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In this paper, a new 3D numerical discretisation method for solving the anisotropic, steady-state diusion problem is developed and analysed. The scheme is constructed on hexahedral meshes using the geometrical properties of the cells. Indeed, each cell provides a local basis formed using the centres of its lateral faces. The discrete cell gradient approximation is then obtained by using three discrete directional derivatives resolved in terms of this basis, and by invoking the consistent relationships between opposite faces of the same cell. The face degrees of freedom are interpolated to reduce the complexity of the numerical scheme, resulting in the main unknowns being entirely nodal based. The scheme is unconditionally coercive and admits a unique solution. Various numerical experiments are performed to highlight the accuracy and the robustness of the method with respect to the mesh and anisotropy. An important outcome is that second order convergence is observed for all problems considered, even for highly deformed meshes. After this validation process, the method is applied to the prediction of the eective thermal conductivity of wood from its real 3D morphology. The property 1 is estimated in the radial tangential and longitudinal directions. The solver is robust, ecient and yields to similar results compared to recent contributions.

Introduction

Partial dierential equations (PDEs) are present in an uncountable number of applications in science and engineering. As a consequence, there is an increasing demand for solving PDEs numerically. In particular, linear and nonlinear diusion terms are crucial components of many physical systems and are used to model, for example, complex ows in porous media, and heat and mass transfer in highly heterogeneous materials such as wood and plant stems [START_REF] Perré | A 3D version of Transpore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media[END_REF]. The discretisation of various types of diusion problems (linear, nonlinear, transient or steady-state) on generic 3D meshes is a challenging topic because the reconstruction of the gradient from a nite set of points must be subject to consistency and stability rules. In this work we propose an original idea to devise a whole gradient across a hexahedral mesh that takes into account the shape and geometric properties of each cell. For this purpose, we will focus on a very standard linear, anisotropic Poisson equation arising in many applications.

Let Ω be an open bounded connected domain of R 3 . Let us consider the 3D elliptic model -div(Λ∇u) = f, in Ω, u = g, on ∂Ω,

where Λ is a symmetric positive-denite tensor dened from Ω to L ∞ (Ω) 3×3 that fulls the ellipticity condition

λ 0 ζ 2 ≤ Λζ • ζ ≤ λ 1 ζ 2 , ∀ζ ∈ R 3 ,
and λ 0 and λ 1 are some positive constants. The source term is a function of L 2 (Ω) and g ∈ H 1/2 (∂Ω). Under these assumptions, it is well-known that the model problem admits a unique weak solution u ∈ H 1 (Ω) whose trace is g and solves the variational formulation

Ω Λ∇u • ∇ϕ dx = Ω f ϕ dx, ∀ϕ ∈ H 1 0 (Ω). (2) 
During the last two decades, it has been established that a good and proper approximation of the gradient can lead to an ecient and accurate resolution of the problem [START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results[END_REF]. Depending on the data, namely Λ, f , g, Ω and the mesh, many numerical methods were developed to conceive approximate directional derivatives as in the nite dierence approach. Their accuracy and robustness are observed through the FVCA benchmarks [START_REF] Eymard | 3D benchmark on discretization schemes for anisotropic diusion problems on general grids[END_REF][START_REF] Herbin | Benchmark on discretization schemes for anisotropic diusion problems on general grids[END_REF]. Many of them share several common points in terms of analysis, which renders them eligible to enter the theoretical framework called the gradient discretisation method [START_REF] Droniou | The gradient discretisation method[END_REF]. This paradigm includes shape function based classical methods such as the P 1 -nite elements [START_REF] Ciarlet | The nite element method for elliptic problems[END_REF]. It also contains modern methods and we mention among them the Hybrid Mimetic Mixed approaches [START_REF] Da Veiga | The mimetic nite dierence method for elliptic problems[END_REF][START_REF] Droniou | A unied approach to mimetic nite dierence, hybrid nite volume and mixed nite volume methods[END_REF][START_REF] Eymard | Discretization of heterogeneous and anisotropic diusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces[END_REF], Multi-Point Flux Approximations [START_REF] Droniou | A unied approach to mimetic nite dierence, hybrid nite volume and mixed nite volume methods[END_REF], Diamond schemes [START_REF] Coudière | Convergence rate of a nite volume scheme for a two dimensional convection-diusion problem[END_REF][START_REF] Quenjel | Node-Diamond approximation of heterogeneous and anisotropic diusion systems on arbitrary two-dimensional grids[END_REF], and Discrete Duality Finite Volume methods [START_REF] Andreianov | On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality[END_REF][START_REF] Andreianov | Discrete duality nite volume schemes for LerayLionstype elliptic problems on general 2D meshes[END_REF][START_REF] Coudière | A 2D/3D discrete duality nite volume scheme. Application to ECG simulation[END_REF][START_REF] Domelevo | A nite volume method for the Laplace equation on almost arbitrary two-dimensional grids[END_REF][START_REF] Hermeline | A nite volume method for approximating 3D diusion operators on general meshes[END_REF]. In addition to the primary degrees of freedom (DOFs), many of the aforementioned methods require auxiliary unknowns in the reconstruction of the gradient as the mesh becomes distorted.

