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Abstract. This article is devoted to the shape optimization of the internal structure of an electric motor,

and more precisely of the arrangement of air and ferromagnetic material inside the rotor part with the aim
to increase the torque of the machine. The governing physical problem is the time-dependent, non linear

magneto-quasi-static version of Maxwell’s equations. This multiphase problem can be reformulated on a 2d

section of the real cylindrical 3d configuration; however, due to the rotation of the machine, the geometry of
the various material phases at play (the ferromagnetic material, the permanent magnets, air, etc.) undergoes

a prescribed motion over the considered time period. This original setting raises a number of issues. From
the theoretical viewpoint, we prove the well-posedness of this unusual non linear evolution problem featuring

a moving geometry. We then calculate the shape derivative of a performance criterion depending on the

shape of the ferromagnetic phase via the corresponding magneto-quasi-static potential. Our numerical
framework to address this problem is based on a shape gradient algorithm. The non linear time periodic

evolution problems for the magneto-quasi-static potential is solved in the time domain, with a Newton-

Raphson method. The discretization features a space-time finite element method, applied on a precise,
meshed representation of the space-time region of interest, which encloses a body-fitted representation of

the various material phases of the motor at all the considered stages of the time period. After appraising

the efficiency of our numerical framework on an academic problem, we present a quite realistic example of
optimal design of the ferromagnetic phase of the rotor of an electric machine.
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1. Introduction

Electric motors are devices meant to convert electric energy into mechanical energy. For multiple reasons that
are related to burning scientific and societal challenges, they have recently aroused a tremendous enthusiasm
in the academic and industrial communities. Notably, as they can achieve much superior yield to thermal
engines, their systematic deployment would allow for decisive energy savings, not depending on expensive
and increasingly scarce fossil fuels. They are also regarded as a promising energy production means in the
perspective of the current environmental crisis, as their carbon footprint can be inferior to that of thermal
motors by up to 80%. We refer to classical reference books such as [24, 43] for a more exhaustive presentation
of electric machines.

Anticipating a little on the more complete description of Section 2, an electric motor is composed of
an external, static part called stator, and an internal, rotating part – the rotor. An alternating electric
current is injected through the coils placed in the stator, thus generating a magnetic field which sets the
rotor in motion. The resulting mechanical work is transmitted to a shaft attached to its core and can be
used directly or stored, see Fig. 1 below for an illustration. The efficiency of this workflow strongly depends
on the arrangement of the costly components of the rotor, in particular the ferromagnetic material and the
permanent magnets (usually made of rare-earth elements), and the optimization of their layout presages
tremendous performance improvements, see [55] about this issue.

Over the past decades, optimal design has been a thriving field of research at the crossroads of mathemat-
ics, physics and engineering; multiple frameworks are available to address such issues, with competing assets
and drawbacks. Among them, shape optimization aims to improve an initial guess through smooth varia-
tions of the boundaries or material interfaces at play; this relies on the information contained in the “shape
gradients” of the objective and constraint functionals of the problem – see e.g. [2, 3, 23, 36, 54, 67] and
[20, 31, 11, 58] for numerical implementations. On the other hand, topology optimization methods affect
the connectivity of a design, for instance by leveraging topological derivatives, indicating where holes can
be fruitfully nucleated inside a shape [5, 6, 56, 57], or via a suitable reformulation of the physical situation
and the optimal design problem under scrutiny in terms of density functions [10, 66]. Surprisingly enough,
such techniques have only been applied recently in the physical context of electric motors. Among the con-
tributions in this direction and without aiming exhaustivity, let us mention the articles [34, 35, 52] using
density-based topology optimization strategies, and those [15, 49, 61] relying on the level set method; see
also [44] about a coupling between the level set method and a body-fitted meshed representation of the
machine enabling more accurate finite element simulations. We refer to [26, 51] for recent surveys of optimal
design techniques in the field of electromagnetism, and to [12, 73] for a particular focus on their application
to electric machines.

The specific setting of electric motors raises several challenges. At first, although the boundary value
problem governing the behavior of the motor is a reduction of the full 3d Maxwell’s equations to its 2d cross-
section, it features a non linear material law which is essential to capture the decisive saturation effect of the
ferromagnetic constituent of the rotor [19]. The physical problem at hand is also time-dependent; moreover,
as the rotor is in rotation, the optimal design criterion depends on all the stages of this periodic motion; this
feature is fairly awkward in view of optimal design because of the tremendous computational cost incurred,
see e.g. [40, 65]. To the best of our knowledge and with the exception of the recent contribution [29],
all the existing studies about the shape or topology optimization of electric motors resort to an additional
simplification referred to as the magneto-static approximation of Maxwell’s equations: the physical problem

2



is thereby reduced to a series of decoupled static (elliptic and non linear) problems posed on the various
rotated configurations of the motor, which can be solved independently from one another. Unfortunately,
this convenient reformulation does not allow to account for subtle and realistic temporal effects such as eddy
currents.

