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Abstract

In this paper, a new 3D numerical discretisation method for solving the
anisotropic, steady-state di�usion problem is developed and analysed. The
scheme is constructed on hexahedral meshes using the geometrical properties
of the cells. Indeed, each cell provides a local basis formed using the centres
of its lateral faces. The discrete cell gradient approximation is then obtained
by using three discrete directional derivatives resolved in terms of this ba-
sis, and by invoking the consistent relationships between opposite faces of
the same cell. The face degrees of freedom are interpolated to reduce the
complexity of the numerical scheme, resulting in the main unknowns being
entirely nodal based. The scheme is unconditionally coercive and admits a
unique solution. Various numerical experiments are performed to highlight
the accuracy and the robustness of the method with respect to the mesh and
anisotropy. An important outcome is that second order convergence is ob-
served for all problems considered, even for highly deformed meshes. After
this validation process, the method is applied to the prediction of the e�ec-
tive thermal conductivity of wood from its real 3D morphology. The property
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is estimated in the radial tangential and longitudinal directions. The solver is
robust, e�cient and yields to similar results compared to recent contributions.

Keywords: Di�usive equations, 3D discrete gradient, anisotropy, second order
accuracy, wood morphology, thermal conductivity.

1 Introduction

Partial di�erential equations (PDEs) are present in an uncountable number of
applications in science and engineering. As a consequence, there is an increasing
demand for solving PDEs numerically. In particular, linear and nonlinear di�usion
terms are crucial components of many physical systems and are used to model,
for example, complex �ows in porous media, and heat and mass transfer in highly
heterogeneous materials such as wood and plant stems [27]. The discretisation of
various types of di�usion problems (linear, nonlinear, transient or steady-state) on
generic 3D meshes is a challenging topic because the reconstruction of the gradient
from a �nite set of points must be subject to consistency and stability rules. In this
work we propose an original idea to devise a whole gradient across a hexahedral
mesh that takes into account the shape and geometric properties of each cell. For
this purpose, we will focus on a very standard linear, anisotropic Poisson equation
arising in many applications.

Let Ω be an open bounded connected domain of R3. Let us consider the 3D
elliptic model {

−div(Λ∇u) = f, in Ω,

u = g, on ∂Ω,
(1)

where Λ is a symmetric positive-de�nite tensor de�ned from Ω to L∞(Ω)3×3 that
ful�ls the ellipticity condition

λ0‖ζ‖2 ≤ Λζ · ζ ≤ λ1‖ζ‖2, ∀ζ ∈ R3,

and λ0 and λ1 are some positive constants. The source term is a function of L2(Ω)
and g ∈ H1/2(∂Ω). Under these assumptions, it is well-known that the model
problem admits a unique weak solution u ∈ H1(Ω) whose trace is g and solves the
variational formulation∫

Ω

Λ∇u · ∇ϕdx =

∫
Ω

fϕdx, ∀ϕ ∈ H1
0 (Ω). (2)

During the last two decades, it has been established that a good and proper
approximation of the gradient can lead to an e�cient and accurate resolution of
the problem (2). Depending on the data, namely Λ, f , g, Ω and the mesh, many
numerical methods were developed to conceive approximate directional derivatives
as in the �nite di�erence approach. Their accuracy and robustness are observed
through the FVCA benchmarks [16, 18]. Many of them share several common
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points in terms of analysis, which renders them eligible to enter the theoretical
framework called the gradient discretisation method [12]. This paradigm includes
shape function based classical methods such as the P1-�nite elements [7]. It also
contains modern methods and we mention among them the Hybrid Mimetic Mixed
approaches [10, 13, 15], Multi-Point Flux Approximations [1�3], Diamond schemes
[9, 28], and Discrete Duality Finite Volume methods [4, 5, 8, 11, 19]. In addition
to the primary degrees of freedom (DOFs), many of the aforementioned meth-
ods require auxiliary unknowns in the reconstruction of the gradient as the mesh
becomes distorted.

In this work, we �rst propose and validate a new 3D numerical method for
the resolution of (2). The motivation for this scheme results from the need to
use distorted hexahedral meshes with larger sets of DOFs, without introducing
auxiliary unknowns, as well as tackling the challenges of higher anisotropy ratios
while still ensuring a straightforward implementation strategy. For instance, such
constraints are naturally imposed during the prediction of macroscopic properties
from real morphologies using computational homogenisation [6, 23, 24, 26, 30], or
to track liquid imbibition in complex media such as natural wood [25].

The contribution of the paper is twofold. The �rst asset lies in the scheme con-
struction. More importantly, the main idea of our work is to de�ne the numerical
scheme using only the geometrical information of the mesh cells. Indeed, following
the spirit of the diamond and the discrete duality schemes, one sets three discrete
directional derivatives resolved in terms of a local basis, provided by the opposite
faces for each hexahedron. This strategy allows the reconstruction of the gradi-
ent on the entire cell and therefore the mesh. Then, the numerical scheme stems
from the discrete weak formulation. The proofs of the stability results, such as
the discrete Poincaré's inequality or the derivation of the energy estimate, follows
the guidelines of the literature. As a consequence, the sti�ness matrix is symmet-
ric positive-de�nite and the scheme stencil is small and compact in the sense that
any node is connected to at most 26 neighbouring nodes in the case of Cartesian
meshes. The resulting linear scheme is solved using the conjugate gradient method.
This method exhibits some ine�ciency when the mesh is severely distorted and
the di�usion tensor is highly anisotropic. We therefore implemented the SSOR
(symmetric successive over-relaxation) preconditioner [31] in order to improve the
convergence behaviour of the linear solver.