In this work, we rst propose and validate a new 3D numerical method for the resolution of [START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results[END_REF]. The motivation for this scheme results from the need to use distorted hexahedral meshes with larger sets of DOFs, without introducing auxiliary unknowns, as well as tackling the challenges of higher anisotropy ratios while still ensuring a straightforward implementation strategy. For instance, such constraints are naturally imposed during the prediction of macroscopic properties from real morphologies using computational homogenisation [START_REF] Carr | A dual-scale modeling approach for drying hygroscopic porous media[END_REF][START_REF] Louërat | Heat and moisture diusion in spruce and wood panels computed from 3-d morphologies using the lattice boltzmann method[END_REF][START_REF] Lux | Macroscopic properties of real brous materials: Volume averaging method and 3d image analysis[END_REF][START_REF] Perré | Determination of the material property variations across the growth ring of softwood for use in a heterogeneous drying model. part 2. use of homogenisation to predict bound liquid diusivity and thermal conductivity[END_REF][START_REF] Quenjel | Computation of the eective thermal conductivity from 3d real morphologies of wood[END_REF], or to track liquid imbibition in complex media such as natural wood [START_REF] Perré | A macroscopic washburn approach of liquid imbibition in wood derived from x-ray tomography observations[END_REF].

The contribution of the paper is twofold. The rst asset lies in the scheme construction. More importantly, the main idea of our work is to dene the numerical scheme using only the geometrical information of the mesh cells. Indeed, following the spirit of the diamond and the discrete duality schemes, one sets three discrete directional derivatives resolved in terms of a local basis, provided by the opposite faces for each hexahedron. This strategy allows the reconstruction of the gradient on the entire cell and therefore the mesh. Then, the numerical scheme stems from the discrete weak formulation. The proofs of the stability results, such as the discrete Poincaré's inequality or the derivation of the energy estimate, follows the guidelines of the literature. As a consequence, the stiness matrix is symmetric positive-denite and the scheme stencil is small and compact in the sense that any node is connected to at most 26 neighbouring nodes in the case of Cartesian meshes. The resulting linear scheme is solved using the conjugate gradient method. This method exhibits some ineciency when the mesh is severely distorted and the diusion tensor is highly anisotropic. We therefore implemented the SSOR (symmetric successive over-relaxation) preconditioner [START_REF] Saad | Iterative methods for sparse linear systems[END_REF] in order to improve the convergence behaviour of the linear solver.

The second contribution consists in the application of the 3D face interpolated scheme to the computation of the eective macroscopic thermal conductivity of wood. Thanks to image processing, the employed meshes are generated from the scanned real morphology of the sample. Then, the property is estimated following the orthotropic directions of wood. Compared to some recent works, the proposed numerical scheme is capable to recover similar ranges of the property in an excellent way and despite of the mesh deformation.

The rest of the paper is outlined as follows. In the next section, we survey the domain meshing and elaborate the approximation of the gradient operator. Then, we derive the 3D face interpolated discretisation method and study its stability together with solvability. In Section 3, we implement the numerical scheme and report the obtained results to conrm the eciency and the robustness of our methodology. In Section 4, we put into practice the 3D face interpolated scheme for the prediction of thermal conductivity of wood. The paper is then concluded in Section 5.

Numerical scheme

In this section we present the discretisation of the domain Ω. We introduce a consistent and accurate approximation of the gradient operator, and then derive the proposed 3D face interpolated scheme approximating the diusion model (2).

Mesh, notations and discrete gradient

The mesh M is given by a collection of conforming hexahedral cells {K} that cover the whole domain Ω. We assume that the volume faces are planar. In other words, the scheme does not handle generalised hexahedra with non-planar faces. The centre of the cell is determined by averaging the coordinates of its surrounding vertices. The volume of K is denoted by |K|. Each cell possess six faces that are expressed as F i , i ∈ {1, • • • , 6}. We denote by x Fi the barycentre of the face F i . Let T denote the set of vertices of the mesh, and let T D denote the set of boundary vertices. Let M s represent the cells sharing the same vertex s. For all s ∈ T , we assign a local sub-set ω K,s in the cell K, determined by the centre of the latter, the centres of the edges, and the faces sharing the same vertex, see Figure 1. The volume of ω K,s is computed using the identity

|ω K,s | = |Det -→ x s x e 1 K,s , -→ x s x e 2 K,s , -→ x s x e 3 K,s |,
where e 1 1,s , e 2 2,s , e 3 K,s are the edges of K whose extremity is s. Therefore, the total sub-volume associated with s and its measure are dened by

ω s = K∈Ms ω K,s , |ω s | = K∈Ms |ω K,s |.
The sum of these sub-volumes is equal to the volume of Ω. For i ∈ {1, 2, 3}, let us x the vector ------→ τ F2i-1F2i = -------→ x F2i-1 x F2i . The set T Fi contains the four vertices of the face F i .

Let h K denote the diameter of the cell K ∈ M. The mesh size is given by h T = max{h K , K ∈ M}. We denote by r K the radius of the largest sphere included in K. Consider

θ T = max K∈M h K r K , n T = max s∈T #M s , ξ T = max(θ T , n T ).
As T is rened, the mesh regularity assumption states that ξ T must be bounded with constant ξ 0 > 0 i.e., ξ T ≤ ξ 0 . In hexahedral meshes it is not evident how to construct a nodal (i.e., primary unknowns are nodal) accurate approximation of only one gradient without auxiliary unknowns, or without using the traditional shape functions of the well-known nite element framework.

