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Abstract

In this work, we propose an original idea consisting of preserving
the weak monotonicity of the CVFE scheme, or generally for schemes
written under the two-point like formulation. The setting handles highly
anisotropic and heterogeneous di�usion tensors. The key idea is to insert a
nonlinear correcting coe�cient whose objective is to eliminate the anti-di�usive
�uxes. This modi�cation works on the same stencil as the initial discretization.
The obtained scheme remains stable in the sense that the solution respects
its physical ranges and enables the energy estimates. The existence of
discrete solutions is also valid. The numerical section highlights the
accuracy, the robustness and the e�ciency of the novel scheme compared
to the standard CVFE methodology. An application of the developed
weakly monotone �nite volume scheme to the simulation of mass transfer
in hygroscopic media is conducted, with a speci�c focus on mass di�usion
within wood.

Keywords: �nite volumes, monotonicity, parabolic equation, anisotropy, mass
transfer, wood.

AMS subject classi�cations: 74S10, 35K55, 35B50, 80A20.

1 Introduction

Parabolic equations are involved in many physical and biological processes.
For example, they are part of complex systems such as �ows in porous media,
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models of computational �uid dynamics and problems of mass and heat transfer.
Bringing new methods of the resolution preserving the scheme's stability and
the good behavior of the numerical solutions is of chief importance for practical
applications.

Finite volumes [19] and �nite elements [17] or more generally the gradient
discretization methods [16] are the most popular discrete variational methods
widely used for discretizing di�usion problems in space. They are constructed
based on two fundamental stability points of type energy estimates and consistency.
The latter consists in the convergence of the discrete operators such the gradient
and the �uxes towards their continuous counterparts. Depending on the location
of the primary unknowns and the construction of the discrete gradient or �uxes,
many methods have been developed in the literature. For instance let us cite
Two-Point Flux Approximation (TPFA) [21, 20] schemes, Multi-Point Flux
Approximation (MPFA) schemes [1, 2], the DDFV methods [5, 6, 14, 30], the
vertex approximation gradient approach (VAG) [8, 22, 7], the HMM methods
[12]. A general description of weak and strength points of each method can be
found in [15]. However, when it comes to the discrete maximum principle, only
a couple of methods are ful�lling this property as witnessed in the benchmark
[29]. This the case of the TPFA methods or the CVFE schemes [3, 24, 25]. The
price to pay is of course restrictive assumptions on the mesh to be orthogonal
or the angle condition in the case of simplicial meshes.

Some recent works focused on the positivity of the scheme which is less
demanding than monotonicity [11, 26, 27, 28, 38, 39, 41]. The main idea is to
make use of the model degeneracy or some singular logarithmic functionals to
reinforce this feature. Such techniques are suitable and applied to the context of
complex �ows in porous media or systems of chemotaxis [8, 31]. This idea is no
longer valid if one wants the numerical solution to be bigger than a tough initial
condition including a ramp for instance. To deal with such a circumstance, we
are led to develop advanced corrections of the problematic �uxes. Before that,
let us mention that there exist already several nonlinear monotone schemes in
the literature, see for instance [9, 10, 13, 33, 32, 34, 35, 42, 43]. Their stencil
construction resembles to the two-point formalism or a contained multi-point
structure. However, the stencil includes additional neighbor unknowns and may
become very demanding. This is very di�cult to apply for complex �ows in
porous media for instance.

The current contribution brings a new insight on how to construct �nite
volume schemes respecting the weak monotonicity of the solution. This class
of schemes is referred to as weakly monotone �nite volumes (WMFV). In other
words, formally, if the initial condition (the solution at t = 0) is bigger than a
given function x → g(x), the numerical solution remains also greater than g.
This is presented in the context of the CVFE scheme for parabolic equation.
This theory is validated through a series of numerical tests. They reveal that the
accuracy of the WMFV method is similar to the standard CVFE approach. An
application to the simulation of mass transfer in hygroscopic media is provided.
We have chosen the example of wood for its a high ratio of anisotropy.

The assets of the present work are summarized in the following list.
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� Ensure the weak monotonicity of the numerical solution.

� Keep the same stencil as the initial scheme.

� Maintain the numerical second order accuracy (when the solution is smooth).

� Handle general triangular meshes.

� Deal with highly anisotropic and heterogeneous tensors.

The rest of the paper is articulated as follows. In section 2, we sketch
the mathematical model and the main assumptions on the data set and the
nonlinearities. Section 3 is devoted to the mesh description as well as the
�nite element �nite volume setting. In Section 4, we present the �nite volume
discretization and show how to incorporate a nonlinear damping parameter used
to reinforce the weak monotonicity of the scheme. Then, one performs the
numerical analysis of the method. Section 5 is divided into two parts. The �rst
one aims to the validation of the proposed WMFV scheme, assesses its accuracy
and compare it to the standard CVFE approximation. The second part applies
the novel methodology to the simulation of mass transfer through hygroscopic
media of the wood type. Section 6 concludes the paper and underlines some
perspectives of great importance.

2 Problem model

The aim of this paper is to devise and study properties of a new weak monotone
�nite volume discretization for parabolic equation.

Let tf ≥ 0 account for time, the problem is considered in Qtf = Ω× (0, tf )

where Ω is a polygonal connected open bounded subset of Rd (d ≥ 2). We
denote by ∂Ω the boundary of Ω and n the outward normal vector to ∂Ω. Note
that the boundary ∂Ω is divided into parts i.e ∂Ω = ∂ΩD ∪ ∂ΩN . Dirichlet's
(resp. Neumann's) boundary is denoted by the superscript D (resp. N). The
equation model we are concerned with is written under the form

φut − div(η(u)Λ∇u) = f in Qtf ,

u(0, ·) = u0 in Ω,

u = 0 on ∂ΩD,

(η(u)Λ∇u) · n = 0 on ∂ΩN × (0, tf ),

(1)

where the main unknown is u. Depending on the application, u may stand for
the water content, saturation or density of physical quantity. The following
assumptions prescribed on the data and on the nonlinearities are classical for
the mathematical study of the problem.

