. As can be seen in the experiments of Sections 7.2, 7.4 and 7.5, most of the time, at
the end of the training, rank(Dfθ(Xrandom)) is equal or very close to the maximum rank,
but sometimes, there is a small gap between both quantities. The training studied here
corresponds to one of the latter cases. As shown by Bona-Pellissier u. a. (2022), when
rank(Dfθ(Xrandom)) is maximal, the parameterization θ is locally identifiable from the
sample Xrandom. On the contrary, the gap observed here at the end of the training indicates
some lack of identifiability from Xrandom.

We observe that the value of rank(Dfθ(Xtrain)) consistently decreases during training.
Such a behavior is consistent with the geometric interpretation of Section 4.2 and 4.3, and
Figure 2. The value of rank(Dfθ(Xtest)) also decreases, with a more gentle slope. This
indicates that the geometry-induced implicit regularization occurring on the training sample
is ‘communicated’ to the test sample.

7.4 Behavior of the Functional Dimensions when X is Corrupted

We consider the same setting as the experiments of Section 7.1, with w = 30, which
corresponds to a total number of parameters equal to 25 720.

The network is trained, during 3 000 epochs, repeatedly over different train sets of size
6 000 made of MNIST images. We add to the train images a Gaussian noise, before clipping
the values of the pixels between 0 and 1, to stay consistent with black and white images. We
do the same for the test images. This blurs the input distribution. For each training, we use
a different noise variance, which overall varies between 10−3 and 1. We represent visually an
image with different levels of noise in Figure 5. The network is trained to the point it is able
to interpolate the training examples: for all the settings, the final train error is equal to 0.

Once the training is done, we compute the quantities Max rank, Rank X_random, Rank
X_test, Rank X_train, Test error, and Train error described in Section 7.1, for the different
noise levels. The size of Xrandom is 20 000. We plot these quantities in Figure 6.

As already said, the expressiveness of the network permits to fit the learning data
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Figure 6: Behavior of different complexity measures when noise is added to the input images.
The values of rank(Dfθ(Xtrain)) are to be read on the left axis, titled ‘functional dimension’.
The values of the test and train errors are to be read on the right axis.

perfectly. The training error is zero for all noise levels. However, the noise has two effects:
an effect on the distribution of inputs which becomes more complex, and an effect on the
difficulty of the problem. Indeed, as is reflected by the increase in the test error, the problem
becomes more difficult. The curve representing rank(Dfθ(Xtrain)) also increases, and gets
close to the maximum rank for a noise amplitude getting close to 1. This phenomenon is
coherent with the fact that the batch functional dimension is linked to activation patterns,
which are linked to the distribution of the inputs, which –as already said– are made more
complex by the noise. The quantity rank(Dfθ(Xtest)) also increases, but for smaller noises
than Xtrain. It oscillates close to the maximum rank.

7.5 Behavior of the Functional Dimensions when Y is Corrupted

We consider the setting described in Section 7.1, for three different values of w, equal to
30, 50 and 60 respectively. The first experiment carried out was the one with the width
w = 30, in harmony with the experiments of Sections 7.3 and 7.4, and we then added the
cases w = 50 and w = 60 to see the impact of the width on this experiment.

Following Neyshabur u. a. (2017); Zhang u. a. (2021), we study what happens when part
of the labels of the training set are corrupted with random labels. The network is trained
repeatedly over different train sets of size 6 000 made of MNIST images. A varying number
of the labels associated with the training images are set to a random value, according to the
uniform distribution over {0, 1, . . . , 9}. The quantity of images with random labels varies
from 0 to 4 500. Each time, the network is trained to the point where it interpolates the
training set, even with the random labels.

Intuitively, the more corrupted labels there are, the more complex the function interpo-
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lating the training data should be. The distribution of the inputs is however the same and it
is not clear if the linear regions, defined by the activation patterns, and used to describe the
interpolating function need to change much when corruption increases. Another interpreta-
tion is that depending on the level of corruption, we select different global minimizers of the
empirical risk with respect to the 1500 images that always remain clean. The purpose of this
experiment is to see if the functional dimension increases with the proportion of corrupted
labels and the test error, when w is such that implicit regularization occurs.

The quantities Max_rank, Rank_X_random, Rank_X_test, Rank_X_train, Train
loss, Test error and Train error are described in Section 7.1. We plot these quantities as a
function of the number of corrupted labels in Figure 7 for three different values of w. The
case w = 30, is described in Section 7.5.1, and the case w = 50 is described in Section 7.5.2.

7.5.1 Observations when w = 30

Consistently with Sections 7.3 and 7.4, we take w = 30, which corresponds to a number
of parameters equal to 25 720. The size of the test set Xtest and of the random Gaussian
inputs Xrandom are both equal to 20 000. The learning performs 3 000 epochs. The plots
associated to this experiment correspond to the left side of Figure 7.

As expected, the test error (the proportion of images in Xtest that are misclassified)
increases with the number of corrupted labels: from 0.08 when no label is corrupted to 0.73
when 4500 images out of 6000 have random labels.

In this experiment, again, we observe that rank(Dfθ(Xrandom)) is often equal to the
maximum rank, which is here equal to 25630. For numbers of corrupted labels equal to 500
and 1500, we observe that the value is slightly lower.

Although we can observe a clear increase of the ranks rank(Dfθ(Xtrain)) and rank(Dfθ(Xtest))
between 0 and 500 corrupted labels, for a greater number of corrupted labels these quantities
are relatively stable and do not seem to be much affected by the corruption of the labels.
We try to clarify this observation by performing two other experiments with a bigger width
w in the following section.

7.5.2 Observations when w = 50 and w = 60

To better understand the impact of label corruption on the functional dimension, we repeat
the previous experiment twice, this time with widths w set to 50 and 60, corresponding to a
number of parameters equal to 44860 and 55030 respectively. This corresponds to points on
the right of curve on fig. 3, where implicit regularization occurs the most. We keep the sizes
of Xtrain and Xtest to 6000 and 20000 respectively, and we increase the size of Xrandom to
40000. The plots associated with this experiment correspond to the right side of Figure 7.

We observe similar train and test errors as in 7.5.1. We also observe similarly that
rank(Dfθ(Xrandom)) is often equal to the maximum rank (but note that we increase the size
of Xrandom here).

For these two widths, the increase of both quantities rank(Dfθ(Xtrain)) and rank(Dfθ(Xtest))
is clearer, in particular in the case of Xtrain.
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Figure 7: Behavior of different complexity measures as some corrupted labels are introduced
in the training set, tested for three network widths. The values of the different ranks are to
be read on the left axis, titled ‘functional dimension’. The values of the test and train errors
are to be read on the right axis. Width of the network from left to right: w = 30, w = 50
and w = 60.

Overall, the experiments 7.5.1 and 7.5.2 indicate that there is a positive correlation
between the functional dimensions and the complexity of the function learned by the neural
network.

8 Conclusion and perspectives

In this article, we describe the local geometry of deep ReLU neural networks. The study
shows that the image of a sample X by deep ReLU neural networks of a fixed architecture
is a set whose local dimension varies. The local dimension is called the batch functional
dimension by Grigsby u. a. (2022). We show that the parameter space is divided into pieces
where the batch functional dimension is fixed. Empirically, the pieces of small dimensions
are on the outside of the ones of large dimensions. They are favored by the optimization.
We call this phenomenon geometry-induced implicit regularization. When X is allowed to
vary, we also study the maximal dimension over all possible X. We call it the computable
full functional dimension. Both notions of local complexity are determined by the activation
patterns. We investigate the practical computation of the functional dimensions and provide
experiments emphasizing the geometry-induced implicit regularization and the link between
functional dimensions and the complexity of the learning task.

This opens up many perspectives in deep learning theory. The formal connection between
the notions of local complexity and the generalization gap is still missing. It would permit
us to obtain a theory that explains the good performance of deep learning. It would be
interesting to study more systematically how the functional dimensions of the learned
parameters depend on the distribution of the learned phenomenon. To do so, it would be
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interesting to study instances in larger dimensions. Algorithms of a better complexity for
computing the functional dimensions are needed. In particular, since we have proved that
the batch functional dimension is almost-surely determined by the activation patterns, it
would be interesting to compute the former using the activation patterns instead of the
gradients.
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A Proofs of Section 3

This appendix is devoted to the proofs of Section 3. In Section A.1, we prove Theorem 1,
and in Section A.2 we prove Proposition 2.

A.1 Proof of Theorem 1

Let us define, for ℓ ∈ J1, L − 1K and v ∈ Vℓ the set

Tv =
{

(x, θ) ∈ RN0 × (RE × RB) |
∑

v′∈Vℓ−1

wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ + bv = 0
}

, (24)

and let
T = ∪L−1

ℓ=1 ∪v∈Vℓ
Tv. (25)

Similarly, for any x ∈ RN0 , ℓ ∈ J1, L − 1K and v ∈ Vℓ, we define the set

T x
v =

{
θ ∈ RE × RB |

∑
v′∈Vℓ−1

wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ + bv = 0
}

,

and let
T x = ∪L−1

ℓ=1 ∪v∈Vℓ
T x

v .

Lemma 12. (i) – Over RN0×(RE×RB), the function (x, θ) 7−→ a(x, θ) ∈ {0, 1}N1+···+NL−1

takes exactly 2N1+···+NL−1 distinct values.
– For any δ ∈ {0, 1}N1+···+NL−1 , we write

Aδ = {(x, θ) ∈ RN0 × (RE × RB) | a(x, θ) = δ}, (26)

which is thus nonempty. Then: On Aδ, the function (x, θ) 7−→ fθ(x) is analytic.
– The set T has Lebesgue measure zero and ∪

δ∈{0,1}N1+···+NL−1 ∂Aδ = T . Therefore,
for any δ ∈ {0, 1}N1+···+NL−1 , ∂Aδ is a closed set of Lebesgue measure zero in
RN0 × (RE × RB).

(ii) – For any fixed x ∈ RN0 , the function θ 7−→ a(x, θ) exactly takes 2N1+···+NL−1

distinct values.
– For x ∈ RN0 and δ ∈ {0, 1}N1+···+NL−1 , we write

Ax
δ = {θ ∈ RE × RB | a(x, θ) = δ}.

Then: On Ax
δ , the function θ 7−→ fθ(x) is analytic.

– The set T x has Lebesgue measure zero and ∪
δ∈{0,1}N1+···+NL−1 ∂Ax

δ = T x. There-
fore, for any δ ∈ {0, 1}N1+···+NL−1 , ∂Ax

δ is a closed set with Lebesgue measure
zero in RE × RB.
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Proof of Lemma 12. To avoid repetitions, we only detail the proof of (i). The proof of (ii)
is very similar, considering functions of θ only (with x fixed) rather than (x, θ).

We first prove the first item, i.e. we prove that all activation patterns are reached.
The set {0, 1}N1+···+NL−1 is finite and its cardinal is 2N1+···+NL−1 . Observe that for any
δ ∈ {0, 1}N1+···+NL−1 , by taking θ ∈ RE × RB such that wv→v′ = 0 for any (v → v′) ∈ E,
bv = 0 for v ∈ VL and bv = (−1)1+δv for any v ∈ V1 ∪ · · · ∪ VL−1, then, for any x ∈ RN0 and
any v ∈ V1 ∪ · · · ∪ VL−1, we have av(x, θ) = δv, i.e. a(x, θ) = δ.