The present article is a natural continuation to the series [30, 53]. We wish to optimize the repartition of
the constituent materials of an electric motor; yet, contrary to the prevailing practice in the literature, we
rely on the genuine magneto-quasi-static description of the physical situation. The boundary value problem
at stake can no longer be reduced to a collection of independent stationary problems: it is a non linear,
time-dependent problem of mixed elliptic-parabolic type [8], equipped with time periodicity conditions, in
which the optimization criterion brings into play all the rotated geometric configurations of the internal
structure of the motor.

From the theoretical viewpoint, our first contribution is to prove the well-posedness of this physical
evolution problem, which leverages techniques from the theory of non linear partial differential equations. We
next analyze shape optimization problems where the performance functionals at play depend on the solution
to this problem. From the numerical viewpoint, the specific nature of the considered time-dependent problem
raises the need for an adapted strategy. Our framework relies on a space-time finite element discretization,
see e.g. [46, 68] in the context of linear problems, [71] for a quasilinear problem, or more recently [28] for
an application in the context of electric machines. In a nutshell, the time variable is treated as if it were
an additional space variable, thus converting a time-dependent problem posed in a d-dimensional domain
into a static problem on a (d+ 1)-dimensional space time cylinder; the latter is solved by applying the finite
element method on a mesh of the latter. While this approach suffers from an increase in the dimension of
the problem, it enjoys a number of unique assets over classical time-stepping methods (see e.g. [69]):

• The adaptive refinement of the mesh and the parallelization of the solution of the evolution problem
can be realized in space and time, jointly;

• The adjoint problem involved in the shape derivative of the optimization criterion can be solved
concurrently with the state equation, thus allowing for a further level of parallelization;

• Shapes evolving over the considered time period are static in the space-time domain; hence, evolution
problems involving such moving domains can be treated by “standard”, time independent numerical
methods once a space-time mesh adapted to the moving geometry is available;

• Time periodicity conditions are straightforward to enforce by direct identification of the degrees of
freedom on the bottom and top sections of the space-time cylinder.

The remainder of this article is organized as follows. In Section 2, we present the physical and mathemati-
cal settings of the boundary value problem governing the physics of motors, as well as the shape optimization
problem considered in this setting. The next Section 3 is devoted to an academic, albeit instructive pre-
liminary situation, that of the calculation of the shape derivative of a “simple” functional, depending on
a domain Ω via the integral of a given function over a collection of deformed versions of Ω. In Section 4,
we outline a few mathematical features of the considered magneto-quasi-static evolution problems, and we
detail the calculation of a shape derivative in this context. After discussing a few details of our numerical
implementation in Section 5, we show in Section 6 two numerical examples illustrating the previous devel-
opments; a few conclusions and perspectives of our work are then given in Section 7. The article ends with
two Appendices A and B, where a few “classical” technical results are recalled, and the main steps of the
proof of the well-posedness of the considered magneto-quasi-static problem are sketched.

2. Modeling of the physical behavior of an electric motor

This section introduces the physical and mathematical aspects of the optimal design of electric motors. After
a few generalities about these devices and their modeling in terms of the Maxwell’s equations in Section 2.1,
we discuss the approximate 2d magneto-quasi-static setting in Section 2.2. The internal structure of the
considered motors is presented in Section 2.3, and we eventually set the mathematical framework and the
main notations used throughout the article in the next Section 2.4.
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2.1. The eddy current problem for the 3d Maxwell’s equations

This section describes, in an informal manner, the general operation of an electric motor and its mathematical
formulation via the eddy current problem stemming from the 3d Maxwell’s equations; our main references
about this topic are Chap. 2 in [26], [62] and [72].

The motor under scrutiny has a cylindrical structure and its transverse section is sketched in Fig. 1. It is
made of an inner rotating part called rotor, and a static outer part, the stator; these regions are separated by
a thin air gap and the core of the rotor is connected to a transmission shaft. The stator is an arrangement of
ferromagnetic material and coils made of thin copper wires; the rotor is composed of ferromagnetic material,
air inclusions and several permanent magnets.