The second contribution consists in the application of the 3D face interpolated
scheme to the computation of the e�ective macroscopic thermal conductivity of
wood. Thanks to image processing, the employed meshes are generated from the
scanned real morphology of the sample. Then, the property is estimated following
the orthotropic directions of wood. Compared to some recent works, the proposed
numerical scheme is capable to recover similar ranges of the property in an excellent
way and despite of the mesh deformation.

The rest of the paper is outlined as follows. In the next section, we survey the
domain meshing and elaborate the approximation of the gradient operator. Then,
we derive the 3D face interpolated discretisation method and study its stability
together with solvability. In Section 3, we implement the numerical scheme and
report the obtained results to con�rm the e�ciency and the robustness of our
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methodology. In Section 4, we put into practice the 3D face interpolated scheme
for the prediction of thermal conductivity of wood. The paper is then concluded
in Section 5.

2 Numerical scheme

In this section we present the discretisation of the domain Ω. We introduce a
consistent and accurate approximation of the gradient operator, and then derive
the proposed 3D face interpolated scheme approximating the di�usion model (2).

2.1 Mesh, notations and discrete gradient

The mesh M is given by a collection of conforming hexahedral cells {K} that
cover the whole domain Ω. We assume that the volume faces are planar. In other
words, the scheme does not handle generalised hexahedra with non-planar faces.
The centre of the cell is determined by averaging the coordinates of its surrounding
vertices. The volume of K is denoted by |K|. Each cell possess six faces that are
expressed as Fi, i ∈ {1, · · · , 6}. We denote by xFi the barycentre of the face Fi.
Let T denote the set of vertices of the mesh, and let T D denote the set of boundary
vertices. Let Ms represent the cells sharing the same vertex s. For all s ∈ T , we
assign a local sub-set ωK,s in the cell K, determined by the centre of the latter,
the centres of the edges, and the faces sharing the same vertex, see Figure 1. The
volume of ωK,s is computed using the identity

|ωK,s| = |Det
(−→xsxe1K,s ,−→xsxe2K,s ,−→xsxe3K,s)|,

where e1
1,s, e

2
2,s, e

3
K,s are the edges of K whose extremity is s. Therefore, the total

sub-volume associated with s and its measure are de�ned by

ωs =
⋃

K∈Ms

ωK,s, |ωs| =
∑
K∈Ms

|ωK,s|.

The sum of these sub-volumes is equal to the volume of Ω. For i ∈ {1, 2, 3}, let us
�x the vector −−−−−−→τF2i−1F2i

= −−−−−−−→xF2i−1
xF2i

. The set TFi contains the four vertices of the
face Fi.

Let hK denote the diameter of the cell K ∈ M. The mesh size is given by
hT = max{hK ,K ∈M}. We denote by rK the radius of the largest sphere included
in K. Consider

θT = max
K∈M

hK
rK

, nT = max
s∈T

#Ms, ξT = max(θT , nT ).

As T is re�ned, the mesh regularity assumption states that ξT must be bounded
with constant ξ0 > 0 i.e., ξT ≤ ξ0.
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Figure 1: Sub-set associated with the vertex s in the
cell K.

In hexahedral meshes it is not evident how to construct a nodal (i.e., primary
unknowns are nodal) accurate approximation of only one gradient without auxil-
iary unknowns, or without using the traditional shape functions of the well-known
�nite element framework.

The key point of our approach lies in the de�nition of a consistent whole
discrete gradient per cell. The six faces of K yield three noncollinear directions
forming a local basis in 3D, see Figure 2. First, in each cell K, we begin to set the
approximation of the gradient to the formula

∇KuT =
1

|K|

((
uF2
− uF1

)−−→
N12 +

(
uF4
− uF3

)−−→
N34 +

(
uF6
− uF5

)−−→
N56

)
, (3)

where

−−→
N12 = −−−→τF3F4

∧ −−−→τF5F6
,
−−→
N34 = −−−→τF5F6

∧ −−−→τF1F2
,
−−→
N56 = −−−→τF1F2

∧ −−−→τF3F4
.

Figure 2: opposite faces in the cell K and their
corresponding directions.

An important observation is that the total number of faces of the mesh is larger
than the number of vertices of the mesh. Consequently, the degrees of freedom are
placed on the mesh vertices in order to reduce the complexity of the numerical
scheme. For this purpose, because the faces are planar, the face unknowns can be
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eliminated by considering the second order interpolation

uFi =
1

4

∑
s∈TFi

us.

To simplify the exposition, we assume that the boundary datum g can be extended
to a function that is still denoted g ∈ H1(Ω). This gives sense to the following
integral approximation for the average of the function over the volume ωs

gs =
1

|ωs|

∫
ωs

g(a) da.

De�ne R#T to be the �nite dimensional space containing vectors of the form
uT = (us)

t
s∈T . We denote by R#T

g (resp. R#T
0 ) the subspace for which uT is such

that us = gs (resp. us = 0), for all s ∈ T D. For each uT ∈ R#T , we associate a
unique function IhuT of L2(Ω) that is expressed as

IhuT =
∑
s∈T

us1ωs ,

where 1ωs is the indicator function of the subset ωs, i.e. 1ωs(x) = 1 for x ∈ ωs and
is equal to 0 otherwise. Let ∇h be the piecewise operator mapping uT ∈ R#T into
∇huT ∈ L2(Ω)3 where

∇huT =
∑
K∈M

1K∇Ku.