In order to prove the second item, i.e. that the function (x, θ) 7−→ fθ(x) is analytic, we
remind the definition of f ℓ

θ , in (1), and we define

a≤ℓ(x, θ) =
®

(av(x, θ))v∈V1∪···∪Vℓ
if ℓ ≥ 1,

1 if ℓ = 0.

We prove by induction that the assertion

Hℓ :
ß

∀D ⊆ RN0 × (RE × RB), if (x, θ) 7−→ a≤ℓ(x, θ) is constant on D, then
(x, θ) 7−→ f ℓ

θ(x) is polynomial on D

holds, for all ℓ ∈ J0, L − 1K.
The assertion H0 indeed holds because f0

θ (x) = x is polynomial in (x, θ) (of degree 1) on
any subset of RN0 × (RE × RB). Assume now that for some ℓ ∈ J1, L − 1K, Hℓ−1 holds, and
let us prove Hℓ.

Let D ⊆ RN0 × (RE × RB) such that a≤ℓ(x, θ) is constant on D. For (x, θ) ∈ D and
v ∈ Vℓ, using (6), we haveÄ

f ℓ
θ(x)
ä

v
=av(x, θ)

Ñ ∑
v′∈Vℓ−1

wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ + bv

é
.

The quantity a≤ℓ−1(x, θ) is constant on D and thus from Hℓ−1, for all v′ ∈ Vℓ−1,
(x, θ) 7−→ (f ℓ−1

θ (x))v′ is a polynomial function of (x, θ) on D. Since av(x, θ) is constant on
D,
(
f ℓ

θ(x)
)

v
is a polynomial function of (x, θ). This concludes the proof by induction that

Hℓ holds for all ℓ ∈ J0, L − 1K.
If we recall from (1) that yL

θ (x) ∈ RNL is the vector satisfying, for all v ∈ VL,

(yL
θ (x))v =

∑
v′∈VL−1

wv′→v(fL−1
θ (x))v′ + bv,

we have
fθ(x) = σL(yL

θ (x)).

We recall the notations Aδ, δ ∈ {0, 1}N1+···+NL−1 , in (26). For δ ∈ {0, 1}N1+···+NL−1 ,
a≤L−1(x, θ) = a(x, θ) is constant on Aδ and thus from HL−1, (x, θ) 7−→ fL−1

θ (x) is poly-
nomial on Aδ. As a consequence, (x, θ) 7−→ yL

θ (x) is polynomial on Aδ, and since σL is
analytic, (x, θ) 7−→ fθ(x) is analytic on Aδ. This proves the second item of Lemma 12, (i).
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Let us now show the third item, which states that T has Lebesgue measure zero. For
that, let us show that for all ℓ ∈ J1, L − 1K and v ∈ Vℓ, Tv has Lebesgue measure zero. To do
so, since ∪δAδ = RN0 × (RE × RB), we consider ℓ ∈ J1, L − 1K and v ∈ Vℓ, and prove that,
for all δ ∈ {0, 1}N1+···+NL−1 , Tv ∩ Aδ has Lebesgue measure zero. For δ ∈ {0, 1}N1+···+NL−1 ,
a≤ℓ−1(x, θ) is constant on Aδ and thus from Hℓ−1, (x, θ) 7−→ f ℓ−1

θ (x) is a polynomial
function of (x, θ) on Aδ and thus ∑

v′∈Vℓ−1
wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ + bv also is. Since the variable
(x, θ) 7→ bv is not present in the expression of f ℓ−1

θ (x), it only appears in a single monomial of
degree and coefficient 1 of ∑

v′∈Vℓ−1
wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ + bv. The latter polynomial function
is therefore non-constant. Hence the set Tv ∩ Aδ, constituted by the zeros of this polynomial
function, has Lebesgue measure zero. Since ∪δAδ = RN0 × (RE × RB), we finally conclude
that, for any ℓ ∈ J1, L − 1K and v ∈ Vℓ, Tv has Lebesgue measure zero.

The set
T = ∪L−1

ℓ=1 ∪v∈Vℓ
Tv

is thus also of Lebesgue measure zero.
Let us now prove the set equality: ⋃

δ

∂Aδ = T . (27)

We first show the inclusion ⋃
δ ∂Aδ ⊆ T . Consider δ ∈ {0, 1}N1+···+NL−1 and let us now

show that ∂Aδ ⊆ T . To do so, consider (x, θ) ∈ ∂Aδ. Since (x, θ) ̸∈ Int(Aδ), for any ε there
exists δε ̸= δ such that B((x, θ), ε) ∩ Aδε ̸= ∅. Since the set of all possible δε is finite, we
are sure that there exists δ′ ̸= δ such that (x, θ) ∈ Aδ′ . Let ℓ ∈ J1, L − 1K and v ∈ Vℓ such
that δv ≠ δ′

v. We assume without loss of generality that δv = 0. The proof is indeed similar
when δv = 1. There exists (xn, θn) ∈ AN∗

δ such that (xn, θn) → (x, θ) as n → ∞ and there
exists (x′

n, θ′
n) ∈ AN∗

δ′ such that (x′
n, θ′

n) → (x, θ) as n → ∞. We have av(xn, θn) = 0 and
av(x′

n, θ′
n) = 1 for all n.

Using that (x, θ) 7−→
∑

v′∈Vℓ−1
wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ + bv is continuous and taking the limit
of this function at (xn, θn), as n goes to infinity, we obtain that ∑

v′∈Vℓ−1
wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ +
bv ≤ 0. Reasoning similarly with the sequence (x′

n, θ′
n)n∈N∗ we obtain the reverse inequality

and conclude that ∑
v′∈Vℓ−1

wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ + bv = 0. This shows that (x, θ) ∈ Tv ⊆ T .
This finishes the proof of ∂Aδ ⊆ T .

Let us now show the reciprocal inclusion T ⊆
⋃

δ ∂Aδ. Indeed, let (x, θ) ∈ T . There
exist ℓ ∈ J1, L − 1K and v ∈ Vℓ such that (x, θ) ∈ Tv. There also exists δ ∈ {0, 1}N1+···+NL−1

such that (x, θ) ∈ Aδ. In particular, since ∑
v′∈Vℓ−1

wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ + bv = 0, we have δv =
av(x, θ) = 1. For any ε > 0, by replacing bv by bv − ε, we obtain a θε satisfying ∥θ − θε∥ ≤ ε
and av(x, θε) = 0 ̸= δv, which shows (x, θε) ̸∈ Aδ. This shows (x, θ) ∈ ∂Aδ ⊆

⋃
δ ∂Aδ. This

shows the desired inclusion, and thus the equality (27).
For all δ ∈ {0, 1}N1+···+NL−1 , ∂Aδ is closed by definition of a boundary. Since T has

been shown to have Lebesgue measure zero, then ∂Aδ has Lebesgue measure zero and thus
the proof of the part (i) is concluded.
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We state and prove another lemma before proving Theorem 1. The lemma resembles
Theorem 1 but does not include the statements on rank(Dfθ(X)).

For n ∈ N∗, recalling the definition T in (25), let us now define

Tn = ∪n
i=1

{
(X, θ) ∈ RN0×n × (RE × RB)

∣∣∣ (x(i), θ) ∈ T
}

. (28)

Similarly, for n ∈ N∗ and X ∈ RN0×n, we define

T X = ∪n
i=1
¶

θ ∈ RE × RB | (x(i), θ) ∈ T
©

.

Lemma 13. (i) For all n ∈ N∗, the sets ‹On
1 , . . . , ‹On

mn
defined in (7) are non-empty, open

and disjoint, and they satisfy

–
Ä
∪mn

j=1
‹On

j

äc
= Tn, and in particular the complement

Ä
∪mn

j=1
‹On

j

äc
is a closed set

with Lebesgue measure zero;
– for all j ∈ J1, mnK, the function (X, θ) 7−→ a(X, θ) is constant on each ‹On

j and
takes mn distinct values on ∪mn

j=1
‹On

j ;

– for all j ∈ J1, mnK, (X, θ) 7−→ fθ(X) is an analytic function on ‹On
j .

(ii) For all n ∈ N∗, for all X ∈ RN0×n, the sets ŨX
1 , . . . , ŨX

pX
defined in (10) are non-empty,

open and disjoint, and they satisfy

–
Ä
∪pX

j=1ŨX
j

äc
= T X , and in particular the complement

Ä
∪pX

j=1ŨX
j

äc
is a closed set

with Lebesgue measure zero;
– for all j ∈ J1, pXK, the function θ 7−→ a(X, θ) is constant on each ŨX

j and takes
pX distinct values on ∪pX

j=1ŨX
j ;

– for all j ∈ J1, pXK, θ 7−→ fθ(X) is an analytic function on ŨX
j .

Proof of Lemma 13. As in the proof of Lemma 12, the proofs of (i) and (ii) are very similar.
To avoid repetitions, we only detail the proof of (i).

By definition, see (7), the sets ‹On
1 , . . . , ‹On

mn
are non-empty, open and disjoint. Before

proving the first point of (i), let us notice that Tn is of Lebesgue measure zero. Indeed, the
third item of Lemma 12 states that T has Lebesgue measure zero, and therefore, we see in
the definition (28) that Tn is a finite union of zero-measured sets, which shows that it itself
has Lebesgue measure zero. Let us also write the following useful characterization: thanks
to the characterization of T in the third item of Lemma 12 (i), we have

Tn = ∪n
i=1 ∪

δ∈{0,1}N1+···+NL−1

¶
(X, θ) ∈ RN0×n × (RE × RB) | (x(i), θ) ∈ ∂Aδ

©
. (29)

Let us now show the first point of (i). Let us prove that (∪mn
j=1
‹On

j )c = Tn.
To do so, let us first show that (∪mn

j=1
‹On

j )c ⊆ Tn. Let (X, θ) ∈ (∪mn
j=1
‹On

j )c. Consider the
∆n

1 , . . . , ∆n
q defined just before (7). There exists j ∈ J1, qK such that a(X, θ) = ∆n

j . Since
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(X, θ) ̸∈ ‹On
j , there exists a sequence (Xk, θk)k∈N∗ such that (Xk, θk) → (X, θ), as k → ∞

and a(Xk, θk) ̸= ∆n
j , for all k. Modulo the extraction of a sub-sequence, we can assume that

there exist i ∈ J1, nK such that for all k ∈ N∗, a(x(i)
k , θk) ̸= δ, where x

(i)
k is the ith column

of Xk, and where we denote δ = (∆n
j )i. Thus, we have (x(i)

k , θk) ̸∈ Aδ, for all k, and since
(x(i), θ) ∈ Aδ, we conclude (x(i), θ) ∈ ∂Aδ. The characterization (29) thus shows (X, θ) ∈ Tn.
This shows (∪mn

j=1
‹On

j )c ⊆ Tn.
Let us now show that Tn ⊆ (∪mn

j=1
‹On

j )c. If (X, θ) ∈ Tn, there exists i ∈ J1, nK and
δ ∈ {0, 1}N1+···+NL−1 such that (x(i), θ) ∈ ∂Aδ. Thus, for any ε > 0, (x, θ′) 7−→ a(x, θ′) is
not constant over B((x(i), θ), ε). As a consequence, (X, θ) does not belong to any of the
open sets ‹On

j′ .
This shows (∪mn

j=1
‹On

j )c = Tn, and thus, since Tn is of Lebesgue measure zero, (∪mn
j=1
‹On

j )c

has Lebesgue measure zero. Adding that the complement of an open set is closed, (∪mn
j=1
‹On

j )c

is closed, which ends the proof of the first point of (i).
The second point of (i) holds by definition of ‹On

1 , . . . , ‹On
mn

.
Let us now show the third point of (i). Let j ∈ J1, mnK. The function (X, θ) 7−→ a(X, θ) is

constant on ‹On
j . The set ‹On

j is associated to ∆n
j in (7) and the latter is of the form (δ1, . . . , δn)

with δi ∈ {0, 1}N1+···+NL−1 for i ∈ J1, nK. Fix i′ ∈ J1, nK. Then for X = (x(i))i∈J1,nK with
(X, θ) ∈ ‹On

j , (x(i′), θ) ∈ Aδi′ . Hence, Lemma 12 (i) shows that fθ(x(i′)) is an analytic
function of (x(i′), θ) and thus of (X, θ). The quantity fθ(X) is a matrix whose columns are
fθ(x(i)), i ∈ J1, nK. Hence (X, θ) 7−→ fθ(X) is an analytic function on ‹On

j , which concludes
the proof of (i).