The key point of our approach lies in the denition of a consistent whole discrete gradient per cell. The six faces of K yield three noncollinear directions forming a local basis in 3D, see Figure 2. First, in each cell K, we begin to set the approximation of the gradient to the formula

∇ K u T = 1 |K| u F2 -u F1 --→ N 12 + u F4 -u F3 --→ N 34 + u F6 -u F5 --→ N 56 , (3) 
where An important observation is that the total number of faces of the mesh is larger than the number of vertices of the mesh. Consequently, the degrees of freedom are placed on the mesh vertices in order to reduce the complexity of the numerical scheme. For this purpose, because the faces are planar, the face unknowns can be eliminated by considering the second order interpolation

--→ N 12 = ---→ τ F3F4 ∧ ---→ τ F5F6 , --→ N 34 = ---→ τ F5F6 ∧ ---→ τ F1F2 , --→ N 56 = ---→ τ F1F2 ∧ ---→ τ F3F4 .
u Fi = 1 4 s∈T F i u s .
To simplify the exposition, we assume that the boundary datum g can be extended to a function that is still denoted g ∈ H 1 (Ω). This gives sense to the following integral approximation for the average of the function over the volume ω s

g s = 1 |ω s | ωs g(a) da.
Dene R #T to be the nite dimensional space containing vectors of the form u T = (u s ) t s∈T . We denote by R #T g (resp. R #T 0 ) the subspace for which u T is such that u s = g s (resp. u s = 0), for all s ∈ T D . For each u T ∈ R #T , we associate a unique function I h u T of L 2 (Ω) that is expressed as

I h u T = s∈T u s 1 ωs ,
where 1 ωs is the indicator function of the subset ω s , i.e. 1 ωs (x) = 1 for x ∈ ω s and is equal to 0 otherwise. Let ∇ h be the piecewise operator mapping 3 where

u T ∈ R #T into ∇ h u T ∈ L 2 (Ω)
∇ h u T = K∈M 1 K ∇ K u.
The tensor Λ is approximated by Λ h M where the latter is piecewise constant on the cells of the mesh and written

Λ h M = K∈M 1 K Λ K , Λ K = 1 |K| K Λ(x) dx.
Dene the norm • 0,2 and the semi-norm

• 1,2 on R #T such that v T 0,2 = s∈T |ω s |v 2 s 1/2 , v T 1,2 = K∈M |K||∇ K v T | 2 1/2
.

3D face interpolated scheme

Having the discrete gradient at hand, the 3D face interpolated scheme is naturally derived from the discrete variational formulation: i.e., nd

u T ∈ R #T g satisfying the relationship Ω Λ h M ∇ h u T • ∇ h ϕ T dx = Ω f I h ϕ T dx, ∀ϕ T ∈ R #T 0 . (4) 
The pointwise version of the scheme can be equivalently given by

   K∈Ms |K|Λ K ∇ K u T • ∇ K e s = |ω s |f s , ∀s ∈ T \ T D , u s = g s ∀s ∈ T D , (5) 
where {e s } s∈T denotes the canonical basis of R #T . For the sake of simplicity, assume that g = 0. The scheme (5) can then be recast in the matrix form

A T u T = F T , (6) 
where

(F T ) s = |ω s |f s , if s ∈ T \ T D , 0 if s ∈ T D .
The matrix A T contains the stiness coecients. In view of the implementation perspective, the formulation ( 5) is not adequate. In practice, a possible way to ll A T is described in the sequel. For this purpose, let us consider the numbering strategy illustrated in Figure 3. Each vertex of the cell K belongs to three faces of the same cell. Using this orientation convention, the expression of the gradient already described in ( 3) is now rewritten as follows

∇ K u T = 8 j=1 u j a K j ,
where the vectors (a K j ) 1≤j≤8 are given by

a K 1 = 1 4|K| - --→ N 12 - --→ N 34 - --→ N 56 , a K 2 = 1 4|K| + --→ N 12 - --→ N 34 - --→ N 56 , a K 3 = 1 4|K| + --→ N 12 + --→ N 34 - --→ N 56 , a K 4 = 1 4|K| - --→ N 12 + --→ N 34 - --→ N 56 , a K 5 = 1 4|K| - --→ N 12 - --→ N 34 + --→ N 56 , a K 6 = 1 4|K| + --→ N 12 - --→ N 34 + --→ N 56 , a K 7 = 1 4|K| + --→ N 12 + --→ N 34 + --→ N 56 , a K 8 = 1 4|K| - --→ N 12 + --→ N 34 + --→ N 56 .
As a consequence, the stiness coecients of the matrix

A T read                          (A T ) sisi = K∈Ms i 8 j=1 |K|Λ K a K i • a K j , if s i ∈ T \ T D , (A T ) sisj = K∈Ms i ∩Ms j |K|Λ K a K i • a K j , if s i = s j ∈ T \ T D , (A T ) sisi = 1, if s i ∈ T D , (A T ) sisj = 0, if s i ∈ T \ T D , and s j ∈ T D , (A T ) sisj = 0, if s i ∈ T D , and s i = s j ,
where Λ K is approximated by its value at the centre of the cell for the numerical computations. The above strategy has been used in the implementation of the scheme in Section 3.

Remark 1. The stencil of the 3D face interpolated scheme is small and compact.

In other words, each row of the matrix consists of at least one non-zero element and at most 27 non-zero elements in the case of Cartesian meshes. In the latter case, the diagonal element corresponds to an internal vertex, which is connected to its 26 surrounding vertices.

As a result of the following discrete Poincaré's inequality, the semi-norm • 1,2 turns out to be a norm on the subspace R #T 0 .