(H1) The initial condition u0 is considered to be in L2(Ω). Assume that u0 ≥
g > 0 for a given g ∈ L2(Ω).
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(H2) The porosity φ is an L∞-function and there exist two positive constants
φ0 and φ1 such that φ0 6 φ 6 φ1.

(H3) The di�usion (permeability) tensor Λ belongs to (L∞(Ω))d×d, and it is
assumed to be symmetric and uniformly elliptic within Ω, meaning that
there exist two positive constants Λ and Λ̄ such that

Λ|v|2 6 Λ(x)v · v 6 Λ̄|v|2, ∀v ∈ Rd for a.e. x ∈ Ω.

(H4) The mobility function η : [0,+∞)→ R+ is assumed to be continuous and
nondecreasing.

(H5) The second member f is nonnegative and belongs to L2
(
Qtf

)
.

In order to give a mathematical signi�cance to the solution of (1), we are led to
introduce a central functional referred to as Kirchho�'s transform ξ : R+ → R+,
de�ned by

ξ(u) =

∫ u

0

√
η(s)ds. (2)

The functional framework in which we look for solutions in the weak sense for
the continuous problem (1) involves the classical Sobolev space

H1
D(Ω) = {u ∈ H1(Ω)/u = 0 on ∂ΩD}.

(H6) There exist Cξ, C
′
ξ > 0 such that ξ ful�lls

Cξ|a| ≤ C ′ξ + |ξ(a)|, ∀a ∈ R. (3)

Moreover, H1
D(Ω) is a Hilbert space endowed with the norm

‖u‖H1
D(Ω) = ‖∇u‖L2(Ω)d .

Remark 1. � Contrary to some previous works [11, 28, 37], we do not
impose here the degeneracy of η i.e., η(0) = 0 so that the solution can
obey its physical ranges. Our work is free of this restriction.

� Note that the product of η and Λ can be replaced with a more general
nonlinear di�usion tensor of the form Λ(x, ·) such that: (i) x → Λ(x, ·)
is measurable and uniformly elliptic ; (ii) s → Λ(·, s) is continuous and
nondecreasing.

De�nition 1. Under Assumptions (H1)-(H6), a measurable function u : Qtf →
R is said to be a weak solution of (1) if ξ(u) ∈ L2

(
(0, tf );H1

D(Ω)
)
, and for all

ψ ∈ C∞c (Qtf ) one has

−
∫

Ω

φu0ψ(x, 0)dx−
∫
Qtf

φuψt dx dt+

∫
Qtf

√
η(u)Λ∇ξ(u)·∇ψdx dt =

∫
Qtf

fψdxdt.

(4)

Theorem 1. The problem (1) has a unique weak solution in the sense of
De�nition 1.

Proof. For the existence of a weak solution to the problem (1), we refer to this
paper [4] and to the work [36] for the uniqueness.

4



3 CVFE discrete setting

The numerical resolution of the main problem (1) requires the introduction of
two di�erent discretizations of the domain Ω, namely a primal mesh and the
corresponding dual mesh.

The primal mesh T is a conforming triangulation of the domain Ω in the
sense of the �nite elements, consisting of a �nite number of triangles which is a
partition of the domain Ω i.e., Ω =

⋃
T∈T T et T ∩ T ′ = ∅ if T 6= T ′. For each

triangle T ∈ Ω, we denote by xT its barycenter T , hT its diameter, and |T | its
Lebesgue measure. The set of vertices of T (resp T ∈ T ) is denoted by V (resp
VT ). The external vertices belonging to Dirichlet's boundary are given by the
set VD. For each vertex K ∈ V, we de�ne TK the set of triangles which share
the vertex K.

Let ρT be the diameter of the largest ball included in the triangle T . The
size and the regularity of the triangulation T are respectively denoted by hT
and θT and they are de�ned by

hT := max
T∈T

(hT ) , θT := max
T∈T

hT
%T
.

The aim of the CVFE method is to reconstruct the approximate solution at the
vertices of the primal mesh following the �nite volume spirits. To do this, a
new partition of the domain is de�ned so that each vertex of the primal mesh is
uniquely associated to a control volume. The resulting mesh from this second
partition is called dual mesh denoted by D. The cell AK ∈ D is de�ned by
connecting the barycenter of each triangle of TK with the midpoint of edges
having K as an extremity. The center of AK is the vertex xK and its surface
is denoted by |AK |. Let T ∈ TK , for K 6= L ∈ VT , we de�ne the segment
σTKL = ∂K ∩ ∂L ∩ T . Each interface σTKL is characterized by is length |σTKL|
and the unit normal nTKL oriented from K to L. We designate by E?T the dual
edges of D included in the triangle T ∈ T .

An illustration of primal triangular and dual meshes is plotted on Figure 1.

Figure 1: triangular mesh T (continuous lines) and the corresponding dual mesh
D (dashed lines).
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Given K ∈ V \ VD we consider uK the CVFE approximation of u(xK). Thus,
the discrete unknowns will be denoted by {uK}K∈V .

Next, we de�ne the following �nite dimensional space:

HT =
{
Φ ∈ H1(Ω) | Φ|T is a�ne, ∀T ∈ T

}
.

The basis ofHT is spanned by the shape functions (ϕK)K∈V such that ϕK(xL) =
δKL for all L ∈ V, δKL being the Kronecker symbol, every function sT ∈ HT
writes:

sT =
∑
K∈V

sKϕK .

And its corresponding discrete gradient is de�ned as follows

∇sT =
∑
K∈V

sK∇ϕK .

On the other hand, we de�ne the trial space XD of the piecewise constant
functions on the dual mesh D by:

XD =
{
Φ : Ω→ R measurable | Φ|AK

∈ R is constant ∀K ∈ V
}
.

For the time discretization, it is given by a strictly increasing sequence of
real numbers (tn) for n = 0, · · · , nf such that

t0 = 0 < t1 < · · · < tnf−1 < tnf = tf .

The size of the time sub-interval is denoted by δtn = tn+1 − tn, for n =
0, · · · , nf − 1, and δt = max

n=0,...,nf

δtn. To simplify the notations, we consider

a constant time stepping i.e., δt = δtn for every n ∈ {0, ..., nf − 1}.