Proof of Theorem 1. Again, the proofs of (i) and (ii) are very similar and we only detail
the proof of (i).

Consider n ∈ N∗. The sets On
1 , . . . , On

mn
are non-empty by definition of rn

1 , . . . , rn
mn

,
and they are disjoint because of the inclusion On

j ⊆ ‹On
j for all j, and because the sets‹On

1 , . . . , ‹On
mn

are disjoint as shown in Lemma 13. Hence the first item holds. The second item
is a direct consequence of the definition of On

j , in (9). The third item holds by definition.
To see that On

j is open, first recall that ‹On
j is open, then note that since the function

(X, θ) 7−→ fθ(X) is analytic over ‹On
j (by Lemma 13 (i)), the function (X, θ) 7−→ Dfθ(X) is

continuous over ‹On
j . Since the rank is lower semicontinuous, if rank(Dfθ(X)) = rn

j , then
there exists ϵ > 0 such that for any (X ′, θ′) ∈ B((X, θ), ϵ), we have rank(Dfθ′(X ′)) ≥ rn

j ,
which by maximality of rn

j , is equivalent to rank(Dfθ′(X ′)) = rn
j and to (X ′, θ′) ∈ On

j . This
shows that On

j is open. Hence Item 4 holds.
Item 6 comes directly from Lemma 13 and from the inclusion On

j ⊆ ‹On
j .

To finish the proof, we need to prove Item 5, stating that
Ä
∪mn

j=1On
j

äc
is a closed set with

Lebesgue measure zero. Let us consider a basis (e1, . . . , e|E|+|B|) of RE × RB and a basis
(ε1, . . . , εnNL

) of RNL×n. For all X, let us write Mθ(X) for the matrix of the differential
Dfθ(X) of the function θ 7−→ fθ(X) in these two bases. Then (X, θ) 7−→ Mθ(X) is an
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analytic function on ‹On
j . Recall the notation rn

j = max(X,θ)∈‹On
j

rank(Dfθ(X)), and let

(X ′, θ′) ∈ ‹On
j such that rank(Dfθ′(X ′)) = rn

j . We thus have rank(Mθ′(X ′)) = rn
j , and thus

there exists a sub-matrix Nθ′(X ′) of Mθ′(X ′), of size rn
j ×rn

j , such that det Nθ′(X ′) ̸= 0. The
function (X, θ) 7−→ Mθ(X) is an analytic function on ‹On

j and thus (X, θ) 7−→ det(Nθ(X))
also is. This latter function is not uniformly zero on ‹On

j and thus the set of its zeros, that
we write Yj , is a closed set of Lebesgue measure zero (Mityagin, 2020).

For all (X, θ) ∈ ‹On
j \ Yj , we have det Nθ(X) ̸= 0 and thus rank(Nθ(X)) = rn

j and thus
rank(Mθ(X)) ≥ rn

j . We also have rank(Mθ(X)) = rank(Dfθ(X)) ≤ rn
j by definition of rn

j .
Hence rank(Dfθ(X)) = rn

j . This shows ‹On
j \ Yj ⊆ On

j .
Finally, Ä

∪mn
j=1On

j

äc
= ∩mn

j=1
(
On

j

)c

⊆ ∩mn
j=1

Ä‹On
j \ Yj

äc

= ∩mn
j=1

ÄÄ‹On
j

äc
∪ Yj

ä
⊆ ∩mn

j=1

ÄÄ‹On
j

äc
∪
Ä
∪mn

j′=1Yj′
ää

=
Ä
∩mn

j=1

Ä‹On
j

äcä
∪
Ä
∪mn

j=1Yj

ä
=
Ä
∪mn

j=1
‹On

j

äc
∪
Ä
∪mn

j=1Yj

ä
.

We know from Lemma 13 that
Ä
∪mn

j=1
‹On

j

äc
has Lebesgue measure zero. Also each Yj has

Lebesgue measure zero, thus ∪mn
j=1Yj has Lebesgue measure zero. Hence,

Ä
∪mn

j=1On
j

äc
has

Lebesgue measure zero, which concludes the proof of (i) in the theorem.

A.2 Proof of Proposition 2

Let us prove more than Proposition 2. We in fact prove the following proposition. Proposition
2 simply corresponds to the first item, but it is convenient to prove the others items at the
same time, which will be useful in the proofs of other results.

Proposition 14. Consider any deep fully-connected ReLU network architecture (E, V, σL).
Let θ, θ̃ ∈ RE × RB. Assume θ ∼ θ̃. Then for any n ∈ N∗ and X ∈ RN0×n:

1. if the differential Dfθ(X) is well-defined, then the differential Df
θ̃
(X) is well-defined,

and in that case we have

rank
(
Df

θ̃
(X)

)
= rank(Dfθ(X));

2. if there exists j ∈ J1, mnK, such that (X, θ) ∈ ‹On
j , then there exists j′ ∈ J1, mnK such

that (X, θ̃) ∈ ‹On
j′;
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3. if there exists j ∈ J1, mnK, such that (X, θ) ∈ On
j , then there exists j′ ∈ J1, mnK such

that (X, θ̃) ∈ On
j′.

Proof. Let θ̃ ∼ θ, let n ∈ N∗ and let X ∈ RN0×n. Let us prove the three items of the
proposition.

Let us prove the first item. By definition of the relation ∼, in Section 2, there is an
invertible linear map M : RE × RB −→ RE × RB such that θ̃ = Mθ. Note that when
expressed in the canonical basis of RE × RB, the matrix corresponding to M is the product
of a permutation matrix and a diagonal matrix, with strictly positive diagonal components
whose values are given by (4) and (5). Notice that since M corresponds to positive rescalings
and neuron permutations, as discussed after (5), we have,

for any θ′ ∈ RE × RB, fθ′(X) = fMθ′(X). (30)

Assume that Dfθ(X) is well-defined, i.e. the map θ′ 7→ fθ′(X) is differentiable at θ.
Then, for all u ∈ RE ×RB, the following calculation holds, using the fact that M is invertible,
using (30) and using (3),

f
θ̃+u

(X) = fMθ+u(X) =fM(θ+M−1u)(X)
=fθ+M−1u(X)
=fθ(X) + Dfθ(X)(M−1u) + o(∥M−1u∥)
=fθ(X) + Dfθ(X)(M−1u) + o(∥u∥).

Hence, θ′ 7−→ fθ′(X) is differentiable at θ̃ and for all u ∈ RE × RB,

Df
θ̃
(X)(u) = Dfθ(X)(M−1u).

Since M−1 is invertible, it follows that rank
(
Df

θ̃
(X)

)
= rank(Dfθ(X)). This concludes the

proof of the first item.
Let us now prove the second and the third items. Let j ∈ J1, mnK such that (X, θ) ∈ ‹On

j .
Again, let us consider the map M defined above. For any θ′ ∈ RE × RB, it is well-known
(see for instance Bona-Pellissier u. a. 2023a, Proposition 39, Item 2) that since θ′ and
Mθ′ are equivalent modulo permutation and positive rescaling, for any x ∈ RN0 , we have
a(x, Mθ′) = Pa(x, θ′), for some permutation matrix P ∈ {0, 1}(N1+···+NL−1)×(N1+···+NL−1)

that only depends on M and not on x.
Since (X, θ) ∈ ‹On

j , recalling the definition (7), there exists an open neighborhood ‹U
of (X, θ) such that for any (X ′, θ′) ∈ ‹U , we have a(X ′, θ′) = ∆n

j . For any (X ′, θ′) ∈ ‹U ,
we have a(X ′, Mθ′) = Pa(X ′, θ′) = P∆n

j . Furthermore, since M is invertible, the map M

defined by (X ′, θ′) 7→ (X ′, Mθ′) is invertible, and the image ‹V of ‹U by M is thus an open
neighborhood of (X, θ̃). This shows that there exists j′ ∈ J1, mnK such that ∆n

j′ = P ∆n
j and

(X, θ̃) ∈ ‹V ⊆ ‹On
j′ . This proves the second item.

Finally, if we furthermore assume (X, θ) ∈ On
j , applying Theorem 1, we see that the

function (X ′, θ′) 7−→ rank(Dfθ′(X ′)) is locally constant at (X, θ): there exists an open
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neighborhood of (X, θ), U ⊆ ‹U , such that U ⊆ On
j and thus, for all (X ′, θ′) ∈ U , we have

rank(Dfθ′(X ′)) = rn
j . Thus, applying the invertible map M , which preserves the rank as

shown in the first item, this shows that (X ′, θ′) 7−→ rank(Dfθ′(X ′)) is also constant on
V = M(U) (note that V ⊆ ‹V ), which is an open set and which contains (X, θ̃) = M(X, θ).
Since V ⊆ ‹On

j′ , this shows that rank
(
Df

θ̃
(X)

)
= rn

j′ because rn
j′ is the only value that can be

taken on a subset of ‹On
j′ of non-zero Lebesgue measure. In other words, we have (X, θ̃) ∈ On

j′

(and in particular we have shown rn
j = rn

j′).

B Calculations for the Example in Section 4.1

We provide in this appendix, the calculations permitting to construct Figure 1. We consider
a one-hidden-layer neural network of widths (1, 1, 1), with the identity activation function on
the last layer. To simplify notations, we denote the weights and biases θ = (a, b, c, d) ∈ R4

so that fθ(x) = bσ(ax + c) + d, for all x ∈ R. We consider X = (0, 1, 2) ∈ R1×3 and

fθ(X)T =

Ñ
bσ(c) + d

bσ(a + c) + d
bσ(2a + c) + d

é
.

The boundaries of the sets ŨX
j , corresponding to the parameters having the same

activation pattern, are defined by the equation c = 0, a + c = 0 and 2a + c = 0. There are 6
possible activation patterns corresponding to the zones represented, in the (a, c) plane, on
the left of Figure 1.