The tensor Λ is approximated by ΛhM where the latter is piecewise constant on
the cells of the mesh and written

ΛhM =
∑
K∈M

1KΛK , ΛK =
1

|K|

∫
K

Λ(x) dx.

De�ne the norm ‖·‖0,2 and the semi-norm ‖·‖1,2 on R#T such that

‖vT ‖0,2 =

(∑
s∈T

|ωs|v2
s

)1/2

, ‖vT ‖1,2 =

(∑
K∈M

|K||∇KvT |2
)1/2

.

2.2 3D face interpolated scheme

Having the discrete gradient at hand, the 3D face interpolated scheme is naturally
derived from the discrete variational formulation: i.e., �nd uT ∈ R#T

g satisfying
the relationship∫

Ω

ΛhM∇huT · ∇hϕT dx =

∫
Ω

fIhϕT dx, ∀ϕT ∈ R#T
0 . (4)
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The pointwise version of the scheme can be equivalently given by
∑
K∈Ms

|K|ΛK∇KuT · ∇Kes = |ωs|fs, ∀s ∈ T \ T D,

us = gs ∀s ∈ T D,
(5)

where {es}s∈T denotes the canonical basis of R#T . For the sake of simplicity,
assume that g = 0. The scheme (5) can then be recast in the matrix form

AT uT = FT , (6)

where

(FT )s =

{
|ωs|fs, if s ∈ T \ T D,
0 if s ∈ T D.

The matrix AT contains the sti�ness coe�cients. In view of the implementation
perspective, the formulation (5) is not adequate. In practice, a possible way to
�ll AT is described in the sequel. For this purpose, let us consider the numbering
strategy illustrated in Figure 3. Each vertex of the cell K belongs to three faces
of the same cell. Using this orientation convention, the expression of the gradient

Figure 3: Numbering of the vertices (left) and the faces
(right) of the cell K.

already described in (3) is now rewritten as follows

∇KuT =

8∑
j=1

uja
K
j ,

where the vectors (aKj )1≤j≤8 are given by

aK1 =
1

4|K|

(
−
−−→
N12 −

−−→
N34 −

−−→
N56

)
, aK2 =

1

4|K|

(
+
−−→
N12 −

−−→
N34 −

−−→
N56

)
,
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aK3 =
1

4|K|

(
+
−−→
N12 +

−−→
N34 −

−−→
N56

)
, aK4 =

1

4|K|

(
−
−−→
N12 +

−−→
N34 −

−−→
N56

)
,

aK5 =
1

4|K|

(
−
−−→
N12 −

−−→
N34 +

−−→
N56

)
, aK6 =

1

4|K|

(
+
−−→
N12 −

−−→
N34 +

−−→
N56

)
,

aK7 =
1

4|K|

(
+
−−→
N12 +

−−→
N34 +

−−→
N56

)
, aK8 =

1

4|K|

(
−
−−→
N12 +

−−→
N34 +

−−→
N56

)
.

As a consequence, the sti�ness coe�cients of the matrix AT read

(AT )sisi =
∑

K∈Msi

8∑
j=1

|K|ΛKaKi · aKj , if si ∈ T \ T D,

(AT )sisj =
∑

K∈Msi
∩Msj

|K|ΛKaKi · aKj , if si 6= sj ∈ T \ T D,

(AT )sisi = 1, if si ∈ T D,
(AT )sisj = 0, if si ∈ T \ T D, and sj ∈ T D,
(AT )sisj = 0, if si ∈ T D, and si 6= sj ,

where ΛK is approximated by its value at the centre of the cell for the numerical
computations. The above strategy has been used in the implementation of the
scheme in Section 3.

Remark 1. The stencil of the 3D face interpolated scheme is small and compact.

In other words, each row of the matrix consists of at least one non-zero element

and at most 27 non-zero elements in the case of Cartesian meshes. In the latter

case, the diagonal element corresponds to an internal vertex, which is connected

to its 26 surrounding vertices.

As a result of the following discrete Poincaré's inequality, the semi-norm ‖·‖1,2
turns out to be a norm on the subspace R#T

0 .

Lemma 1 There exists a constant Cp depending only on the diameter of Ω and the mesh

regularity such that

‖vT ‖0,2 ≤ Cp‖vT ‖1,2, ∀vT ∈ R#T
0 .

Proof The guidelines of the proof are sketched below. Let si ∈ K. Observe that

∇KvT =

8∑
j=1,j 6=i

aKj
(
vsj − vsi

)
.

The regularity of the mesh claim the existence of C1, C2 depending only on θT such that

C0

h2
K

≤ |aKi · a
K
j | ≤

C1

h2
K

(7)
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Then, it can be checked that

‖vT ‖21,2 ≥ C3

∑
si∈T

∑
K∈Msi

8∑
j=1,j 6=i

|K|
h2
K

(
usi − usj

)2
,

holds true for some C3 independent of the mesh. Adapting of the proofs established in
[5, Lemma 3.3], [14, Lemma 3.1] (in the case of the vertex-centred TPFA scheme) to our
setting, one �nds

‖vT ‖20,2 ≤ C4

∑
si∈T

∑
K∈Msi

8∑
j=1,j 6=i

h2
K |usi − usj |(|usi |+ |usj |).

where C4 depends only on θT and the diameter of Ω. Following the arguments of [28,
Lemma 2.1] and bearing in mind (7) we �nally deduce that

‖vT ‖20,2 ≤ C5

∑
si∈T

∑
K∈Msi

8∑
j=1,j 6=i

|K|
h2
K

(
usi − usj

)2 ≤ C2
p‖vT ‖21,2,

which concludes the proof. �

In the rest of this section we prove that the numerical scheme is uniquely
solvable. First, the following result is referred to as the coercivity property.