Lemma 1 There exists a constant Cp depending only on the diameter of Ω and the mesh regularity such that

v T 0,2 ≤ Cp v T 1,2 , ∀v T ∈ R #T 0 .
Proof The guidelines of the proof are sketched below. Let s i ∈ K. Observe that

∇ K v T = 8 j=1,j =i a K j vs j -vs i .
The regularity of the mesh claim the existence of C 1 , C 2 depending only on θ T such that

C 0 h 2 K ≤ |a K i • a K j | ≤ C 1 h 2 K (7)
Then, it can be checked that

v T 2 1,2 ≥ C 3 si∈T K∈Ms i 8 j=1,j =i |K| h 2 K us i -us j 2 ,
holds true for some C 3 independent of the mesh. Adapting of the proofs established in [5, Lemma 3.3], [14, Lemma 3.1] (in the case of the vertex-centred TPFA scheme) to our setting, one nds

v T 2 0,2 ≤ C 4 si∈T K∈Ms i 8 j=1,j =i h 2 K |us i -us j |(|us i | + |us j |).
where C 4 depends only on θ T and the diameter of Ω. Following the arguments of [28, Lemma 2.1] and bearing in mind [START_REF] Ciarlet | The nite element method for elliptic problems[END_REF] we nally deduce that

v T 2 0,2 ≤ C 5 si∈T K∈Ms i 8 j=1,j =i |K| h 2 K us i -us j 2 ≤ C 2 p v T 2 1,2 ,
which concludes the proof.

In the rest of this section we prove that the numerical scheme is uniquely solvable. First, the following result is referred to as the coercivity property.

Proposition 2 Let u T be a solution to the scheme [START_REF] Andreianov | Discrete duality nite volume schemes for LerayLionstype elliptic problems on general 2D meshes[END_REF]. The norm of the discrete gradient of u T is bounded by a constant Ce depending only on, f , λ 0 , λ 1 , g and the mesh regularity i.e.,

u T 1,2 ≤ Ce.
Proof Let us consider g T ∈ R #T g such that (g T )s = gs for all s ∈ T . Let us also take [START_REF] Andreianov | On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality[END_REF]. Then, one writes

ϕ T = u T := u T -g T ∈ R #T 0 in
Z 1 = Z 2 + Z 3 ,
where

Z 1 = Ω Λ h M ∇ h u T • ∇ h u T dx, Z 2 = Ω Λ h M ∇ h g T • ∇ h u T dx, Z 3 = Ω f I h u T dx. Because Λ h M is coercive there holds Z 1 ≥ λ 0 u T 2 1,2 .
It is known that, there exists C 1 depending only on ξ 0 such that

g T 1,2 ≤ C 1 g H 1 (Ω) . (8) 
Then, using (8) together with the Cauchy-Schwarz and Young's inequalities we nd

|Z 2 | ≤ λ 0 4 u T 2 1,2 + λ 1 (C 1 ) 2 λ 0 g 2 H 1 (Ω) .
Applying the Cauchy-Schwarz, Poincaré's and Young's inequalities allows us to obtain the estimation

|Z 3 | ≤ λ 0 4 u T 2 1,2 + C 2 p f 2 L 2 (Ω) λ 0 .
Consequently, one obtains u T 1,2 ≤ C 2 , for some constant C 2 depending only on the data and ξ 0 . We nally deduce

u T 1,2 ≤ g T 1,2 + u T 1,2 ≤ Ce.
The proof is then concluded.

Proposition 3 The numerical scheme [START_REF] Andreianov | Discrete duality nite volume schemes for LerayLionstype elliptic problems on general 2D meshes[END_REF] has a unique solution.

Proof It suces to prove that the kernel of

A T is trivial. Let X T ∈ R #T such that A T X T = 0.
Let us prove that X T = 0. By the denition of A T , one has (X T )s = 0 for all s ∈ T D . Thus, X T ∈ R #T 0 . Recall that the formulations ( 5)-( 6) are equivalent. It follows from the computations

0 = A T X T • X T = s∈T \T D K∈Ms |K|Λ K ∇ K u T • Xs∇ K es = Ω Λ h M ∇ h X T • ∇ h X T dx ≥ λ 0 X T 1,2 ,
where we have again used the fact that Λ h M is coercive. Hence, it must be that X T 1,2 = 0, implying X T = 0, because X T 1,2 is a norm on R #T 0 . This concludes the proof.

Mimicking the previous proof entails that the matrix A T is symmetric positivedenite.

Computational results

In this section, several test cases are simulated to assess the computational performance of the proposed numerical scheme. The rst objective is to test the accuracy of the developed 3D face interpolated scheme and investigate its robustness with respect to the anisotropy and the distortion of the mesh. The second aim is to illustrate the behaviour of the iterative solver in the presence, and the absence of the preconditioner. The computational domain Ω is the unit cube [0, 1] 3 . It is covered using four dierent partitions. They are referred to as the Cartesian, Kershaw, uctuated and sinusoidal meshes respectively, see Figure 4. The rst mesh is regular with cubic cells. The second mesh is taken from [START_REF] Eymard | 3D benchmark on discretization schemes for anisotropic diusion problems on general grids[END_REF][START_REF] Kershaw | Dierencing of the diusion equation in lagrangian hydrodynamic codes[END_REF]. The last two meshes are generated from the Cartesian mesh by transforming the old coordinates (x, y, z), that do not belong to the boundary edges, into the new positions (x , y , z ) dened as follows for the uctuated mesh. The numerical scheme is implemented in Fortran where the resulting linear system is solved using the conjugate gradient method. Its tolerance is xed to 10 -10 and the stopping criterion is taken on the norm of the successive iterates. We employ the SSOR preconditioner to improve the solver behaviour. Recall that the stiness matrix is denoted by A T . Let D be the diagonal component and E the strictly lower triangular part of the stiness matrix, so that A T = D + E + E T . We consider the SSOR preconditioner, with relaxation parameter set as 1, given as follows