Since the sets fŨX
j

(X) = {fθ(X) | θ ∈ ŨX
j }, for j ∈ J1, 6K, are invariant to translations

by vectors (d, d, d), for d ∈ R, we consider the plane P orthogonal to the vector (1, 1, 1) and
parameterize its elements using the mapping

p : R2 −→ P
(x, y) 7−→ x√

6
(1, 1, −2) + y√

2
(−1, 1, 0).

Instead of representing fŨX
j

(X), we represent on the right of Figure 1 its intersection with
P, formally defined as the set Vj ⊆ R2 such that

fŨX
j

(X) =
{

p(x, y) + (z, z, z) ∈ R1×3 | (x, y) ∈ Vj and z ∈ R
}

.

Below, we construct the sets Vj , for j ∈ J1, 6K.

Case j = 1: We have c ≤ 0, 2a + c ≤ 0 and therefore a + c ≤ 0. This leads to
f(a,b,c,d)(X) = (d, d, d) and V1 = {(0, 0)}.
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Case j = 2: We have c ≥ 0, a + c ≤ 0 and therefore 2a + c ≤ 0. This leads to
f(a,b,c,d)(X) = (bc + d, d, d) and

V2 =
{

(x, y) ∈ R2 | ∃(a, b, c, d) ∈ ŨX
2 , p(x, y) = (bc + d, d, d)

}
.

Solving
(1) : bc + d = x√

6 − y√
2

(2) : d = x√
6 + y√

2
(3) : d = −2 x√

6

⇐⇒


(1) − (2) : −

√
2y = bc√

2((2) − (3)) : y = −
√

3x
(3) : d = −2 x√

6

and we obtain
V2 =

{
(x, y) ∈ R2 |

√
3x + y = 0

}
.

Case j = 3: We have c ≥ 0, a + c ≥ 0 and 2a + c ≤ 0. This leads to f(a,b,c,d)(X) =
(bc + d, b(a + c) + d, d) and

V3 =
{

(x, y) ∈ R2 | ∃(a, b, c, d) ∈ ŨX
3 , p(x, y) = (bc + d, b(a + c) + d, d)

}
.

We have
(1) : bc + d = x√

6 − y√
2

(2) : b(a + c) + d = x√
6 + y√

2
(3) : d = −2 x√

6

⇐⇒


√

2((1) − (3)) :
√

3x = y +
√

2bc

(2) − (1) :
√

2y = ba
(3) : d = −2 x√

6

.

Using (a, b, c, d) ∈ ŨX
3 , we obtain c ∈ [−a, −2a], where we recall that a ≤ 0.

• Taking, for simplicity, b = 1 and choosing the value of a, the second equation shows
that we can reach any y = a√

2 ≤ 0. Moreover, as c goes through [−a, −2a],
√

2bc goes
through [−

√
2a, −2

√
2a] = [−2y, −4y]. Therefore, we see with the first equation that√

3x goes through [−y, −3y], that is x goes through [− y√
3 , −

√
3y]. It is not possible

to reach other values for other values of b ≥ 0.

• Similarly, taking b = −1 and choosing the value of a, the second equation shows that
we can reach any y = − a√

2 ≥ 0. Moreover, as c goes through [−a, −2a],
√

2bc goes
through [2

√
2a,

√
2a] = [−4y, −2y]. Therefore, we see with the first equation that

√
3x

goes through [−3y, −y], that is x goes through [−
√

3y, − y√
3 ]. Again, it is not possible

to reach other values for other values of b ≤ 0.

Finally, the set V2 is the set in between the two lines x +
√

3y = 0 and
√

3x + y = 0, as
on the right of Figure 1.
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Case j = 4: We have c ≥ 0, a + c ≥ 0 and 2a + c ≥ 0. This leads to f(a,b,c,d)(X) =
(bc + d, b(a + c) + d, b(2a + c) + d) and

V4 =
{

(x, y) ∈ R2 | ∃(a, b, c, d) ∈ ŨX
4 , p(x, y) = (bc + d, b(a + c) + d, b(2a + c) + d)

}
.

We have
(1) : bc + d = x√

6 − y√
2

(2) : b(a + c) + d = x√
6 + y√

2
(3) : b(2a + c) + d = −2 x√

6

⇐⇒


(2) − (1) :

√
2y = ba

(3) − (2) : −3 x√
6 − y√

2 = ba

(3) : b(2a + c) + d = −2 x√
6

which is equivalent to 
(1) :

√
2y = ba√

2((2) − (1)) : 3y = −
√

3x
(3) : b(2a + c) + d = −2 x√

6

This leads to
V4 =

{
(x, y) ∈ R2 | x +

√
3y = 0

}
.

Case j = 5: We have c ≤ 0, a + c ≥ 0 and therefore 2a + c ≥ 0. This leads to
f(a,b,c,d)(X) = (d, b(a + c) + d, b(2a + c) + d) and

V5 =
{

(x, y) ∈ R2 | ∃(a, b, c, d) ∈ ŨX
5 , p(x, y) = (d, b(a + c) + d, b(2a + c) + d)

}
.

We have
(1) : d = x√

6 − y√
2

(2) : b(a + c) + d = x√
6 + y√

2
(3) : b(2a + c) + d = −2 x√

6

⇐⇒


(1) : x√

6 − y√
2 = d

(2) − (1) :
√

2y = b(a + c)
(3) − (1) : −3 x√

6 + y√
2 = b(2a + c)

.

Using b and a + c ≥ 0, we see with the second equation that y can take any value in R. Let
us consider an arbitrary fixed y ∈ R. In fact, there are infinitely many choices for b, a and c
corresponding to this value. Taking b = sign(y), we have a + c = sign(y)

√
2y =

√
2|y| and,

since c ≤ 0, a can take any value in [
√

2|y|, +∞). Therefore, 2a + c = a + (a + c) can take
any value in [2

√
2|y|, +∞).

• If y ≥ 0: −3 x√
6 + y√

2 = 2a + c goes through [2
√

2y, +∞). Therefore, −3 x√
6 goes

through [3 y√
2 , +∞), which means x goes through (−∞, −

√
3y].

• If y ≤ 0: −3 x√
6 + y√

2 = −(2a + c) goes through (−∞, −2
√

2|y|]. Therefore, −3 x√
6 goes

through (−∞, 3 y√
2 ], which means x goes through [−

√
3y, +∞).

Finally, the set V5 is the set in between the two lines x +
√

3y = 0 and y = 0, as on the
right of Figure 1.
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Case j = 6: We have c ≤ 0, a + c ≤ 0 and 2a + c ≥ 0. This leads to f(a,b,c,d)(X) =
(d, d, b(2a + c) + d) and

V6 =
{

(x, y) ∈ R2 | ∃(a, b, c, d) ∈ ŨX
6 , p(x, y) = (d, d, b(2a + c) + d)

}
.

We have
(1) : d = x√

6 − y√
2

(2) : d = x√
6 + y√

2
(3) : b(2a + c) + d = −2 x√

6

⇐⇒


(1) : x√

6 − y√
2 = d

((2) − (1))/
√

2 : y = 0
(3) − (1) : −3 x√

6 + y√
2 = b(2a + c)

.

Using either d or b(2a + c), x can take any value in R and

V6 =
{

(x, y) ∈ R2 | y = 0
}

.

C Proofs of Section 5

This appendix is devoted to proving the results of Section 5: in Section C.1 we prove
Proposition 4, in Section C.2 we prove Proposition 5, in Section C.3 we prove Theorem 6, in
Section C.4 we prove Proposition 7, and in Section C.5 we prove Proposition 8.

C.1 Proof of Proposition 4

Before proving Proposition 4, we state and prove a lemma connecting the sets ‹On
j , defined

in (7), and X n
θ , defined in (16).

Lemma 15. Let θ ∈ (RE × RB) \ Z, and let n ∈ N∗. We have

X n
θ = {X ∈ RN0×n | (X, θ) ∈

mn⋃
j=1

‹On
j }.

Proof. Consider θ ∈ (RE × RB) \ Z and n ∈ N∗ and let us first prove that {X ∈
RN0×n | (X, θ) ∈

⋃mn
j=1
‹On

j } ⊆ X n
θ .

Let X = (x(i))i∈J1,nK ∈ RN0×n and let j ∈ J1, mnK such that (X, θ) ∈ ‹On
j . Denote

δ1, . . . , δn ∈ {0, 1}N1+···+NL−1 such that X ∈
∏n

i=1 Dδi(θ). Using Lemma 13, (i), Item 2, we
have

X ∈ {X ′ ∈ RN0×n | (X ′, θ) ∈ ‹On
j } ⊆

n∏
i=1

Dδi(θ).

Moreover, {X ′ ∈ RN0×n | (X ′, θ) ∈ ‹On
j } is open, since ‹On

j is open, and therefore

X ∈ Int
Ç

n∏
i=1

Dδi(θ)
å

=
n∏

i=1
Int(Dδi(θ)).
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Using the definition of X n
θ , in (16), we conclude that X ∈ X n

θ . This concludes the proof of
the first inclusion.

Before proving the converse inclusion, let us establish that Tn ⊆
Ä⋃mn

j=1 On
j

äc
, where the

open sets On
1 , . . . , On

mn
are as in Theorem 1 and Tn is defined in (28). By definition, we

have On
j ⊆ ‹On

j for j ∈ J1, mnK. Thus ∪mn
j=1On

j ⊆ ∪mn
j=1
‹On

j . Also from Lemma 13, (i), Item 1,
Tn = (∪mn

j=1
‹On

j )c. Hence

Tn =
(

mn⋃
j=1

‹On
j

)c

⊆

(
mn⋃
j=1

On
j

)c

. (31)

Let us now prove the inclusion X n
θ ⊆ {X ∈ RN0×n | (X, θ) ∈

⋃mn
j=1
‹On

j }.
Let X = (x(i))i∈J1,nK ∈ X n

θ . Since, as written above,
Ä⋃mn

j=1
‹On

j

äc
= Tn, proving that

(X, θ) ∈
⋃mn

j=1
‹On

j is equivalent to proving that (X, θ) ̸∈ Tn.
Assume by contradiction that (X, θ) ∈ Tn. There exist i ∈ J1, nK, ℓ ∈ J1, L − 1K and

v ∈ Vℓ such that (x(i), θ) ∈ Tv, which means that∑
v′∈Vℓ−1

wv′→v

Ä
f ℓ−1

θ (x(i))
ä

v′ + bv = 0.

Since X ∈ X n
θ , we have x(i) ∈ Xθ, and there exists δ ∈ A(θ) such that x(i) ∈ Int(Dδ(θ)). Let

us show that this implies Int(Dδ(θ)) × {θ} ⊆ Tv. Indeed, the function

x 7−→
∑

v′∈Vℓ−1

wv′→v

Ä
f ℓ−1

θ (x)
ä

v′ + bv

is affine over the open set Int(Dδ(θ)). If it is not constantly equal to zero over this set, then
since its value at x(i) is zero, it takes both positive and negative values over Int(Dδ(θ)), and
thus av(x, θ) is not constant over Int(Dδ(θ)). This contradicts the definition of Dδ(θ). Thus,
the function is constantly equal to zero on Int(Dδ(θ)) and, using the definition of Tv, in (24),
Int(Dδ(θ)) × {θ} ⊆ Tv. Therefore, Int(Dδ(θ)) × {θ} ⊆ T and, using the definition of Tn in
(28) and (31)Ä¶

X ′ ∈ RN0×n | (x′)(i) ∈ Int(Dδ(θ))
©

× {θ}
ä

⊆ Tn ⊆

(
mn⋃
j=1

On
j

)c

.