Proposition 2 Let uT be a solution to the scheme (5). The norm of the discrete gradient

of uT is bounded by a constant Ce depending only on, f , λ0, λ1, g and the mesh regularity

i.e.,

‖uT ‖1,2 ≤ Ce.

Proof Let us consider gT ∈ R#T
g such that (gT )s = gs for all s ∈ T . Let us also take

ϕT = ûT := uT − gT ∈ R#T
0 in (4). Then, one writes

Z1 = Z2 + Z3,

where

Z1 =

∫
Ω

ΛhM∇hûT · ∇hûT dx,

Z2 =

∫
Ω

ΛhM∇hgT · ∇hûT dx,

Z3 =

∫
Ω
fIhûT dx.

Because ΛhM is coercive there holds Z1 ≥ λ0‖ûT ‖21,2. It is known that, there exists C′1
depending only on ξ0 such that

‖gT ‖1,2 ≤ C′1‖g‖H1(Ω). (8)

Then, using (8) together with the Cauchy-Schwarz and Young's inequalities we �nd

|Z2| ≤
λ0

4
‖ûT ‖21,2 +

λ1(C′1)2

λ0
‖g‖2H1(Ω).
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Applying the Cauchy-Schwarz, Poincaré's and Young's inequalities allows us to obtain
the estimation

|Z3| ≤
λ0

4
‖ûT ‖21,2 +

C2
p‖f‖2L2(Ω)

λ0
.

Consequently, one obtains ‖ûT ‖1,2 ≤ C′2, for some constant C′2 depending only on the
data and ξ0. We �nally deduce

‖uT ‖1,2 ≤ ‖gT ‖1,2 + ‖ûT ‖1,2 ≤ Ce.

The proof is then concluded. �

Proposition 3 The numerical scheme (5) has a unique solution.

Proof It su�ces to prove that the kernel of AT is trivial. Let XT ∈ R#T such that
AT XT = 0. Let us prove that XT = 0. By the de�nition of AT , one has (XT )s = 0

for all s ∈ T D. Thus, XT ∈ R#T
0 . Recall that the formulations (5)-(6) are equivalent. It

follows from the computations

0 = AT XT ·XT
=

∑
s∈T \T D

∑
K∈Ms

|K|ΛK∇KuT ·Xs∇Kes

=

∫
Ω

ΛhM∇hXT · ∇hXT dx ≥ λ0‖XT ‖1,2,

where we have again used the fact that ΛhM is coercive. Hence, it must be that ‖XT ‖1,2 =

0, implying XT = 0, because ‖XT ‖1,2 is a norm on R#T
0 . This concludes the proof. �

Mimicking the previous proof entails that the matrix AT is symmetric positive-
de�nite.

3 Computational results

In this section, several test cases are simulated to assess the computational perfor-
mance of the proposed numerical scheme. The �rst objective is to test the accuracy
of the developed 3D face interpolated scheme and investigate its robustness with
respect to the anisotropy and the distortion of the mesh. The second aim is to il-
lustrate the behaviour of the iterative solver in the presence, and the absence of
the preconditioner.

The computational domain Ω is the unit cube [0, 1]3. It is covered using four
di�erent partitions. They are referred to as the Cartesian, Kershaw, �uctuated and
sinusoidal meshes respectively, see Figure 4. The �rst mesh is regular with cubic
cells. The second mesh is taken from [16, 21]. The last two meshes are generated
from the Cartesian mesh by transforming the old coordinates (x, y, z), that do not
belong to the boundary edges, into the new positions (x′, y′, z′) de�ned as follows

x′ = x+
1

10
ϕ(x)ϕ(y), y′ = y +

1

10
ϕ(y)ϕ(z), z′ = z +

1

10
ϕ(x)ϕ(z),
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where ϕ(r) = sin(2πr) in the case of the sinusoidal mesh and

ϕ(r) = 4r1[0,0.5] + (2− 4r)1[0.25,0.5] + (4r − 2)1[0.5,0.75] + (4− 4r)1[0.75,1],

for the �uctuated mesh.

Figure 4: Cartesian, Kershaw, �uctuated and sinu-
soidal meshes.

Table 1 reports the number of degrees of freedom, dimension and sparsity of
the sti�ness matrix for each mesh level.

Mesh Nb Nb of DOFs Nb NzCoe�fMat Density

1 729 15625 2.94011 %
2 4913 117649 0.48741 %
3 35937 912673 0.07066 %
4 274625 7189057 0.00953 %
5 2097152 57066625 0.00129 %

Table 1: DOFs for each mesh and the corresponding
number of non zero coe�cients of the sti�ness matrix.

The numerical scheme is implemented in Fortran where the resulting linear
system is solved using the conjugate gradient method. Its tolerance is �xed to
10−10 and the stopping criterion is taken on the norm of the successive iterates.
We employ the SSOR preconditioner to improve the solver behaviour. Recall that
the sti�ness matrix is denoted by AT . Let D be the diagonal component and E
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the strictly lower triangular part of the sti�ness matrix, so that AT = D+E+ET .
We consider the SSOR preconditioner, with relaxation parameter set as 1, given
as follows

P = (D + E)D−1(D + ET ). (9)

We apply the preconditioner on the left of the sti�ness matrix. Numerically, this
choice without parametrization was found to give good results after the extensive
numerical investigation performed in this study. Some indicators are needed in
order to quantify the performance of the solver. We denote by κ the condition
number of AT , and #it the total number of iterations of the conjugate gradient
method. The biggest eigenvalue is denoted by λ. Let CPUt denote the computa-
tion time measured in seconds, before preconditioning. The same quantities are
denoted by κ?, #it?, CPUt?, λ?max after applying the preconditioner.