In the classical language of electromagnetism, for which we refer to [33, 39] and whose main concepts and
notations are used in this presentation, the device is activated when a time-dependent electric current Ji is
powered into the coils of the stator. According to Ampère’s law, this generates a time-dependent magnetic
field H in the whole region of interest, which in turn induces an electric field E by Faraday’s law. The
resulting Lorentz force sets in motion the charge carriers contained in the rotor and thereby the attached
shaft; this mechanical work is eventually used or stored.

In order to put this rough sketch into equations, let us first note that, as opposed to light waves, the
present application falls in the regime of low-frequency electromagnetism, so that the displacement currents,
i.e. the time derivative of the magnetic induction D, can be neglected, see [62] for an intuitive explanation
of this fact and [17] for a mathematical justification. The magnetic field H generated around the motor is
then related to the total density of current J via the following magneto-quasi-static version of Ampère’s law:

(2.1) curl(H) = J.

On the other hand, this field is related to the magnetic induction (or magnetic flux density) B via the
following constitutive law:

H = ν(|B|)B−M.(2.2)

Here, the coefficient ν represents the magnetic reluctivity, i.e. the inverse of the magnetic permeability; it
expresses how the material develops a magnetic field in the presence of a magnetization force. The vector
field M denotes the permanent magnetization, i.e. the density of permanent magnetic dipoles within the
motor; this field vanishes outside the permanent magnets of the rotor. The reluctivity ν takes different values
depending on the material phase – a dependence with respect to the spatial location which is omitted in (2.2)
for simplicity. It assumes constant values νa, νm, νc in air, permanent magnets and copper, respectively. By
contrast, in ferromagnetic materials, it is a function of the intensity |B| of the magnetic induction: for small
values of H, the material amplifies the magnetic flux density B, whereas for high values of H, the relation
between both quantities is similar to that occurring in void. We refer to [59] about the calibration of such a
reluctivity function from physical measurements.

According to Gauss’s law, the magnetic induction B is solenoidal, i.e.

div(B) = 0.(2.3)

In turn, the time variations of B induce an electric field E according to Faraday’s law:

(2.4) curl(E) = −∂B

∂t
.

This model is completed by Ohm’s law, which expresses the density J of current inside the region of
interest as the superposition of the density Ji of current impressed in the coils and that produced by the
Lorentz force acting on the charge carriers:

(2.5) J = Ji + σ(v ×B + E),

where v is the velocity field of the rotating part and σ is the electric conductivity, which takes a different,
constant value inside each material phase.

The combination of these relations allows to express all the above quantities in terms of a single vector
field – the vector potential A – and to characterize the latter by a partial differential equation. Indeed, at
first, (2.3) implies the existence of a vector field A such that B = curl(A), which is determined up to the
addition of the gradient of a scalar field. Judging from (2.4), the vector potential A can be selected as the
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unique such vector field satisfying E = −∂A∂t . Now injecting the constitutive relation (2.2) and the expression
(2.5) of the current density into Ampère’s law (2.1), we obtain the three-dimensional magneto-quasi-static
version of Maxwell’s equation, also referred to as the eddy current problem:

σ

(
∂A

∂t
− v × curl(A)

)
+ curl

(
ν(|curl(A)|)curl(A)

)
= Ji + curl(M).(2.6)

The partial differential equation (2.6) is complemented by suitable time and spatial boundary conditions.
As far as the former are considered, our study concerns the permanent regime of the motor, where the material
distribution retrieves its initial configuration and all physical quantities return to their initial values after
one rotation. The equation (2.6) is then equipped with a time periodic condition over the considered time
period [0, T ]. As regards boundary conditions, at each time t ∈ [0, T ], the usual transmission conditions are
assumed at the interfaces between the various material phases, and no magnetic flux leaves the computational
domain:

(2.7) B · n = 0 on the outer boundary of the stator,

where n is the unit normal vector field to this boundary, pointing outward the device.

2.2. The 2d magneto-quasi-static equation

As we have mentioned, the full 3d motor under scrutiny has a cylindrical structure. Taking advantage of its
relatively large size along the shaft axis, that we suppose without loss of generality to be the line passing
through the origin, oriented along the third coordinate vector e3, and of the invariance of its geometry in this
direction, it is customary to approximate the three-dimensional problem (2.6) with a simpler two-dimensional
version, posed in the cross-section of the device [42, 70].

This reduction is justified since the impressed current density Ji and the magnetization M are of the form

Ji(t, x1, x2, x3) = (0, 0, f(t, x1, x2)), M(t, x1, x2, x3) = (M1(t, x1, x2),M2(t, x1, x2), 0)

and the velocity v representing the rotation of the rotor reads

v(t, x1, x2, x3) = (v1(t, x1, x2), v2(t, x1, x2), 0).