Therefore,
¶

X ′ ∈ RN0×n | (x′)(i) ∈ Int(Dδ(θ))
©

⊆ zn(θ), where zn(θ) is defined in (17). Since
Int(Dδ(θ)) is non-empty, the Lebesgue measure of

¶
X ′ ∈ RN0×n | (x′)(i) ∈ Int(Dδ(θ))

©
is

not zero and therefore θ ∈ Zn, as defined in (18). This contradicts the hypothesis on θ and
finishes the proof of the statement (X, θ) ̸∈ Tn.

This concludes the proof of the inclusion X n
θ ⊆ {X ∈ RN0×n | (X, θ) ∈

⋃mn
j=1
‹On

j } and
finishes the proof of Lemma 15.
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Proof of Proposition 4. We remind that for all n ∈ N∗ and all θ ∈ RE × RB,

zn(θ) =
{

X ∈ RN0×n
∣∣∣ (X, θ) ∈

Ä
∪mn

j=1On
j

äc
}

,

Zn =
{

θ ∈ RE × RB
∣∣∣ zn(θ) has strictly positive Lebesgue measure

}
and Z = ∪n∈N∗Zn.

Let us first prove (i).
Let us write λ for Lebesgue measure on RN0×n ×(RE ×RB), and λ1 for Lebesgue measure

on RN0×n. Note that
Ä
∪mn

j=1On
j

äc
is measurable in RN0×n × (RE × RB), as a closed set,

and thus for all θ ∈ RE × RB, zn(θ) is measurable in RN0×n. With similar arguments, the
function θ 7−→ λ1(zn(θ)) is measurable on RE × RB as the integral with respect to X of
a measurable function of X and θ. Hence, Zn, as the set where this function is strictly
positive, is indeed measurable.

Let n ∈ N∗. We first prove that Zn has Lebesgue measure zero on RE × RB. Let us
assume by contradiction that Zn has strictly positive Lebesgue measure.

Let us write C = ∪θ∈Zn(zn(θ) × {θ}). For all θ, for all X ∈ zn(θ), (X, θ) ∈
Ä
∪m

j=1On
j

äc
.

Hence, we have, for all θ, zn(θ) × {θ} ⊆
Ä
∪m

j=1On
j

äc
, and thus C ⊆

Ä
∪m

j=1On
j

äc
. We have

λ(C) =
∫
RE×RB

∫
RN0×n

1C(X, θ)dXdθ

=
∫

Zn

∫
zn(θ)

1dXdθ

=
∫

Zn

λ1(zn(θ))dθ

>0,

as the integral of the strictly positive function λ1(zn(θ)), on the set Zn with non-zero
Lebesgue measure, is strictly positive (note that since all the functions in the above display
are non-negative and measurable, their integrability is guaranteed). This is in contradiction
with the fact that C ⊆

Ä
∪m

j=1On
j

äc
, since

Ä
∪m

j=1On
j

äc
has Lebesgue measure zero from

Theorem 1 (i).
This concludes the proof of the statement that Zn has Lebesgue measure zero on RE ×RB

and concludes the proof of (i).
The item (ii) is an immediate consequence of (i), since Z is a countable union of

measurable sets of measure 0.
Let us now prove (iii).
For any θ ∈ (RE × RB) \ Z, n ∈ N∗, and X ∈ X n

θ , Lemma 15 shows that there exists
j ∈ J1, mnK such that (X, θ) ∈ ‹On

j . Lemma 13 (i) Item 3 shows that (X ′, θ′) 7−→ fθ′(X ′)
is an analytic function on the open set ‹On

j . Its restriction to the open neighborhood
{θ′ ∈ RE × RB | (X, θ′) ∈ ‹On

j } of θ is also an analytic function. In particular, θ′ 7−→ fθ′(X)
is differentiable at θ.
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C.2 Proof of Proposition 5

Consider θ ∈ (RE × RB) \ Z and n ∈ N∗ and let us first prove that r∗
n(θ) ≥ maxj∈In(θ) rn

j .
Consider j ∈ In(θ) such that rn

j = maxj′∈In(θ) rn
j′ . Because of the definition of In(θ),

in (21), there exists X ∈ RN0×n such that (X, θ) ∈ On
j . As a first consequence, using

Theorem 1, (i) third item, we know that rn
j = rank(Dfθ(X)). As a second consequence,

since θ ∈ (RE × RB) \ Z and On
j ⊆ ‹On

j we can use Lemma 15, at the beginning of Section
C.1, and we have X ∈ X n

θ .
This leads to the conclusion that

max
j′∈In(θ)

rn
j′ = rn

j = rank(Dfθ(X)) ≤ max
X′∈X n

θ

rank
(
Dfθ(X ′)

)
= r∗

n(θ).

Let us now prove that r∗
n(θ) ≤ maxj∈In(θ) rn

j .
Because the rank can only take a finite number of values and considering the definition

of r∗
n(θ) in (19), we know there exists X = (x(i))i∈J1,nK ∈ X n

θ such that

rank(Dfθ(X)) = r∗
n(θ).

Since θ ̸∈ Z and X ∈ X n
θ , we know thanks to Lemma 15 that there exists j ∈ J1, mnK such

that (X, θ) ∈ ‹On
j . Thus, by definition of rn

j , see (8), we have

rn
j ≥ Dfθ(X) = r∗

n(θ).

To conclude the proof, we only need to show that j ∈ In(θ).
Since by definition we have On

j ⊆ ‹On
j , we have the inclusion

{X ′ ∈ RN0×n | (X ′, θ) ∈ On
j } ⊆ {X ′ ∈ RN0×n | (X ′, θ) ∈ ‹On

j }. (32)

Let us show that the set on the left of this inclusion is non-empty, which, by definition of
In(θ), will show that j ∈ In(θ). First, both sets are open since On

j and ‹On
j are open, and

the set on the right is non-empty since it contains X. Assume by contradiction that the
set on the left is empty. Since for all j′ ∈ J1, mnK\{j}, we have On

j′ ∩ ‹On
j = ∅, this means,

recalling the definition of zn(θ) in (17), that we have

{X ′ ∈ RN0×n | (X ′, θ) ∈ ‹On
j } ⊆

¶
X ′ ∈ RN0×n | (X ′, θ) ∈

Ä
∪mn

j=1On
j

äc©
= zn(θ).

Since, as we have just shown, the set {X ′ ∈ RN0×n | (X ′, θ) ∈ ‹On
j } is open and non-empty,

this means that zn(θ) has positive Lebesgue measure, and thus, using (18), that θ ∈ Zn ⊆ Z.
This contradicts the hypothesis θ ∈ (RE × RB) \ Z. This concludes the proof establishing
that the open set {X ′ ∈ RN0×n | (X ′, θ) ∈ On

j } is non-empty, and thus that j ∈ In(θ). This
proves the desired inequality r∗

n(θ) ≤ maxj∈In(θ) rn
j .
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C.3 Proof of Theorem 6

We begin the proof with a lemma. To state the lemma, let us recall first that for any
n ∈ N∗ and any j ∈ J1, mnK, the mapping (X, θ) 7−→ a(X, θ), is constant on ‹On

j and that we
denote by ∆n

j ∈ {0, 1}(N1+···+NL−1)×n its constant value, see (7). Since by definition we have
On

j ⊆ ‹On
j , in particular the mapping (X, θ) 7−→ a(X, θ), is also constant equal to ∆n

j over On
j .

Let us write ∆n
j = (δj,n

1 , . . . , δj,n
n ). We therefore have, for all (X, θ) = ((x(i))i∈J1,nK, θ) ∈ On

j ,

a(x(i), θ) = δj,n
i ∈ {0, 1}N1+···+NL−1 , for all i ∈ J1, nK. (33)

For the next lemma, note that In(θ) in (21) can in fact be defined for any θ ∈ RE × RB.

Lemma 16. For any n ∈ N∗, θ ∈ RE × RB, and j ∈ J1, mnK, we have

j ∈ In(θ) =⇒ ∀i ∈ J1, nK, δj,n
i ∈ A(θ).

Conversely, for any n ∈ N∗, θ ∈ (RE × RB) \ Z, and j ∈ J1, mnK, we have

j ∈ In(θ) ⇐= ∀i ∈ J1, nK, δj,n
i ∈ A(θ).

Proof. Consider n ∈ N∗, θ ∈ RE × RB and j ∈ J1, mnK.
Let us first prove that if j ∈ In(θ) then, for all i ∈ J1, nK, δj,n

i ∈ A(θ). Indeed, let
j ∈ In(θ). For any i ∈ J1, nK, given the definition of A(θ) in (15), in order to prove that
δj,n

i ∈ A(θ), it is sufficient to prove Int(D
δj,n

i
(θ)) ̸= ∅, where the notation Dδ(θ) is defined in

(14).
Since j ∈ In(θ), there exists X such that (X, θ) = ((x(i))i∈J1,nK, θ) ∈ On

j . Moreover, since
On

j is open
{X ′ ∈ RN0×n | (X ′, θ) ∈ On

j }

is open and, since it contains X, non-empty. We also have using (33)

{X ′ ∈ RN0×n | (X ′, θ) ∈ On
j } ⊆

n∏
i=1

D
δj,n

i
(θ)

and thus
{X ′ ∈ RN0×n | (X ′, θ) ∈ On

j } ⊆
n∏

i=1
Int(D

δj,n
i

(θ)),

which shows that, for i ∈ J1, nK, Int(D
δj,n

i
(θ)) ̸= ∅ and therefore δj,n

i ∈ A(θ). This finishes
the proof of the first implication.

Consider n ∈ N∗, θ ∈ (RE × RB) \ Z and j ∈ J1, mnK.
Let us now prove that if, for all i ∈ J1, nK, δj,n

i ∈ A(θ), then j ∈ In(θ). To do so, assume
that for all i ∈ J1, nK, δj,n

i ∈ A(θ). Considering the definition of In(θ), in (21), it suffices to
put to evidence X ∈ RN0×n such that (X, θ) ∈ On

j to prove that j ∈ In(θ).
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Since, for all i ∈ J1, nK, δj,n
i ∈ A(θ), using the definition of A(θ) in (15), Int(D

δj,n
i

(θ)) ̸= ∅.
Therefore, Πn

i=1 Int(D
δj,n

i
(θ)) ⊆ RN0×n is a non-empty open set. Moreover, since θ ̸∈ Z,

{X ∈ RN0×n | (X, θ) ∈ (∪mn
j=1On

j )c}

has Lebesgue measure zero in RN0×n. Therefore, since Πn
i=1 Int(D

δj,n
i

(θ)) is a non-empty
open set, there exists j′ ∈ J1, mnK such that

Πn
i=1 Int(D

δj,n
i

(θ)) ∩ {X ∈ RN0×n | (X, θ) ∈ On
j′} ̸= ∅.

Consider X in this set, we have

a(X, θ) = δj,n = δj′,n.

Using Theorem 1, (i), second item, we conclude that j = j′. Finally, (X, θ) ∈ On
j and

j ∈ In(θ). This concludes the proof.