Let us introduce the transmissibility coe�cient between K and L in T

ΛTKL = −
∫
T

Λ∇ϕK(x) · ∇ϕL(x)dx = ΛTLK ∈ R. (5)

In the following lemma, the formula of the discrete integration by parts is
recalled. Its proof can be documented in [11].

Lemma 2. Let sT , ψT ∈ HT , then∫
Ω

Λ∇sT · ∇ψT dx =
∑
T∈T

∑
σT
KL∈E?T

ΛTKL (sK − sL) (ψK − ψL) . (6)

Consider the right hand side f > 0. Let (unK) a �nite volume solution
approximating the weak solution to the continuous problem (1). The corresponding
numerical scheme is called:
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(i) positive if u0
K > 0 implies un+1

K > 0, for all K and n;

(ii) minimum-preserving if u0
K > a implies un+1

K > a, for some scalar a > 0;

(iii) monotone if u0
K > v(x) implies un+1

K > v(x) , for some function v > 0;

By default, the following assertion holds true

(iii) =⇒ (ii) =⇒ (i).

Throughout this work, we are going to build a new �nite volume method
satisfying a weaker monotone property i.e. between (ii) and (iii) because the
scheme depends on the ranges of the initial datum speci�ed by the function g
mentioned in Assumption (H1). As a consequence, the weakly monotone scheme
is only positive but also preserves the minimum principle. However, the inverse
is false in general. Examples are given in the numerical section to highlight this
fact. When the scheme is ful�lling one of the aforementioned properties, we say
that it veri�es the discrete maximum principle.

4 Weakly monotone �nite volume scheme and its

properties

In this section, we elaborate the weakly monotone �nite volume scheme and
study some of its theoretical properties, notably stability and existence results.
The presentation of the method is done in 2D, but extensions to 3D are naturally
possible, see for instance [28].

4.1 Numerical scheme

The CVFE approach is a class of the �nite volume methods where the gradient
is constructed on the triangles in the sense of �nite elements. The fully implicit
discretization in time is considered is order to prevent restrictions on the time
stepping in case of strong anisotropy or tough initial conditions. As a result,
the scheme is essentially derived by integrating the equation (1) over each AK×
(tn, tn+1). Then, using the Green formula for the divergence integral, we obtain∫ tn+1

tn

∫
AK

φutdxdt−
∑
σ∈EK

∫ n+1

tn

∫
σ

η(u)Λ∇u · nσdσdt =

∫ tn+1

tn

∫
AK

fdxdt,

(7)
where nσ is the unit normal pointing outwards AK . The evolution term is
approximated thanks to the �rst order Euler scheme∫ tn+1

tn

∫
AK

φutdxdt ≈ |AK |φK(un+1
K − unK).
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In the CVFE setting, the di�usion part is commonly discretized as follows

−
∑
σ∈EK

∫ n+1

tn

∫
σ

η(u)Λ∇u·nσ,Kdσdt ≈ δt
∑
T∈TK

∑
L∈VT \{K}

ηn+1
KL ΛTKL(un+1

K −un+1
L ),

where the choice of the nonlinear di�usion coe�cient ηn+1
KL is crucial and determinant.

In our recent work, and the references are therein, [28] we proposed and studied
some formulas of ηn+1

KL with pros and cons in terms of accuracy and stability.
Nevertheless, all these propositions yield only to positive solutions, which is not
su�cient in some practical applications in complex �ows in porous media or
heat transfer in hygroscopic media.

In the present contribution, we elaborate a new formulation of the underlined
coe�cient with better and strong properties in terms of the discrete maximum
principle as well as enjoying an easy numerical implementation. The main idea
is to consider a centered approximation of ηn+1

KL under the form

ηn+1
KL = ηn+1

T βn+1
KL , (8)

where

ηn+1
T =

1

#VT

∑
K∈VT

η
(
un+1
K

)
.

The originality consists in introducing the particular nonlinear parameter βn+1
KL

such that

βn+1
KL =

{
1 if ΛTKL ≥ 0,

β(un+1
K − gK)β(un+1

L − gL), if ΛTKL < 0.

where

β(a) = 1− exp

(
−max(a, 0)2

2γ2
T

)
, ∀a ∈ R. (9)

Here the function g is given. It was speci�ed in Assumption (H1). It is generally
linked to the initial solution. Observe that βn+1

KL = βn+1
LK , which maintains the

�ux conservation property of the numerical scheme. The parameter γT > 0 is of
great importance in controlling the additional arti�cial viscosity and therefore
the accuracy. Its choice will be discussed later on in the numerical section.

The right hand side f is approximated using the mean value over the control
volume AK .

So, the weakly monotone �nite volume scheme that we propose for the
discretization of the parabolic problem (1) is given by the following discrete
system. The initial condition is approximated by

u0
K =

1

|AK |

∫
AK

u0(x)dx, ∀K ∈ V \ VD, u0
K = 0, ∀K ∈ VD. (10)
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Then, at each time level n ∈ {0, · · · , nf − 1} the balance equation writes

φK(un+1
K − unK) (11)

+
δt

|AK |
∑
T∈TK

∑
L∈VT \{K}

ηn+1
KL ΛTKL(un+1

K − un+1
L ) = δtfn+1

K , ∀K ∈ V \ VD

un+1
K = 0 ∀K ∈ VD. (12)

Remark 2. We would like to stress that our approach remains valid for any
scheme that can be recast under the two-point like formulation (11). For instance,
this is the case of the combined �nite volume�nonconforming/mixed-hybrid �nite
element method proposed in [23]. A similar extension can be performed to the
DDFV schemes following the spirit of the work [41].

4.2 The weakly monotonicity of the scheme

Let us now prove a central property of the proposed numerical scheme.

Proposition 3. The nonlinear �nite volume scheme (11) is weakly monotone
in the sense that

unK ≥ gK , ∀n ∈ [0, nf ] , ∀K ∈ V.
Proof. The property is shown by induction on n. Thanks to the hypothesis
(H1), it is true for n = 0. Now, assume that the claim is true up to the
time step n < nf i.e., unK ≥ gK . Select a control volume AK such that
un+1
K = minL∈V\VD un+1

L . Next, the goal is to establish that we still have un+1
K ≥

gK , ∀K ∈ V\VD by contradiction. For this purpose, assume that un+1
K < gK .