P = (D + E)D -1 (D + E T ). (9) 
We apply the preconditioner on the left of the stiness matrix. Numerically, this choice without parametrization was found to give good results after the extensive numerical investigation performed in this study. Some indicators are needed in order to quantify the performance of the solver. We denote by κ the condition number of A T , and #it the total number of iterations of the conjugate gradient method. The biggest eigenvalue is denoted by λ. Let CPUt denote the computation time measured in seconds, before preconditioning. The same quantities are denoted by κ , #it , CPUt , λ max after applying the preconditioner.

Five test cases are proposed below to test the performance of the numerical scheme in a progressive increase of the conguration severity: Case a : homogeneous and isotropic conguration, Case b : homogeneous conguration, but with an anisotropy ratio of 1000 along the z-axis, Case c : homogeneous and anisotropic conguration, Case d : anisotropic conguration, with material directions evolving in space, Case e : strongly discontinuous diusion matrix (piece-wise variations).

In all cases, an analytical solution is imposed and the function f is set for this analytical solution to be a solution of problem [START_REF] Aavatsmark | Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results[END_REF]. The accuracy of the scheme is assessed using the corresponding manufactured analytical. For this purpose, we evaluate the discrete L 2 and H 1 relative errors:

u e,T -u T 0,2 u e,T 0,2 , u e,T -u T 2 0,2 + u e,T -u T 2 1,2 u e,T 2 0,2 + u e,T 2 1,2 
,

where u e,T is the interpolate (value) of the exact solution on the vertices.

Test case a

In this rst test case involving a homogeneous medium, the diusion tensor is taken as the identity matrix. The Dirichlet boundary conditions are computed according to the analytical solution u e (x, y, z) = sin(2πx) sin(2πx) sin(2πz).

The right hand side f is f (x, y, z) = 12π 2 sin(2πx) sin(2πx) sin(2πz).

Figure 5 presents the log-log plots of the errors in terms of the mesh size. It is shown that the convergence rates of the method are second order for both norms.

Smaller convergence rates on the gradients are noticed on the rst elements of the Kershaw meshes. The solver behaviour is given in Table 2. The condition number as well as the total number of iterations are greatly reduced after the preconditioning. This translates into gains in the CPU time. Interestingly, the iterations increased after preconditioning for the Cartesian mesh. We now consider a global, highly anisotropic tensor in the z-direction

Λ =   1 0 0 0 1 0 0 0 1000   .
The exact solution is given by

u e (x, y, z) = 64x(1 -x)y(1 -y)z(1 -z).
The source function corresponding to this solution is given by

f (x, y, z) = 128 y(1 -y)z(1 -z) + x(1 -x)z(1 -z) + 1000x(1 -x)y(1 -y) .
A homogeneous Dirichlet boundary condition is prescribed. The obtained results are displayed in Figure 6. The order of convergence is quadratic regardless of the anisotropy. Table 3 summarises the solver behaviour in the presence of a highly anisotropic tensor. Signicant improvements in convergence rates of the iterative solver are observed after the application of the preconditioner, especially when the mesh is nonorthogonal and distorted. 

Test case c

In this example, we look at the behaviour of the discretisation scheme in the case where diusion tensor is a fully heterogeneous and anisotropic matrix

Λ =   y 2 + z 2 + 1 -xy -xz -xy x 2 + z 2 + 1 -yz -xz -yz x 2 + y 2 + 1   .
This tensor is inspired from [START_REF] Lipnikov | The mimetic nite dierence discretization of diusion problem on unstructured polyhedral meshes[END_REF]. The analytical solution is set to u e (x, y, z) = x 2 yz 3 + x cos(πy) cos(πz),

where the right-hand side and nonhomogeneous Dirichlet boundary condition agree with this function. The numerical results are exhibited in Figure 7. The accuracy is again of second order for the solution and the gradient. This conrms the robustness of our scheme with respect to the mesh and anisotropy. Table 4 summaries the solver behaviour. Here again, the preconditioned system is better in terms of performance in the case of a heterogeneous tensor. In this experiment, the eigenvectors directions change over the domain. Then, the diusion tensor is decomposed as follows [START_REF] Guillaume | Numerical convergence of a parameterisation method for the solution of a highly anisotropic two-dimensional elliptic problem[END_REF][START_REF] Hermeline | A nite volume method for approximating 3d diusion operators on general meshes[END_REF] 

Λ(x, y, z) = R θ (x) ×   1 0 0 0 ε 0 0 0 η(1 + x + y + z)   × R θ (x) t ,
where ε = 0.1, η = 10 and

R θ (x) =   cos(πx) -sin(πx) 0 sin(πx) cos(πx) 0 0 0 1   .
We impose the exact solution to be u e (x, y, z) = sin(πx) sin(πx) sin(πz).

The source term is routinely calculated from this solution. A homogeneous boundary condition is applied. The convergence results are plotted in Figure 8. Here we again observe the numerical optimal convergence rates in the L 2 -norm and H 1 -norm for the dierent meshes. The solver behaviour shown in Table 5 is consistent with the previous test case. We retain the impact of the preconditioner on reducing the CPU time, whereas the unpreconditioned solver requires considerably more iterations. This, for instance, is clearly apparent for the case of the Kershaw mesh.

