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Abstract

On sparse graphs, Roditty and Williams [2013] proved that no O(n2−ε)-
time algorithm achieves an approximation factor smaller than 3

2
for

the diameter problem unless SETH fails. In this article, we solve an
open question formulated in the literature: can we use the structural
properties of median graphs to break this global quadratic barrier?
We propose the first combinatorial algorithm computing exactly all
eccentricities of a median graph in truly subquadratic time. Median
graphs constitute the family of graphs which is the most studied in met-
ric graph theory because their structure represents many other discrete
and geometric concepts, such as CAT(0) cube complexes. Our result gen-
eralizes a recent one, stating that there is a linear-time algorithm for
all eccentricities in median graphs with bounded dimension d, i.e. the
dimension of the largest induced hypercube. This prerequisite on d is
not necessary anymore to determine all eccentricities in subquadratic
time. The execution time of our algorithm is O(n1.6456 logO(1) n).
We provide also some satellite outcomes related to this gen-
eral result. In particular, restricted to simplex graphs, this
algorithm enumerates all eccentricities with a quasilinear run-
ning time. Moreover, an algorithm is proposed to compute
exactly all reach centralities in time O(23dn logO(1) n).

Keywords: Median graphs, Diameter, Eccentricities, Hypercubes
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1 Introduction

Median graphs can be certainly identified as the most important family of
graphs in metric graph theory. Indeed, they are related to numerous areas:
universal algebra [1, 2], CAT(0) cube complexes [3, 4], abstract models of
concurrency [5, 6], and genetics [7, 8]. Let d(a, b) be the length (i.e. number of
edges) of the shortest (a, b)-path for a, b ∈ V and I(a, b) be the set made up of
all vertices u metrically between a and b, i.e. d(a, b) = d(a, u)+d(u, b). Median
graphs are the graphs such that for any triplet of distinct vertices x, y, z ∈ V ,
the intersection I(x, y)∩ I(y, z)∩ I(z, x) is a singleton, containing the median
of this triplet, denoted by m(x, y, z).

The purpose of this article is to break the quadratic barrier for the com-
putation time of certain metric parameters on median graphs. In particular,
we focus on one of the most fundamental problems in algorithmic graph the-
ory related to distances: the diameter. Given an undirected graph G = (V,E),
the diameter is the maximum distance d(u, v) for all u, v ∈ V . Two vertices
at maximum distance form a diametral pair. An even more general problem
consists in determining all eccentricities of the graph. The eccentricity ecc(v)
of a vertex v is the maximum length of a shortest path starting from v:
ecc(v) = maxw∈V d(v, w). The diameter is thus the maximum eccentricity.

1.1 State of the art

Executing a Breadth First Search (BFS) from each vertex of an input graph G
suffices to obtain its eccentricities in O(n|E|), with n = |V |. As median graphs
are relatively sparse, |E| ≤ n log n, these multiple BFSs compute all eccen-
tricities in time O(n2 log n) for this class of graphs. Very efficient algorithms
determining the diameter already exist on other classes of graphs, for exam-
ple [9–11]. Many works have also been devoted to approximation algorithms
for this parameter. Chechik et al. [12] showed that the diameter can be approx-
imated within a factor 3

2 in time Õ(m
3
2 ) on general graphs. On sparse graphs,

it was shown in [13] that no O(n2−ε)-time algorithm can achieve an approxi-
mation factor smaller than 3

2 for the diameter unless the Strong Exponential
Time Hypothesis (SETH) fails.

Median graphs are bipartite and can be isometrically embedded into hyper-
cubes. They are the 1-skeletons of CAT(0) cube complexes [4] and the domains
of event structures [5]. They admit structural properties, such as the Mulder’s
convex expansion [14, 15]. They are strongly related to hypercube retracts [16],
Cartesian products and gated amalgams [3], but also Helly hypergraphs [17].
They do not contain induced K2,3, otherwise a triplet of vertices would admit
at least two medians. The dimension d of a median graph G is the dimension
of its largest induced hypercube. The value of this parameter is at most ⌊log n⌋
and meets this upper bound when G is an hypercube. Moreover, parameter d
takes part in the sparsity of median graphs: |E| ≤ dn.

An important concept related to median graphs is the equivalence relation
Θ. This is the reflexive and transitive closure of relation Θ0, where two edges
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are in Θ0 if they are opposite in a common 4-cycle. A Θ-class is an equivalence
class of Θ. Each Θ-class of a median graph forms a matching cutset, splitting
the graph into two convex connected components, called halfspaces. The num-
ber q ≤ n of Θ-classes corresponds to the dimension of the hypercube in which
the median graph G isometrically embeds. Value q satisfies the Euler-type for-
mula 2n−m− q ≤ 2 [18]. A recent LexBFS-based algorithm [19] identifies the
Θ-classes in linear time O(|E|) = O(dn).

Two subquadratic-time algorithms have been proposed for the recognition
of median graphs. Using convex characterizations of halfspaces, Hagauer et
al. [20] showed that median graphs can be recognized in O(n

3
2 log n). In [21],

a bijection between median and triangle-free graphs makes the recognition
algorithms for triangle-free graphs work on median ones [22]. Hence, median
graphs can be recognized in O((n log2 n)1.41) using this reduction.

There exist efficient algorithms for some metric parameters on median
graphs. For example, the median set and the Wiener index can be determined
in O(|E|) [19]. Subfamilies of median graphs have also been studied. There
is an algorithm computing the diameter and the radius in linear time for
squaregraphs [23]. A more recent contribution introduces a quasilinear time

algorithm - running in O(n logO(1) n) - for the diameter on cube-free median
graphs [24], using distance and routing labeling schemes proposed in [25]. Even-
tually, a linear-time algorithm [26] for the diameter on constant-dimension
median graphs was proposed, i.e. for median graphs satisfying d = O(1).

The existence of a truly subquadratic-time algorithm for the diameter on all
median graphs is open and was recently formulated in [19, 24]. An even more
ambitious question can be asked. Can this subquadratic barrier be overpassed
for the problem of finding all eccentricities of a median graph ? As the total
size of the output is linear and this problem generalizes the diameter one,
this question is legitimate. More generally, the question holds for all metric
parameters (except the median set and the Wiener index for which a linear-
time algorithm was recently designed). In this article, we propose the first
subquadratic-time algorithm computing all eccentricities on median graphs.

1.2 Contributions

Our first contribution in this paper is the design of a quasilinear, i.e.
O((log n)O(1)n), time algorithm computing the diameter of simplex graphs.
A simplex graph K(G) = (VK , EK) of a graph G is obtained by considering
the induced complete graphs (cliques) of G as vertices VK . Then, two of these
cliques are connected by an edge if they differ by only one element: one is C,
the other is C ∪ {v}. These edges form the set EK . All simplex graphs are
median [3, 27]. Moreover, we observe that simplex graphs admit an interesting
property: they admit a central vertex - representing the empty clique - and
every Θ-class has an edge incident to that vertex (Lemma 13, Section 3.1).

We describe the algorithm in a few words. We observed that the eccentric-
ities of each vertex of a simplex graph could be written as functions of the size
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of certain sets of pairwise orthogonal Θ-classes (POFs). Based on that prop-
erty, we considered an ordering of the POFs based on their cardinality and
execute partition refinements. This reveals us a tree structure of the POFs
from which the eccentricity of each vertex can be extracted.

First, this algorithm extends the set of median graphs for which a quasilin-
ear time procedure computing the diameter exists. Indeed, simplex graphs form
a sub-class of median graphs containing instances with unbounded dimension
d.

• There is a combinatorial algorithm determining the diameter and all
eccentricities of simplex graphs in O((d3+log n)n): Corollary 1, Section 3.2.

Second, we remark that this method can be integrated to the algorithm
already proposed in [26] to compute all eccentricities of median graphs in
time O(2O(d log d)n). This allows us to decrease this running time. Thanks to
this modification, the new algorithm proposed computes all eccentricities of
a median graph in Õ(22dn), where notation Õ neglects poly-logarithmic fac-
tors. Even if the algorithm stays linear for constant-dimension median graphs,
observe that the dependence on d decreases, from a slightly super-exponential
function to a simple exponential one.

• There is a combinatorial algorithm determining all eccentricities of median
graphs in Õ(22dn): Theorem 9, Section 4.1.

The second and main contribution in this paper is the design of a
subquadratic-time dynamic programming procedure which computes all eccen-
tricities of any median graph. Here, the linear simple-exponential-FPT algo-
rithm for all eccentricities presented above plays a crucial role.: it is the base
case. This framework consists in partitioning recursively the input graph G
into the halfspaces of its largest Θ-class. With our construction, the leaves of
this recursive tree are median graphs with dimension at most 1

3 log n and we
can apply the former linear-time FPT algorithm.

• There is a combinatorial algorithm determining all eccentricities of median
graphs in Õ(n

5
3 ): Theorem 10, Section 4.2.

We terminate the article with some improvements of the framework
we designed. We focus on the computation of all reach centralities [28]
in a median graph. The reach centrality of a vertex u is the maximum
value min {d(s, u), d(u, t)} over all pairs s, t satisfying u ∈ I(s, t). A linear
simple-exponential-FPT algorithm is proposed, as for eccentricities.

• There is a combinatorial algorithm determining all reach centralities of
median graphs in Õ(23dn): Theorem 12, Section 5.1.

Furthermore, we define a new discrete structure on median graphs: the
maximal outgoing POFs (MOPs), generalizing the POFs used throughout the
paper and defined in [26]. We propose an alternative procedure to compute
all eccentricities, based on the enumeration of MOPs. Furthermore, the MOPs
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admit an interesting property: for median graphs with “large” d, their number
is subquadratic. This provides us with a better subquadratic-time algorithm for
the eccentricities using the following win-win approach: either the dimension
d of the input graph G is “small” and the linear FPT algorithm is executed
fast, or the dimension is “large”, then the MOPs can be enumerated fast and
our new procedure ensures a smaller runtime.

• There is a combinatorial algorithm determining all eccentricities in Õ(nβ),
where β = 1.6456: Theorem 16, Section 5.2.

All these outcomes put in evidence a relationship between the design of
linear-time FPT algorithms and the design of subquadratic-time algorithms
determining metric parameters on median graphs. We believe that the ideas
proposed to establish all these results represent interesting tools to break the
subquadratic barrier on other open questions.

1.3 Organization

In Section 2, we recall the definition of median graphs. The well-known proper-
ties and concepts related to them are listed, among them Θ-classes, signature,
and POFs. Section 3 is utterly dedicated to simplex graphs: we establish some
characterizations of these graphs and we present our quasilinear-time algo-
rithm determining their eccentricities. In Section 4, we show how to obtain
a linear simple-exponential-FPT algorithm for all eccentricities of a median
graph, parameterized by the dimension d. Thanks to it, we propose a dynamic
programming procedure to transform the computation of eccentricities of any
median graph into a sequence of constant-dimension cases. In Section 5, we
extend the results obtained so far. We present a linear simple-exponential-FPT
algorithm computing all reach centralities of a median graph, parameterized
by d. Moreover, we define the notion of MOPs, provide an upper bound of
their cardinality and show the impact of this bound on the time complexity on
the algorithms proposed earlier. Eventually, we conclude in Section 6 and give
some directions of research which could follow the contributions of this article.

2 Median graphs

In this section, we recall some notions related to distances in graphs, and more
particularly median graphs. Two important tools are presented: the Θ-classes,
which are equivalences classes over the edge set, and the Pairwise Orthogonal
Families (POFs) characterizing Θ-classes belonging to a common hypercube.

2.1 Θ-classes

All graphs G = (V,E) considered in this paper are undirected, unweighted,
simple, finite and connected. We denote by N(u) the open neighborhood of
u ∈ V , i.e. the set of vertices adjacent to u in G. We extend it naturally: for
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any set A ⊆ V , the neighborhood N(A) of A is the set of vertices outside A
adjacent to some u ∈ A.

Given two vertices u, v ∈ V , let d(u, v) be the distance between u and v,
i.e. the length of the shortest (u, v)-path. The eccentricity ecc(u) of a vertex
u ∈ V is the length of the longest shortest path starting from u. Put formally,
ecc(u) is the maximum value d(u, v) for all v ∈ V : ecc(u) = maxv∈V d(u, v).
The diameter of graph G is the maximum distance between two of its vertices:
diam(G) = maxu∈V ecc(u).

We denote by I(u, v) the interval of pair u, v. It contains exactly
the vertices which are metrically between u and v: I(u, v) =
{x ∈ V : d(u, x) + d(x, v) = d(u, v)}. The vertices of I(u, v) are lying on at
least one shortest (u, v)-path.

We say that a set H ⊆ V (or the induced subgraph G [H]) is convex if
I(u, v) ⊆ H for any pair u, v ∈ H. Moreover, we say that H is gated if any
vertex v /∈ H admits a gate gH(v) ∈ H, i.e. a vertex that belongs to all intervals
I(v, x), x ∈ H. For any x ∈ H, we have d(v, gH(v)) + d(gH(v), x) = d(v, x).
Gated sets are convex by definition.

Given an integer k ≥ 1, the hypercube of dimension k, Qk, is a graph
representing all the subsets of {1, . . . , k} as the vertex set. An edge connects
two subsets if one is included into the other and they differ by only one element.
Hypercube Q2 is a square and Q3 is a 3-cube.

Definition 1 (Median graph) A graph is median if, for any triplet x, y, z of distinct
vertices, the set I(x, y)∩ I(y, z)∩ I(z, x) contains exactly one vertex m(x, y, z) called
the median of x, y, z.

Observe that certain well-known families of graphs are median: trees, grids,
squaregraphs [29], and hypercubes Qk. Median graphs are bipartite and do not
contain an induced K2,3 [3, 14, 30]. They can be obtained by Mulder’s convex
expansion [14, 15] starting from a single vertex.

(a) Tree, d = 1 (b) Squaregraph, d = 2 (c) 4-cube, d = 4

Fig. 1: Examples of median graphs
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Now, we define a parameter which has a strong influence on the study
of median graphs. The dimension d = dim(G) of a median graph G is the
dimension of the largest hypercube contained in G as an induced subgraph.
In other words, G admits Qd as an induced subgraph, but not Qd+1. Median
graphs with d = 1 are exactly the trees. Median graphs with d ≤ 2 are called
cube-free median graphs.

Figure 1 presents three examples of median graphs. (a) is a tree: d = 1. (b)
is a cube-free median graph: it has dimension d = 2. To be more precise, it is
a squaregraph [29], which is a sub-family of cube-free median graphs. The last
one (c) is a 4-cube: it has dimension d = 4.

We provide a list of properties satisfied by median graphs. In particular,
we define the notion of Θ-classes which is a key ingredient of several existing
algorithms [19–21].

In general graphs, all gated subgraphs are convex. The reverse is true in
median graphs.

Lemma 1 (Convex⇔Gated [3, 19]) Any convex subgraph of a median graph is gated.

To improve readibility, edges (u, v) ∈ E are sometimes denoted by uv. We
recall the notion of Θ-class, which is well explained in [19], and enumerate some
properties related to it. We say that the edges uv and xy are in relation Θ0 if
they form a square uvyx, where uv and xy are opposite edges. Then, Θ refers
to the reflexive and transitive closure of relation Θ0. Let q be the number of
equivalence classes obtained with this relation. The classes of the equivalence
relation Θ are denoted by E1, . . . , Eq. Concretely, two edges uv and u′v′ belong
to the same Θ-class if there is a sequence uv = u0v0, u1v1, . . . , urvr = u′v′ such
that uivi and ui+1vi+1 are opposite edges of a square. We denote by E the
set of Θ-classes: E = {E1, . . . , Eq}. To avoid confusions, let us highlight that
parameter q is different from the dimension d: for example, on trees, d = 1
whereas q = n− 1. Moreover, the dimension d is at most ⌊log n⌋ in general.

Lemma 2 (Θ-classes in linear time [19]) There exists an algorithm which computes
the Θ-classes E1, . . . , Eq of a median graph in linear time O(|E|) = O(dn).

In median graphs, each class Ei, 1 ≤ i ≤ q, is a perfect matching cutset
and its two sides H ′

i and H
′′
i satisfy nice properties, that are presented below.

Lemma 3 (Halfspaces of Ei [15, 19, 20]) For any 1 ≤ i ≤ q, the graph G deprived
of edges of Ei, i.e. G\Ei = (V,E\Ei), has two connected components H ′

i and H ′′
i ,

called halfspaces. Edges of Ei form a matching: they have no endpoint in common.
Halfspaces satisfy the following properties.

• Both H ′
i and H ′′

i are convex/gated.
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• If uv is an edge of Ei with u ∈ H ′
i and v ∈ H ′′

i , then
H ′

i = W (u, v) = {x ∈ V : d(x, u) < d(x, v)} and H ′′
i = W (v, u) =

{x ∈ V : d(x, v) < d(x, u)}.