Then, multiply the equation of (11), corresponding to the underlined K, by
(un+1
K − gK) to obtain

φK(un+1
K − unK)(un+1

K − gK)

+
δt

|AK |
∑
T∈TK

∑
L∈VT \{K}

ηn+1
KL ΛTKL(un+1

K − un+1
L )(un+1

K − gK) = δtfK(un+1
K − gK).

(13)

Splitting ΛTKL = (ΛTKL)+ − (ΛTKL)− = max(ΛTKL, 0)−max(−ΛTKL, 0) entails

φK(un+1
K − unK)(un+1

K − gK)

+
δt

|AK |
∑
T∈TK

∑
L∈VT \{K}

ηn+1
KL (ΛTKL)+(un+1

K − un+1
L )(un+1

K − gK)

− δt

|AK |
∑
T∈TK

∑
L∈VT \{K}

ηn+1
KL (ΛTKL)−(un+1

K − un+1
L )(un+1

K − gK) = δtfK(un+1
K − gK).

One checks that φK(un+1
K −unK)(un+1

K −gK) = φK(un+1
K −gK+gK−unK)(un+1

K −
gK) > 0. Bearing in mind un+1

K ≤ un+1
L , one deduces that

δt

|AK |
∑
T∈TK

∑
L∈VT \{K}

ηn+1
KL (ΛTKL)+(un+1

K − un+1
L )(un+1

K − gK) ≥ 0.
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In the case where the negative transmissibility is active, the coe�cient ηn+1
KL is

forced to vanish by construction because un+1
K < gK . As a consequence, there

holds

− δt

|AK |
∑
T∈TK

∑
L∈VT \{K}

ηn+1
KL (ΛTKL)−(un+1

K − un+1
L )(un+1

K − gK)− = 0.

The right hand side in (13) is nonpositive. The equation (13) only holds true if
(un+1
K − gK) = 0, which is absurd. Consequently, we �nd that

un+1
L ≥ un+1

K ≥ gK ∀n = 0, · · · , nf − 1, ∀L ∈ V \ VD.

This ends the proof.

Remark 3. Recall that a scheme is said to be monotone if u0 ≥ g implies
uT ≥ g independently of the discretization. This is not the case of our approach
because the underlined property depends on the scheme. The function g is
present in the corrected �ux. Then, if g changes the latter also changes. For
this reason we called it a weakly monotone �nite volume scheme.

Remark 4. As we already mentioned, the current weakly monotone scheme
exhibits a stronger property in terms of the discrete maximum principle. Indeed,
in the works [41, 37, 38, 11, 39] the obtained numerical solution is either positive
or nonnegative. This can be also reached by setting g = 0 in our scheme.

4.3 A priori estimates

This subsection is devoted to the proof of the a priori estimates. Before that,
we will make use of the following result. It provides equivalence between some
discrete norms, which is fundamental to derive the appropriate estimations on
the system's energy and on the gradient of the Kirchho�'s transform. The proof
can be consulted in [7, 11]. Another formulation was highlighted in [27].

Lemma 4. There exists a constant C that depends only on θT , Λ and Λ̄ such
that for any sT ∈ HT∑
T∈T

∑
σT
KL∈E?T

|ΛTKL|(sK−sL)2 6 C
∑
T∈T

∑
σT
KL∈E?T

ΛTKL(sK−sL)2 = C

∫
Ω

Λ∇sT ·∇sT dx.

(14)

To ease the readability of the scheme analysis, we use the following abbreviated
notation

ξn+1
K = ξ(un+1

K ), ∀K ∈ V, ∀n ∈ {0, · · · , nf − 1}.
Let us set

η̃n+1
KL =


(
ξn+1
K − ξn+1

L

un+1
K − un+1

L

)2

if un+1
K 6= un+1

L ,

η(un+1
K ) if un+1

K = un+1
L .
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The importance of this formula resides in the fact that

η̃n+1
KL

(
un+1
K − un+1

L

)2

=
(
ξn+1
K − ξn+1

L

)2

. (15)

Additionally, one has ηn+1
T ≥ η̃n+1

KL /3. Indeed, from the continuity of η, one
obtains

η̃n+1
KL = η(ûn+1

KL )

for some in ûn+1
KL in the ranges of un+1

K and un+1
L . On the other hand, observe

that

ηn+1
T ≥ 1

3
max
a∈In+1

KL

η(a) ≥ η̃n+1
KL /3, (16)

where In+1
KL = [min(un+1

K , un+1
L ),max(un+1

K , un+1
L )].

Proposition 5. There exists a positive constant C depending only on the physical
data and θT such that the following energy estimates hold true

nf−1∑
n=0

δt
∥∥∇ξn+1

T
∥∥2

L2(Ω)2
6 C, (17)

nf−1∑
n=0

δt
∑
T∈T

∑
σT
KL∈E?T

|ΛTKL|ηn+1
KL

(
un+1
K − un+1

L

)2
6 C. (18)

Proof. We prove the �rst estimation. Multiply the scheme (11) by |AK |un+1
K ,

and we sum on all K ∈ V\VD and all n ∈ {0, ..., nf −1}, the result is written as

S1 + S2 = S2.

where

S1 =

nf−1∑
n=0

∑
K∈V\VD

|AK |φK(un+1
K − unK)un+1

K ,

S2 =

nf−1∑
n=0

δt
∑

K∈V\VD

∑
T∈TK

∑
L∈VT \{K}

ηn+1
KL ΛTKL(un+1

K − un+1
L )un+1

K ,

S3 =

nf−1∑
n=0

δt
∑

K∈V\VD

|AK |fn+1
K un+1

K .

Apply the convexity inequality (a− b)b ≥ 1
2 (a2 − b2),∀a, b ∈ R, to deduce that

S1 is greater than a telescopic series yielding
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S1 ≥
1

2

nf−1∑
n=0

∑
K∈V\VD

|AK |φK
(

(un+1
K )2 − (unK)2

)
≥ 1

2

∑
K∈V
|AK |φK(u

nf

K )2 − 1

2

∑
K∈V
|AK |φK(u0

K)2.