Five test cases are proposed below to test the performance of the numerical
scheme in a progressive increase of the con�guration severity:

� Case a : homogeneous and isotropic con�guration,
� Case b : homogeneous con�guration, but with an anisotropy ratio of 1000 along
the z-axis,

� Case c : homogeneous and anisotropic con�guration,
� Case d : anisotropic con�guration, with material directions evolving in space,
� Case e : strongly discontinuous di�usion matrix (piece-wise variations).

In all cases, an analytical solution is imposed and the function f is set for this
analytical solution to be a solution of problem (2). The accuracy of the scheme
is assessed using the corresponding manufactured analytical. For this purpose, we
evaluate the discrete L2 and H1 relative errors:

‖ue,T − uT ‖0,2
‖ue,T ‖0,2

,

√
‖ue,T − uT ‖20,2 + ‖ue,T − uT ‖21,2

‖ue,T ‖20,2 + ‖ue,T ‖21,2
,

where ue,T is the interpolate (value) of the exact solution on the vertices.

3.1 Test case a

In this �rst test case involving a homogeneous medium, the di�usion tensor is taken
as the identity matrix. The Dirichlet boundary conditions are computed according
to the analytical solution

ue(x, y, z) = sin(2πx) sin(2πx) sin(2πz).

The right hand side f is

f(x, y, z) = 12π2 sin(2πx) sin(2πx) sin(2πz).

Figure 5 presents the log-log plots of the errors in terms of the mesh size. It is
shown that the convergence rates of the method are second order for both norms.
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Smaller convergence rates on the gradients are noticed on the �rst elements of the
Kershaw meshes.

Figure 5: Test a : numerical relative errors in the L2-
norm (left) and H1-norm (right).

The solver behaviour is given in Table 2. The condition number as well as
the total number of iterations are greatly reduced after the preconditioning. This
translates into gains in the CPU time. Interestingly, the iterations increased after
preconditioning for the Cartesian mesh.

Cartesian meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.125 8.30E+2 4.85E+1 1.00E+0 1.10E+0 18 12 0.0059 0.0044
0.063 2.61E+4 7.58E+2 1.00E+0 1.12E+0 21 11 0.0546 0.0417
0.031 8.31E+5 1.19E+4 1.00E+0 1.13E+0 40 20 0.4577 0.3482

Kershaw meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.178 2.91E+3 8.98E+1 5.43E+0 1.12E+0 98 40 0.0129 0.0088
0.089 1.20E+5 5.13E+2 6.05E+0 1.06E+0 419 89 0.1864 0.0986
0.045 2.90E+6 1.39E+3 5.72E+0 1.15E+0 1158 134 3.1635 0.9512

Fluctuated meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.163 8.76E+2 5.28E+1 1.00E+0 1.08E+0 49 24 0.0071 0.0100
0.085 2.60E+4 8.33E+2 1.00E+0 1.10E+0 107 37 0.0941 0.0611
0.043 8.31E+5 6.76E+3 1.00E+0 1.12E+0 77 27 0.5714 0.4546

Sinusoidal meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.156 7.75E+2 4.80E+1 1.00E+0 1.06E+0 50 23 0.0096 0.0072
0.081 2.11E+4 7.93E+2 1.00E+0 1.12E+0 42 16 0.0760 0.0574
0.041 6.75E+5 7.86E+3 1.00E+0 1.13E+0 82 24 0.5812 0.4406

Table 2: Test a: solver statistics before and after the
preconditioning.
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3.2 Test case b

We now consider a global, highly anisotropic tensor in the z-direction

Λ =

1 0 0
0 1 0
0 0 1000

 .

The exact solution is given by

ue(x, y, z) = 64x(1− x)y(1− y)z(1− z).

The source function corresponding to this solution is given by

f(x, y, z) = 128
(
y(1− y)z(1− z) + x(1− x)z(1− z) + 1000x(1− x)y(1− y)

)
.

A homogeneous Dirichlet boundary condition is prescribed. The obtained results
are displayed in Figure 6. The order of convergence is quadratic regardless of the
anisotropy.

Figure 6: Test b : numerical relative errors in the L2-
norm (left) and H1-norm (right).

Table 3 summarises the solver behaviour in the presence of a highly anisotropic
tensor. Signi�cant improvements in convergence rates of the iterative solver are
observed after the application of the preconditioner, especially when the mesh is
nonorthogonal and distorted.
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Cartesian meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.125 1.36E+4 4.77E+2 4.45E+2 1.01E+0 85 53 0.0364 0.0221
0.063 7.62E+4 2.90E+3 2.43E+2 1.02E+0 147 56 0.2403 0.1078
0.031 3.20E+5 8.62E+3 1.24E+2 1.05E+0 121 43 1.5471 0.8918

Kershaw meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.178 1.45E+4 1.43E+2 7.89E+2 9.74E-1 285 84 0.0427 0.0335
0.089 2.38E+5 5.78E+2 9.17E+2 1.03E+0 1535 230 1.4538 0.1901
0.045 2.35E+6 3.57E+3 6.27E+2 1.12E+0 4599 484 12.1548 3.5647

Fluctuated meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.163 6.95E+3 1.05E+2 5.65E+2 1.01E+0 244 57 0.0404 0.0227
0.085 8.78E+4 8.36E+2 4.03E+2 1.07E+0 765 135 0.4639 0.1537
0.043 1.40E+6 2.11E+3 2.57E+2 1.08E+0 1778 233 5.0515 1.0831

Sinusoidal meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.156 4.74E+4 1.46E+2 7.36E+2 1.08E+0 332 69 0.0424 0.0248
0.081 1.13E+5 6.43E+2 5.30E+2 1.14E+0 830 122 0.4240 0.1005
0.041 1.32E+6 3.14E+3 3.17E+2 1.12E+0 703 101 2.9447 1.0333

Table 3: Test b: solver statistics before and after the
preconditioning.