H ′
i H ′′

i = ∂H ′′
i

∂H ′
i

Ei

Fig. 2: A class Ei with sets H ′
i, H

′′
i , ∂H

′
i, ∂H

′′
i

We denote by ∂H ′
i the subset of H

′
i containing the vertices which are adja-

cent to a vertex in H ′′
i : ∂H

′
i = N(H ′′

i ) Put differently, the set ∂H ′
i is made up

of vertices of H ′
i which are endpoints of edges in Ei. Symmetrically, set ∂H ′′

i

contains the vertices of H ′′
i which are adjacent to H ′

i. We say these sets are
the boundaries of halfspaces H ′

i and H ′′
i respectively. Figure 2 illustrates the

notions of Θ-class, halfspace and boundary on a small example. In this par-
ticular case, an halfspace is equal to its boundary: ∂H ′′

i = H ′′
i . The vertices of

∂H ′
i are colored in blue.

Lemma 4 (Boundaries [15, 19, 20]) Both ∂H ′
i and ∂H

′′
i are convex/gated. Moreover,

the edges of Ei define an isomorphism between ∂H ′
i and ∂H ′′

i .

As a consequence, suppose uv and u′v′ belong to Ei: if uu
′ is an edge

and belongs to class Ej , then vv′ is an edge too and it belongs to Ej . We
terminate this list of lemmas with a last property dealing with the orientation
of edges from a canonical basepoint v0 ∈ V . The v0-orientation of the edges
of G according to v0 is such that, for any edge uv, the orientation is # »uv if
d(v0, u) < d(v0, v). Indeed, we cannot have d(v0, u) = d(v0, v) as G is bipartite.
The v0-orientation is acyclic.

Lemma 5 (Orientation [19]) All edges can be oriented according to any canonical
basepoint v0.
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From now on, we suppose that an arbitrary basepoint v0 ∈ V has been
selected and we refer automatically to the v0-orientation when we mention
incoming or outgoing edges.

2.2 Shortest paths and signature

We fix an arbitrary canonical basepoint v0 and for each class Ei, we say that
the halfspace containing v0 is H ′

i. Given two vertices u, v ∈ V , we define the
set which contains the Θ-classes separating u from v.

Definition 2 (Signature σu,v) We say that the signature of the pair of vertices u, v,
denoted by σu,v, is the set of classes Ei such that u and v are separated in G\Ei. In
other words, u and v are in different halfspaces of Ei.

The signatures of two vertices provide us with the composition of any
shortest (u, v)-path. Indeed, all shortest (u, v)-paths contain exactly one edge
for each class in σu,v.

Lemma 6 ([26]) For any shortest (u, v)-path P , the edges in P belong to classes in
σu,v and, for any Ei ∈ σu,v, there is exactly one edge of Ei in path P . Conversely,
a path containing at most one edge of each Θ-class is a shortest path between its
departure and its arrival.

This result is a direct consequence of the convexity of halfspaces. By con-
tradiction, a shortest path that would pass through two edges of some Θ-class
Ei would escape temporarily from an halfspace, say w.l.o.g H ′

i, which is convex
(Lemma 3).

Definition 2 can be generalized: given a set of edges B ⊆ E, its signature is
the set of Θ-classes represented in that set: {Ei : uv ∈ Ei ∩B}. The signature
of a path is the set of classes which have at least one edge in this path. In this
way, the signature σu,v is also the signature of any shortest (u, v)-path. The
signature of a hypercube is the set of Θ-classes represented in its edges: the
cardinality of the signature is thus equal to the dimension of the hypercube.

2.3 Orthogonal Θ-classes and hypercubes

We present now another important notion on median graphs: orthogonality.
In [31], Kovse studied a relationship between splits which refer to the halfspaces
of Θ-classes. It says that two splits {H ′

i, H
′′
i } and

{
H ′

j , H
′′
j

}
are incompatible if

the four sets H ′
i ∩H ′

j , H
′′
i ∩H ′

j , H
′
i ∩H ′′

j , and H
′′
i ∩H ′′

j are nonempty. Another
definition was proven equivalent to this one.

Definition 3 (Orthogonal Θ-classes) We say that classes Ei and Ej are orthogonal
(Ei ⊥ Ej) if there is a square uvyx in G, where uv, xy ∈ Ei and ux, vy ∈ Ej .
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Indeed, classes Ei and Ej are orthogonal if and only if the splits produced
by their halfspaces are incompatible.

Lemma 7 (Orthogonal⇔Incompatible [26]) Given two Θ-classes Ei and Ej of a
median graph G, the following statements are equivalent:

• Classes Ei and Ej are orthogonal,
• Splits {H ′

i, H
′′
i } and

{
H ′

j , H
′′
j

}
are incompatible,

• The four sets ∂H ′
i ∩ ∂H ′

j, ∂H
′′
i ∩ ∂H ′

j, ∂H
′
i ∩ ∂H ′′

j , and ∂H ′′
i ∩ ∂H ′′

j are
nonempty.

The concept of orthogonality is sometimes described with different words in
the literature depending on the context: incompatible, concurrent or crossing.
We say that Ei and Ej are parallel if they are not orthogonal, that is Hi ⊆ Hj

for some Hi ∈ {H ′
i, H

′′
i } and Hj ∈

{
H ′

j , H
′′
j

}
.

We pursue with a property on orthogonal Θ-classes: if two edges of two
orthogonal classes Ei and Ej are incident, they belong to a common square.

Lemma 8 (Squares [5, 26]) Let xu ∈ Ei and uy ∈ Ej . If Ei and Ej are orthogonal,
then there is a vertex v such that uyvx is a square.

Pairwise orthogonal families. We focus on the set of Θ-classes which
are pairwise orthogonal.

Definition 4 (Pairwise Orthogonal Family) We say that a set of classes X ⊆ E is
a Pairwise Orthogonal Family (POF for short) if for any pair Ej , Eh ∈ X, we have
Ej ⊥ Eh.

The empty set is considered as a POF. We denote by L the set of POFs
of the median graph G. The notion of POF is strongly related to the induced
hypercubes in median graphs. First, observe that all Θ-classes of a median
graph form a POF if and only if the graph is a hypercube of dimension log n [31,
32]. Secondly, the next lemma makes precise the relationship between POFs
and hypercubes.

Lemma 9 (POFs adjacent to a vertex [26]) Let X be a POF, v ∈ V , and assume
that for each Ei ∈ X, there is an edge of Ei adjacent to v. There exists a hypercube
Q containing vertex v and all edges of X adjacent to v. Moreover, the Θ-classes of
the edges of Q are the classes of X.

There is a natural bijection between the vertices of a median graph and
the POFs. The next lemma exhibits this relationship.
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Lemma 10 (POFs and hypercubes [7, 31, 33]) Consider an arbitrary canonical
basepoint v0 ∈ V and the v0-orientation for the median graph G. Given a vertex
v ∈ V , let N−(v) be the set of edges going into v according to the v0-orientation. Let
E−(v) be the classes of the edges in N−(v). The following propositions are true:

• For any vertex v ∈ V , E−(v) is a POF. Moreover, vertex v and the edges of
N−(v) belong to an induced hypercube formed by the classes E−(v). Hence,
|E−(v)| = |N−(v)| ≤ d.

• For any POF X, there is an unique vertex vX such that E−(vX) = X. Vertex
vX is the closest-to-v0 vertex v such that X ⊆ E−(v).

• The number of POFs in G is equal to the number n of vertices: n = |L|.

E1

E2

E3

E4

v0

v1

v2

v3

v4

v5

v6

v7

Vertex v0 v1 v2 v3
POF ∅ {E3} {E1} {E1, E3}
Vertex v4 v5 v6 v7
POF {E4} {E2} {E2, E3} {E2, E4}

Fig. 3: Illustration of the bijection between V and the set of POFs.

An example is given in Figure 3 with a small median graph of dimension
d = 2. v0 is the canonical basepoint and edges are colored according to their Θ-
class. For example, v1v3 ∈ E1. We associate with any POF X of G the vertex
vX satisfying E−(vX) = X with the v0-orientation. Obviously, the empty POF
is associated with v0 which has no incoming edges.

A straightforward consequence of this bijection is that parameter q, the
number of Θ-classes, is less than the number of vertices n. But it can be used
less trivially to enumerate the POFs of a median graph in linear time [7, 31].
Given a basepoint v0, we say that the basis (resp. anti-basis) of an induced
hypercubeQ is the single vertex v such that all edges of the hypercube adjacent
to v are outgoing from (resp. incoming into) v. Said differently, the basis of Q
is its closest-to-v0 vertex and its anti-basis is its farthest-to-v0 vertex. What
Lemma 10 states is also that we can associate with any POF X a hypercube
QX which contains exactly the classes X and admits vX as its anti-basis.
This observation implies that the number of POFs is less than the number of
hypercubes in G. Moreover, the hypercube QX is the closest-to-v0 hypercube
formed with the classes in X. Figure 4a shows a vertex v with its incoming
and outgoing edges with the v0-orientation. The dashed edges represent the
hypercube with anti-basis v and POF E−(v).

Number of hypercubes. We recall a formula establishing a relationship
between the number of POFs and the number of hypercubes in the literature.
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Ei

Ej Eh

v

(a) The hypercube “induced” by the edges
incoming into a vertex (its antibasis).

Ei
Eh

Ej

∂H ′′
i ∩ ∂H ′′

j
v′

v
Q′

Q

(b) A POF signing at least two hyper-
cubes Q and Q′ is not maximal.

Fig. 4: Properties of POFs

Let α(G) (resp. β(G)) be the number of hypercubes (resp. POFs) in G. Let
βi(G) be the number of POFs of cardinality i ≤ d in G. According to [7, 31],
we have:

α(G) =

d∑
i=0

2iβi(G) (1)

Equation (1) produces a natural upper bound for the number of hyper-
cubes.

Lemma 11 (Number of hypercubes) α(G) ≤ 2dn.

Value α(G) considers all hypercubes, in particular those of dimension 0,
i.e. vertices. From now on, the word “hypercube” refers to the hypercubes of
dimension at least one.

Each hypercube in the median graph G can be defined with only its
anti-basis v and the edges N̂ of the hypercube that are adjacent and going
into v according to the v0-orientation. These edges are a subset of N−(v):

N̂ ⊆ N−(v). Conversely, given a vertex v, each subset of N−(v) produces a
hypercube which admits v as an anti-basis (this hypercube is a sub-hypercube
of the one obtained with v and N−(v), Lemma 10). Another possible bijec-
tion is to consider a hypercube as a pair composed of its anti-basis v and the
Θ-classes Ê of the edges in N̂ (its signature).

As a consequence, a simple graph search such as BFS enables us to
enumerate the hypercubes in G in time O(d2dn).

Lemma 12 (Enumeration of hypercubes [26]) We can enumerate all triplets

(v, u, Ê), where v is the anti-basis of a hypercube Q, u its basis, and Ê the signature
of Q in time O(d2dn). Moreover, the list obtained fulfils the following partial order: if

d(v0, v) < d(v0, v
′), then any triplet (v, u, Ê) containing v appears before any triplet

(v′, u′, Ê ′) containing v′.
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The enumeration of hypercubes is thus executed in linear time for median
graphs with constant dimension. In summary, given any median graph, one can
compute the set of Θ-classes and their orthogonality relationship (for each Ei,
the set of Θ-classes orthogonal to Ei) in linear time, and the set of hypercubes
with its basis, anti-basis and signature in Õ(2dn).

Maximal POFs. We terminate this preliminary section with a few words
on maximal POFs, i.e. POFs X such that there is no other POF Y ⊋ X.
There is a natural bijection between maximal POFs and maximal hypercubes,
put in evidence by the following result.

Theorem 1 (Maximal POFs and hypercubes) For any maximal hypercube, its sig-
nature is a maximal POF. Conversely, for any maximal POF X, there exists a unique
hypercube of signature X. Its anti-basis is the vertex v such that E−(v) = X.

Proof Let Q be a maximal hypercube and XQ its signature. We begin with the proof
that XQ is a maximal POF. Assume that Y ⊋ XQ. As Y is a POF, there is a vertex

vY ∈ V satisfying E−(vY ) = Y . Similarly, we denote by vX the vertex such that
E−(vX) = XQ. Both vX and vY belong to the boundary of any Θ-class of XQ (the
one which is the farthest from v0). In brief,

vX , vY ∈
⋂

Ei∈XQ

∂H ′′
i (2)

As every ∂H ′′
i is gated, then the intersection written in Eq. (2) is convex/gated too.

Thus, the shortest (vX , vY )-path is entirely contained in set
⋂

XQ
∂H ′′

i . Let (vX , z)
be the first edge of this path and Ej the Θ-class of this edge. Each Θ-class form
an isomorphism between its two boundaries (Lemma 4): as z ∈

⋂
XQ

∂H ′′
i , there is

a hypercube isomorphic to Q in the boundary of Ej containing z. Therefore, there
is a hypercube of dimension |XQ| + 1 containing all vertices of Q. This yields a
contradiction as Q is supposed to be maximal.

Conversely, let Q be a hypercube and assume that its signature XQ is a maximal
POF. We suppose that there is a second hypercube Q′ ̸= Q such that XQ = XQ′ .
Then, the set

⋂
XQ

∂H ′′
i contains at least two elements: the anti-bases of hypercubes

Q and Q′. Using the same argument as above, we can put in evidence an edge with
two endpoints in

⋂
XQ

∂H ′′
i . The Θ-class of this edge is thus orthogonal of any class

Ei of XQ which defines an isomorphism between ∂H ′
i and ∂H ′′

i . Consequently, we
obtain a POF superset of XQ, a contradiction.

For any POF X, there is at least one hypercube with signature X such that its
anti-basis v verifies E−(v) = X according to Lemma 10. In summary, any maximal
POF X can be associated with an unique hypercube of signature X. □

Figure 4b illustrates this proof with two squares Q and Q′ with the same
signature {Ei, Eh}. One can observe the appearance of a hypercube of larger
dimension containing Q, giving evidence of the non-maximality of XQ.

The number of maximal hypercubes in a median graph is thus equal to
the number of maximal POFs, which is itself at most linear in the number of
vertices.
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3 Simplex graphs

In this section, we present a combinatorial algorithm computing the diameter
and all eccentricities of simplex graphs in quasilinear time, i.e. in O((d3 +
log n)n). We begin with some properties of these graphs and then describe the
algorithm.

3.1 Simplex and crossing graphs: cliques, diameter and
opposites

Given any undirected graph G, the vertices of the simplex graph K(G) associ-
ated to G represent the induced cliques (not necessarily maximal) of G. Two
of these cliques are connected by an edge if they differ by exactly one element.

Definition 5 (Simplex graphs [34]) The simplex graph K(G) = (VK , EK) of G =
(V,E) is made up of the vertex set VK = {C ⊆ V : C induced complete graph of G}
and the edge set EK =

{
(C,C′) : C,C′ ∈ VK , C ⊊ C′, |C′| − |C| = 1

}
.

Observe that the empty clique of G also corresponds to a vertex v∅ inK(G).
Therefore v∅ has degree n = |V | in K(G). Figure 5 shows, as an example, the
simplex graph of a C5. Labels indicate the correspondence between vertices
and cliques. We note that simplex graphs of cycles are cogwheels, i.e. wheels
with a subdivision on each external edge.

The simplex graph of a n-complete graph is a hypercube of dimension n.
More generally, simplex graphs are median [3, 27]. We will see later than cer-
tain median graphs are not simplex graphs. As a subfamily of median graphs,
the design of a subquadratic-time algorithm for the eccentricities on simplex
graphs is of interest. Moreover, the dimension d of simplex graphs can be
unbounded because hypercubes belong to this class of graphs (their dimension
is logarithmic in the size of the vertex set).

1

2

3

4

5

∅

{1}

{2} {3}

{4}

{5}

{1, 2}

{2, 3}

{3, 4}

{4, 5}{1, 5}

Fig. 5: A cycle C5 and its simplex graph K(C5)

Simplex graphs can be characterized as particular median graphs.
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Theorem 2 Let G be a median graph. The following statements are equivalent:

(1) G is a simplex graph.

(2) There is a vertex v0 ∈ V (G) such that each Θ-class of G is adjacent to v0, i.e.
∀1 ≤ i ≤ q,∃vi ∈ V (G), v0vi ∈ Ei.

(3) There is a vertex v0 ∈ V (G) contained in any maximal hypercube of G.

Proof (2)⇔(3). Assume each Θ-class is adjacent to v0. For each POF X, there is
a hypercube with signature X and containing v0 (Lemma 9). For each maximal
hypercube, its signature (the set of Θ-classes it contains) is a maximal POF and,
moreover, no other maximal hypercube has the same signature (Theorem 1). For this
reason, each maximal hypercube necessarily contains v0. Conversely, if any maximal
hypercube contains v0, as each Θ-class belongs to at least one maximal POF, then
each Θ-class is necessarily adjacent to v0.