Next, rearranging the terms of S2 by triangles and dual edges of these triangles
leads to

S2 =

nf−1∑
n=0

δt
∑
T∈T

∑
σT
KL∈E?T

ηn+1
KL ΛTKL(un+1

K − un+1
L )2.

Thanks to the crucial de�nition of ηn+1
KL given in (8), one infers

ηn+1
KL = ηn+1

T , ∀ΛTKL ≥ 0 and ηn+1
KL 6 ηn+1

T , ∀ΛTKL < 0. (19)

As a consequence of this and Lemma 4 we obtain

S2 ≥
nf−1∑
n=0

δt
∑
T∈T

ηn+1
T

∑
σT
KL∈E?T

ΛTKL(un+1
K − un+1

L )2,

≥ 1

C0

nf−1∑
n=0

δt
∑
T∈T

ηn+1
T

∑
σT
KL∈E?T

|ΛTKL|(un+1
K − un+1

L )2

︸ ︷︷ ︸
2×Ŝ2

.

Now, combine (15), (16) and the ellipticity of the tensor Λ to �nd

Ŝ2 >
1

6C0

nf−1∑
n=0

δt
∑
T∈T

∑
σT
KL∈E?T

ΛTKL

(
ξn+1
K − ξn+1

L

)2

> C ′1

nf−1∑
n=0

δt
∥∥∇ξn+1

T
∥∥2

L2(Ω)2
, C ′1 =

Λ

6C0
.

Using the Cauchy-Schwarz inequality, Young's inequality and Assumptions (H3),
(H6), it can be checked that

S3 6 C ′2 ‖f‖
2
L2(Qtf

) +
C ′1
2

nf−1∑
n=0

δt
∥∥∇ξn+1

T
∥∥2

L2(Ω)2
,

for some constant C ′2 > 0 independent of hT and δt. Gathering the estimations
of S1, S2 and S3 we �nally prove that

nf−1∑
n=0

δt
∥∥∇ξn+1

T
∥∥2

L2(Ω)2
+

nf−1∑
n=0

δt
∑
T∈T

ηn+1
T

∑
σT
KL∈E?T

|ΛTKL|(un+1
K − un+1

L )2 6 C ′3.
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As a consequence, we deduce

0 6
nf−1∑
n=0

δt
∑
T∈T

∑
σT
KL∈E?T

ΛTKLη
n+1
KL (un+1

K − un+1
L )2

6
nf−1∑
n=0

δt
∑
T∈T

ηn+1
T

∑
σT
KL∈E?T

|ΛTKL|(un+1
K − un+1

L )2

≤
nf−1∑
n=0

δt
∑
T∈T

ηn+1
T

∑
σT
KL∈E?T

|ΛTKL|(un+1
K − un+1

L )2 6 C ′3.

Hence, the proof of Proposition 5 is complete.

4.4 Existence of discrete solution

The existence result is shown via the following consequence of the �xed point
theorem [18].

Lemma 6. Let X be a �nite dimensional space equipped with the inner product
denoted by 〈·, ·〉A. Let P be a continuous mapping from A into A satisfying the
monotony criterion:

there exists r > 0 such that 〈P(z), z〉A > 0 for all z ∈ A with ‖z‖X = r.

Then, there exists z0 ∈ A with ‖z0‖X = r such that P(z0) = 0.

Proposition 7. There exists a solution (un+1
K )K∈V,n=0,··· ,nf−1 to the weakly

monotone �nite volume scheme (11)-(12). It further satis�es the physical range
claimed in Proposition 3.

Proof. The proof is proceeded on the time level n by induction. First, let us set
the following notations

N = card(V\VD), uV =
{
un+1
K

}
K∈V\VD ∈ RN .

In the sequel, the implicit character in time is omitted to ease the readability.
We de�ne the nonlinear mapping

P : RN −→ RN

uV −→ P(uV)

where the components of P(uV) write

P(uV)|K = φK
(
uK − unK

)
+

δt

|AK |
∑
T∈TK

∑
L∈VT \{K}

ΛTKLηKL(uK − uL)− δtfK .

Then a root of P i.e., P(uV) = 0 is necessary a solution to the �nite volume
scheme. Here, the objective is to prove that P(uV) · uV > 0 for ‖uV‖RN = r

13



where the radius r is su�ciently large. Being inspired by the proof of Proposition
5 we compute

P(uV) · uV ≥ −
1

2δt

∑
K∈V\VD

|AK |φK
(
unK
)2

+
φ0

2δt

∑
K∈V\VD

|AK |
(
uK
)2

+ C ′‖∇ξT ‖2L2(Ω)2 − C
′′ ≥ − 1

2δt
‖unT ‖2L2(Ω) +

φ0

2δt
‖uT ‖2L2(Ω) − C

′′.

Introducing the equivalence of norms in RN and taking ‖uT ‖2L2(Ω) su�ciently

large, we end up with P(uV) · uV > 0. Thus, Lemma 6 ensures the existence of
at least one solution to the numerical scheme (11)-(12). The obtained solution
obeys naturally the physical range claimed in Proposition 3. This concludes the
proof of Proposition 7.

5 Numerical results

In this section, we �rst conduct a battery of numerical tests to validate the
proposed weakly monotone �nite volume approach. In a second stage, we will
apply the method for the simulation of mass di�usion in hygroscopic media of
wood type.

5.1 Accuracy and stability assessment

We look at and evaluate the scheme's behavior in terms of accuracy and the
discrete maximum principle. In other words, the resulting algorithm is examined
to scrutinize the validity of the following elements simultaneously for which the
scheme is constructed.

� Ensure the second order accuracy (when the solution is smooth enough).

� Honor the prescribed maximum principle i.e., u0 ≥ g =⇒ un+1
T ≥ g.