3.3 Test case c

In this example, we look at the behaviour of the discretisation scheme in the case
where di�usion tensor is a fully heterogeneous and anisotropic matrix

Λ =

y2 + z2 + 1 −xy −xz
−xy x2 + z2 + 1 −yz
−xz −yz x2 + y2 + 1

 .

This tensor is inspired from [22]. The analytical solution is set to

ue(x, y, z) = x2yz3 + x cos(πy) cos(πz),

where the right-hand side and nonhomogeneous Dirichlet boundary condition agree
with this function. The numerical results are exhibited in Figure 7. The accu-
racy is again of second order for the solution and the gradient. This con�rms the
robustness of our scheme with respect to the mesh and anisotropy.

Table 4 summaries the solver behaviour. Here again, the preconditioned system
is better in terms of performance in the case of a heterogeneous tensor.
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Figure 7: Test c : numerical relative errors in the L2-
norm (left) and H1-norm (right).

Cartesian meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.125 8.07E+2 4.57E+1 1.00E+0 1.11E+0 16 9 0.0274 0.0153
0.063 1.62E+4 7.22E+2 1.00E+0 1.14E+0 23 8 0.1933 0.1067
0.031 5.15E+5 7.66E+3 1.00E+0 1.16E+0 29 12 1.4337 0.9794

Kershaw meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.178 3.08E+3 8.41E+1 8.81E+0 1.07E+0 104 39 0.0399 0.0191
0.089 1.22E+5 5.33E+2 1.00E+1 1.17E+0 441 81 0.3149 0.1235
0.045 3.71E+6 1.18E+3 1.03E+1 1.20E+0 352 47 2.3797 1.0002

Fluctuated meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.163 1.17E+3 5.49E+1 1.26E+0 1.10E+0 48 19 0.0290 0.0111
0.085 2.44E+4 8.41E+2 1.00E+0 1.10E+0 44 16 0.2095 0.1008
0.043 4.99E+5 4.42E+3 1.00E+0 1.14E+0 38 13 1.6345 1.0540

Sinusoidal meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.156 1.10E+3 5.14E+1 1.37E+0 1.10E+0 37 15 0.0400 0.0260
0.081 2.05E+4 8.28E+2 1.02E+0 1.14E+0 25 11 0.1977 0.0981
0.041 4.54E+5 6.22E+3 1.00E+0 1.17E+0 36 13 1.5419 1.0680

Table 4: Test c: solver statistics before and after the
preconditioning.

3.4 Test case d

In this experiment, the eigenvectors directions change over the domain. Then, the
di�usion tensor is decomposed as follows [17, 20]

Λ(x, y, z) = Rθ(x)×

1 0 0
0 ε 0
0 0 η(1 + x+ y + z)

×Rθ(x)t,
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where ε = 0.1, η = 10 and

Rθ(x) =

cos(πx) − sin(πx) 0
sin(πx) cos(πx) 0

0 0 1

 .

We impose the exact solution to be

ue(x, y, z) = sin(πx) sin(πx) sin(πz).

The source term is routinely calculated from this solution. A homogeneous bound-
ary condition is applied. The convergence results are plotted in Figure 8. Here
we again observe the numerical optimal convergence rates in the L2-norm and
H1-norm for the di�erent meshes.

Figure 8: Test d : numerical relative errors in the L2-
norm (left) and H1-norm (right).

The solver behaviour shown in Table 5 is consistent with the previous test case.
We retain the impact of the preconditioner on reducing the CPU time, whereas the
unpreconditioned solver requires considerably more iterations. This, for instance,
is clearly apparent for the case of the Kershaw mesh.

3.5 Test case e

In this last example, we test our scheme in the case of a highly discontinuous
di�usion matrix. We divide the domain Ω into two sub-domains Ω1 and Ω2 where

Ω1 = [0, 1]× [0, 0.5]× [0, 1], Ω2 = [0, 1]× [0.5, 1]× [0, 1].