(2)⇒(1). We consider a median graph G such that all Θ-classes are adjacent to
v0. Our objective is to prove that there exists G′ such that G = K(G′). Let G′

be the graph where its vertices represent the Θ-classes of G and two of them are
connected by an edge if the Θ-classes are orthogonal. In this way, every clique of
G′ (even the empty one) corresponds to a POF of G. For any POF X of G, its Θ-
classes are adjacent to v0, so there exists a hypercube containing v0 with signature
X, according to Lemma 9. Moreover, given a POF X, this hypercube is unique. Its
anti-basis (opposite of v0) thus represents the clique X in G′. Conversely, according
to the v0-orientation, each vertex admits its own set of incoming Θ-classes which
forms a POF (Lemma 10). Therefore, we can associate to each vertex of G a clique
of G′.

Then, two vertices u, v of G are adjacent if and only if E−(v) = E−(u) ∪ {Ei},
for some class Ei. On one hand, suppose uv ∈ Ei. Assume that there exists Ej ∈
E−(u)\E−(v). Then, Ej is parallel to Ei, otherwise Ej ∈ E−(v) (Lemma 8). This
is a contradiction: as H ′′

i ⊊ H ′′
j , Ei cannot be adjacent to v0. Moreover, if Eh ∈

E−(v)\E−(u), h ̸= i, then Eh is necessarily incoming into u because of Lemma 8, as
Eh and Ei are orthogonal. So, E−(v)\E−(u) = {Ei}. On the other hand, if E−(v) =
E−(u) ∪ {Ei}, let v′ be the vertex such that v′v ∈ Ei. Again, Lemma 8 implies
that all Θ-classes incoming into v are also incoming into v′, so E−(u) ⊆ E−(v′).
Furthermore, if there is some Ej /∈ E−(u) incoming into v′, then it should be parallel
to Ei, a contradiction. Hence, v′ = u.

(1)⇒(2). Assume that G = K(G′): we denote by v∅ the vertex representing the
empty clique. By contradiction, we suppose that there exists a Θ-class which is not
adjacent to v∅: we denote it by E1. We consider the v∅-orientation of the graph.
As {E1} is a POF, there is necessarily one vertex v1 with only one incoming edge
belonging to E1. As v1 ̸= v∅, vertex v1 represents a clique of G′ of size at least 1. If v1
represents a clique of size exactly 1, then it is adjacent to v∅ because only one element
differ between the cliques represented by both v∅ and v1, which is a contradiction.
If v1 represents a clique of size at least 2, then it has at least two incoming edges.
another contradiction. In summary, if G = K(G′), each Θ-class of G is adjacent to
v∅. □
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In this section only, on simplex graphs, the canonical basepoint v0 is not
selected arbitrarily. We fix v0 as a vertex adjacent to all Θ-classes, as put in
evidence by Theorem 2. We call v0 the central vertex of the simplex graph.

What Theorem 2 says is that any simplex graph can be seen as a set
of maximal POFs (or hypercubes) that are “medianly” assembled. Indeed,
one cannot define a simplex graph given any collection of sets - excluding
subsets - representing maximal POFs. Consider as an example the collec-
tion {{E1, E2} , {E2, E3} , {E3, E1}}: it would produce a simplex graph with 3
squares with basis v0 and sharing pairwise an edge. This graph is Q−

3 (the 3-
cube minus a vertex) and is not median. The collection implies that E1, E2, E3

are pairwise orthogonal, so {E1, E2, E3} should be the maximal POF here.
The most obvious example of median graph which is not simplex is certainly

the path P4. Indeed, it has three Θ-classes which are all pairwise parallel. For
any vertex of P4, there exists a Θ-class which is not adjacent to it.

The proof (2)⇒(1) reveals the reverse application of K.

Definition 6 (Crossing graphs [34, 35]) Let G be a median graph. Its crossing graph
G# is the graph obtained by considering Θ-classes as its vertices and such that two
Θ-classes are adjacent if they are orthogonal.

Restricted to simplex graphs, this transformation is the reverse of K:
indeed, as stated in [35], G = K(G)#. The clique number of G# is exactly
the dimension of median graph G. For example, the crossing graph of a cube-
free median graph contains no triangle. Each simplex graph admits a central
vertex (v0 in Theorem 2) which represents the empty clique of G#.

Now, we focus on the problem of determining a diametral pair of a sim-
plex graph G and more generally all eccentricities. Observe that the distance
between the central vertex v0 and any vertex u of G can be deduced directly
from the edges incoming into u. We state that σv0,u = E−(u). This is a con-
sequence of Theorem 2: all Θ-classes of E−(u) are adjacent to v0, so v0 is
the basis of the hypercube with signature E−(u) and anti-basis u. A shortest
(v0, u)-path is thus made up of edges of this hypercube. The distance d(v0, u)
is equal to its dimension: d(v0, u) = |E−(u)|.

A key result is the fact that the central vertex v0 of the simplex graph
belongs to the interval I(u, v) of any pair u, v satisfying d(u, v) = ecc(u).

Lemma 13 Let u, v ∈ V (G) such that d(u, v) = ecc(u). Then, v0 ∈ I(u, v).

Proof Let H be the graph such that G = K(H). The distance d(u, v) is equal to the
number of Θ-classes of G separating them, so d(u, v) = |E−(u)△E−(v)|. Let w be the
vertex of G such that E−(w) = E−(v)\E−(u). If E−(u) ∩ E−(v) ̸= ∅, then d(u,w) =
|E−(u)△ E−(w)| = |E−(u)|+ |E−(w)| > |E−(u)\E−(v)|+ |E−(v)\E−(u)| = d(u, v).
So, d(u,w) > ecc(u), a contradiction. □
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Ei

v0

m

u v

w

Fig. 6: Illustration of the contradiction in the proof of Lemma 13.

Figure 6 shows a simple example with m = m(u, v, v0) ̸= v0 and d(v0,m) =
1. The edges are oriented according to the v0-orientation. The Θ-class Ei in
σv0,m is present alongside the interval I(m, v). The contradiction of the previ-
ous proof comes from the fact that the shortest (u, v)-path could be extended
with the vertex w which is the neighbor of v in ∂H ′

i.
Two vertices u, v forming a diametral pair cannot share a common incoming

Θ-class Ei, in other words E−(u) ∩ E−(v) = ∅, otherwise m = m(u, v, v0) ∈
I(u, v) ⊆ H ′′

i and v0 ∈ H ′
i. Moreover, the distance d(u, v) is exactly |E−(u)|+

|E−(v)| because |E−(u)| = d(v0, u) and |E−(v)| = d(v0, v). So, determining the
diameter of a simplex graph G is equivalent to maximizing the sum |X|+ |Y |,
where X and Y are two POFs of G that are disjoint. Computing the diameter
is equivalent to finding the largest pair of disjoint cliques in the crossing graph
G#. Similarly, the eccentricity of a vertex u is exactly the size |E−(u)|+|E−(v)|
of the largest pair of disjoint POFs (E−(u), E−(v)). Now, we can define the
notion of opposite.

Definition 7 Let G be a simplex graph and X a POF of G. We denote by op(X)
the opposite of X, i.e. the POF Y disjoint from X with the maximum cardinality.

op(X) = argmax
Y ∩X=∅

|Y |.

With this definition, the eccentricity of a vertex u, if we fix Xu = E−(u),
is written ecc(u) = |Xu|+ |op(Xu)|. Hence, the diameter of the simplex graph
G can be written as the size of the largest pair POF-opposite: diam(G) =
maxX∈L(|X|+ |op(X)|).

We propose now the definition of two problems on simplex graphs. The first
one, called Opposites (OPP) consists in finding all pairs POF-opposite. Its
output has thus a linear size. Given the solution of OPP on graph G, one can
deduce both the diameter and all eccentricities in O(n) time with the formulae
presented above.

Definition 8 (OPP)
Input: Simplex graph G, central vertex v0.
Output: For each POF X, its opposite op(X).
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We define an even larger version of the problem where a positive inte-
ger weight is associated with each POF. We call it Weighted Opposites
(WOPP).

Definition 9 (WOPP)
Input: Simplex graph G, central vertex v0, weight function ω : L → N+.
Output: For each POF X, its weighted opposite Y maximizing ω(Y ) such that

X ∩ Y = ∅.

Obviously, OPP is a special case of WOPP when ω is the cardinality func-
tion. In Section 3.2, we show that WOPP can be solved in quasilinear time
O((d3 + log n)n). As a consequence, all eccentricities of a simplex graph G
can also be determined with such time complexity. Moreover, we will see in
Section 4 that solving WOPP in quasilinear time implies that all eccentricities
of any median graph can be computed with a simple exponential time 2O(d)n,
improving the slightly super-exponential time proposed in [26].

3.2 Quasilinear algorithm for all eccentricities in simplex
graphs

We propose an algorithm solving WOPP in quasilinear time Õ(n).

Theorem 3 There is a combinatorial algorithm solving WOPP in time O((d3 +
logn)n).

Thus, we can compute the diameter and all eccentricities of simplex graphs
in quasilinear time, even when the dimension is not bounded.

Corollary 1 There is a combinatorial algorithm determining all eccentricities of a
simplex graph in time O((d3 + logn)n).

The entire subsection is the proof of Theorem 3. We consider a sim-
plex graph G with a central vertex v0 and a weight function ω : L → N+.
The algorithm is presented in Sections 3.2.1 and 3.2.2 and its analysis in
Section 3.2.3.

3.2.1 Tree structure of the opposites

The first step of our algorithm consists in building a binary tree T . Tree T is
a representation of a partition refinement procedure over L. We remind the
reader that partition refinement is a powerful algorithmic technique leading to
the design of linear-time algorithms for many well-known problems [36, 37]. It
consists in successive partitionings of a collection of sets.
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In our context, the collection which is splitted is the set of POFs L of the
simplex graph G. The vertices a ∈ V (T ) of tree T , called nodes, represent
the sets obtained from the successive partitionings. They are indexed with
POFs La ∈ L. The edges of T are indexed with a pair class-boolean. For each
a ∈ V (T ) with two children, the two edges connecting it to its children are
both indexed with the same Θ-class but not the same boolean. This Θ-class is
denoted by E [a]. To improve the readibility, index (E [a] , true) will be denoted
by +E [a] while (E [a] , false) becomes −E [a].

We denote by L [Ei] the adjacency list of Θ-class Ei, i.e. the list of POFs
in L which contain Ei. As at most d classes belong to any POF, the total size
of all adjacency lists is upper-bounded by dn = d|L|.

We sort the POFs in L in function of their weights ω(L) in the decreasing
order. This takes O(n log n). We denote by τω this ordering. Let L0 be the
maximum-weighted POF in L, in other words the first POF in ordering τω.

The description of the construction of T by partition refinement begins.
We assign an arbitrary ordering to the Θ-classes which are in L0, for exam-
ple based on their index. Let Ei1 , Ei2 , . . . , Eir be the classes of L0 ordered,
|L0| = r. First, we split L in two sets: one with POFs containing Ei1 , the other
with POFs which do not contain Ei1 . In brief, we obtain L [Ei1 ] and its com-
plementary. Second, we split each of these two sets regarding Θ-class Ei2 : on
one side the POFs containing Ei2 , on the other side POFs without Ei2 . We
pursue in this way with all classes of L0. At the end, there are at most 2|L0|

sets in the partition.
Until now, we obtained the top r levels of tree T . Before pursuing the

construction, we define some notations. Let a0 be the root of T . Node a0
represents the entire collection L. Let Ω be the function indicating the sets
represented by each node a ∈ V (T ). We have Ω(a0) = L. For any a ∈ T , its
index La is defined as the maximum-weighted POF of its universe Ω(a). So,
La0

= L0. The root a0 has two children, one representing L [Ei1 ] and the other
one its complementary as they are the result of a partition refinement from
Ei1 . The edges connecting a0 and its children are indexed by +Ei1 and −Ei1

respectively.
We denote by R(a) the set of Θ-classes we can find on the simple path from

a to the root a0. For example, for node a with an universe Ω(a) being the set
of POFs which contain Ei2 but not Ei1 , we have R(a) = {Ei1 , Ei2}. We write
R(a) = R+(a)∪R−(a), where R+(a) contains indices with boolean true, while
R−(a) contains indices with boolean false. In this example, R+(a) = {Ei2} and
R−(a) = {Ei1}. Set R+(a) is a POF: it contains Θ-classes which are pairwise
orthogonal, otherwise R+(a) would not be the subset of a POF belonging to L.

We pursue the construction of T . For each leaf a of the current tree, we
execute the following process: we only consider the Θ-classes of La which have
not been treated earlier, i.e. which are not in R+(a). We order them arbitrarily
and we split the universe Ω(a) successively. We pursue with the new leaves
obtained, etc. In this way, tree T can be seen as a stacking of small binary trees
(depth at most d) that we call blocks. For example, the root a0 of T belongs to
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the top block which is produced from the partition refinement over Θ-classes
of L0. In Figure 7a, we represent some nodes a of this block and their index
La with |L0| = 3: i1 = i, i2 = j, and i3 = ℓ. The leaves of this block both
belong to the top block and are the roots of another block below this one.

{Ei, Ej , Eℓ}

{Ej , Eℓ, Eq}

{Ej , Eℓ, Eq}

{Ej , Er}

a0

a1

a2

a3

−Ei +Ei

−Ej +Ej

+Eℓ−Eℓ

(a) Some nodes of T obtained with the partition refinement over L0

T
(2)
ma0

a1

a2

a3

a

(b) Some blocks of T : all blocks of layer 0 and 1, one block of layer 2. Node a has
layer 2.

Fig. 7: An example of tree T : its first block and structure

Algorithm 1 provides us with the pseudocode of a partition refinement pro-
cedure. We call it Ordered Internal Partition Refinement (OIPR). We execute
OIPR to obtain tree T with the following input: the ground set contains the
Θ-classes of G (W = E), the collection is made up of the POFs outgoing from
m with the v0-orientation (S = L) and the ordering of the sets come from
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the POFs weights (τ = τω). Each while loop (line 4) corresponds to the con-
struction of a block of T . Such step starts by picking up the first element,
say La, of a non-singleton set of P, say Ω(a). Then, we consider the Θ-classes
of La which have not been locally visited, i.e. which do not belong to R+(a)
(line 7). For each of these classes Ej , we refine the non-singleton Ω(a): we split
it successively with the POFs containing Ej and the POFs not containing Ej

(line 8).

1: Input: ground set W = {w1, . . . , wq}, collection S = {S1, . . . , SN},
Si ⊆W for any 1 ≤ i ≤ N , and an ordering τ of S.

2: Output: An ordered partition P of S made up of singletons.
3: Initialize P ← {S}, partition with a single set;
4: while there exists a part of P which is not a singleton do
5: Q← first non-singleton of the ordered partition P;
6: A← first element of Q according to τ ;
7: for every wj ∈ A non locally visited do
8: Substitute Q in P by Refine(Q, {wj});
9: endfor

end
Algorithm 1: Ordered Internal Partition Refinement (OIPR)

The time needed to run Algorithm 1, using a doubly linked list data struc-
ture, depends on the number of appearances of each element wj of the ground
set into the collection S.

Lemma 14 (Execution time of OIPR [36]) Let M(wj) be the number of sets Si ∈ S
such that wj ∈ Si. Then, OIPR runs in O(

∑q
j=1M(wj)).

In our context, values M(wj) are the sizes of adjacency lists L [Ej ]. We
explained above why the total size of these adjacency lists could not exceed dn.

Corollary 2 Computing order τω and then OIPR applied with W = E, S = L and
τ = τω can be done in O(n(d+ logn)).

Proof The time needed to sort all POFs according to their weights, i.e. in order τω,
is O(n logn). Moreover, OIPR runs in O(dn) according to Lemma 14. □

Each set obtained from a refinement is represented by a node of T . Its
children are obtained from a refinement of Ω(a) with some Θ-class Ej = E [a]:
one represents the elements of Ω(a) containing Ej (the edge from a to this
child is indexed with +Ej), the other represents the complementary (the edge
from a to this child is indexed with −Ej).
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Now, we give some notations and properties related to the tree T . At least
one partitioning is executed at each depth of tree T so, as L is finite, T is too.
Its depth is at most n = |L|. We say the layer of a node a is the number of
blocks we pass through when we traverse the simple path between the root
and a minus 1. For example, the root has layer 0 and the leaves of the top
block have layer 1. We denote by T (j), j ≥ 1, the subtree of T induced on the
set made up of (i) nodes of layer at most j − 1 and (ii) nodes of layer j which
are the roots of a block. In this way, nodes of layer j in T (j) are leaves. The
depth of T (j) is at most jd, as the depth of each block is at most d.

Certain nodes a ∈ V (T ) may admit only one child. This situation occurs
when E [a] is not orthogonal to at least one class of R+(a). Indeed, each POF
of Ω(a) contains all Θ-classes of R+(a): if R+(a) ∪ {E [a]} is not a POF, then
there is no POF superset of R+(a) ∪ {E [a]}.

For any node a, we store its universe Ω(a). With the doubly linked list data
structure for each partitioning, we can preserve the original ordering of the
POFs. Consequently, in all sets Ω(a), the POFs are sorted in function of their
weight. For any a ∈ V (T ), the maximum-weighted POF of Ω(a), i.e. index La,
is thus obtained with constant running time.