Test case e

In this last example, we test our scheme in the case of a highly discontinuous diusion matrix. We divide the domain Ω into two sub-domains Ω 1 and Ω 2 where

Ω 1 = [0, 1] × [0, 0.5] × [0, 1], Ω 2 = [0, 1] × [0.5, 1] × [0, 1].
Following [START_REF] Aavatsmark | A new nite-volume approach to ecient discretization on challenging grids[END_REF], the anisotropy tensor is respectively dened on Ω 1 and Ω 2 by where ≥ 0. It can be checked that

Λ 1 =   + 1 + 1 + 1   , Λ 2 =   + 1 - - + 1 - - + 1   , Cartesian meshes h T κ κ λmax λ max #it #it CPU CPU 0.
u e (x, y, z) = 2y 3 -3y( + 1)(x -z) 2 ,
is the exact solution to the model with f = 0. The Dirichlet boundary condition is nothing more than the trace of u e on ∂Ω. The ratio of anisotropy is given by 3 + 1. In Figure 9, we exhibit the errors induced by the numerical scheme in the L 2 -norm for ∈ {33, 3333} leading to the ratio of anisotropy which is equal to 100 and 10000 respectively. One can observe that the convergence rate is of second order in both cases, independently of the last three meshes, and the scheme is exact on the Cartesian mesh.

In Table 6, a good performance of the new solver is observed. The reduction in the number of iterations as well as the CPU time is spectacular on the Kershaw mesh, which is a challenging mesh and accounts for a severe distortion. A similar behaviour is observed in the case where = 333.

4 Application to the prediction of wood thermal conductivity from its real 3D morphology

The objective here is to predict the eective thermal conductivity of wood using upscaling. One type of wood, namely poplar species is studied. For this purpose, we make use of high resolution scans provided by the Laboratory nano-tomograph and the proposed 3D face interpolated scheme to estimate the macroscopic property following the orthotropic directions of wood. For more details on the description of the sample preparation and the image processing of the scanned morphology, we refer to [START_REF] Louërat | Heat and moisture diusion in spruce and wood panels computed from 3-d morphologies using the lattice boltzmann method[END_REF][START_REF] Quenjel | Computation of the eective thermal conductivity from 3d real morphologies of wood[END_REF]. An illustration of the scanned sample is exhibited in Figure 10. It is referred to as Morpho . Let us stress that it is quite dicult to make predictions on this whole volume. A standard practical alternative is to extract sub-volumes from the original morphology. Such a subset is called the REV (Representative Elementary Volume). The representativeness of the volume with respect the thermal conductivity is underlined below according to the convergence test.

We denote by Ω = REV = (x 0 , x m )×(y 0 , y m )×(z 0 , z p ) ⊂ Morpho the extracted region of interest. Its centre and dimensions are specied by the user. Then, one performs the automatic segmentation so that one obtains the binary 3D image and generate the orthogonal Cartesian mesh made from cubes. The thresholded morphology contains only two phases consisting of the air and the solid matrix as the left side of Figure 11. Its right side shows the sinusoidal perturbation of the real morphology. This modication intends to test the eciency and the robustness of the 3D face interpolated scheme in predicting the thermal conductivity on a distorted sample. The next step is to discretise Fourier's law on the morphology mesh thanks to the proposed 3D face interpolated scheme. The model problem writes

-div α(x)∇T ) = 0, in Ω = (x 0 , x m ) × (y 0 , y n ) × (z 0 , z p ), T = T bd , on ∂Ω D , α(x)∇T • n = 0, on ∂Ω N ,
where ∂Ω = ∂Ω D ∪ ∂Ω N is the boundary and α = λ 0 /( c p ) is the local thermal coecient of each voxel (mesh vertex). It is composed of λ 0 the local thermal conductivity, the density and c p the heat capacity. For computation, we take c p = 1. The λ 0 is xed to 0.5 W.m -1 .K -1 for the solid phase and 0.023 W.m -1 .K -1 for the air phase.

As we are going to run several computations, we select an increasing sequence of REVs, namely REV i = (x i 0 , x i m ) × (y i 0 , y i m ) × (z i 0 , z i p ) where

x i 0 = y i 0 = z i 0 = 0, x i m = y i n = (32 × i) -1 × Resolution, z i p = ((64 × i) -1) -1 × Resolution, for i = 1, • • • , 5.
The resolution is given by 3.10 -6 m. For instance, the mesh of the rst REV is made from 32 × 32 × 63 vertices and so on. The resulting linear system is solved by the preconditioned conjugate gradient method. The behaviour of the temperature gradient is highlighted in Figure 12. On the both meshes, it is clearly seen that the heat follows naturally the cell walls. Accordingly, one can deduce the predicted thermal conductivity by assessing the ratio of the boundary ux Flux bd to the global imposed gradient δT /Long imposed by the taken boundary conditions. As a consequence, the radial, tangential and longitudinal directions conductivities are derived from

λ t R = Flux bd x × |x m -x 0 | δT , λ t τ = Flux bd y × |y n -y 0 | δT , λ t L = Flux bd z × |z p -x 0 | δT .
The results are provided in Table 7. It reports the predicted macroscopic property in terms of the REV size. This convergence test shows that the property oscillates on the rst volumes whereas it becomes to be stabilized as the REV size increases. Moreover, one can say that the REV5 is representative. On both meshes, the longitudinal value is bigger than the radial and tangential ones, which is in coherence with the wood structure. We also observe a slight reduction on the conductivity on the transformed morphology, which goes back to the impact of the waves induced by the sinusoidal perturbation. The results are similar to the ones obtained in [START_REF] Quenjel | Ecient prediction of the thermal conductivity of wood from its microscopic morphology[END_REF][START_REF] Quenjel | Computation of the eective thermal conductivity from 3d real morphologies of wood[END_REF]. However, in these references the method is the standard TPFA nite volume which works only on orthogonal meshes and does not support anisotropy. This ensures the robustness of the proposed 3D face interpolated method in capturing the ranges of the thermal conductivity even on a distorted mesh. 