Proof of Theorem 6. Consider θ and θ′ in (RE × RB) \ Z and assume A(θ) ⊆ A(θ′).
Let n ∈ N∗ and j ∈ In(θ). Using Lemma 16, we know that for all i ∈ J1, nK, δj,n

i ∈ A(θ),
and therefore for all i ∈ J1, nK, δj,n

i ∈ A(θ′). Using Lemma 16 again, we obtain that j ∈ In(θ′).
As a conclusion, for all n ∈ N∗, In(θ) ⊆ In(θ′).

Using Proposition 5, we obtain that for all n ∈ N∗, r∗
n(θ) ≤ r∗

n(θ′). We conclude, using
the definition of r∗, in (19), that r∗(θ) ≤ r∗(θ′).

This concludes the proof of the first statement of Theorem 6.
The second statement follows by applying the first statement twice. Once with the

hypothesis A(θ) ⊆ A(θ′) and a second time with the hypothesis A(θ′) ⊆ A(θ). This concludes
the proof of the theorem.

C.4 Proof of Proposition 7

Let θ ∈ RE × RB and let θ̃ ∼ θ. The first statement is immediate: for n ∈ N∗, the third
item of Proposition 14 shows that

(X, θ) ∈
mn⋃
j=1

On
j ⇐⇒ (X, θ̃) ∈

mn⋃
j=1

On
j ,

i.e. zn(θ) = zn(θ̃). This immediately yields θ ∈ Z ⇐⇒ θ̃ ∈ Z.
Let us now show the second statement. Consider θ ∈ (RE ×RB) \ Z and θ̃ ∼ θ. The first

statement shows that θ̃ ∈ (RE × RB) \ Z. Let us fix n ∈ N∗ and show that r∗
n(θ) = r∗

n(θ̃).
Since, as discussed in Section 3, the rank is bounded by |E| + |B|, there is a finite number of
possibles values, and thus there exists X ∈ X n

θ that realizes the maximum in the definition
(19), i.e. satisfying rank(Dfθ(X)) = r∗

n(θ). Since θ ∈ (RE × RB) \ Z, by Lemma 15 there
exists j ∈ J1, mnK such that (X, θ) ∈ ‹On

j . The first item of Proposition 14 shows that
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rank
(
Df

θ̃
(X)

)
= rank(Dfθ(X)), and the second item shows that there exists j′ ∈ J1, mnK

such that (X, θ̃) ∈ ‹On
j′ . Using again Lemma 15 and the fact that θ̃ ∈ (RE × RB) \ Z, we

find that X ∈ X n
θ̃

, and we thus have, using the definition (19):

r∗
n(θ̃) = max

X′∈X n

θ̃

rank
(
Df

θ̃
(X ′)

)
≥ rank

(
Df

θ̃
(X)

)
= rank(Dfθ(X)) = r∗

n(θ).

We have shown r∗
n(θ) ≤ r∗

n(θ̃), and by swapping the roles of θ and θ̃, we obtain r∗
n(θ) =

r∗
n(θ̃).

Finally, since r∗
n(θ) = r∗

n(θ̃) for all n ∈ N∗, then (20) guarantees that r∗(θ) = r∗(θ̃). This
concludes the proof of Proposition 7.

C.5 Proof of Proposition 8

Similarly to what was done in the proof of Theorem 1, all along the proof of Proposition
8, we consider the canonical basis (e1, . . . , e|E|+|B|) of RE × RB and the canonical basis
(ε1, . . . , εn) of Rn, where this time we have NL = 1. For all θ′ ∈ RE × RB and all X ′ ∈ Rn

for which θ′′ 7−→ fθ′′(X ′) is differentiable at θ′, we write Jfθ′(X ′) for the n × (|E| + |B|)
matrix of Dfθ′(X ′) in these two bases.

Consider θ ∈ (RE ×RB) \ Z and ε > 0 as in the first statement of the proposition. From
Proposition 5, there is n ∈ N∗, j ∈ J1, mnK and X̄ = (x(1), . . . , x(n)) such that (X̄, θ) ∈ On

j

and rank
(
Dfθ(X̄)

)
= r∗(θ). Also, from Theorem 1 (i), there is ϵ′ > 0 such that θ′ 7−→ fθ′(X̄)

is continuously differentiable on B(θ, ϵ′). We consider such an ϵ′ satisfying ϵ′ ≤ ϵ.
Then, r∗(θ) = rank

(
Dfθ(X̄)

)
= rank

(
Jfθ(X̄)

)
. Hence we can extract r∗(θ) rows from

Jfθ(X̄) such that, up to reordering, we have, with X = (x(1), . . . , x(r∗(θ))), rank(Dfθ(X)) =
r∗(θ). Furthermore, still, θ′ 7−→ fθ′(X) is continuously differentiable on B(θ, ϵ′).

Then, we can extract r∗(θ) columns from Jfθ(X) for which the resulting r∗(θ) × r∗(θ)
matrix is invertible. These r∗(θ) columns are associated to a subset of E ∪B, that we write S.
For ϕ ∈ S, we define θ(ϕ) ∈ RE ×RB by θ(ϕ)w = θw for w ∈ (E ∪ B) \ S and by θ(ϕ)w = ϕw

for w ∈ S. We also let θ|S = (θw)w∈S . Then we consider the function g : RS −→ Rr∗(θ)

defined by the row vector g(ϕ) = fθ(ϕ)(X).
The differential of g at θ|S is defined by the invertible r∗(θ) × r∗(θ) matrix extracted

from Jfθ(X), discussed above, in the canonical bases of RS and Rr∗(θ). In addition, g is
continuously differentiable on B(θ|S , ϵ′).

Hence we can apply the inverse function theorem. There is an open set U ⊆ B(θ|S , ε′)
containing θ|S and an open set V containing g(θ|S) = fθ(θ|S)(X) = fθ(X) such that g is
bijective from U to V . We let g−1 be the inverse of g. Then, there is γ > 0 small enough
such that fθ(X) + γ{−1, 1}r∗(θ) ⊆ V , where “+” denotes the Minkowski sum.

Let t = (t1, . . . , tr∗(θ)) = fθ(X). Then, for each I ⊆ J1, r∗(θ)K, define t′ ∈ Rr∗(θ) by
t′
i = ti + γ if i ∈ I and t′

i = ti − γ if i ̸∈ I. Since t′ ∈ t + γ{−1, 1}r∗(θ) ⊆ V , we can define
θ′ = θ(g−1(t′)) with θ′ ∈ θ(U) ⊆ B(θ, ε′) ⊆ B(θ, ε). This yields, fθ′(X) = fθ(g−1(t′))(X) =
g(g−1(t′)) = t′. Hence, for i ∈ I, fθ′(x(i)) = t′

i = ti + γ and for i ̸∈ I, fθ′(x(i)) = t′
i = ti − γ.

By definition, this implies that fSB(θ,ε),γ ≥ r∗(θ). This shows the first part of the proposition.
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The second part of the proposition is a consequence of the first part. Indeed, let us fix
some ε > 0, let us take θ ∈ (RE × RB) \ Z such that r∗(θ) = max

θ̃∈(RE×RB)\Z r∗(θ̃), and let
us take γ′ > 0 such that (22) holds with γ there replaced by γ′ here. Then we have

fSRE×RB ,γ′ ≥ fSB(θ,ε),γ′ ≥ r∗(θ).

Finally, the third part of the proposition is also a consequence of the first part. Consider
r such that Ar = {θ ∈ (RE × RB) \ Z | r∗(θ) = r} has non-empty interior. Consider θ in
the interior of Ar. There is ϵ > 0 such that B(θ, ϵ) ⊆ Ar. Hence for any γ′′ > 0 such that
(22) holds, with γ replaced by γ′′,

fSAr,γ′′ ≥ fSB(θ,ϵ),γ′′ ≥ r∗(θ).

Since r∗(θ) = r, we obtain fSAr,γ′′ ≥ r for some γ′′ > 0. Hence the third part is proved.
This concludes the proof.

D Proofs of Section 6

In this appendix, we prove the two results of Section 6.2: in Section D.1 we prove Proposition
9 and in Section D.2 we prove Theorem 11.

D.1 Proof of Proposition 9

Before proving Proposition 9, we state and prove two lemmas.

Lemma 17. Let θ ∈ (RE × RB) \ Z.
Let n, n′ ∈ N∗, let X ∈ X n

θ and let X ′ ∈ X n′
θ . Let us write X ′′ ∈ X n+n′

θ the matrix
obtained by concatenating the columns of X and X ′. We then have the following inequalities

rank(Dfθ(X)) ≤ rank
(
Dfθ(X ′′)

)
,

rank
(
Dfθ(X ′)

)
≤ rank

(
Dfθ(X ′′)

)
,

rank
(
Dfθ(X ′′)

)
≤ rank(Dfθ(X)) + rank

(
Dfθ(X ′)

)
,

where using Proposition 4, (iii), all the differentials are well defined.

Proof of Lemma 17. Let us consider the canonical basis B of RE ×RB. Also, for any m ∈ R∗,
let us consider the canonical basis Bm of RNL×m. With the bases B and Bn, the linear
operator Dfθ(X) : RE × RB → RNL×n corresponds to a Jacobian matrix that we write
Jfθ(X). We define Jfθ(X ′) similarly with the bases B and Bn′ and Jfθ(X ′′) similarly
with the bases B and Bn+n′ . Writing ∇θ the gradient of a scalar quantity depending on
θ ∈ RE × RB, then the matrix Jfθ(X) is composed of the nNL rows

Jfθ(X)(i−1)NL+j,: =
Ä
∇θ

î
fθ(x(i))j

óä⊤
, for all i ∈ J1, nK and j ∈ J1, NLK,
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the matrix Jfθ(X ′) is composed of the n′NL rows

Jfθ(X ′)(i−1)NL+j,: =
Ä
∇θ

î
fθ(x′(i))j

óä⊤
, for all i ∈ J1, n′K and j ∈ J1, NLK,

and the matrix Jfθ(X ′′) is obtained by concatenating the rows of Jfθ(X) and Jfθ(X ′).
Well-known properties of the matrix rank yield

rank(Jfθ(X)) ≤ rank
(
Jfθ(X ′′)

)
,

rank
(
Jfθ(X ′)

)
≤ rank

(
Jfθ(X ′′)

)
,

rank
(
Jfθ(X ′′)

)
≤ rank(Jfθ(X)) + rank

(
Jfθ(X ′)

)
.

These three inequalities are equivalent to the three inequalities of the lemma.

Lemma 18. Let θ ∈ (RE ×RB) \ Z. Let n ∈ N∗ and let X ∈ X n
θ . If rank(Dfθ(X)) < r∗(θ),

then there exists x ∈ Xθ such that, writing Xx ∈ X n+1
θ for the matrix obtained by adding x

as an additional last column to X, we have

rank(Dfθ(Xx)) ≥ rank(Dfθ(X)) + 1.

Furthermore, the set of such x’s has non-zero Lebesgue measure on RN0 .