Even if the execution time of OIPR is quasilinear in n, the extra time
needed to store the tree T and particularly all sets Ω(a) may not be linear in n.
In the remainder, we will see that considering tree T (d) suffices to solving our
problem. In this way, storing T (d) becomes quasilinear in n, like the execution
of the partitioning.

3.2.2 Constraint pairs

The second step of our algorithm uses a data structure called constraint pair,
whose definition is based on tree T . We provide a dynamic programming (DP)
algorithm which computes one value per constraint pair. At the end of the
execution, we can deduce the opposite of each POF in O(1).

Definition 10 (Constraint pair) A constraint pair (a,X) is made up of a node
a ∈ V (T ) and a POF X such that (i) X ∩R(a) = ∅ and (ii) X ∪R+(a) ∈ L.

The existence of a constraint pair (a,X) implies that no class of X is
present in the edge indices from a0 to a in T . Moreover, each Θ-class of X
is orthogonal to all Θ-classes of R+(a). We denote by C the set of constraint
pairs. Let C(j) be the set of constraint pairs (a,X) such that a ∈ T (j): we have
C(j) ⊆ C(j+1) ⊆ C.

For any constraint pair (a,X), we denote by h(a,X) a POF X∗ disjoint
from X in Ω(a) with the maximum weight. For any POF L ∈ L, the POF
h(a0, L) is an opposite of L because Ω(a0) = L, so we can write, according to
Definition 7, h(a0, L) = op(L). Observe that any pair (a0, L) is a constraint
pair as R(a0) = ∅. We present a method to compute all opposites h(a0, L).
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The description of the DP algorithm starts. For any constraint pair (a,X),
we denote by a+ (resp. a−) the child of a which is the endpoint of the edge
indexed with +E [a] (resp. −E [a]) in T (Figure 8). We define the set C(a,X)
which describes the recursive calls needed to compute h(a,X). Formally, the
objective is to make sure that value h(a,X) is exactly a function of all h(a′, X ′),
where (a′, X ′) ∈ C(a,X). The construction of set C(a,X) is described below.
We distinguish four cases: A, B, C, and D.

Ω(a), La, R(a)

Ω(a−), La− , R(a−) Ω(a+), La+ , R(a+)

a

a− a+

−E [a] +E [a]

Fig. 8: Nodes a, a+ and a− in tree T .

• Case A. No class of X is in La, i.e. La ∩X = ∅. Otherwise, see next cases.
As La is the maximum-weighted POF in Ω(a) and La ∩ X = ∅, we have
h(a,X) = La. No recursive call is needed: C(a,X) = ∅.
A special case of Case A is when Ω(a) is a singleton: Ω(a) = R+(a). We
know from Definition 10 that R+(a) ∩X = ∅.

• Case B. Class E [a] belongs to X: E [a] ∈ X. Otherwise, see next cases.
As R(a−) = R(a) ∪ {E [a]}, (a−, X\(E [a])) is a constraint pair (Defini-
tion 10): R(a−)∩ (X\(E [a])) = ∅ and R+(a−) = R+(a) is orthogonal to all
Θ-classes of set X\(E [a]) ⊊ X.
We fix C(a,X) as a singleton containing (a−, X\(E [a])): C(a,X) =
{(a−, X\(E [a]))}.

• Case C. Set E [a]∪X is a POF: E [a]∪X ∈ L. As E [a] /∈ X, we have X ∩
R(a+) = X ∩R(a−) = ∅. First, R+(a−) = R+(a), so X ∪R+(a−) is a POF
and (a−, X) ∈ C. Second, R+(a+) = R+(a) ∪ E [a]: as E [a] is orthogonal
to all Θ-classes of X, R+(a+) ∪ X is a POF and (a+, X) ∈ C. These two
constraint pairs are the elements of C(a,X): C(a,X) = {(a+, X), (a−, X)}.

• Case D. Set E [a] ∪X is not a POF: E [a] ∪X /∈ L. Let X|E[a] ⊊ X be the
Θ-classes of X which are orthogonal to E [a]. Pair (a−, X) is a constraint
pair, using the same arguments as in Case C. We verify whether another pair
(a+, X|E[a]) ∈ C. As X|E[a] ⊊ X and E [a] /∈ X, we have R(a+)∩X|E[a] = ∅.
Furthermore, X|E[a] ∪ R+(a) is a POF because (a,X) is a constraint pair
and X|E[a] ∪E [a] is a POF by definition, so X|E[a] ∪R+(a+) is a POF. We

fix C(a,X) =
{
(a−, X), (a+, X|E[a])

}
.

Observe that when (a′, X ′) ∈ C(a,X), then a is a parent of a′ in T . Moreover,
X ′ ⊆ X. The size of all sets of recursive calls C(a,X) is at most two. The
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following theorem justifies that POF h(a,X) can be determined as a function
of all h(a′, X ′) satisfying (a′, X ′) ∈ C(a,X).

Theorem 4 Let (a,X) ∈ C. If C(a,X) = ∅ (Case A), h(a,X) is equal to La.
Otherwise:

h(a,X) = argmax
h(a′,X′) s.t. (a′,X′)∈C(a,X)

ω
(
h(a′, X ′)

)
(3)

Proof The justification for Case A was evoked above: as La ∩X = ∅ and La is the
maximum-weighted POF of Ω(a), then h(a,X) = La.

In Case B, E [a] ∈ X. Recall that C(a,X) =
{
(a−, X\E [a])

}
in this case.

POF h(a,X), which is disjoint from X, cannot contain class E [a]. As a conse-
quence, h(a,X) belongs to Ω(a−) which is made up of the POFs of Ω(a) without
E [a]. Moreover, h(a,X) does not contain any class of X\E [a]. We have: h(a,X) =
h(a−, X\E [a]).

In Case C, we assume that E [a]∪X is a POF. As E [a] /∈ X, h(a,X) can be either
in Ω(a−) or in Ω(a+). POFs h(a−, X) and h(a+, X) are respectively the maximum-
weighted POFs of Ω(a−) and Ω(a+) without any class of X. Equation (3) holds as
C(a,X) =

{
(a−, X), (a+, X)

}
.

In Case D, we assume that E [a] ∪ X is not a POF. As in Case C, E [a] /∈ X,
so (a−, X) is a constraint pair. If h(a,X) belongs to Ω(a−), then it is h(a−, X).
Moreover, (a+, X|E[a]) ∈ C and we prove that if h(a,X) belongs to Ω(a+), it is

h(a+, X|E[a]). Let Eh be a Θ-class of X\X|E[a]. Classes Eh and E [a] are parallel,

otherwise Eh would belong to X|E[a]. All POFs of set Ω(a+) contain E [a], so none
of them can contain Eh: it would be contradictory with the non-orthogonality of
these Θ-classes. In summary, no POF in Ω(a+) contains a Θ-class of X\X|E[a].

Therefore, determining the maximum-weighted POF of Ω(a+) disjoint from X is
equivalent to finding the maximum-weighted POF of Ω(a+) disjoint from X|E[a]. In

brief, if h(a,X) is in Ω(a+), it is h(a+, X|E[a]). Equation (3) holds as C(a,X) ={
(a−, X), (a+, X|E[a])

}
. □

The DP algorithm consists in recursively applying Equation (3) from all
h(a0, L), for any L ∈ L and store the POFs h(a,X) which are computed
throughout the execution. Case A is the base case of the recursion. Let H be
the directed acyclic graph (DAG) representing the recursive calls of our DP.
Its vertex set V (H) contains all (a,X) ∈ C such that h(a,X) is called for the
computation of certain POFs h(a0, L). Its edge set is made up of arcs from
(a,X) ∈ V (H) to elements in C(a,X). Certain constraint pairs of C may not
belong to V (H), i.e. they are not needed to compute the opposites. Figure 9
illustrates the DAG H with a vertex (a,X) and its nearby successors. In this
example, pair (a,X) is needed for the computation of op(L) = h(a0, L) and

op(L̂) = h(a0, L̂): dotted lines mean there is a path between two pairs.
We observe that the constraint pairs of V (H) are made up of nodes of T (d).
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(a0, L) (a0, L̂)

(a,X)

(a′, X ′) (a′′, X ′′)

(ã, X̃)

C(a,X)

C(a′, X ′)

Fig. 9: Some vertices of the DAG H

Lemma 15 Constraint pairs (a,X) in V (H) satisfy the following inequality: |X| ≤
d− layer(a).

Proof We proceed by induction. The roots of the DAG, i.e. the constraint pairs
(a0, X), verify this inequality, as layer(a0) = 0.

Assume now that the ancestors of (a,X) ∈ V (H) satisfy the inequality. We
distinguish two cases. First, suppose there is a predecessor of (a,X), i.e. a constraint
pair (a′, X ′) and an arc going from it to (a,X), such that layer(a) = layer(a′)+1. We

select a pair (â′, X̂ ′) in V (H) which is an ancestor of (a′, X ′) - there is a directed

path from (â′, X̂ ′) to (a′, X ′) in H - and such that â′ is the ancestor of a′ in T which
is at the top of the block Bâ′ of layer layer(a′) containing a′. Thus, node a is a leaf

of block Bâ′ . The existence of a directed path in H from (â′, X̂ ′) to (a,X) means

that the recursive computation of h(â′, X̂ ′) uses the term h(a,X). The POF Lâ′

is not disjoint from X̂ ′ otherwise pair (â′, X̂ ′) would be a leaf in H (Case A). Let

Eh ∈ Lâ′ ∩ X̂ ′. As a is a leaf of the block Bâ′ , it verifies Eh ∈ R(a) by construction

of T . As (â′, X̂ ′) is an ancestor of (a,X), then X ⊆ X̂ ′. But (a,X) is a constraint

pair and Eh ∈ R(a), so X ⊆ X̂ ′\ {Eh}. In brief, |X| ≤ |X̂ ′| − 1. Using the induction
hypothesis, |X| ≤ d− layer(â′)− 1 = d− layer(a).

Second, suppose that all predecessors (a′, X ′) of (a,X) satisfy layer(a′) = layer(a).
As X ⊆ X ′, |X| ≤ |X ′| ≤ d− layer(a′) = d− layer(a). □

As a consequence, for any pair (a,X) ∈ V (H), the depth of node a in T can
be upper-bounded by d2 because each block has at most depth d and the layer
of a is at most d. Formally, V (H) ⊆ C(d). This shows that computing tree T (d)

- and getting rid of the larger depths of the tree - is sufficient for the execution
of the DP. This observation allows us to state in the next subsubsection that
this algorithm runs in quasilinear time.
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3.2.3 Analysis

In this section, we prove that the DP algorithm described earlier can run in
quasilinear time O(d3n). The global algorithm is divided into two parts.

1. Construction of the tree T (d) with maximum layer d, using partition
refinement, storage of Ω(a), La, and R(a) for each node a of T (d).

2. Computation of all opposites h(a0, L) with DP.

The runtime needed to build T (d) is O(d2n). The execution time of all parti-
tionings is O((d+ log n)n), according to Corollary 2. The memory space used
to store sets Ω(a), La, R(a) for each node a ∈ V (T (d)) can be upper-bounded
by O(d2n) because the sets Ω(a) together at some fixed depth form a partition
of L and the depth of T (d) is at most d2.

The analysis for the second part of the algorithm is not trivial. Our key
argument consists in providing an upper bound for the number of constraint
pairs in C(d). It provides us with a maximum number of POFs which have to
be stored during the DP.

Theorem 5 There are at most d2n constraint pairs in C(d).

Proof We define a function f : L → 2C such that, for any L ∈ L, |f(L)| ≤ d2. We

show that for any constraint pair (a,X) ∈ C(d), there is a POF Y , X ⊆ Y , such that
(a,X) ∈ f(Y ). As the total number of constraint pairs generated by f is at most

d2n, we have |C(d)| ≤ d2n.
- Step 1: definition of function f . Our method consists in defining an itinerary

function I : C(d) → C(d), where (a,X) = I(a′, X ′) implies that X ⊆ X ′ and a is a

child of a′ in T (d). Starting from some (a0, Y ), where Y ∈ L, successive appliances

of function I provide us with a descent in T (d), i.e. a simple path from a0 to a leaf
of T (d), if we refer to the nodes of the constraint pairs obtained. Function f will be
defined as follows: f(Y ) = {(a0, Y ), I(a0, Y ), I(I(a0, Y )), . . .}. As the depth of T (d)

is at most d2, we confirm that |f(Y )| ≤ d2.
Here is the definition of function I and we verify the properties announced above.

Let (a′, X ′) ∈ C(d): we denote by a− (resp. a+) its child which is the endpoint of edge
indexed by −E

[
a′
]
(resp. +E

[
a′
]
). We distinguish three cases: as they are similar

to some Cases enumerated in the previous subsubsection, we denote them by B*, C*
and D* respectively.

• Case B*: Θ-class E [a′] belongs to X, i.e. E [a′] ∈ X. We fix I(a′, X ′) =
(a−, X\ {E [a′]}).

• Case C*: E [a′] /∈ X and E [a′] ∪X is a POF. We fix I(a′, X ′) = (a+, X).
• Case D*: E [a′] /∈ X and E [a′]∪X is not a POF. We fix I(a′, X ′) = (a−, X).

Any constraint pair is concerned by one of these three cases. One can see that if
I(a′, X ′) = (a,X) then a is a child of a′ and X ⊆ X ′.

- Step 2: any constraint pair is generated by f . We show that any (a,X) ∈
C(d) can be written as Ik(a0, Y ) for some POF Y ⊇ X and 0 ≤ k < d2. We proceed
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Ba′

a0

I

(a0, Y )

(a′, X ′) = Ik(a0, Y )

(a,X) = Ik+1(a0, Y )

a∗

a′

a

Fig. 10: Nodes a, a′, and a∗ in T when a′ is not the root of a block in Scenario
1. Blue arrows indicate the successive appliances of the itinerary function on
(a0, Y ).

by induction on the depth of a. The base case is trivial: If depth(a) = 0, then a = a0.
For any X ∈ L, (a0, X) ∈ f(X).

Let (a,X) ∈ C(d), a ̸= a0, we assume that each constraint pair containing an
ancestor of a belongs to some f(Y ). We distinguish three scenarios depending on
the nature of both the parent a′ of a and Θ-class E

[
a′
]
. For each scenario, we show

that there is a constraint pair (a′, X ′) such that I(a′, X ′) = (a,X) and X ⊆ X ′.
As (a′, X ′) = Ik(a0, Y ) and X ′ ⊆ Y by induction, such statement implies that
(a,X) = Ik+1(a0, Y ) and X ⊆ Y , in other words (a,X) ∈ f(Y ).

• Scenario 1: edge (a′, a) in T is indexed by −E [a′] and X ∪E [a′] is a POF.
Let X ′ = X ∪{E [a′]}. We begin with the proof that (a′, X ′) is a constraint
pair. First, set R(a) is the union of singleton {E [a′]} with R(a′), so E [a′] /∈
R(a′). As (a,X) ∈ C, X ∩R(a) = ∅, so X ∪{E [a′]} has no intersection with
R(a′). In brief, X ′ ∩R(a′) = ∅. Second, as (a,X) ∈ C, we affirm that any Θ-
class of X is orthogonal to any class of R+(a) = R+(a′). Showing that E [a′]
is orthogonal to any class of R+(a′) will imply that X ′∪R+(a′) is a POF. If
a′ is the root of some block, then E [a′] is a Θ-class of La′ . As La′ contains
all Θ-classes of R+(a′) by definition, this shows the orthogonality of E [a′]
with R+(a′). Now, assume that a′ is not the root of some block: Ba′ denotes
the block it belongs to and the root of Ba′ is written a∗ ̸= a′ (Figure 10).
Node a∗ is an ancestor of a′. Set R+(a′) can be splitted as follows: on one
hand, the Θ-classes of R+(a′) indexed between a0 and a∗, i.e. R+(a∗), and
on the other hand the Θ-classes of R+(a′) whose indices appear in the block
Ba′ , i.e. R+(a′) ∩ La∗ . Class E [a′] belongs to La∗ , otherwise a′ would be
the leaf of this block and, therefore, the root of another block. Both R+(a∗)
and R+(a′) \R+(a∗) are subsets of La∗ , so R+(a′) ⊊ La∗ . As a conclusion,
R+(a′) ∪ {E [a′]} ⊆ La∗ is a POF, therefore X ′ ∪ R+(a′) is a POF and
(a′, X ′) is thus a constraint pair.
We show that I(a′, X ′) = (a,X). We refer to Case B*: the Θ-class E [a′]
belongs to X ′, so function I returns (a−, X ′\ {E [a′]}) = (a,X).
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• Scenario 2: edge (a′, a) in T is indexed by −E [a′] and X ∪ E [a′] is not a
POF.
Let X ′ = X. As (a,X) ∈ C and R(a′) ⊊ R(a), we have X ∩ R(a′) = ∅.
Moreover, R+(a′) = R+(a), so X ∪ R+(a′) is a POF. In brief, (a′, X ′) =
(a′, X) ∈ C.
We prove that I(a′, X ′) = (a,X). In this scenario, X∪{E [a′]} is not a POF.
Furthermore, X ∩ R(a) = ∅ because (a,X) ∈ C, so E [a′] /∈ X. We refer to
Case D* and I(a′, X ′) = (a−, X ′) = (a,X).