Mesh

Conclusion

In this paper, a new numerical method, referred to as the 3D face interpolated scheme, is proposed for the discretisation of highly anisotropic diusion equations on hexahedral meshes. The idea consists in dening an accurate and consistent approximation of the gradient using the opposite faces of the cells. The face unknowns are eliminated by employing a second order interpolation. This reduces greatly the complexity of the scheme by placing the unknowns at the mesh nodes. Because the scheme is derived from a discrete weak formulation, it is unconditionally coercive and therefore admits a unique solution. As a result, the stiness matrix is symmetric positive-denite. The numerical implementation makes use of the practical SSOR preconditioner in order to improve the behaviour of the iterative solver. The computational results show that the method is robust and attains second order accuracy independently of the chosen meshes and the anisotropy. After the validation step, the approach is applied for predicting the wood thermal conductivity in the species natural directions. Good results are obtained especially when the real morphology is perturbed using a sinusoidal transformation. In our future research we intend to extend this new methodology in a homogenisation framework for predicting the eective parameters of bres with more than two phases that arise in volume-averaged transport equations.
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 1 Figure 1: Sub-set associated with the vertex s in the cell K.

Figure 2 :

 2 Figure 2: opposite faces in the cell K and their corresponding directions.

Figure 3 :

 3 Figure 3: Numbering of the vertices (left) and the faces (right) of the cell K.
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  = x + 1 10 ϕ(x)ϕ(y), y = y + 1 10 ϕ(y)ϕ(z), z = z + 1 10 ϕ(x)ϕ(z), where ϕ(r) = sin(2πr) in the case of the sinusoidal mesh and ϕ(r) = 4r1 [0,0.5] + (2 -4r)1 [0.25,0.5] + (4r -2)1 [0.5,0.75] + (4 -4r)1 [0.75,1] ,
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 4 Figure 4: Cartesian, Kershaw, uctuated and sinusoidal meshes.

Figure 5 :

 5 Figure 5: Test a : numerical relative errors in the L 2norm (left) and H 1 -norm (right).

Figure 6 :

 6 Figure 6: Test b : numerical relative errors in the L 2norm (left) and H 1 -norm (right).

Figure 7 :

 7 Figure 7: Test c : numerical relative errors in the L 2norm (left) and H 1 -norm (right).

Figure 8 :

 8 Figure 8: Test d : numerical relative errors in the L 2norm (left) and H 1 -norm (right).

Figure 9 :

 9 Figure 9: Test e: numerical relative errors in the L 2norm (left) and H 1 -norm (right).

Figure 10 :

 10 Figure 10: Scanned poplar sample using tomography with a resolution of 3µm.

Figure 11 :

 11 Figure 11: Original binary Cartesian morphology (left) and the corresponding sinusoidal perturbation (right)

Figure 12 :

 12 Figure 12: Gradient distribution of temperature on the Cartesian morphology (left) and on the sinusoidal one (right).

Table 1

 1 reports the number of degrees of freedom, dimension and sparsity of the stiness matrix for each mesh level.

	Mesh Nb Nb of DOFs	Nb NzCoefMat	Density
	1 2 3 4 5	729 4913 35937 274625 2097152	15625 117649 912673 7189057 57066625	2.94011 % 0.48741 % 0.07066 % 0.00953 % 0.00129 %

Table 1 :

 1 DOFs for each mesh and the corresponding number of non zero coecients of the stiness matrix.

Table 2 :

 2 Test a: solver statistics before and after the preconditioning.

	Cartesian meshes	
	h T 0.125 8.30E+2 4.85E+1 1.00E+0 1.10E+0 18 κ κ λmax #it #it λ max 12 0.063 2.61E+4 7.58E+2 1.00E+0 1.12E+0 21 11 0.031 8.31E+5 1.19E+4 1.00E+0 1.13E+0 40 20	CPU CPU 0.0059 0.0044 0.0546 0.0417 0.4577 0.3482
	Kershaw meshes	
	h T 0.178 2.91E+3 8.98E+1 5.43E+0 1.12E+0 98 κ κ λmax #it #it λ max 40 0.089 1.20E+5 5.13E+2 6.05E+0 1.06E+0 419 89 0.045 2.90E+6 1.39E+3 5.72E+0 1.15E+0 1158 134	CPU CPU 0.0129 0.0088 0.1864 0.0986 3.1635 0.9512
	Fluctuated meshes	
	h T 0.163 8.76E+2 5.28E+1 1.00E+0 1.08E+0 49 κ κ λmax #it #it λ max 24 0.085 2.60E+4 8.33E+2 1.00E+0 1.10E+0 107 37 0.043 8.31E+5 6.76E+3 1.00E+0 1.12E+0 77 27	CPU CPU 0.0071 0.0100 0.0941 0.0611 0.5714 0.4546
	Sinusoidal meshes	
	h T 0.156 7.75E+2 4.80E+1 1.00E+0 1.06E+0 50 κ κ λmax #it #it λ max 23 0.081 2.11E+4 7.93E+2 1.00E+0 1.12E+0 42 16 0.041 6.75E+5 7.86E+3 1.00E+0 1.13E+0 82 24	CPU CPU 0.0096 0.0072 0.0760 0.0574 0.5812 0.4406