Following [3], the anisotropy tensor is respectively de�ned on Ω1 and Ω2 by

Λ1 =

%+ 1 % %
% %+ 1 %
% % %+ 1

 , Λ2 =

%+ 1 −% %
−% %+ 1 −%
% −% %+ 1

 ,
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Cartesian meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.125 2.47E+3 8.74E+1 1.22E+1 1.01E+0 66 27 0.0254 0.0153
0.063 2.69E+4 6.68E+2 7.43E+0 1.02E+0 46 18 0.1849 0.0905
0.031 4.53E+5 6.96E+3 4.17E+0 1.05E+0 74 14 1.4793 1.0899

Kershaw meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.178 3.35E+3 5.72E+1 2.42E+1 1.10E+0 145 43 0.0321 0.0209
0.089 6.90E+4 2.22E+2 2.46E+1 1.05E+0 618 98 0.3600 0.1235
0.045 1.59E+6 1.08E+3 1.73E+1 1.12E+0 1017 111 3.8786 1.1868

Fluctuated meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.163 3.49E+3 6.30E+1 1.66E+1 9.95E-1 131 37 0.0377 0.0211
0.085 7.39E+4 6.56E+2 1.32E+1 1.11E+0 342 64 0.2631 0.1088
0.043 1.41E+6 2.02E+3 8.68E+0 1.05E+0 284 44 2.1575 1.0610

Sinusoidal meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.156 5.63E+3 6.63E+1 1.92E+1 1.08E+0 145 32 0.0294 0.0172
0.081 9.43E+4 5.74E+2 1.53E+1 1.05E+0 152 31 0.2138 0.1063
0.041 1.69E+6 1.96E+3 1.01E+1 1.13E+0 162 26 1.7939 0.9587

Table 5: Test d: solver statistics before and after the
preconditioning.

where % ≥ 0. It can be checked that

ue(x, y, z) = 2y3 − 3y(%+ 1)(x− z)2,

is the exact solution to the model with f = 0. The Dirichlet boundary condition
is nothing more than the trace of ue on ∂Ω. The ratio of anisotropy is given by
3%+ 1. In Figure 9, we exhibit the errors induced by the numerical scheme in the
L2-norm for % ∈ {33, 3333} leading to the ratio of anisotropy which is equal to
100 and 10000 respectively. One can observe that the convergence rate is of second
order in both cases, independently of the last three meshes, and the scheme is
exact on the Cartesian mesh.

In Table 6, a good performance of the new solver is observed. The reduction in
the number of iterations as well as the CPU time is spectacular on the Kershaw
mesh, which is a challenging mesh and accounts for a severe distortion. A similar
behaviour is observed in the case where % = 333.

4 Application to the prediction of wood thermal
conductivity from its real 3D morphology

The objective here is to predict the e�ective thermal conductivity of wood using up-
scaling. One type of wood, namely poplar species is studied. For this purpose, we
make use of high resolution scans provided by the Laboratory nano-tomograph and
the proposed 3D face interpolated scheme to estimate the macroscopic property
following the orthotropic directions of wood. For more details on the description
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Figure 9: Test e: numerical relative errors in the L2-
norm (left) and H1-norm (right).

Cartesian meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.125 8.27E+2 5.40E+1 2.01E+1 1.13E+0 1 1 0.0239 0.0247
0.063 1.32E+4 8.73E+2 1.08E+1 1.18E+0 1 1 0.1645 0.1819
0.031 2.11E+5 1.29E+4 5.52E+0 1.17E+0 1 1 1.4829 1.5130

Kershaw meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.178 7.17E+3 1.08E+2 2.50E+2 1.02E+0 235 70 0.0413 0.0248
0.089 3.22E+5 1.17E+3 2.76E+2 1.21E+0 1282 199 0.5264 0.1744
0.045 7.92E+6 2.50E+3 2.61E+2 1.29E+0 5147 480 12.8448 3.0689

Fluctuated meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.163 1.61E+3 7.14E+1 3.07E+1 1.11E+0 90 29 0.0276 0.0160
0.085 3.41E+4 1.11E+3 2.22E+1 1.16E+0 241 71 0.2523 0.1081
0.043 6.54E+5 3.25E+3 1.48E+1 1.24E+0 392 80 2.1597 1.1155

Sinusoidal meshes
hT κ κ? λmax λ?max #it #it? CPU CPU?

0.156 1.58E+3 7.40E+1 3.81E+1 1.13E+0 104 31 0.0285 0.0180
0.081 2.97E+4 1.18E+3 2.73E+1 1.16E+0 318 68 0.2754 0.1141
0.041 5.01E+5 4.55E+3 1.65E+1 1.21E+0 457 84 2.4813 1.0368

Table 6: Test e: solver statistics before and after the
preconditioning for % = 33.

of the sample preparation and the image processing of the scanned morphology,
we refer to [23, 30].

An illustration of the scanned sample is exhibited in Figure 10. It is referred to
as Morpho. Let us stress that it is quite di�cult to make predictions on this whole
volume. A standard practical alternative is to extract sub-volumes from the original
morphology. Such a subset is called the REV (Representative Elementary Volume).
The representativeness of the volume with respect the thermal conductivity is
underlined below according to the convergence test.

We denote by Ω = REV = (x0, xm)×(y0, ym)×(z0, zp) ⊂ Morpho the extracted
region of interest. Its centre and dimensions are speci�ed by the user. Then, one
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Figure 10: Scanned poplar sample using tomography
with a resolution of 3µm.

performs the automatic segmentation so that one obtains the binary 3D image
and generate the orthogonal Cartesian mesh made from cubes. The thresholded
morphology contains only two phases consisting of the air and the solid matrix as
the left side of Figure 11. Its right side shows the sinusoidal perturbation of the real
morphology. This modi�cation intends to test the e�ciency and the robustness
of the 3D face interpolated scheme in predicting the thermal conductivity on a
distorted sample.