• Scenario 3: edge (a′, a) in T is indexed by +E [a′].
Let X ′ = X. As (a,X) ∈ C and R(a′) ⊊ R(a), we have X ∩ R(a′) = ∅ as
in Scenario 2. Moreover, R+(a′) ⊊ R+(a): only E [a′] is in R+(a) and not
in R+(a′). As X ∪ R+(a) is a POF, its subset X ∪ R+(a′) is too. In brief,
(a′, X ′) = (a′, X) ∈ C.
We show that I(a′, X ′) = (a,X). Class E [a′] is not in X ′ = X because
X ∩ R(a) = ∅. Set X ∪ {E [a′]} is a subset of the POF X ∪ R+(a) because
E [a′] ∈ R+(a), so X ∪ {E [a′]} is a POF. We refer to Case C*: I(a′, X ′) =
(a+, X ′) = (a,X).

In summary, there is a constraint pair (a′, X ′) such that a′ is the parent of a,
X ⊆ X ′, and I(a′, X ′) = (a,X). The induction hypothesis terminates the proof of
our claim: as (a′, X ′) is in some itinerary f(Y ) with X ′ ⊆ Y , and I(a′, X ′) = (a,X),
then (a,X) also belongs to f(Y ). As the size of each f(Y ), Y ∈ L is upper-bounded
by d2, the total number of constraint pairs is at most d2n. □

The size of the state space of the DP procedure is at most O(d3n) because
|h(a,X)| ≤ d for any (a,X) ∈ V (H). For any pair (a,X) ∈ V (H), at most two
recursive calls are launched to compute h(a,X). In brief, Theorem 5 allows us
to affirm that the execution time of the DP procedure is O((d3 + log n)n) and
is thus the total running time of our algorithm.

4 Subquadratic-time algorithm for all
eccentricities on median graphs

This section is dedicated to the design of algorithms computing all eccentrici-
ties for the whole class of median graphs (not only simplex graphs). We begin
in Section 4.1 with the proposal of a linear-time FPT algorithm, parameter-
ized by the dimension d, running in 2O(d)n. It is mainly based on a paper of
the literature [26] which provides a slightly super-exponential time algorithm
- running in 2O(d log d)n - for the same problem. Replacing one step of this
procedure by the partitioning conceived in Section 3.2 allows us to decrease
the exponential dependence on d. Thanks to this outcome, in Section 4.2, we
are able to design a first subquadratic-time algorithm for all median graphs
running in Õ(n

5
3 ).
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4.1 Linear FPT algorithm for constant-dimension
median graphs

We recall in this subsection the different steps needed to obtain a linear-time
algorithm computing all eccentricities of a median graph with constant dimen-
sion, d = O(1). We show how the algorithm of Section 3.2 can be integrated
to it in order to improve the dependence on d. Let us begin with a reminder
of the former result.

Lemma 16 ([26]) There is a combinatorial algorithm computing all eccentricities in

a median graph G with running time Õ(2d(log d+1)n).

Some parts of this subsection are redundant with [26], however we keep
this subsection self-contained. The new outcomes presented are Theorems 7
and 9. The results that are reminded will also be useful for Section 5.

The algorithm evoked by Lemma 16 consists in the computation of three
kinds of labels: ladder labels φ, opposite labels op and anti-ladder labels ψ. The
order in which they are given correspond to their respective dependence: op-
labelings are functions of labels φ and ψ-labelings are functions of both labels
φ and op. The definition of op-labelings on general median graphs is very close
to the notion of opposite previously defined for simplex graphs in Section 3.

4.1.1 Ladder labels

Some preliminary work has to be done before giving the definition of labels φ.
We introduce the notion of ladder set. It is defined only for pairs of vertices
u, v satisfying the condition u ∈ I(v0, v). In this situation, the edges of shortest
(u, v)-paths are all oriented towards v with the v0-orientation.

Definition 11 (Ladder set Lu,v) Let u, v ∈ V such that u ∈ I(v0, v). The ladder set
Lu,v is the subset of σu,v which contains the Θ-classes admitting an edge adjacent
to u.

Figure 11 shows a small median graph with four vertices v0, u, v, x such
that u ∈ I(v0, v) and u ∈ I(v0, x). It gives the composition of ladder sets Lu,v

and Lu,x.
A key characterization on ladder sets states that their Θ-classes are pairwise

orthogonal. In brief, every set Lu,v is a POF. Let us recall that the adjacency
of all Θ-classes of a POF L with the same vertex u implies the existence of
a (unique) hypercube not only signed with this POF L but also containing u
(Lemma 9). If additionnally POF L is outgoing from u - said differently, the
edges adjacent to u belonging to a Θ-class of L leave u -, then u is the basis of
the hypercube. As the Θ-classes of Lu,v are adjacent to u by definition, there
is a natural bijection between (i) hypercubes (ii) pairs made up of a vertex u
and a POF L outgoing from u and (iii) pairs vertex-ladder set (u, Lu,·).
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E1

E2

E3

E4

E5

v0 u

v

x

Fig. 11: Examples of ladder sets: Lu,v = {E2, E3}, Lu,x = {E1, E2, E3}.

Lemma 17 ([26]) Every ladder set Lu,v is a POF. For any ordering τ of the Θ-
classes in Lu,v, there is a shortest (u, v)-path such that, for any 1 ≤ i ≤ |Lu,v|, the
ith first edge of the path belongs to the ith Θ-class of Lu,v in ordering τ .

The necessary background to introduce labels φ is now known.

Definition 12 (Labels φ [26]) Given a vertex u and a POF L outgoing from u, let
φ(u, L) be the maximum distance d(u, v) such that u ∈ I(v0, v) and Lu,v = L.

Intuitively, integer φ(u, L) provides us with the maximum length of a short-
est path starting from u into “direction” L. Observe that the total size of labels
φ on a median graph G does not exceed O(2dn), according to Lemma 11.
We provide another notion related to orthogonality which will be used in the
remainder.

Definition 13 (L-parallelism) We say that a POF L′ is L-parallel if, for any Ej ∈
L′, L ∪

{
Ej

}
is not a POF.

When L′ is a L-parallel POF, we have L∩L′ = ∅, otherwise L∪ {Ej} = L
for some Ej ∈ L′. Presented differently, a L-parallel POF is such that any of
its Θ-classes is parallel to at least one Θ-class of L.

A combinatorial algorithm running in Õ(22dn) which computes all labels
φ(u, L) was identified in [26]: we provide an overview of it. There is a crucial
relationship between a label φ(u, L) and the labels of (i) the anti-basis u+

of the hypercube with basis u and signature L and (ii) the L-parallel POFs
outgoing from u+.

Lemma 18 (Inductive formula for labels φ [26]) Let u ∈ V , L be a POF outgoing
from u and Q be the hypercube with basis u and signature L. We denote by u+ the
opposite vertex of u in Q: u is the basis of Q and u+ its anti-basis. A vertex v ̸= u+

satisfies u ∈ I(v0, v) and Lu,v = L if and only if (i) u+ ∈ I(v0, v) and (ii) ladder set
Lu+,v is L-parallel.
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A consequence of the previous lemma is that we can distinguish two cases
for the computation of φ(u, L). In the first case, φ(u, L) = |L|: it occurs when
the farthest-to-u vertex with ladder set L is u+ (base case). Indeed, u+ is a
candidate as σu,u+ = L: shortest (u, u+)-paths pass through hypercube Q.
This situation happens when either no Θ-class is outgoing from u+ or when all
Θ-classes outgoing from u+ are orthogonal to L. In the second case, there are
vertices farther to u than u+ with ladder set L. As announced in Lemma 18,
φ(u, L) is a function of labels φ(u+, ·).

φ(u, L) = max
L+ POF outgoing from u+

∀Ej∈L+, L∪{Ej} not POF

(|L|+ φ(u+, L+)). (4)

If there exists such a POF L+, then the label φ(u, L) is given by
Equation (4). Otherwise, it is given by the first case. Briefly, the algorithm
consists in listing all pairs vertex-ladder set ((u, L), (u+, L+)) such that u+ is
the anti-basis of the hypercube of basis u and signature L. For each of them,
we verify whether L+ is L-parallel. If it is, we update φ(u, L) if |L|+φ(u+, L+)
is greater than the current value. The total number of pairs ((u, L), (u+, L+))
is upper-bounded by 22dn: there are at most 2dn pairs (u+, L+) (bijection
with hypercubes) and, for each of them, there are at most 2d compatible pairs
(u, L) such that u+ is the anti-basis of (u, L). Indeed, the number of edges
incoming into u+ is at most d (Lemma 10). For this reason, the computation
of φ-labelings takes Õ(22dn).

Theorem 6 (Computation of labels φ [26]) There is a combinatorial algorithm which
determines all labels φ(u, L) in Õ(22dn). It also stores, for each pair (u, L), a vertex
v satisfying Lu,v = L and d(u, v) = φ(u, L), denoted by µ(u, L).

4.1.2 Opposite labels

The second type of labels needed to compute all eccentricities of a median
graph G are opposite labels. Their definition is very close to the function op
defined in Section 3 for simplex graphs. Given a vertex u and a POF L outgoing
from u, let opu(L) denote a POF with maximum label φ which is disjoint from
L. As for φ, the total size of op-labelings is O(2dn).

Definition 14 (Labels op [26]) Let u ∈ V and L be a POF outgoing from u. Let
opu(L) be one of the POF L′ outgoing from u, disjoint from L, which maximizes
value φ(u, L′).

On simplex graphs, the opposite function provides in fact the op-labelings
of vertex v0: op(X) = opv0(X). As all vertices belong to hypercubes with basis
v0, the ladder set Lv0,v for any vertex v ∈ V is exactly the set E−(v) of Θ-
classes incoming into v. So, value φ(v0, X) is the distance d(v0, v) between v0
and the only vertex v with ladder set Lv0,v = X.
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On general median graphs, the opposite label opu(L) allows us to obtain
the maximum distance d(s, t) such that u = m(s, t, v0) and the ladder set Lu,s

is L.

Lemma 19 (Relationship between medians and disjoint outgoing POFs [26]) Let
L,L′ be two POFs outgoing from a vertex u. Let s (resp. t) be a vertex such that
u ∈ I(v0, s) (resp. u ∈ I(v0, t)) and Lu,s = L (resp. Lu,t = L′). Then, u ∈ I(s, t) if
and only if L ∩ L′ = ∅. Therefore, given a single vertex s such that u ∈ I(v0, s) and
Lu,s = L, the maximum distance d(s, v) we can have with median m(s, v, v0) = u is
exactly d(u, s) + φ(u, opu(L)).

Going further, given a vertex u ∈ V , the maximum distance d(s, t) such
that u = m(s, t, v0) is the maximum value φ(u, L) + φ(u, opu(L)), where L is
POF outgoing from u.

An algorithm was initially proposed to compute all labels opu(L) consisting
in a brute force bounded tree search [26]. Its execution time was Õ(2O(d log d)n),
leading to the global same asymptotic running time (Lemma 16) for finding
all eccentricities.

Fortunately, the quasilinear time algorithm solving WOPP (Theorem 3,
Section 3.2) offers us the opportunity to decrease the exponential term to a
simple exponential function 2d. For any u ∈ V , let Gu = G [Vu] be the star
graph of u, using a definition from [25]. Its vertex set Vu is made up of the
vertices belonging to a hypercube with basis u in G. Graph Gu is the induced
subgraph of G on vertex set Vu (see Figure 12 for an example). Chepoi et
al. [25] showed that graph Gu is a gated/convex subgraph of G. This notion
of star graph is essential for the proof of the following key theorem.

Theorem 7 (Computation of labels op) There is a combinatorial algorithm which
determines all labels opu(L) in Õ(2dn).

Proof Let u ∈ V : we denote by Nu the number of hypercubes of G with basis u.
Convex subgraphs of median graphs are also median by considering the original
definition of median graphs (Definition 1). Consequently, star graph Gu is median
and all its maximal hypercubes contain a common vertex u. From Theorem 2, Gu is
a simplex graph.

Any pair (u, L) of G, where L is a POF outgoing from u in G, can be associated
to a unique hypercube with signature L and basis u. Thus, there is a natural bijection
between (i) the POFs of Gu (ii) the vertices of Gu and (iii) the POFs L of G outgoing
from u. Hence, |Vu| = Nu.

We associate with any POF L ofGu the weight ωu(L) = φ(u, L). We solve WOPP
on graph Gu with weight function ωu, using the algorithm evoked in Theorem 3. The
opposite computed with that configuration correspond exactly to the labels opu(L):
a POF L′ disjoint from L and maximizing φ(u, L′) among all POFs outgoing from
u. The running time of the algorithm is O((d3 + log |Vu|)|Vu|) = O((d3 + log n)Nu).
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v0

u

(a) A v0-oriented median graph G and a ver-
tex u ∈ V

u

(b) Star graph Gu

Fig. 12: Example of star graph Gu

Doing it for every vertex u ofG, we obtain all opposite labels ofG in O(d3+logn)2dn)
as
∑

u∈V Nu = 2dn (Lemma 11). □

4.1.3 Anti-ladder labels

We terminate with anti-ladder labels ψ which play the converse role of ladder
labels φ. While φ(u, L) is defined for POFs L outgoing from u, labels ψ(u,R)
are defined for POFs R incoming into u, i.e. every Θ-class of the POF has an
edge entering u. As any such pair (u,R) can be associated with a hypercube
of anti-basis u and signature R (Lemma 10), the total size of ψ-labelings is at
most O(2dn) too.

The notion of milestone intervenes in the definition of labels ψ. We consider
two vertices u, v such that u ∈ I(v0, v). Milestones are defined recursively.

Definition 15 (Milestones Π(u, v)) Let Lu,v be the ladder set of u, v and u+ be the
anti-basis of the hypercube with basis u and signature Lu,v. If u

+ = v, then pair u, v
admits two milestones: Π(u, v) = {u, v}. Otherwise, the set Π(u, v) is the union of
Π(u+, v) with vertex u: Π(u, v) = {u} ∪Π(u+, v).

The milestones are the successive anti-bases of the hypercubes formed by
the vertices and ladder sets traversed from u to v. Both vertices u and v are
contained in Π(u, v). The first milestone is u, the second is the anti-basis u+ of
the hypercube with basis u and signature Lu,v. The third one is the anti-basis
u++ of the hypercube with basis u+ and signature Lu+,v, etc. All milestones
are metrically between u and v: Π(u, v) ⊆ I(u, v).

Definition 16 (Penultimate milestone π(u, v)) We say that the milestone in Π(u, v)
different from v but the closest to it is called the penultimate milestone. We denote
it by π(u, v). Furthermore, we denote by Lu,v the anti-ladder set of u, v, i.e. the
Θ-classes of the hypercube with basis π(u, v) and anti-basis v.
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Lu,v

Lu+,v

Lu++,v

v0 u

v

u+ u++

Fig. 13: A pair u, v with u ∈ I(v0, v) and its milestones Π(u, v) in red.

Figure 13 shows the milestones Π(u, v) = {u, u+, u++, v}. The hyper-
cubes with the following pair basis-signature are highlighted with dashed
edges: (u, Lu,v), (u

+, Lu+,v), and (u++, Lu++,v). We have π(u, v) = u++ and

Lu,v = Lu++,v is drawn with dashs in purple.
Let R be a POF incoming to some vertex u and u− be the basis of the

hypercube with anti-basis u and signature R. Label ψ(u,R) intuitively rep-
resents the maximum distance of a shortest path arriving to vertex u from
“direction” R.

Definition 17 (Labels ψ [26]) The label ψ(u,R) is the maximum distance d(u, v)
we can obtain with a vertex v satisfying the following properties:

• m = m(u, v, v0) ̸= u,
• the anti-ladder set of m,u is R: Lm,u = R.

Equivalently, vertex u− is the penultimate milestone of pair m,u: u− = π(m,u).

As for the computation of labels φ, there is an induction process to deter-
mine all ψ(u,R). As the base case, suppose that u− = v0. The largest distance
d(u, v) we can obtain with a vertex v such that v0 ∈ I(u, v) consists in
considering the opposite opv0(R) of R which is outgoing from v0. Hence,
ψ(u,R) = |R|+ φ(v0, opv0(R)).

For the induction step, we distinguish two cases. In the first one, assume
thatm(u, v, v0) = u− - equivalently, Π(m,u) = Π(u−, u) = {u−, u}. A shortest
(u, v)-path is the concatenation of the shortest (u, u−)-path of length |R| with
a shortest (u−, v)-path, and u− ∈ I(v0, v). The largest distance d(u, v) we can
have, as for the base case, is ψ(u,R) = |R|+ φ(u−, opu−(R)).