3.2 Test case b

Table 3 :

 3 Test b: solver statistics before and after the preconditioning.

Table 4 :

 4 Test c: solver statistics before and after the preconditioning.

	Cartesian meshes	
	h T 0.125 8.07E+2 4.57E+1 1.00E+0 1.11E+0 16 κ κ λmax #it #it λ max 9 0.063 1.62E+4 7.22E+2 1.00E+0 1.14E+0 23 8 0.031 5.15E+5 7.66E+3 1.00E+0 1.16E+0 29 12	CPU CPU 0.0274 0.0153 0.1933 0.1067 1.4337 0.9794
	Kershaw meshes	
	h T 0.178 3.08E+3 8.41E+1 8.81E+0 1.07E+0 104 39 κ κ λmax #it #it λ max 0.089 1.22E+5 5.33E+2 1.00E+1 1.17E+0 441 81 0.045 3.71E+6 1.18E+3 1.03E+1 1.20E+0 352 47	CPU CPU 0.0399 0.0191 0.3149 0.1235 2.3797 1.0002
	Fluctuated meshes	
	h T 0.163 1.17E+3 5.49E+1 1.26E+0 1.10E+0 48 κ κ λmax #it #it λ max 19 0.085 2.44E+4 8.41E+2 1.00E+0 1.10E+0 44 16 0.043 4.99E+5 4.42E+3 1.00E+0 1.14E+0 38 13	CPU CPU 0.0290 0.0111 0.2095 0.1008 1.6345 1.0540
	Sinusoidal meshes	
	h T 0.156 1.10E+3 5.14E+1 1.37E+0 1.10E+0 37 κ κ λmax #it #it λ max 15 0.081 2.05E+4 8.28E+2 1.02E+0 1.14E+0 25 11 0.041 4.54E+5 6.22E+3 1.00E+0 1.17E+0 36 13	CPU CPU 0.0400 0.0260 0.1977 0.0981 1.5419 1.0680

3.4 Test case d

Table 5 :

 5 Test d: solver statistics before and after the preconditioning.

	125 2.47E+3 8.74E+1 1.22E+1 1.01E+0 66 0.063 2.69E+4 6.68E+2 7.43E+0 1.02E+0 46 0.031 4.53E+5 6.96E+3 4.17E+0 1.05E+0 74	27 18 14	0.0254 0.0153 0.1849 0.0905 1.4793 1.0899
	Kershaw meshes		
	h T 0.178 3.35E+3 5.72E+1 2.42E+1 1.10E+0 145 κ κ λmax #it #it λ max 43 0.089 6.90E+4 2.22E+2 2.46E+1 1.05E+0 618 98 0.045 1.59E+6 1.08E+3 1.73E+1 1.12E+0 1017 111	CPU CPU 0.0321 0.0209 0.3600 0.1235 3.8786 1.1868
	Fluctuated meshes		
	h T 0.163 3.49E+3 6.30E+1 1.66E+1 9.95E-1 κ κ λmax λ max 0.085 7.39E+4 6.56E+2 1.32E+1 1.11E+0 342 #it #it 131 37 64 0.043 1.41E+6 2.02E+3 8.68E+0 1.05E+0 284 44	CPU CPU 0.0377 0.0211 0.2631 0.1088 2.1575 1.0610
	Sinusoidal meshes		
	h T 0.156 5.63E+3 6.63E+1 1.92E+1 1.08E+0 145 κ κ λmax #it #it λ max 32 0.081 9.43E+4 5.74E+2 1.53E+1 1.05E+0 152 31 0.041 1.69E+6 1.96E+3 1.01E+1 1.13E+0 162 26	CPU CPU 0.0294 0.0172 0.2138 0.1063 1.7939 0.9587

Table 6 :

 6 Test e: solver statistics before and after the preconditioning for = 33.

Table 7 :

 7 Predicted thermal conductivity of poplar with the real and the transformed morphology following the peculiar orthotropic directions of wood. Table8indicates the solver performance. The rst column lists the REV number. The second one informs the CPU time of the solver required to compute the three conductivities λ t R , λ t τ and λ t L . The last one provides the maximum of the errors committed in evaluating the latter values i.e.,Max residual = max Errorλ t R , Error λ t τ , Error λ tOne infers that the method is ecient and accurate on the Cartesian morphology, because the phases are quite well placed in parallel and ranged following the longitudinal direction compared to sinusoidal sample.

		λ t (W/(m.K))	REV1 REV2 REV3 REV4 REV5
	Cartesian	λ t R λ t τ	0.1906 0.1705 0.1430 0.1506 0.1522 0.1841 0.1466 0.1336 0.1254 0.1314
		λ t L	0.2507 0.2238 0.2009 0.2021 0.2046
	Sinusoidal	λ t R λ t τ	0.1814 0.1657 0.1317 0.1418 0.1441 0.1850 0.1511 0.1351 0.1266 0.1338
		λ t L	0.2386 0.2153 0.1864 0.1876 0.1920

L

.

Table 8 :

 8 Solver performance.
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