The numerical scheme gives rise to a discrete nonlinear system that is solved
owing to the Newton-Raphson method at each time level. The tolerance is �xed
to ε = 10−12. The convergence criterion is made on the successive iterates of
the algorithm. We would like to underline that the weakly monotone property
is not necessary satis�ed at th early iterations of the nonlinear solver in general,
it is only achieved at the convergence stage. The implementation was carried
out in Matlab.

In all the tests of this subsection, the �nal time is set to tf = 0.2. The
porosity function is given by φ = 1 and there is no source term i.e., f = 0.
The computational domain is the unit square Ω = [0, 1]

2
, it is meshed by 4

successively re�ned meshes taken from the FVCA5 benchmark [29] on di�usion
problems. An illustration of the �rst meshes is given in Figure 2. The time step
is proportional to the square of the mesh size so that one can avoid the impact
of the time discretization, which is of �rst order.
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Figure 2: First and second triangular meshes of the FVCA5 benchmark. Their
number of vertices (triangles) are 37 (56) and 129 (224) respectively.

The accuracy is judged by computing the errors between the piecewise
constant numerical solution uT ,δt against the manufactured exact solution uext.
The latter is taken at the mesh vertices. Then, we consider

errLp = ‖uT ,δt − uext‖Lp(Qtf
) p = 1, 2,∞.

The convergence order is measured using the formula

Rate =
log
(
erri+1

Lp /erriLp

)
log (hi+1/hi)

,

where i = 1, · · · , 4 denotes the triangulation label. The di�usion tensor and the
nonlinearities are peculiar to each test.

5.1.1 Accuracy test

The aim of this preliminary test is to select an appropriate value of the parameter
γT . In this case, the model problem is the anisotropic heat equation supplemented
by the homogeneous Neumann condition on the full boundary

ut − div(Λ∇u) = 0,

where the di�usion tensor Λ is diagonal

Λ =

(
ax 0
0 ay

)
.

It is taken highly anisotropic with ax = 1 and ay = 1000. The function g is
�xed to 0. An exact solution to the above problem is manufactured under as

u(x, y, t) =
1

2

(
1 + cos(πx) exp(−axπ2t)

)
, ∀(x, y, t) ∈ Ω× [0, tf ] .

There is no systematic good selection of the parameter γT appearing in the
expression (9). Therefore, we perform three choices to justify numerically the
adequate one. For this purpose, we evaluate the error errL2 and show how the
numerical solution behaves according to each γT . First, four static decreasing
values are given i.e., γT ∈ {0.1, 0.01, 0.001, 0.0001}. The results are given in
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the left of Figure 3. A deterioration of the accuracy is observed as the mesh
is re�ned. To correct this issue, we consider a parameter that is depending on
the mesh size as follows γT ∈ {h, 0.1h, 0.05h, 0.01h}. The corresponding results
shown in medium of Figure 3 exhibit poor convergence rates. This has led
to propose γT ∈ {h2, 0.1h2, 0.05h2, 0.01h2}. Thereby, one recovers the second
order accuracy.

Figure 3: Test 1: the L2 errors according to the chosen γT .

Figure 4: Test 1: magni�cation on the cross section of the solution at the point
0 in terms of γT and the mesh.
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In Figure 4, the numerical solution is shown along the line {y = 0} and the
magni�cation of the plotted values are between 0.1 and 0.9. In rows, the mesh is
�xed and γT varies. In columns, the mesh size is decreasing whereas γT is taken
by category. The �gures of �xed γT present inaccurate results, especially when
the mesh is re�ned. If γT is linear with respect to h, the accuracy is improved,
but the method still su�ers from excessive numerical di�usion. The last case
where γT ∼ h2 corrects this inconvenience and o�ers a good convergence towards
the exact solution.

Accordingly, this quadratic proportionality with respect to the mesh size
yields satisfactory behavior of the accuracy and the solution pro�le. It was
also checked that the numerical solution honors the positivity at each case.
Consequently, in the rest of the paper, we �x γT = h2.

5.1.2 Positivity test

The objective here is to compare e�ciency of the linear CVFE scheme with our
novel weakly nonlinear monotone �nite volume (WMFV) for the heat equation
(HE). We consider the same problem as in the previous example. In this
test-case, the function g is �xed to zero. Then, the numerical solution of the
WMFV method is expected to be nonnegative.

The behavior of the schemes is indicated in Tables 1�2. We retain that the
convergence rate for both methods reaches the order two. The WMFV approach
exhibits a larger error magnitude. Besides, the linear CVFE scheme su�ers from
undershoots spanned by the anisotropy. However, the nonlinear WMFV scheme
preserves the positivity of the solution. Finally, there is no signi�cant di�erence
in terms of the computational cost measured by the number of the Newton-solver
iterations.

h errL1 rate errL2 rate errL∞ rate umin Newton
0.250 0.0412 - 0.0465 - 0.0691 - -0.0392 62
0.125 0.0100 2.0441 0.0115 2.0120 0.0204 1.7568 -0.0123 256
0.063 0.0025 2.0338 0.0029 2.0278 0.0053 1.9587 -0.0032 1006
0.0310 6.20E-04 1.9543 7.19E-04 1.9527 0.0014 1.9315 -0.0008 4162

Table 1: Test 2 : accuracy results of the CVFE scheme for the HE with ax = 1
and ay = 1000

h errL1 rate errL2 rate errL∞ rate umin Newton
0.250 0.1061 - 0.1137 - 0.1690 - 0.1837 118
0.125 0.0165 2.6839 0.0222 2.3593 0.0475 1.8309 0.0460 302
0.063 0.0031 2.4343 0.0045 2.3382 0.0134 1.8518 0.0117 1048
0.0310 6.91E-04 2.1210 9.29E-04 2.21 0.0034 1.9353 0.0028 4203

Table 2: Test 2 : accuracy results of the WMFV scheme for the HE with ax = 1
and ay = 1000.
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5.1.3 Nonlinear di�usion test

In this test-case, we are always interested in the heat equation. The goal is
to compare the monotonicity behavior of the linear CVFE and the nonlinear
WMFV schemes in the presence of a tough initial condition and a highly anisotropic
tensor.