In the second case, m ̸= u−, an inductive formula allows us to obtain
ψ(u,R). A consequence of Lemma 18 is that, for two consecutive milestones
in Π(u, v), say u and u+ w.l.o.g, then Lu+,v is Lu,v-parallel. This observation,
applied to the penultimate milestone, provides us with the following theorem.
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Lemma 20 (Inductive formula for labels ψ [26]) Let u, v ∈ V and u ∈ I(v0, v). Let
L be a POF outgoing from v and w the anti-basis of hypercube (v, L). The following
propositions are equivalent:

(i) vertex v is the penultimate milestone of (u,w): π(u,w) = v,
(ii) the milestones of (u,w) are the milestones of (u, v) with w: Π(u,w) =

Π(u, v) ∪ {w},
(iii) the POF L is Lu,v-parallel.

Set Π(m,u) admits at least three milestones: m, u−, and u. Let R− be the
POF incoming to u− which is the ladder set (but also the signature) of (i) the
milestone just before u− and (ii) u−. According to Lemma 20, vertex u− is
the penultimate milestone of (m,u) if and only if R− ∪{Ej} is not a POF, for
each Ej ∈ R. For this reason, value ψ(u,R) can be expressed as:

ψ(u,R) = max
R− POF incoming to u−

∀Ej∈R,R−∪{Ej} not POF

(|R|+ ψ(u−, R−)) (5)

Our algorithm consists in taking the maximum value between the two cases.
The number of pairs ((u,R), (u−, R−)) which satisfy the condition described in
Equation (5) is at most 22dn: it is identical to the one presented for φ-labelings.

Theorem 8 (Computation of labels ψ [26]) There is a combinatorial algorithm which
determines all labels ψ(u,R) in Õ(22dn).

4.1.4 Better time complexity for all eccentricities

The computation of all labels φ(u, L), opu(L) and ψ(u,R) gives an algorithm
which determines all eccentricities. Indeed, each eccentricity ecc(u) is a func-
tion of certain labels φ and ψ. Let v be a vertex in G such that ecc(u) = d(u, v).
If m = m(u, v, v0) = u, then u ∈ I(v0, v) and value d(u, v) is given by a
label φ(u, L). Otherwise, if m ̸= u, let u− be the penultimate milestone in
Π(m,u) and R be the classes of the hypercube with basis u− and anti-basis u.
The eccentricity of u is given by a label ψ(u,R). Conversely, each φ(u, L) and
ψ(u,R) is the distance between u and another vertex by definition. Therefore,
we have:

ecc(u) = max

 max
L POF

outgoing from u

φ(u, L), max
R POF

incoming to u

ψ(u,R)

 (6)

In other words, the eccentricity of u is the maximum label φ or ψ centered
at u. We can conclude with the main result of this subsection: the eccentricities
of any median graph can be determined in linear time multiplied by a simple
exponential function 2O(d) of the dimension d.
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Theorem 9 (All eccentricities in Õ(22dn)-time for median graphs) There is a com-
binatorial algorithm computing the list of all eccentricities of a median graph G in
time Õ(22dn).

Proof We simply determine the labels φ, op and ψ with the algorithms mentioned in
Theorem 6, 7, and 8. Thanks to the time improvement obtained for the computation
of opposite labels, the overall running time to compute the labels is only Õ(22dn).
Then, for each vertex u, Equation (6) guides us to obtain its eccentricity. We take
the maximum over all labels φ(u, L) - they are at most Nu - and all labels ψ(u,R)
- they are at most 2d. As

∑
uNu ≤ 2dn, the execution time of this operation on

all vertices is Õ(2dn). Therefore, it does not overpass the time complexity needed to
determine the labels. □

4.2 Tackling the general case

Our new FPT algorithm for computing the list of eccentricities in a median
graph has a runtime in 2O(d)n, with d being the dimension (Theorem 9). This
runtime stays subquadratic in n as long as d < α · log n, for some constant
α < 1. In what follows, we present a simple partitioning scheme for median
graphs into convex subgraphs of dimension at most α · log n, for an arbitrary
value of α ≤ 1. By doing so, we obtain (in combination with Theorem 9) the
first known subquadratic-time algorithm for computing all eccentricities in a
median graph.

We start with a simple relation between the eccentricity function of a
median graph and the respective eccentricity functions of any two complemen-
tary halfspaces.

Lemma 21 Let G be a median graph. For every 1 ≤ i ≤ q, let v ∈ V (H ′
i) be

arbitrary, and let v∗ be its gate in ∂H ′′
i . Then, ecc(v) = max{eccH′

i
(v), d(v, v∗) +

eccH′′
i
(v∗)}.

Proof We have ecc(v) = eccG(v) = max{d(u, v) | u ∈ V (H ′
i)} ∪ {d(w, v) | w ∈

V (H ′′
i )}. Since H

′
i is convex, we have max{d(u, v) | u ∈ V (H ′

i)} = eccH′
i
(v). In the

same way, since H ′′
i is gated (and so, convex), we have max{d(w, v) | w ∈ V (H ′′

i )} =
d(v, v∗) + max{d(v∗, w) | w ∈ V (H ′′

i )} = d(v, v∗) + eccH′′
i
(v∗). □

We will use this above Lemma 21 later in our proof in order to compute in
linear time the list of eccentricities in a median graph being given the lists of
eccentricities in any two complementary halfspaces.

Next, we give simple properties of Θ-classes, to be used in the analysis of
our main algorithm in this section (see Lemma 25).

Lemma 22 Let H and G be median graphs. If H is an induced subgraph of G then,
every Θ-class of H is contained in a Θ-class of G.
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Proof Every square of H is also a square of G. In particular, two edges of H are in
relation Θ0 if and only if, as edges of G, they are also in relation Θ0. Since the Θ-
classes of H (resp., of G) are the transitive closure of its relation Θ0, it follows that
every Θ-class of H is contained in a Θ-class of G. □

This above Lemma 22 can be strenghtened in the special case of isometric
subgraphs, namely:

Lemma 23 Let H and G be median graphs, and let E1, E2, . . . , Eq denote the Θ-
classes of G. If H is an isometric subgraph of G then, the Θ-classes of H are exactly
the nonempty subsets among Ei ∩ E(H), for 1 ≤ i ≤ q.

Proof It is known [38] that two edges uv, xy of G are in the same Θ-class if and only
if dG(u, x) + dG(v, y) ̸= dG(u, y) + dG(v, x). In particular, since H is isometric in
G, two edges of H are in the same Θ-class of H if and only if they are in the same
Θ-class of G. □

An important consequence of Lemma 22 is the following relation between
the dimension d of a median graph and the cardinality of its Θ-classes.

Lemma 24 Let G be a median graph, and let D := max{|Ei| | 1 ≤ i ≤ q} be the
maximum cardinality of a Θ-class of G. Then, d = dim(G) ≤ ⌊logD⌋+ 1.

Proof Any induced d-dimensional hypercube of G contains exactly 2d−1 edges of its
Θ-classes. □

We are now ready to present our main technical contribution in this section.

Lemma 25 If there is an algorithm for computing all eccentricities in an n-vertex

median graph of dimension at most d in Õ(cd · n) time, then in Õ(n2−
1

1+log c ) time
we can compute all eccentricities in any n-vertex median graph.

Proof Let G be an n-vertex median graph. We compute its Θ-classes E1, E2, . . . , Eq,
that takes linear time (Lemma 2). For some parameter D (to be fixed later in the
proof), let us assume without loss of generality E1, E2, . . . , Ep to be the subset of all
Θ-classes of cardinality ≥ D, for some p ≤ q. Note that we have p ≤ m/D = Õ(n/D),
where m is the number of edges in G.

We reduce the problem of computing all eccentricities in G to the same problem
on every connected component of G\(E1∪E2∪. . .∪Ep). More formally, we construct
a rooted binary tree1 T , whose leaves are labelled with convex subgraphs of G.
Initially, T is reduced to a single node with label equal to G. Then, for i = 1 . . . p, we
further refine this tree so that, at the end of any step i, its leaves are labelled with

1This tree T is independent to the one built in Section 3.2
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the connected components of G \ (E1 ∪ E2 ∪ . . . ∪ Ei). An example of T is shown in
Figure 14 with D = 3 and two Θ-classes reaching this cardinality bound.

For that, we proceed as follows. We consider all leaves of T whose label H satisfies
E(H) ∩ Ei ̸= ∅. By Lemma 23, E(H) ∩ Ei is a Θ-class of H. Both halfspaces of Ei

become the left and right children of H in T . Recall that the leaves of T at this step
i are the connected components of G \ (E1 ∪E2 ∪ . . .∪Ei−1), and in particular that
they form a partition of V (G). Therefore, each step takes linear time by reduction
to computing the connected components in vertex-disjoint subgraphs of G. Overall,
the total time for constructing the tree T is in O(pm) = Õ(n2/D).

E1

E2

H ′′
1

H ′
1

Fig. 14: An example of tree T associated with a graph G for D = 3: here,
p = 2.

Then, we compute the list of eccentricities for all the subgraphs labelling a
node, by dynamic programming on T . In particular, doing so we compute the list of
eccentricities for G because it is the label of the root. There are two cases:

• IfH labels a leaf (base case) then, we claim that we have dim(H) ≤ ⌊logD⌋+
1. Indeed, by Lemma 22, every Θ-class of H is contained in a Θ-class of
G. Since we removed all Θ-classes of G with at least D edges, the claim
now follows from Lemma 24. In particular, we can compute the list of all
eccentricities for H in Õ(c⌊logD⌋+1|V (H)|) = Õ(Dlog c|V (H)|) time. Recall
that the leaves of T partition V (G), and therefore, the total runtime for
computing the list of eccentricities for the leaves is in Õ(Dlog cn).

• From now on, let us assume H labels an internal node of T (inductive case).
Let H ′

i, H
′′
i be its children nodes, obtained from the removal of E(H) ∩ Ei

for some 1 ≤ i ≤ p. – For convenience, we will say later in the proof that
H is an i-node. – Recall that E(H) ∩ Ei is a Θ-class of H. In particular,
H ′

i, H
′′
i are gated subgraphs. By Lemma 21, we can compute in O(|V (H ′

i)|)
time the eccentricities in H of all vertices in H ′

i if we are given as input:
the list of eccentricities in H ′

i, the list of eccentricities in H ′′
i , and for every

v ∈ V (H ′
i) its gate v

∗ ∈ ∂H ′′
i and the distance d(v, v∗). The respective lists

of eccentricities forH ′
i andH

′′
i were pre-computed by dynamic programming

on T . Furthermore, we can compute the gate v∗ and d(v, v∗) for every vertex
v ∈ V (H ′

i), in total Õ(|V (H)|) time, by using a modified BFS rooted at
H ′′

i (we refer to [25, Lemma 17] for a detailed description of this standard
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procedure). Overall (by proceeding the same way for H ′′
i as for H ′

i) we can
compute the list of eccentricities for H in Õ(|V (H)|) time. This is in total
Õ(n) time for the i-nodes (i.e., because they were leaves of T at step i, and
therefore, they are vertex-disjoint), and so, in total Õ(pn) = Õ(n2/D) time
for all the internal nodes.

The total runtime for our algorithm is in Õ(n2/D +Dlog cn), that is optimized for

D = n
1

log c+1 . □

Theorem 10 There is an Õ(n5/3)-time algorithm for computing all eccentricities
in any n-vertex median graph.

Proof This result directly follows from the combination of Theorem 9 with Lemma 25
(applied for c = 4). □

Observe that the design of a linear FPT algorithm for eccentricities in
Õ(cdn) with c < 4 would imply a lower subquadratic constant for this problem.

5 Generalization and improvements

In this section, we discuss some consequences and possible improvements of
the algorithms established in Section 4.

First, we focus on another metric parameter called reach centrality. We
prove that it can be computed if the labelings φ, op, and ψ are already known.
A consequence is the existence of an exact algorithm for the reach centrality
in Õ(23dn) on median graphs.

Second, we propose a discrete structure strongly related to both POFs
and hypercubes but slightly different to them: Maximal Outgoing POFs, also
called MOPs. We introduce a different way to compute labelings φ, op and
ψ based on this structure. This yields a second subquadratic-time algorithm
which determines all eccentricities with a better running time.

5.1 Reach centrality

In this subsection, we propose a linear FPT algorithm, parameterized by d,
dedicated to the computation of all reach centralities of a median graph G.
The reach centrality RC(u) of a vertex u is a parameter related to the length
of shortest paths on which vertex u lies. The farther a vertex u is from the two
extremities of a shortest path traversing it, the larger the reach centrality of
u is. This notion originally inspired some efficient routing strategies on road
networks [28]. The relationship between reach centrality and the well-known
metric parameters has been studied: Abboud et al. [39] proved that deter-
mining the diameter and the reach centrality are equivalent under subcubic
reductions. The formal definition of RC(u) follows.
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RC(u) = max
u∈I(s,t)

min {d(s, u), d(u, t)} (7)

In Theorem 9, we showed that all eccentricities of a median graph are
functions of the labelings φ, op, and ψ. Here, a similar result is established for
the reach centralities.

We begin with a first observation which will be useful to state the depen-
dence of RC on the labels already computed. Under a certain orthogonality
condition (the R-parallelism of L), for any pair of POFs R and L respectively
incoming in and outgoing from u ∈ V , there are two vertices s, t such that
d(u, s) = φ(u, L), d(u, t) = ψ(u,R) and u ∈ I(s, t).

Theorem 11 Let u ∈ V , R be a POF incoming into u and L a POF outgoing from u
such that L is R-parallel. There exists a pair (s, t) of vertices satisfying the following
properties:

• Vertex u belongs to interval I(v0, s) and Lu,s = L,
• The median m = m(s, t, v0) is different from u and Lm,u = R.
• The distance d(u, s) and d(u, t) are given by the labels: d(u, s) = φ(u, L) and
d(u, t) = ψ(u,R).

• Vertex u belongs to the interval I(s, t).

Proof Let s be a vertex such that u ∈ I(v0, s), Lu,s = L and d(u, s) = φ(u, L).
Let t be a vertex such that Lm,u = R for m = m(u, t, v0), and d(u, t) = ψ(u,R).
By definition of labels φ and ψ, such vertices exist. At this moment, the three first
bullets are verified. To show the fourth one, u ∈ I(s, t), we prove that the signatures
σu,s and σu,t are disjoint. Assume there is a Θ-class Ei ∈ σu,s ∩ σu,t.

Claim 1: u ∈ H ′
i. As Ei ∈ σu,s, any shortest (u, s)-path contains an edge of Ei.

Let (u′, v′) be one of these edges of Ei which is as close as possible from u. Vertex
u′ - the endpoint of this edge closer to u - belongs to ∂H ′

i. Moreover, there is a
shortest (u, s)-path Pu,s passing through (u′, v′) because v′ is the gate of u in H ′′

i .
As u ∈ I(v0, s) and u′ ∈ I(u, s), then u ∈ I(v0, u′). We know that both v0 and u′

belong to H ′
i: by convexity of halfspaces, u ∈ H ′

i.
Claim 2: u ∈ H ′′

i . We have Ei ∈ σu,t: we prove that Ei is necessarily in σm,u

and not in σm,t. The class Ei cannot form a POF if we add it to R. We already
know it if Ei ∈ L. We prove that: if it was the case for a class Ei ∈ σu,s\L, then it
would imply the orthogonality of R and all Θ-classes of L, a contradiction. Indeed,
let z be the vertex such that E−(z) = R ∪ {Ei}. We have v′, z ∈ ∂H ′′

i . As v′ is the
gate of u in H ′′

i , there is a shortest (u, z)-path passing through (u′, v′). We denote
by ∂H ′′

R the intersection of all ∂H ′′
j for all Ej ∈ R. As u, z ∈ ∂H ′′

R, which is convex,

all vertices metrically between u and z belong to ∂H ′′
R, in particular v′. The ladder

set of u, v′ is the same as u, s because v′ does not belong to the hypercube Qu,L of
basis u and signature L: Lu,v′ = L. In brief, Qu,L ⊊ I(u, v′). So, all Θ-classes of R
are adjacent to the vertices of Qu,L, a contradiction as R ∪ L is not a POF.

We know now that there is a class Ej ∈ R such that Ei and Ej are parallel.
Thus, H ′′

i ⊊ H ′′
j . Suppose, by way of contradiction, that Ei ∈ σm,t. Vertex t is in
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H ′′
i , so it is also in H ′′

j . As Ej ∈ R ⊆ σm,u, then m ∈ H ′
j : m and t are not in the

same halfspace of Ej . In other words, Ej ∈ σm,t. This is a contradiction because
Ej is both in σm,u and σm,t while m is metrically between u and t. Any shortest
(u, t)-path should pass through two edges of Ej , which is not possible from Lemma 6.
Finally, Ei ∈ σm,u and u ∈ H ′′

i .
Both Claims 1 and 2 yield a contradiction: the signature sets σu,s and σu,t are

disjoint. Therefore, u ∈ I(s, t). □

We present now an algorithm which determines, for any vertex u ∈ V , a
label χ(u). The vertices can be considered in any arbitrary order. The objective
is to obtain, at the end of the execution, χ(u) = RC(u), for any vertex u.