Proof of Lemma 18. Let θ ∈ (RE ×RB)\Z, n ∈ N∗ and X ∈ X n
θ such that rank(Dfθ(X)) <

r∗(θ). Let n′ ∈ N∗ and X ′ ∈ X n′
θ such that rank(Dfθ(X ′)) = r∗(θ) (the existence being

guaranteed by definition of r∗(θ)). Let X ′′ ∈ X n+n′

θ be obtained by concatenating the
columns of X and X ′. From Lemma 17, we have

rank
(
Dfθ(X ′′)

)
≥ rank

(
Dfθ(X ′)

)
= r∗(θ) ≥ rank(Dfθ(X)) + 1.

Using the matrix notations defined in the proof of Lemma 17, there exists a row of Jfθ(X ′),
written

Ä
∇θ

î
fθ(x′(i))j

óä⊤
for i ∈ J1, n′K and j ∈ J1, NLK, with x

′(i) ∈ Xθ, that does not belong
to the range of Jfθ(X). Recall that for x ∈ Xθ, we write Xx for the matrix of X n+1

θ obtained
by concatenating X and x. From the above, we have rank

(
Dfθ(Xx

′(i))
)

≥ rank(Dfθ(X))+1.
This proves the first statement of the lemma and we still need to prove that the set of

such x’s has non-zero Lebesgue measure on RN0 .
Consider x

′(i) ∈ Xθ as constructed in the first part of the proof. By continuity of
x 7−→ Dfθ(Xx) at x

′(i), and since the rank is a lower semi-continuous function and Xθ is
open, then there exists ε > 0 such that B(x′(i), ε) ⊆ Xθ and for all x ∈ B(x′(i), ε),

rank(Dfθ(Xx)) ≥ rank
(
Dfθ(Xx

′(i))
)

≥ rank(Dfθ(X)) + 1.

The ball B(x′(i), ε) has a non-zero Lebesgue measure, which concludes the proof.

We can now prove Proposition 9.
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Proof of Proposition 9. Let us first show that the sequence (r∗
n(θ))n∈N∗ is non-decreasing.

Let n ∈ N∗ and X ∈ X n
θ such that rank(Dfθ(X)) = r∗

n(θ). For any x ∈ Xθ, using the
notation Xx of Lemma 18, Lemma 17 shows that r∗

n(θ) = rank(Dfθ(X)) ≤ rank(Dfθ(Xx)),
and thus r∗

n(θ) ≤ r∗
n+1(θ). Hence, the sequence (r∗

n(θ))n∈N∗ is non-decreasing.
Since the input space of Dfθ(X) is RE ×RB for all X, the sequence is also upper bounded

by r∗(θ) ≤ |E| + |B|. Therefore, since it only takes integer values, there exists n such that
r∗

n(θ) = r∗(θ) and we can write n∗(θ) ∈ N∗ for the smallest of these n. Let n ∈ J1, n∗(θ) − 1K
and X ∈ X n

θ such that rank(Dfθ(X)) = r∗
n(θ). We have r∗

n(θ) < r∗(θ) and using Lemma 18,
there exists x ∈ Xθ such that rank(Dfθ(Xx)) ≥ rank(Dfθ(X)) + 1. Hence we have

r∗
n+1(θ) ≥ r∗

n(θ) + 1. (34)

The sequence is therefore increasing for 1 ≤ n ≤ n∗(θ). Because of the definition n∗(θ), it is
also stationary (constant) for n∗(θ) ≤ n.

Let us now prove the upper and lower bounds on n∗(θ).
Now, consider n ∈ J1, n∗(θ) − 1K and X ∈ X n+1

θ such that rank(Dfθ(X)) = r∗
n+1(θ). Let

us write Xn ∈ X n
θ for the matrix obtained by removing the last column x(n+1) from X.

Lemma 17 shows that

rank(Dfθ(X)) ≤ rank(Dfθ(Xn)) + rank
Ä
Dfθ(x(n+1))

ä
.

Furthermore, for x ∈ Xθ, because of the size of Dfθ(x), we have

rank(Dfθ(x)) ≤ NL. (35)

Hence

r∗
n+1(θ) = rank(Dfθ(X)) ≤rank(Dfθ(Xn)) + NL

≤r∗
n(θ) + NL. (36)

Grouping (34) and (36), we have

r∗
n(θ) + 1 ≤ r∗

n+1(θ) ≤ r∗
n(θ) + NL. (37)

This allows an induction argument. Recall that for this part of the proposition we assume
here r∗(θ) ≥ 1 (in the case r∗(θ) = 0, the sequence r∗

n(θ) is constantly zero and n∗(θ) = 1).
Then, there exists n ∈ N∗ and X ∈ X n

θ such that rank(Dfθ(X)) ≥ 1, and by extracting x(k)

from X such that rank
Ä
Dfθ(x(k))

ä
≥ 1, we find that 1 ≤ r∗

1(θ). Adding the inequality (35),
we have 1 ≤ r∗

1(θ) ≤ NL. Using (37) we can then show that for all n ∈ J1, n∗(θ)K, we have
n ≤ r∗

n(θ) ≤ nNL. Applying these latter inequalities to n = n∗(θ) yields

r∗(θ)
NL

≤ n∗(θ) ≤ r∗(θ)

and the proof is concluded.
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D.2 Proof of Theorem 11

Before proving Theorem 11, we state and prove a lemma.

Lemma 19. Fix p ∈ (0, 1) and k ∈ N∗. Consider random variables X1, . . . , Xk valued
in {0, 1} such that P(X1 = 1) ≥ p and for any i ∈ J2, kK, for any x1, . . . , xi−1 ∈ {0, 1},
P(Xi = 1|X1 = x1, . . . , Xi−1 = xi−1) ≥ p. Consider B1, . . . , Bk independent Bernoulli
random variables such that for i ∈ J1, kK, P(Bi = 1) = p and P(Bi = 0) = 1 − p.

Then there exists a finite probability space (Ωk,Pk) and random variables Y1, . . . , Yk,
C1, . . . , Ck from Ωk to {0, 1} such that

(1) For i ∈ J1, kK and ω ∈ Ωk, Yi(ω) ≥ Ci(ω);

(2) (X1, . . . , Xk) and (Y1, . . . , Yk) have the same distribution;

(3) (B1, . . . , Bk) and (C1, . . . , Ck) have the same distribution.

As a consequence, for each t ≥ 0,

P (X1 + · · · + Xk ≤ t) ≤ P (B1 + · · · + Bk ≤ t) . (38)

Proof of Lemma 19. We prove the first part of the lemma by induction. Let Lk correspond
to the statements (1) to (3) for a given k ∈ N∗.

Let us first show that L1 is true. Let Ω1 = {1, 2, 3} and P1(1) = p, P1(2) = P(X1 =
1) − p and P1(3) = 1 − P(X1 = 1). Let then Y1(1) = Y1(2) = 1, Y1(3) = 0, C1(1) = 1,
C1(2) = C1(3) = 0. With this choice of Ω1 , P1 , Y1 and C1, L1 indeed holds.

Assume now that Lk holds for some k ∈ N∗ and let us show that Lk+1 holds. We
thus consider Ωk, Pk, Y1, . . . , Yk and C1, . . . , Ck as in the statements (1) to (3). We define
Ωk+1 = Ωk × {1, 2, 3}. Since Ωk is finite by Lk, Ωk+1 is also finite. For ω ∈ Ωk, i ∈ J1, kK
and j ∈ {1, 2, 3}, let us define Yi(ω, j) = Yi(ω) and Ci(ω, j) = Ci(ω). Note that we use
the convenient abuse of notation of defining Y1, . . . , Yk and C1, . . . , Ck as both functions
on Ωk and Ωk+1. For ω ∈ Ωk, let us define Yk+1(ω, 1) = Yk+1(ω, 2) = 1, Yk+1(ω, 3) = 0,
Ck+1(ω, 1) = 1 and Ck+1(ω, 2) = Ck+1(ω, 3) = 0. Then Item (1) of Lk+1 is satisfied.

In order to define Pk+1, we denote, for ω ∈ Ωk,

Pω = P (Xk+1 = 1| X1 = Y1(ω), . . . , Xk = Yk(ω)) .

Then, for ω ∈ Ωk, we define Pk+1(ω, 1) = Pk(ω)p, Pk+1(ω, 2) = Pk(ω)(Pω − p) and
Pk+1(ω, 3) = Pk(ω)(1 − Pω). Using that Pk is a probability measure on Ωk, it is sim-
ple to see that Pk+1 is a probability measure on Ωk+1.

Consider now x1, . . . , xk ∈ {0, 1}. If P (Y1 = x1, . . . , Yk = xk) = 0 then, from Item (2) of
Lk, P (X1 = x1, . . . , Xk = xk) = 0. In this case, for all xk+1 ∈ {0, 1}, we have

0 = P (Y1 = x1, . . . , Yk = xk, Yk+1 = xx+1) = P (X1 = x1, . . . , Xk = xk, Xk+1 = xx+1) .
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Consider then the case where P (Y1 = x1, . . . , Yk = xk) > 0. We have

P (Y1 = x1, . . . , Yk = xk, Yk+1 = 1) =
2∑

j=1

∑
ω∈Ωk s.t.
Yi(ω)=xi

for i∈J1,kK

Pk+1(ω, j) =
∑

ω∈Ωk s.t.
Yi(ω)=xi

for i∈J1,kK

Pk(ω)Pω.

Using now Item (2) of Lk, and then using the definition of Pw, we have

P (Y1 = x1, . . . , Yk = xk, Yk+1 = 1)
=

∑
ω∈Ωk s.t.
Yi(ω)=xi

for i∈J1,kK

Pk(ω)Pω

= P (X1 = x1, . . . , Xk = xk) 1
P (Y1 = x1, . . . , Yk = xk)

∑
ω∈Ωk s.t.
Yi(ω)=xi

for i∈J1,kK

Pk(ω)Pω

= P (X1 = x1, . . . , Xk = xk) 1
P (Y1 = x1, . . . , Yk = xk)

∑
ω∈Ωk s.t.
Yi(ω)=xi

for i∈J1,kK

Pk(ω)

P(Xk+1 = 1|X1 = x1, . . . , Xk = xk)
= P (X1 = x1, . . . , Xk = xk)P(Xk+1 = 1|X1 = x1, . . . , Xk = xk)
= P (X1 = x1, . . . , Xk = xk, Xk+1 = 1) .