The initial solution is chosen as

u0(x, y) =

 −
(1−0.2)

0.3 x+ 1 if 0 ≤ x ≤ 0.2,
1

0.2−0.5 (x− 0.5) if 0.2 < x ≤ 0.5,

0 if 0.5 < x ≤ 1.

(20)

The boundary is divided into two parts ∂Ω = ∂ΩD ∪ ∂ΩN .

• On ∂ΩD = {x = 0}
⋃
{x = 1} Dirichlet's condition agrees with the initial

solution (20).

• On ∂ΩN = {y = 0}
⋃
{y = 1} homogeneous Neumann's boundary condition

is maintained.

The anisotropy matrix is given by

Λ =
1

x2 + y2

(
δx2 + y2 (1− δ)xy
(1− δ)xy x2 + δy2

)
,

where δ accounts for the anisotropy ratio that is �xed to 10−3. It is approximated
at the center of the triangles. The function g is �xed to u0.

Using these data, we run the linear CVFE algorithm and the WMFV one.
The �rst three iterations in time on the third mesh are considered. The 2D view
of the solution is given in Figure 5.The dots refer to the position of undershoots.
For comparison, we plot in Figure 6 the solution pro�les along the line {y =
1}. As a result, the upper �gures show that the CVFE solution goes down
the function g = u0 and su�ers from undershoots, which is classical for linear
methods. Nevertheless, the solution obtained by the nonlinear WMFV scheme
remains bigger than the initial condition. Then, the weakly monotone scheme
can preserve piecewise linear bounds. This feature cannot be captured by the
schemes developed in [41, 37, 39, 11, 28] because the solutions obtained by these
works are only preserving the positivity. Consequently, positive or in general
minimum-preserving schemes are not necessarily satisfying the weakly monotone
property.

5.1.4 Porous medium equation (PME) test (anisotropy case)

In this test-case, we focus on a nonlinear degenerate problem of the anisotropic
porous medium equation type

ut − div(2|u|Λ∇u) = 0.
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Figure 5: Test 3 : CVFE solution (left) and WMFV solution (right) at the third
iteration in time on the third mesh. The magenta dots refer to the presence of
undershoots.

Figure 6: Test 3 : 1D cross section of the solutions produced by the linear
CVFE scheme (top) and the nonlinear WMFV scheme (bottom) for the �rst
three iterations in time on the third mesh.

As in Test 1, the di�usion tensor is diagonal and anisotropic such that ax = 1 and
ay = 100. A fully nonhomogeneous Dirichlet boundary condition is considered
here. It agrees with the one-dimensional analytical solution

u(x, y, t) = max(2axt− x, 0), ∀(x, y) ∈ Ω, ∀t ∈ (0, tf).

The obtained accuracy results are presented in Tables 3�4. Because the solution
is not smooth enough, the accuracy is less than the second order. The quasilinear
scheme yields to undershoots but produces smaller errors. On the other hand,
the WMFV methodology is positive and gives rise to relatively bigger errors.
More importantly, improved convergence rates are noticed for theWMFV scheme
contrary to the CVFE version. The behavior of the Newton solver is similar.
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h errL1 rate errL2 rate errL∞ rate umin Newton
0.250 0.0086 - 0.0187 - 0.0602 - -5.10e-04 128
0.125 0.0029 1.5442 0.0070 1.4226 0.0308 0.9684 -3.66e-05 512
0.063 0.0010 1.5659 0.0029 1.2602 0.0158 0.9713 -2.47e-06 1830
0.0310 2.90E-04 1.7448 0.0012 1.2805 0.0088 0.8285 -1.41e-07 6261

Table 3: Test 4 : accuracy results for the quasilinear scheme with ax = 1 and
ay = 100.

h errL1 rate errL2 rate errL∞ rate umin Newton
0.250 0.0228 - 0.0360 - 0.0985 - 0 127
0.125 0.0082 1.4729 0.0137 1.3988 0.0480 1.0379 0 511
0.063 0.0017 2.2825 0.0042 1.7313 0.0214 1.1782 0 1825
0.0310 3.00E-04 2.4597 0.0012 1.7585 0.0103 1.0315 0 6242

Table 4: Test 4 : accuracy results for the nonlinear MFV scheme with ax = 1
and ay = 100.

5.1.5 PME test (heterogeneous rotating anisotropy case)

This last example problem aims to test the capability of the WMVF method
in preserving the property of weak monotonicity. A particular emphasis is set
on the non-degeneracy of the solution. The model is the anisotropic porous
medium equation

ut − div(Λ∇u2) = 0.

We apply a heterogeneous rotating anisotropic tensor

Λ =

(
cos(πx) − sin(πx)
sin(πx) cos(πx)

)(
0.1 0
0 100

)(
cos(πx) sin(πx)
− sin(πx) cos(πx)

)
.

We choose the condition initial as follows

u(x, y, 0) =


− (1−0.2)

0.3 x+ 1 if 0 ≤ x ≤ 0.3,
0.2 if 0.3 < x ≤ 0.7,
(1−0.2)
(1−0.7) (x− 0.7) + 0.2 if 0.7 < x ≤ 1.

(21)

The function g is �xed to u0. Similarly to Test 3, the boundary is divided into
two parts.

• On ∂ΩD = {x = 0}
⋃
{x = 1} Dirichlet's condition is taken according to

the initial solution (21).

• On ∂ΩN = {y = 0}
⋃
{y = 1} one considers the homogeneous Neumann

condition.

The outcomes of this test are shown in Figure 7, in the case of three iterations
in time, namely 2, 4 and 10 iterations. The �rst row corresponds to the results
of the CVFE scheme while the second row indicates the results of the proposed
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WMFV approach. This example highlights the failure of the standard CVFE
scheme is capturing the expected behavior of the numerical solution, where it
spreads out of the limited function g. This can be also observed on the 2D view
of the solution exhibited in Figure 8. In the left side, the plotted dots stand for
undershoots. The WMFV solution behaves naturally where it remains inside the
convex hall delimited by g, which con�rms the robustness of the novel scheme in
reinforcing the monotonicity property despite the toughness of the input data.

Figure 7: Test 5 : results of the linear CVFE scheme (top) and the nonlinear
MFV scheme (bottom) for the iterations 2, 4 et 10 in time and on the third
mesh.