To start, we fix all χ(u) equal to 0. Let
max←−−− be the operator which modifies

the left-hand side variable with the maximum between itself and the right-
hand side one. Formally, for a ∈ N, χ(u) max←−−− a is equivalent to χ(u) ←
max {χ(u), a}. Given a vertex u ∈ V , we proceed in three steps.

Step 1: Reach when u is the median of s, t, v0. This step amounts
to determining the reach centrality of u if we restrict ourselves to pairs
s, t such that u = m(s, t, v0). Given a vertex s such that u ∈ I(v0, s),
the extremity t maximizing d(u, t) such that u = m(s, t, v0) is at dis-
tance φ(u, op(Lu,s)), according to Lemma 19. If d(u, s) ≤ φ(u, Lu,s) ≤
φ(u, opu(Lu,s)), then distance d(u, s) has no influence on RC(u) as another
candidate - any vertex at distance φ(u, Lu,s) from u - overpasses it. More-
over, if d(u, s) ≤ φ(u, opu(Lu,s)) ≤ φ(u, Lu,s), then d(u, s) also cannot be
equal to RC(u) because φ(u, opu(Lu,s)) overpasses it and will count, accord-
ing to Lemma 19 and the fact that φ(u, Lu,s) is greater than it. Eventually,
if d(u, s) > φ(u, opu(Lu,s)), it does not count as we cannot form a pair (s, t)
such that u ∈ I(s, t) and d(s, u) ≤ d(u, t). In summary, the only values that
have to be taken into account for the reach centrality when u is a median are
the φ-labelings φ(u, L). We modify label χ(u) according to these observations.

For any POF L outgoing from u, if φ(u, L) < φ(u, opu(L)), then modify

the label χ(u)
max←−−− φ(u, L), otherwise do nothing.

Step 2: Reach when u ̸= m = m(s, t, v0) but is a milestone of m, s.
Let L be the ladder set of u, s; L = Lu,s and R the anti-ladder set of m,u;
R = Lm,u. According to Lemma 20, L is R-parallel. Theorem 11 intervenes:
there is a pair of vertices s∗, t∗ such that u ∈ I(s, t), Lu,s∗ = L, Lm∗,u =
R, d(u, s∗) = φ(u, L) and d(u, t∗) = ψ(u,R), where m∗ = m(s∗, t∗, v0). As
φ(u, L) ≥ d(u, s) and ψ(u,R) ≥ d(u, t), the reach centrality of u in this step
can be written as a function of only φ,ψ-labelings. For example, if a POF L
admits an anti-ladder set R such that φ(u, L) < ψ(u,R), then it has to be
taken into account for the computation of χ(u).

For any pair L,R of POFs respectively outgoing from and incoming to u
such that L is R-parallel: if φ(u, L) < ψ(u,R), we modify the label χ(u)

max←−−−
φ(u, L). Otherwise, we set χ(u)

max←−−− ψ(u,R).
Step 3: Reach when u ̸= m = m(s, t, v0) and is not a milestone of

m, s. Let u′ be the milestone of Π(m, s) and u′′ its successor in Π(m, s) such
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that u belongs to the hypercube of basis u′, anti-basis u′′ and, hence, signature
L = Lu′,u′′ = σu′,u′′ . We distinguish two cases.

- Case 1: u′ is the median of s, t, v0. In this case, the distance d(u, s) is less
than φ(u′, L) − d(u′, u). Moreover, the distance d(u, t) is less than d(u′, u) +
φ(u′, opu′(L)). So, the reach centrality can be expressed only as a function of
labels φ, ψ, and the distance d(u′, u).

For any POF L outgoing from some u′ ∈ V such that u belongs to the
hypercube of basis u′ and signature L, if φ(u′, L) − d(u′, u) < d(u′, u) +

φ(u′, opu′(L)), then we modify the label χ(u)
max←−−− φ(u′, L) − d(u′, u).

Otherwise, we set χ(u)
max←−−− d(u′, u) + φ(u′, opu′(L)).

- Case 2: u′ is not the median of s, t, v0. Let R be the anti-ladder set of
m,u′. Theorem 11 implies the existence of a pair of vertices s∗, t∗ with the
same (anti-)ladder sets L and R than u′ with s, t and such that d(u′, s∗) =
φ(u′, L) and d(u′, t∗) = ψ(u′, R). Furthermore, Lemma 17 ensures us that a
shortest path between u′ and s∗ can be prefixed with the Θ-classes of L in
any ordering. As a consequence, there is a shortest (u′, s∗)-path containing
u. As φ(u′, L) − d(u′, u) ≥ d(u, s) and ψ(u′, R) + d(u′, u) ≥ d(u, t), the reach
centrality of u in this step can be written only as a function of φ,ψ-labelings
and distance d(u, u′).

For any pair L,R of POFs respectively outgoing from and incoming to some
u′ ∈ V such that L is R-parallel: enumerate all vertices u belonging to the
hypercube of basis u′ and signature L. For each of them, if φ(u′, L)−d(u′, u) <
ψ(u,R)+d(u′, u), we modify the label χ(u)

max←−−− φ(u′, L)−d(u′, u). Otherwise,

we set χ(u)
max←−−− ψ(u′, R) + d(u′, u).

Pseudocode. Algorithm 2 provides us with the pseudocode of this pro-
cedure. The steps corresponding to the updates of χ(u) are mentioned as
comments, surrounded by symbol #.

The computation of all labels φ, op, and ψ is a necessary preprocessing of
this algorithm. We remind the reader that they can be obtained in Õ(22dn).
Steps 1, 2 and 3 cover all possible configurations of triplet u, s, t such that
RC(u) = min {d(s, u), d(s, t)}. Indeed, either u is the median of s, t, v0 (Step 1)
or not. If not, it is either a milestone of at least one pair among (m(s, t, v0), s)
and (m(s, t, v0), t) (Step 2), or not (Step 3). In each situation, both distances
d(s, u) and d(u, t) are upper-bounded in function of some label values. Con-
versely, these upper bounds correspond to the distance between u and certain
vertices s∗, t∗, such that u ∈ I(s∗, t∗). Hence, RC(u) can be expressed as a
function of labelings φ, op, and ψ, as described in Algorithm 2.

Theorem 12 There is a combinatorial algorithm computing all reach centralities
RC(u) of a median graph in Õ(23dn).

Proof The correctness of Algorithm 2 is now clear. We focus on its runtime. The
most expensive part corresponds to Step 3, Case 2 (line 14). Indeed, we enumerate
all triplets (u, L,R): we know they are at most 22dn. For each of them, we list all
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1: Input: Median graph G, weight function C : V → N, labels φ, op, ψ.
2: Output: Labels χ(u) for any vertex u ∈ V .
3: Initialize χ(u)← 0 for any vertex u;
4: for every pair (u, L) where L is a POF outgoing from u do
5: if φ(u, L) < φ(u, opu(L)) then

6: χ(u)
max←−−− φ(u, L); # Step 1 #

7: endif
8: for every vertex u∗ belonging to the hypercube of basis u and

signature L do

9: χ(u∗)
max←−−− min {φ(u, L)− d(u, u∗), φ(u, opu(L)) + d(u, u∗)}; #

Step 3-1 #

10: endfor
11: for every POF R incoming into u such that L is R-parallel do

12: χ(u)
max←−−− min {φ(u, L), ψ(u,R)} # Step 2 # ;

13: for every vertex u∗ belonging to the hypercube of basis u and
signature L do

14: χ(u∗)
max←−−− min {φ(u, L)− d(u, u∗), ψ(u,R) + d(u, u∗)}; #

Step 3-2 #

15: endfor

16: endfor

17: endfor
Algorithm 2: Computation of labels χ

vertices lying on the hypercube of basis u and signature L, which contains poten-
tially 2d vertices. The total number of 4-uplets (u, L,R, u∗) considered in line 14 of
Algorithm 2 is thus at most 23dn. □

5.2 MOP structure

In this subsection, we introduce a new discrete structure for median graphs,
called Maximal Outgoing POFs (MOPs). Each MOP refers to a unique hyper-
cube but the reverse is false. We present a less trivial way to compute the
labels φ, op and ψ based on the enumeration of MOPs. Thanks to this result,
we obtain an improvement of Theorem 10 via a win-win approach. When
d ≤ a∗ log n (value a∗ < 1 will be determined in the proof), we can apply
Theorem 9. Otherwise, when d > a∗ log n, we show that G admits a sub-
quadratic number of MOPs and the labels can be computed more efficiently
than in Section 4.1.

5.2.1 Definition and relationship with labelings

Recall that a pair made up of a vertex u and a POF L outgoing from this vertex
can be seen as a hypercube (of basis u and signature L, which is unique). The
MOPs are defined to highlight certain hypercubes which satisfy a maximality
property.
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Definition 18 (Maximal Outgoing POFs) Pair (u, L) is a MOP if L is outgoing
from u and there is no other L′ ⊋ L outgoing from u.

On one hand, we can associate with each MOP (u, L) the unique hypercube
with basis u and signature L. However, there are some hypercubes such that
their pair basis-signature is not a MOP. As a trivial example, consider the
square C4 with Θ-classes E1, E2. The two edges which are incident to v0 are
hypercubes of dimension 1, (v0, {E1}) and (v0, {E2}), but are not MOPs since
the POF {E1, E2} is outgoing from v0 and maximal.

On the other hand, there is an interesting relationship between MOPs and
maximal POFs. We remind the reader that maximal POFs are in bijection with
maximal induced hypercubes (Theorem 1). Thus, a maximal POF is a MOP
if we consider the pair basis-signature of the maximal hypercube representing
it. Conversely, MOPs are not necessarily signed with maximal POFs. Let us
consider the same trivial example C4: the two edges which are not incident
to v0 are MOPs but do not form a maximal hypercube. In brief, MOPs rep-
resent some intermediary discrete structure between hypercubes and maximal
hypercubes (or maximal POFs).

The execution time of the algorithms (Theorems 9 and 10) we designed
to determine the eccentricities of median graphs depend on our methods to
compute all labels φ(u, L) and ψ(u,R), which are both in Õ(22dn), as stated in
Theorems 6 and 8. Both of them consist in listing all pairs (L,R) of POFs such
that L (resp. R) is outgoing from (resp. incoming into) vertex u and R∪ {Ei}
is not a POF for any Ei ∈ L. We show how the MOPs offer an alternative to
this “brute force” enumeration. In fact, we can determine all labels by listing
only these pairs (L,R) for which (u, L) is a MOP (instead of being only a
hypercube).

Theorem 13 Assume graph G has at most Õ(f(d, n)n) MOPs, f(d, n) = o(2d).
There is a combinatorial algorithm computing all labels φ(u, L), opu(L), and ψ(u,R)
in Õ(2df(d, n)n).

Proof Let u ∈ V , Nu be the number of hypercubes with basis u. Recall that∑
u∈V Nu ≤ 2dn. We begin with the definition of a DAG HL

u for hypercubes. It is
called the ladder Hasse diagram of u. Its vertex set is made up of all pairs (u, L)
of hypercubes with basis u, in other words, L is outgoing from u. There is an arc

(u, L′) → (u, L) if L′ ⊊ L and |L′| = |L| − 1. All diagrams HL
u , u ∈ V , can be con-

structed in time Õ(2dn). Indeed, all hypercubes can be enumerated in Õ(2dn) with
a BFS (Lemma 12). Then, it suffices, for each (u, L), to consider the at most d sub-
sets L′ ⊊ L differing from one element from L and connect (u, L′) to (u, L). In this
way, we obtain a directed graph where its connected components are the diagrams

HL
u . An example of DAG HL

u follows.
Thanks to the ladder Hasse diagram, computing a list of the MOPs in Õ(2dn) is

straightforward as they are exactly the leaves of the DAGs HL
u .
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(b) DAG HL
u representing its hypercubes

Fig. 15: Ladder Hasse diagram HL
u

From now on, we divide the proof into three steps, each one correspond to the
computation of a certain type of labels. We begin with the labels φ(u, L).

Computation of φ-labelings. We present a new procedure to compute the labels
φ(u, L). A key distinction with the former method should be mentioned: instead of
determining labels φ(u, L) only, we also compute another type of labels, denoted by
φ⊆(u, L). These maximal ladder labels contain in fact the maximum over all labels
φ(u, L′) such that L′ ⊆ L. In brief, φ⊆(u, L) = max

L′⊆L
φ(u, L′).

We compute these two label functions recursively. First, we propose a recursive
procedure to obtain φ(u, L) based on the enumeration of MOPs. We list all triplets
(L, u+, L+) such that (u+, L+) is a MOP and L is incoming into u+. We denote by
u the basis of the hypercube with anti-basis u+ and signature L. The base case is the
same as in Section 4.1.1. If (u, L) is such that either no edge is leaving the anti-basis
u+ or all Θ-classes outgoing from u+ are orthogonal to L, then fix φ(u, L) = |L|. We
pursue with the inductive step. We denote by L+

⊥ the maximal L-parallel subset of

L+, i.e. the set containing exactly the Θ-classes Ei of L
+ for which L∪{Ei} is not a

POF. As L+
⊥ ⊆ L

+, set L+
⊥ is a POF. The computation of L+

⊥ implies a logarithmic

extra cost of O(d) for each MOP (u+, L+). We write the MOP-equivalent formula
of Equation (4).

φ(u, L) = max
(u+,L+) MOP, L incoming into u

∀Ej∈L+
⊥, L∪{Ej} not POF

(|L|+ φ⊆(u+, L+
⊥)). (8)

We explain why Equation (8) is correct. According to Equation (4), φ(u, L) is
|L| plus the maximum over all φ(u+, L+

∗ ) - not necessarily MOPs - such that L+
∗

is L-parallel. Assume (u+, L+
∗ ) is not a MOP: there is a MOP (u+, L+), where

L+
∗ ⊊ L+. As L+

⊥ is the maximal L-parallel subset of L+, we have L+
∗ ⊆ L+

⊥. So,

φ(u+, L+
∗ ) ≤ φ⊆(u+, L+

⊥) by definition. Conversely, value φ⊆(u+, L+
⊥) counts in

the computation of φ(u, L) because all subsets of L+
⊥ are L-parallel. Therefore, it

suffices to consider the MOPs (u+, L+) with their maximal subset L+
⊥ instead of all

hypercubes (u+, L+
∗ ).

Second, we explain how the labels φ⊆ are deduced from the values φ(u, L).
Assume that for a given vertex u, all φ(u, L), L outgoing from u, have been deter-
mined recursively, thanks to the base case or Equation (8). We deduce all φ⊆(u, L)

with the ladder Hasse diagram structure HL
u . We proceed inductively. The base case
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concerns singleton POFs: φ(u, {Ei}) = φ⊆(u, {Ei}). Then, we describe the induc-
tion step. We modify the value φ⊆(u, L) by comparing φ(u, L) with all φ⊆(u, L′),
where L′ ⊊ L, |L′| = |L|−1. In other words, we initialize φ⊆(u, L) as φ(u, L) and, for

each arc (u, L′) → (u, L) of HL
u , we execute φ⊆(u, L)

max←−−− φ⊆(u, L′). Concretely,

we transfer the φ⊆-labelings from the roots to the leaves of the diagram HL
u .

To compute labels φ(u, L), the enumeration of MOPs is needed to apply
Equation (8). For each MOP (u+, L+), we have to consider all POFs L incoming into
u, which gives a total of at most Õ(2df(d, n)n) triplets (L, u+, L+), as the number
of MOPs is Õ(f(d, n)n). The logarithmic extra costs do not increase this runtime.
To compute labels φ⊆(u, L), our induction is based on the structure of all diagrams

HL
u . The total size (number of arcs) of the DAG HL

u is Õ(Nu) as each element has at
most d parents. Therefore, the execution time needed to determine all φ⊆(u, L) does

not exceed Õ(2dn). In summary, the entire procedure to compute φ,φ⊆-labelings is

in Õ(2df(d, n)n).
Computation of op-labelings. We already know that all labels opu(L) can be

determined in time Õ(2dn), according to Theorem 7.
Computation of ψ-labelings. Our inductive procedure to determine all labels

ψ(u,R) based on the MOP structure is in fact very close to the one produced for
φ-labelings.

We define the anti-ladder Hasse diagram HAL
u of u. Its vertex set is made up

of all pairs (u,R) of hypercubes with anti-basis u and a POF R incoming into u.
There is an arc (u′, R′)→ (u,R) if both hypercubes (defined by their anti-basis and

signature) have the same basis, R′ ⊋ R and |R′| = |R|+ 1. As for diagrams HL
u , all

DAGs HAL
u can be constructed in time Õ(2dn) with a standard BFS.

As for φ-labelings, we define two label functions which will be computed jointly.
However, the description is a bit trickier. We compute not only labels ψ(u,R) but
also the new ones ψ⊇(u,R). Contrary to φ⊆-labelings, value ψ⊇(u,R) is not so easy
to define. To understand, we recall the inductive process to compute labels ψ(u,R)
in Section 4.1.3.