We treat the case Yk+1 = 0 similarly, writing the details for the sake of completeness. We
have

P (Y1 = x1, . . . , Yk = xk, Yk+1 = 0)

= P (X1 = x1, . . . , Xk = xk) 1
P (Y1 = x1, . . . , Yk = xk)

∑
ω∈Ωk s.t.
Yi(ω)=xi

for i∈J1,kK

Pk+1(ω, 3)

= P (X1 = x1, . . . , Xk = xk) 1
P (Y1 = x1, . . . , Yk = xk)

∑
ω∈Ωk s.t.
Yi(ω)=xi

for i∈J1,kK

Pk(ω)(1 − Pω)

= P (X1 = x1, . . . , Xk = xk) 1
P (Y1 = x1, . . . , Yk = xk)

∑
ω∈Ωk s.t.
Yi(ω)=xi

for i∈J1,kK

Pk(ω)

P(Xk+1 = 0|X1 = x1, . . . , Xk = xk)
= P (X1 = x1, . . . , Xk = xk)P(Xk+1 = 0|X1 = x1, . . . , Xk = xk)
= P (X1 = x1, . . . , Xk = xk, Xk+1 = 0) .
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Hence Item (2) of Lk+1 holds.
Let us now show Item (3) of Lk+1. The method is similar as above, but we give the details

for completeness. Consider c1, . . . , ck, ck+1 ∈ {0, 1}. Using the definition of C1, . . . , Ck+1, we
have

P (C1 = c1, . . . , Ck = ck, Ck+1 = ck+1) =Pk+1
(
Ac1 × · · · × Ack+1

)
,

where for i ∈ J1, k + 1K, Aci = {1} if ci = 1 and Aci = {2, 3} if ci = 0. Note that this holds
by constructing P1, . . . ,Pk+1, Ω1, . . . , Ωk+1 and C1, . . . , Ck+1 as above, by induction, with
in particular Ωk+1 = {1, 2, 3}k+1. If ck+1 = 1, then

Pk+1
(
Ac1 × · · · × Ack+1

)
= Pk+1 (Ac1 × · · · × Ack

× {1})
=

∑
i1∈Ac1···
ik∈Ack

Pk+1 ((i1, . . . , ik, 1))

=
∑

i1∈Ac1···
ik∈Ack

Pk ((i1, . . . , ik)) p

= Pk(C1 = c1, . . . , Ck = ck)p
= Pk(B1 = c1, . . . , Bk = ck)p
= Pk(B1 = c1, . . . , Bk = ck, Bk+1 = ck+1),

where we have used Item 3 of Lk for the second equality before last above and the definition
of B1, . . . , Bk+1, in the lemma statement, for the last equality. Similarly, we have, if ck+1 = 0,

Pk+1
(
Ac1 × · · · × Ack+1

)
=Pk+1 (Ac1 × · · · × Ack

× {2, 3})
=

∑
i1∈Ac1···
ik∈Ack

(
Pk+1 ((i1, . . . , ik, 2)) + Pk+1 ((i1, . . . , ik, 3))

)

=
∑

i1∈Ac1···
ik∈Ack

Pk ((i1, . . . , ik)) (1 − p)

=Pk(C1 = c1, . . . , Ck = ck)(1 − p)
=Pk(B1 = c1, . . . , Bk = ck)(1 − p)
=Pk(B1 = c1, . . . , Bk = ck, Bk+1 = ck+1).

Hence in all cases,

P (C1 = c1, . . . , Ck = ck, Ck+1 = ck+1) = P (B1 = c1, . . . , Bk = ck, Bk+1 = ck+1)

and Lk+1 is proved. This finishes the proof by induction that Lk holds for all k ∈ N∗.
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Let us now show (38). We have from Items (2) and (3) of Lk,

P (X1 + · · · + Xk ≤ t) − P (B1 + · · · + Bk ≤ t)
=P (Y1 + · · · + Yk ≤ t) − P (C1 + · · · + Ck ≤ t)
=E

(
1{Y1+···+Yk≤t} − 1{C1+···+Ck≤t}

)
≤0,

because from Item (1) of Lk, the random variable

1{Y1+···+Yk≤t} − 1{C1+···+Ck≤t}

takes the values −1 or 0.

Proof of Theorem 11. Let us consider random vectors x(1), . . . , x(n) ∈ RN0 , sampled as
described in the statement of the theorem. Let us first show that, almost surely, for all
ℓ ∈ J1, nK, there exists j ∈ J1, mℓK such that ((x(i))1≤i≤ℓ, θ) ∈ Oℓ

j . Indeed, for any ℓ ∈ J1, nK,
since θ ̸∈ Z, the set {X ∈ RN0×ℓ | (X, θ) ∈ (∪mℓ

j=1Oℓ
j)c} has Lebesgue measure zero. Since the

vectors x(i) are independent, the matrix (x(i))1≤i≤ℓ ∈ RN0×ℓ follows the product distribution
Gℓ, which is absolutely continuous with respect to Lebesgue measure of RN0×ℓ. Therefore,
we have

P
Ä
((x(i))1≤i≤ℓ, θ) ∈ (∪mℓ

j=1Oℓ
j)c
ä

= 0,

and since this is true for all ℓ ∈ J1, nK, we thus have

P
Ä
∃ℓ ∈ J1, nK such that ((x(i))1≤i≤ℓ, θ) ∈ (∪mℓ

j=1Oℓ
j)c
ä

= 0.

As a consequence, for the rest of the proof, up to intersecting with an event of probability one,
we will assume that for all ℓ ∈ J1, nK, there exists j ∈ J1, mℓK such that ((x(i))1≤i≤ℓ, θ) ∈ Oℓ

j .
To ease the reading, let us denote N = n∗(θ) in this proof. By definition of N , we have

r∗
N (θ) = r∗(θ), and Proposition 5 shows that there exists j ∈ IN (θ) such that

r∗
N (θ) = rN

j .

Consequently, there exist deterministic x̃(1), . . . , x̃(N) ∈ RN0 such that if ‹X = (x̃(i))1≤i≤N ,
we have (‹X, θ) ∈ ON

j and
rank
Ä
Dfθ(‹X)

ä
= r∗(θ).

For δ ∈ A(θ), let us define the deterministic integer

c∗
δ = Card {i ∈ J1, NK | x̃(i) ∈ Int Dδ(θ)}.

We have ∑
δ∈A(θ)

c∗
δ = N,
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also up to intersecting with an event of probability one, since
(
∪δ∈A(θ) Int Dδ(θ)

)c = X c
θ is

included in a finite union of hyperplanes, as observed after (15), and thus has Lebesgue
measure zero. Let us also define, for ℓ ∈ J1, nK and δ ∈ A(θ), the random integers

cδ(ℓ) = min
Ä
Card {i ∈ J1, ℓK | x(i) ∈ Int Dδ(θ)} , c∗

δ

ä
,

and
c(ℓ) =

∑
δ∈A(θ)

cδ(ℓ).

We have cδ(ℓ) ≤ c∗
δ , for all δ ∈ A(θ), thus c(ℓ) ≤ N . The sequence c(ℓ) is nondecreasing,

and at each step, the increment c(ℓ + 1) − c(ℓ) is either 0 or 1.
Let us first show that, almost surely, for ℓ ∈ J1, nK,

{c(ℓ) = N} =⇒
¶

rank
Ä
Dfθ

Ä
(x(i))1≤i≤ℓ

ää
= r∗(θ)

©
. (39)

Suppose indeed that, for some ℓ ∈ J1, nK, c(ℓ) = N . Then for all δ ∈ A(θ), we have
cδ(ℓ) = c∗

δ . Up to a re-ordering, we can assume that for all i ∈ J1, NK,

a(x(i), θ) = a(x̃(i), θ). (40)

As assumed earlier, there exists j′ ∈ J1, mN K such that ((x(i))1≤i≤N , θ) ∈ ON
j′ . The equality

(40) and Item 2 of Theorem 1 (i) show that j′ = j. Item 3 of Theorem 1 (i) shows that the rank
is constant over ON

j , and thus rank
Ä
Dfθ((x(i))1≤i≤N )

ä
= rank

Ä
Dfθ((x̃(i))1≤i≤N )

ä
= r∗(θ).

This shows (39) as desired.
Define now c̄(ℓ) by c̄(ℓ) = c(ℓ) if c(ℓ) < N and by c̄(ℓ) = N + (ℓ − M) if c(ℓ) = N , where

M is the smallest index i such that c(i) = N . Then, for all ℓ ∈ J1, nK, c(ℓ) = N ⇐⇒ c̄(ℓ) ≥ N .
Hence, we have

P
Ä
rank
Ä
Dfθ

Ä
(x(i))1≤i≤n

ää
= r∗(θ)

ä
≥P (c(n) = N)
=P (c̄(n) ≥ N) .

Thus
P
Ä
rank
Ä
Dfθ

Ä
(x(i))1≤i≤n

ää
< r∗(θ)

ä
≤ P (c̄(n) < N) . (41)

Define X1 = c̄(1) and Xk = c̄(k)− c̄(k−1) for k ∈ J2, nK. Notice that X1 + · · ·+Xk = c̄(k)
for all k ≥ 2. Consider also the i.i.d. Bernoulli variables B1, . . . , Bn from the first item of the
theorem statement. We will apply Lemma 19 to p, as defined in Theorem 11, (X1, . . . , Xn)
and (B1, . . . , Bn). To do so we need to prove that (X1, . . . , Xn) satisfies the hypotheses of
Lemma 19. First, P(X1 = 1) is the probability that x(1) falls into one of the sets Int Dδ(θ)
for any δ such that c∗

δ ≥ 1. Since there exists at least one such δ, and since the probability of
falling into Int Dδ(θ) is lower bounded by p, by definition of p, we thus have P(X1 = 1) ≥ p.
Now let us show that, for k ∈ J1, n − 1K, x1, . . . , xk ∈ {0, 1},

P(Xk+1 = 1|X1 = x1, . . . , Xk = xk) ≥ p.
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Let us work conditionnally to X1 = x1, . . . , Xk = xk. If x1 + · · · + xk ≥ N , then c̄(k) =
x1 + · · · + xk ≥ N and thus, by definition of c̄(k + 1) and Xk+1, Xk+1 = 1. So P(Xk+1 =
1|X1 = x1, . . . , Xk = xk) = 1 ≥ p.

Consider now the case x1 + · · · + xk < N , i.e. c(k) < N . Conditionally to x(1), . . . , x(k)

for which X1 = x1, . . . , Xk = xk with x1 + · · · + xk < N , there is at least one δ ∈ A(θ) such
that cδ(k) < c∗

δ , and if x(k+1) falls into Int Dδ(θ), then Xk+1 = 1 because c(k + 1) = c(k) + 1
and thus c̄(k + 1) = c̄(k) + 1. Hence P

Ä
Xk+1 = 1|x(1), . . . , x(k)

ä
≥ p and thus

P (Xk+1 = 1|X1 = x1, . . . , Xk = xk)

= 1
P(X1 = x1, . . . , Xk = xk)P (X1 = x1, . . . , Xk = xk, Xk+1 = 1)

= 1
P(X1 = x1, . . . , Xk = xk)E

[
E
[

1{X1=x1,...,Xk=xk}1{Xk+1=1}

∣∣∣x(1), . . . , x(k)
]]

= 1
P(X1 = x1, . . . , Xk = xk)E

î
1{X1=x1,...,Xk=xk}P

Ä
Xk+1 = 1|x(1), . . . , x(k)

äó
≥p.

Hence we can apply Lemma 19. From this lemma and (41), for all n ∈ N,

P
(

rank
Ä
Dfθ

Ä
(x(i))1≤i≤n

ää
< r∗(θ)

)
≤P(c̄(n) < N)

=P(X1 + · · · + Xn < N)
≤P(B1 + · · · + Bn < N).

Hence Item 1 of Theorem 11 holds. Let us now consider Item 2. The expectation of
B1 + · · · + Bn is np and the variance is np(1 − p) ≤ np. Hence using Chebyshev’s inequality,
for np ≥ 2N

P
Ä
rank
Ä
Dfθ

Ä
(x(i))1≤i≤n

ää
< r∗(θ)

ä
≤P(B1 + · · · + Bn < N)
=P(B1 + · · · + Bn − np < N − np)

≤ np

(np − N)2

≤ 4
np

.

This concludes the proof.
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