Figure 8: Test 5 : solution of the linear CVFE scheme (left) and nonlinear
WMFV scheme (right) for the iteration 3 in time and on the third mesh. The
magenta dots refer to the presence of undershoots.
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5.2 Mass di�usion in hygroscopic media of the wood type

In this last section, we propose application examples of the new scheme proposed
in the present work. Water di�usion in wood, a strongly anisotropic medium,
is chosen as severe test. Also a comparison with the standard CVFE scheme
is provided. In the sequel, dimensionless quantities are taken into account and
they are understood in the macroscopic level. We consider the wood species of
type poplar. The considered model is purely di�usive

φut − div
(
Λ∇ϕ(u)

)
= 0.

5.3 Test A

In a �rst moment we look at the case where ϕ(u) = u. The domain occupied by
the sample is the unit square. It is �rst meshed using the third triangulation the
FVCA5 benchmark [29]. Then, the vertices are amended using the perturbation

xnew = xold + αRxhT , ynew = yold + αRyhT ,

where Rx, Ry are random numbers between [−0.5, 0.5] and α = 0.25 is the
distortion factor. In all the tests below, the time step is δt = 0.5h2

T . The
boundary is divided into three parts ∂Ω = ∂ΩD(1) ∪ ∂ΩD(2) ∪ ∂ΩN where

∂ΩD(1) = [0.4, 0.6]× {y = 0}, ∂ΩD(2) = [0, 1]× {y = 1}, ∂ΩN = ∂Ω \
(
∂ΩD(1) ∪ ∂ΩD(2)

)
.

An illustration of the used mesh is plotted in the left side of Figure 9. Next, a
discontinuous boundary condition is taken ∂ΩD(1) i.e., it is equal to 0.9 in [0, tf/2]

and it switches to 0.3 in (tf/2, tf ]. The free-�ow condition is imposed on ∂ΩD(2).

Following [40], the porosity of the poplar sample is �xed to φ = 0.62. We
assume that the anisotropy of the cell walls is modeled by

Λ(x, y) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
0.2x 0

0 0.6 exp(−1.5y)

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, ∀(x, y) ∈ Ω.

The angle θ is assigned to π/6. The vector �eld generated by this matrix is
shown in the right side of Figure 9.

We performed three tests according to the �nal times tf = 0.03, 0.2, 1.
The outcomes of this simulation are displayed in Figure 10. The upper row
corresponds to the CVFE solutions while the lower row shows the results of
the WMFV methodology. In both situations, the numerical solutions are quite
similar and they follow the preferential directions prescribed by the tensor Λ.
This anisotropy leads to several undershoots represented by the magenta dots
in the linear case. On the other hand, the WMFV solutions are free of such
oscillations.

5.4 Test B

In a second time, we are concerned with the case where ϕ(u) = − log(1−u). Such
a function accounts for the behavior of the capillary pressure. Now, the sample
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Figure 9: Test A: perturbed triangular mesh (left), and the distribution of the
permeability �eld (right).

Figure 10: Test A: evolution of the CVFE solution (top), and of the WMFV
solution (bottom) at tf = 0.03, 0.2, 1. The magenta dots refer to the presence
of undershoots.

includes two subvolumes that are less permeable. Indeed, Ω = Ω1 ∪ Ω2 ∪ Ω3

where

Ω1 = [0.25, 1]×[0.625, 0.75], Ω3 = [0.25, 0.75]×[0.25, 0.375], Ω2 =
(

Ω1∪Ω3

)
\Ω.

The permeability associated to each subset is given by

Λ1 = 10−4, Λ2 =

(
cos(πx) − sin(πx)
sin(πx) cos(πx)

)(
1 0
0 0.01

)(
cos(πx) sin(πx)
− sin(πx) cos(πx)

)
, Λ3 = 10−3.
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The domain boundary is ∂Ω = ∂ΩD(1) ∪ ∂ΩD(2) ∪ ∂ΩN where

∂ΩD(1) = [0.9, 1]× {y = 0} ∪ {x = 1} × [0, 0.1], ∂ΩD(2) = [0, 0.1]× {y = 1}, ∂ΩN = ∂Ω \
(
∂ΩD(1) ∪ ∂ΩD(2)

)
.

This domain con�guration is schematized in Figure 11. We set u = 0.9 on the
part ∂ΩD(1), the free-�ow on ∂ΩD(2) and the rest is impervious.

Figure 11: Test B : domain con�guration.

The results are given Figures 12-13. The �rst plot corresponds to the CVFE
solution at tf = 0.1. It su�ers from excessive undershoots such that their
amplitude increases in time. After that moment, the Newton solver diverges
and the CVFE algorithm breaks down. In the second plot, the WFMV scheme
manages to recover an admissible solution which respects its physical ranges
and resembles to the expected behavior.

Figure 12: Test B: CVFE solution at tf = 0.1.

6 Conclusion

In conclusion, we developed and analyzed a new numerical scheme based on
the CVFE discretization for the approximation of parabolic equations. It is
referred to as the weakly monotone �nite volume scheme. As its name informs,
the scheme yields numerical solution respecting some imposed physical ranges.
For this purpose, we incorporated a nonlinear correction without changing the
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Figure 13: Test B: from left to right WMFV solution at tf = 1, 5, 15 respectively.

stencil of the initial method. This enables the proof of the scheme's stability
consisting of the weak monotonicity and the energy estimates. As a consequence,
the existence result was successfully proved. Numerical experiments yields
promising results in terms of accuracy and robustness. Indeed, the WMFV
scheme enjoys a similar accuracy as the CVFE version. It is also able to produce
the expected numerical solution regardless the taken initial data or the imposed
di�usion tensor. Thanks to these advantages, it was applied to simulate water
di�usion in hygroscopic media of the wood type.

As a �rst perspective, we outlook to extend the current methodology to
advanced systems modeling complex �ows in hygroscopic media. Such a model
can involve the convection term of type Darcy or Navier-Stokes. The second
avenue is to combine the latter problem to an energy equation where the nonlinear
coupling is more tough and hard to deal with.
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