Remember that there are two cases. Let u− be the basis of (u,R). First, value
ψ(u,R) can be given by a distance d(u, v) such that m(u, v, v0) = u−. In this case,
ψ(u,R) = |R| + φ(u−, opu−(R)). In the new procedure, we initialize all ψ(u,R)
with this value. Second, we may have m(u, v, v0) ̸= u−. In this case, value ψ(u,R)
is given by the recursive formula in Equation (5). We can now define labels ψ⊇.

Let R− be a POF incoming into u− and assume that (u−, R) is a MOP. Let R⊥
be the set containing exactly the Θ-classes Ei of R such that R is R−-parallel.
We denote by u⊥ the anti-basis of the hypercube with basis u− and signature R⊥.
Then, value |R|+ψ(u−, R−), which counts originally in the computation of ψ(u,R)
(Equation (5)), will count only for the computation of ψ⊇(u⊥, R⊥). More formally,

ψ⊇(u⊥, R⊥) = max
R− POF incoming to u−,

∃(u−,R) MOP with R⊥ max subset of R

such that ∀Ej∈R⊥,R−∪{Ej} not POF

(|R|+ ψ(u−, R−)) (9)

Observe that certain pairs (u,R) may not admit a value ψ⊇(u,R) according to this
definition. In this case, we simply fix ψ⊇(u,R) = 0.

Now, we show that value ψ(u,R), in the case m ̸= u−, is exactly the maximum
over all ψ⊇(u′, R′) such that both hypercubes (defined by anti-basis and signature)
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have the same basis and R ⊆ R′. On one hand, if (u−, R) is not a MOP, there is a
MOP (u−, R∗), where R ⊊ R∗. Let R− be a POF incoming into u− such that R is
R−-parallel. Let R∗

⊥ be the maximal R−-parallel subset of R∗. Set R∗
⊥ is a POF and

R ⊆ R∗
⊥ by definition. Assume ψ(u,R) = |R| + ψ(u−, R−): this value is counted in

ψ⊇(u∗⊥, R
∗
⊥) but not in ψ⊇(u,R) if R ̸= R∗

⊥. On the other hand, if some R′ ⊇ R is

R−-parallel, then R also does. So, we have:

ψ(u,R) = max

|R|+ φ(u−, opu−(R)), max
(u′,R′) same basis as (u,R)

R⊆R′

ψ⊇(u′, R′)

 .

(10)
Given a basis u−, we compute all nonnegative values ψ⊇(u,R) such that u− is

the basis of the hypercube with anti-basis u and signature R. To do so, we enumerate
all triplets (R−, u−, R) such that R− is incoming into u− and (u−, R) is a MOP.
We compute the maximal R−-parallel subset R⊥ of R and apply Equation (9). As
for φ-labelings, it consist in an enumeration scheme in Õ(2df(d, n)n).

Then, we deduce labels ψ(u,R) of the hypercubes with basis u−. We use the anti-

ladder Hasse diagram HAL
u . If (u−, R) is a MOP, then (u,R) is a root of HAL

u , and
we fix ψ(u,R) as the maximum between its initial value (case m(u, v, v0) = u−) and
ψ⊇(u,R): it corresponds to Equation (10) when R is maximal. Otherwise, ψ(u,R)
can be computed from Equation (10) in function of ψ⊇(u′, R′) where (u′, R′) is a

parent of (u,R) in HAL
u . The time cost of this step is at most Õ(2dn), due to the

size of DAG HAL
u . In summary, we obtain the same global running time than for

labels φ(u, L), which is Õ(2df(d, n)n). □

5.2.2 Cardinality of MOPs

Our objective is now to express the cardinality of MOPs in function of n and
d in order to apply Theorem 13 and improve the subquadratic execution time
established in Theorem 10. To do so, we establish a relationship between MOPs
and the subsets of maximal POFs.

Definition 19 Let p be the application which, given a vertex u and a POF L outgoing
from u, returns a pair (L,L∗), where L∗ is the POF of Θ-classes incoming into the
anti-basis of (u, L).

If we restrict application p to MOPs, it returns a pair made up of a maximal
POF and one of its subsets.

Lemma 26 (MOPs as subsets of maximal POFs) Let (u, L) be a MOP and p(u, L) =
(L,L∗). Then, L∗ is a maximal POF.

Proof Let u+ be the anti-basis of (u, L). Assume, by way of contradiction, that L∗

is not maximal. There is a Θ-class Eh such that L∗∗ = L∗ ∪ {Eh} is a POF. Let u′

be the vertex such that E−(u′) = L∗∗.
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For every Ei ∈ L∗, vertices u+ and u′ belongs to ∂H ′′
i . The intersection of these

boundaries, that we denote by ∂H∗, is convex. Therefore, all vertices metrically
between u+ and u′ belong to ∂H∗. For this reason, there is necessarily an edge e
incident to u+ whose second endpoint is also in ∂H∗. Let e = (u+, w) be this edge
and we denote by Ej its Θ-class. If e is incoming into u+ with the v0-orientation,
then we have a contradiction, since p(u, L) = (L,L∗) ̸= (L,L∗∗). We know that e is
outgoing from u+. Recall that Ej is orthogonal to any Θ-class of L∗. By successive
applications of Lemma 8, we show that for any vertex of the hypercube of anti-basis
u+ and signature L∗, among them u, there is an edge of Ej outgoing from it. Here
comes the contradiction: L is not a maximal POF outgoing from u as L ∪

{
Ej

}
is a

POF (L ⊆ L∗). □

Maximal POFs can be interpreted in the crossing graph G# (Definition 6).
As it describes the orthogonality of Θ-classes, a POF of G is exactly a clique
of G#. Naturally, a maximal POF corresponds to a maximal clique of G#. We
provide an upper bound of the number of MOPs of G which depends on the
maximal cliques of its crossing graph.

Corollary 3 (MOPs as subsets of maximal cliques in G#) Let G# be the crossing

graph of G and C#max be the set of maximal cliques of G#. The number of MOPs in

G is at most
∑

C∈C#
max

2|C|.

Proof We begin with the proof that application p is injective. Let us consider a pair
(L,L∗) = p(u, L). There is a unique vertex u+ such that E− = L∗. Necessarily, if
(u, L) = p−1(L,L∗), then vertex u is the basis of the hypercube with signature L
and anti-basis u+, which is unique.

Now, application p is restricted to MOPs only. We know it is injective and that,
for any MOP (u, L), set L∗ of p(u, L) = (L,L∗) is a maximal POF. Concretely, the
number of MOPs is at most the following value: for each maximal POF, add the
number of its nonempty subsets (which is 2 to the power its cardinality minus 1).

We remind the reader that a POF of G corresponds to an induced clique of
its crossing graph G#. Naturally, a maximal clique of G# represents a maximal
POF. It follows that the number of MOPs of G is at most

∑
C∈C#

max
(2|C|−1) ≤∑

C∈C#
max

2|C|. □

We define a parameter, the maximal clique ratio. Its role is to provide an
upper bound of the ratio between the number of MOPs of a median graph and
the number of vertices n.

Definition 20 (Maximal clique ratio) The maximal clique ratio r(H) of a graph H
is the quotient between the sum of the number of subsets of each maximal clique of
H by the number of cliques of H. Formally,

r(H) =
R [H]

N [H]
=

∑
C∈Cmax(H)

2C

|C(H)|
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Observe that, for H = G#, N [H] = |V (G)| = n. The clique number of
a graph is the size of its maximum clique. The dimension d of G is also the
clique number of G#. Complete multipartite graphs (with clique number d)
are the graphs whose vertex set can be partitioned into independent sets Ai,
1 ≤ i ≤ d, and any pair of vertices belonging to a different set form an edge.

We begin with the proof that the complete multipartite graphs maximize
the ratio r(H). Next, we show that the more the complete multipartite graph
is balanced, the larger r(H) is.

The complete multipartite graphs are exactly the graphs fulfilling the fol-
lowing property: for any non-adjacent vertices u, v, N(u) = N(v). Let Trp(H)
be the number of triplets (u, v, w) of vertices of H such that uv /∈ E, uw /∈ E,
but vw ∈ E. An equivalent way to characterize complete multipartite graphs
is Trp(H) = 0. In other words, any graph which is not complete multipartite
satisfy Trp(H) > 0.

Theorem 14 Let H be a graph with |V (H)| = q, clique number at most d, which
maximizes r(H). If H is not complete multipartite, there is another graph H ′ with
|V (H ′)| = q, clique number at most d, such that r(H ′) = r(H) and Trp(H ′) <
Trp(H).

Proof If H is not complete multipartite, there is a pair u, v of vertices such that
(u, v) /∈ E and N(u) ̸= N(v). Let Nu (resp. Nv) be the number of cliques of H
containing u (resp. v). For x ∈ {u, v}, we denote by Rx the following value: Rx =∑
C∈Cmax(H)

x∈C

2|C|. For the remainder, we fix ∆R = Rv −Ru and ∆N = Nv −Nu. We

define two graphs Hu→v and Hv→u, and compare their maximal clique ratio with
the initial graph H.

Graph Hu→v is obtained from H by removing u and adding a copy v′ of v such

that N(v′) = N(v). We have r(Hu→v) =
R[H]+∆R
N [H]+∆N

, as u and v cannot belong to

the same clique. Conversely, graph Hv→u is obtained from H by removing v and

adding a copy u′ of u such that N(u′) = N(u). We have r(Hv→u) =
R[H]−∆R
N [H]−∆N

.

Both Hu→v and Hv→u do not increase the clique number of H. One can check

that if
R[H]+∆R
N [H]+∆N

≤ R[H]
N [H]

, then
R[H]−∆R
N [H]−∆N

≥ R[H]
N [H]

and vice-versa. If the inequality

is strict, then we have a contradiction since H is supposed to maximize r(H) for
graphs with q vertices and clique number at most d. The only possibility we have is
r(H) = r(Hu→v) = r(Hv→u).

We prove that either Hu→v or Hv→u has less triplets with only two adjacent
vertices than H. Let Trpu (resp. Trpv) be the number of triplets of H containing u
and not v (resp. v and not u). Let Trpu/v (resp. Trpv/u) the number of triplets of
H containing both u and v, where u is the isolated vertex (resp. v is the isolated
vertex). We have

Trp(Hu→v) = Trp(H) + Trpv − Trpu − Trpu/v − Trpv/u,

Trp(Hv→u) = Trp(H) + Trpu − Trpv − Trpu/v − Trpv/u.
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At least one of these values is smaller than Trp(H), otherwise Trpu/v = Trpv/u = 0,
which is equivalent to saying N(u) = N(v), a contradiction. □

By successive applications of this result, for any graph H of clique number
at most d maximizing r(H), there exists a complete multipartite graph H ′

with the same ratio and clique number at most d. Turán graphs T (q, d) are the
most balanced complete multipartite graphs with q vertices and clique number
d. The sizes of two of its independent sets differ by at most one. Now, the
objective is to prove that, among complete multipartite graphs, Turán graphs
maximize the maximal clique ratio.

Theorem 15 Turán graphs T (q, d) maximize the maximal clique ratio for graphs
with q vertices and clique number d.

Proof We consider a complete multipartite graph H with q vertices and clique
number d. The vertex set of H can be partitioned into d independent sets Ai:
V (H) =

⋃d
1 Ai. Let αi = |Ai|. Assume, w.l.o.g, that the sizes of sets Ai are increas-

ing, i.e. α1 ≤ α2 ≤ · · · ≤ αd. Recall that
∑d

1 αi = q. Turán graphs are the graphs
such that αd − α1 ≤ 1.

Assume that, on graph H, αd − α1 ≥ 2. We prove adding a vertex to A1 and
removing another one from Ad increases the maximal clique ratio, without changing
q or d. Let H ′ denote the graph after this transformation. All maximal cliques in H
have size d, so R [H] = 2d

∏d
1 αi. The number N [H] of (not necessarily maximal)

cliques of H is expressed as: N [H] =
∑

J⊆{1,...,d}

∏
j∈J αj . Values R

[
H ′] and N [H ′]

can be deduced by replacing respectively α1 and αd by α1+1 and αd− 1. We assess
the quotient between r(H ′) and r(H). Certain details of our calculations are omitted
to keep the paper readable, we restrict ourselves to the main steps of the reasoning.

r(H ′)
r(H)

=

R[H′]
R[H]

N [H′]
N [H]

=

α1+1
α1

αd−1
αd

1 + αd−α1−1
(α1+1)(αd+1)

=

(
1 +

1

α1(α1 + 2)

)(
1− 1

α2
d

)
> 1.

Indeed, as αd−α1 ≥ 2, one can check that
(
1 + 1

α1(α1+2)

)(
1− 1

(α1+2)2

)
is greater

than 1 for any value of α1. □

Naturally, we use the maximal clique ratio of Turán graphs to deduce an
upper bound for the number of MOPs of any median graph G.

Corollary 4 The number of MOPs in a median graph is O(f(d, n)n), where

f(d, n) =

(
2 2

log n
d −1

2
log n

d

)d

.

Proof According to Corollary 3, the number of MOPs of a median graph G is upper-
bounded by r(G#)n. Furthermore, Theorem 15 states that the balanced complete
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multipartite graphs maximize r(H). Hence,

r(G#) ≤
2d( qd )

d∑d
j=1

(d
j

)
( qd )

j
≤

2d( qd )
d

(1 + q
d )

d
(11)

The number of cliques of G# is exactly the number of POFs of G. Therefore, n =

|V (G)| = (1+ q
d )

d. We fix a = d
logn , we have 0 < a ≤ 1. We obtain that 2

d
a = (1+ q

d )
d

and, thus, q
d = 2

1
a − 1. Finally, we inject this equality into Equation (11). □

By observing the expression of function f(d, n), we see that the larger the
dimension d, the smaller the number of MOPs. The following result comes from
the win-win approach we announced earlier. When the dimension d is lower
than a certain threshold (below 1

2 , the details are in the proof), we can apply
the linear FPT algorithm of Theorem 9 which gives a subquadratic running
time. Otherwise, when d is larger than this threshold, the number of MOPs
admits an upper bound less than 22dn and can be enumerated to obtain all
eccentricities via the labelings (Theorem 13).

Theorem 16 There is a combinatorial algorithm determining all eccentricities in
Õ(n1.6456).

Proof Let a = d
logn and we define two functions: f(x) = 2 2

1
x −1

2
1
x

and g(x) = 2 −
1

1+log(2f(x))
.

One one hand, according to Theorem 9, there is a combinatorial algorithm
determining all eccentricities in Õ(22dn) = Õ(n1+2a).

On the other hand, according to Theorem 13 and Corollary 4, we can compute all
labels φ, op and ψ in time Õ(2d(f(a))dn). Using the reduction scheme of Theorem 25,

we can compute all eccentricities in time Õ(ng(a)).
To obtain the best runtime possible, we have to minimize the subquadratic con-

stant h(a) = max {1 + 2a, g(a)}. Function h admits a unique minimum for 0 < a ≤ 1,
which is reached for a certain a∗ we can approximate by 0.3327 ≤ a∗ ≤ 0.3328. This
gives h(a∗) ≃ 1.6456.

We describe the combinatorial algorithm computing all eccentricities in
Õ(nh(a

∗)). List all hypercubes as stated in Lemma 12. If d
logn ≤ a

∗, then apply the

linear FPT algorithm evoked in Theorem 9. Otherwise, if d
logn > a∗, then compute

the labelings by enumerating the MOPs of G (Theorem 13). Deduce from it all eccen-
tricities. Eventually, apply the reduction scheme proposed in Lemma 25. □

6 Conclusion

As a natural extension of this work, the question of designing a linear-time
or quasilinear-time algorithm to compute the diameter and all eccentrici-
ties of median graphs is now open. With the recursive splitting procedure of
Lemma 25, unfortunately, the best execution time we could obtain at best is
Õ(n

3
2 ). Reaching this bound could represent a first reasonable objective: it
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would “suffice” to propose a FPT combinatorial algorithm which computes
all labels in Õ(2dn) in order to obtain such time complexity. We see the
MOP-approach as a gateway to identify such a procedure.

Another - certainly easier - objective after this work is to adapt the recur-
sive splitting of Lemma 25 for reach centralities. We tried to define a weighted
version of the reach centralities problem in order to fit them to the halfspace
separation, but this task seems to be not so easy. Our hope is to obtain a
subquadratic-time algorithm computing reach centralities in median graphs.

Eventually, we note two lines of research on which this paper could have
some influence: (i) the study of efficient algorithms for the computation of
other metric parameters on median graphs (perhaps, the betweeness central-
ity [39]) and (ii) the design of subquadratic-time algorithms for the diameter
and all eccentricities on larger families of graphs (almost-median or semi-
median graphs [40, 41] for example). Concerning the betweeness centrality,
our intuition is that the labeling framework introduced [26] does not suffice
to describe the number of (u, v)-paths passing through some vertex, which is
exactly what betweeness centrality assesses.
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