Figure 11: Original binary Cartesian morphology (left)
and the corresponding sinusoidal perturbation (right)

The next step is to discretise Fourier's law on the morphology mesh thanks to
the proposed 3D face interpolated scheme. The model problem writes

− div
(
α(x)∇T ) = 0, in Ω = (x0, xm)× (y0, yn)× (z0, zp),

T = T bd, on ∂ΩD,

α(x)∇T · ~n = 0, on ∂ΩN ,
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where ∂Ω = ∂ΩD∪∂ΩN is the boundary and α = λ0/(%cp) is the local thermal
coe�cient of each voxel (mesh vertex). It is composed of λ0 the local thermal con-
ductivity, % the density and cp the heat capacity. For computation, we take %cp = 1.
The λ0 is �xed to 0.5 W.m−1.K−1 for the solid phase and 0.023 W.m−1.K−1 for
the air phase.

As we are going to run several computations, we select an increasing sequence
of REVs, namely REVi = (xi0, x

i
m)× (yi0, y

i
m)× (zi0, z

i
p) where

xi0 = yi0 = zi0 = 0, xim = yin =
(

(32× i)− 1
)
× Resolution,

zip =
(

((64× i)− 1)− 1
)
× Resolution, for i = 1, · · · , 5.

The resolution is given by 3.10−6m. For instance, the mesh of the �rst REV is
made from 32× 32× 63 vertices and so on.

The resulting linear system is solved by the preconditioned conjugate gradient
method. The behaviour of the temperature gradient is highlighted in Figure 12.
On the both meshes, it is clearly seen that the heat follows naturally the cell walls.

Figure 12: Gradient distribution of temperature on the
Cartesian morphology (left) and on the sinusoidal one
(right).

Accordingly, one can deduce the predicted thermal conductivity by assessing
the ratio of the boundary �ux 〈Fluxbd〉 to the global imposed gradient δT/Long
imposed by the taken boundary conditions. As a consequence, the radial, tangential
and longitudinal directions conductivities are derived from

λtR =
〈Fluxbd

x 〉 × |xm − x0|
δT

, λtτ =
〈Fluxbd

y 〉 × |yn − y0|
δT

,
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λtL =
〈Fluxbd

z 〉 × |zp − x0|
δT

.

The results are provided in Table 7. It reports the predicted macroscopic prop-
erty in terms of the REV size. This convergence test shows that the property
oscillates on the �rst volumes whereas it becomes to be stabilized as the REV
size increases. Moreover, one can say that the REV5 is representative. On both
meshes, the longitudinal value is bigger than the radial and tangential ones, which
is in coherence with the wood structure. We also observe a slight reduction on the
conductivity on the transformed morphology, which goes back to the impact of
the waves induced by the sinusoidal perturbation. The results are similar to the
ones obtained in [29, 30]. However, in these references the method is the standard
TPFA �nite volume which works only on orthogonal meshes and does not sup-
port anisotropy. This ensures the robustness of the proposed 3D face interpolated
method in capturing the ranges of the thermal conductivity even on a distorted
mesh.

Mesh λt(W/(m.K)) REV1 REV2 REV3 REV4 REV5

Cartesian

λtR 0.1906 0.1705 0.1430 0.1506 0.1522

λtτ 0.1841 0.1466 0.1336 0.1254 0.1314

λtL 0.2507 0.2238 0.2009 0.2021 0.2046

Sinusoidal

λtR 0.1814 0.1657 0.1317 0.1418 0.1441

λtτ 0.1850 0.1511 0.1351 0.1266 0.1338

λtL 0.2386 0.2153 0.1864 0.1876 0.1920

Table 7: Predicted thermal conductivity of poplar with
the real and the transformed morphology following the
peculiar orthotropic directions of wood.

Table 8 indicates the solver performance. The �rst column lists the REV num-
ber. The second one informs the CPU time of the solver required to compute the
three conductivities λtR, λ

t
τ and λtL. The last one provides the maximum of the

errors committed in evaluating the latter values i.e.,

Max residual = max
(

Errorλt
R
,Errorλt

τ
,Errorλt

L

)
.

One infers that the method is e�cient and accurate on the Cartesian morphol-
ogy, because the phases are quite well placed in parallel and ranged following the
longitudinal direction compared to sinusoidal sample.
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REV CPU time (mins) Max residual
Number Catre Sinus Catre Sinus
REV1 5.11E-2 6.45E-2 2.18E-6 2.49E-3
REV2 4.55E-1 6.70E-1 3.79E-5 1.48E-3
REV3 2.23E+0 2.82E+0 5.48E-4 1.70E-3
REV4 7.05E+0 8.82E+0 6.04E-4 6.71E-4
REV5 1.81E+1 2.01E+1 3.59E-4 2.29E-2

Table 8: Solver performance.

5 Conclusion

In this paper, a new numerical method, referred to as the 3D face interpolated
scheme, is proposed for the discretisation of highly anisotropic di�usion equations
on hexahedral meshes. The idea consists in de�ning an accurate and consistent
approximation of the gradient using the opposite faces of the cells. The face un-
knowns are eliminated by employing a second order interpolation. This reduces
greatly the complexity of the scheme by placing the unknowns at the mesh nodes.
Because the scheme is derived from a discrete weak formulation, it is uncondi-
tionally coercive and therefore admits a unique solution. As a result, the sti�ness
matrix is symmetric positive-de�nite. The numerical implementation makes use of
the practical SSOR preconditioner in order to improve the behaviour of the itera-
tive solver. The computational results show that the method is robust and attains
second order accuracy independently of the chosen meshes and the anisotropy. Af-
ter the validation step, the approach is applied for predicting the wood thermal
conductivity in the species natural directions. Good results are obtained especially
when the real morphology is perturbed using a sinusoidal transformation. In our
future research we intend to extend this new methodology in a homogenisation
framework for predicting the e�ective parameters of �bres with more than two
phases that arise in volume-averaged transport equations.
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