In turn, the vector potential A is oriented along the axis e3 and its values depend only on the spatial position
in the cross-section D, i.e.

A(t, x1, x2, x3) = (0, 0, u(t, x1, x2)),

for a suitable function u(t, x1, x2).
Under these assumptions, the eddy current equation (2.6) reduces to a 2d partial differential equation for

the scalar field u which is posed in the cross-section D of the machine; an elementary calculation indeed
yields:

σ

(
∂u

∂t
+ v · ∇u

)
− div(ν(|∇u|)∇u) = f − divM⊥, x ∈ D, t ∈ (0, T ).(2.8)

Here, we have dropped the bold font for vector fields when they lie inside the cross-section plane of the
motor; we have set

M(t, x1, x2) := (M1(t, x1, x2),M2(t, x1, x2)), v(t, x1, x2) := (v1(t, x1, x2), v2(t, x1, x2)),

and we use the notation y⊥ = (−y2, y1) for the 90◦ clockwise rotate of a two-dimensional vector y = (y1, y2).

Eventually, the 2d equation (2.8) is complemented with the homogeneous Dirichlet boundary condition

u = 0 on ∂D,

inherited from the no-flux assumption (2.7) made in the complete 3d model of Section 2.1. As far as temporal
boundary conditions are concerned, the time periodic setting implies that:

∀x = (x1, x2) ∈ D, u(0, x) = u(T, x).

Remark 2.1. The mathematical analyses conducted in this article can be adapted straightforwardly to handle
other time and boundary conditions about u, and notably the more classical initial condition u(0, ·) = u0.
Since the time periodic setting is the most relevant one for our purpose, we do not discuss those alternative
instances for brevity.
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Drot

Figure 1. Two-dimensional cross-section D of an electric machine of the form considered
in Section 2: the ferromagnetic material is depicted in red, air is in dark blue, the coils are
in yellow, and the permanent magnets are in light blue.

In engineering applications, the performance of the motor is often measured in terms of the average torque
induced by the rotation of the motor shaft over the time period (0, T ). This quantity Tor(u) is evaluated in
terms of the potential u by the so-called Arkkio’s method [63]:

(2.9) Tor(u) :=
1

T

Lνa
(rs − rr)

∫ T

0

∫
Σ

Q(x1, x2)∇u · ∇u dxdt

where L is the length of the true, 3d electric machine in the e3 direction, Σ is an annulus with inner and
outer radii rr < rs lying in the air gap between the rotor and the stator, and the 2×2 matrix Q(x) is defined
by:

∀x = (x1, x2) ∈ D, Q(x1, x2) =
1√

x2
1 + x2

2

 x1x2
x2

2−x
2
1

2

x2
2−x

2
1

2 −x1x2

 .(2.10)

2.3. Description of the geometric structure of the motor

In this section, we get into more specifics about the constituent material phases of the motor and we present
the corresponding model governing the expressions of the conductivity and reluctivity coefficients σ and ν in
the formulation of the evolution problem (2.8). In the first Section 2.3.1, we describe the internal structure
of the considered motor when it is at rest; we then discuss its time evolution due to the rotation of the rotor
in Section 2.3.2.

2.3.1. Structure of the motor at rest

The structure of the 2d cross-section D reflects the three-dimensional arrangement of the motor introduced
in the previous Section 2.1; it features three disjoint annulus-shaped regions:

D = Drot ∪Dgap ∪Dstat,

where the open sets Drot, Dgap and Dstat stand for the rotor, the separating air gap and the stator, respec-
tively. The stator Dstat consists of

• A region Dstat,f filled with ferromagnetic material;
• A region Dstat,a made of air;
• The coils Dstat,c featuring copper wires.

The part Drot is composed of:
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• A ferromagnetic core, occupying the region Ω;
• Air, occupying the region Ωa;
• Permanent magnets represented by the domain Dmag.

In this study, the interface Γ := ∂Ω ∩ ∂Ωa between the phases of the rotor made of ferromagnetic material
and air is the center of attention when it comes to optimal design, while the region Dmag occupied by the
permanent magnets and the stator Dstat are not subject to optimization, see Fig. 1 for an illustration of this
structure.

The conductivity and reluctivity coefficients σ and ν have different expressions in the various phases
featured in these decompositions. In order to emphasize their dependence on the actual shape Ω ⊂ Drot of
the optimized ferromagnetic core, they are labeled with an Ω subscript.

σΩ(x) =


σf x ∈ Ω ∪Dstat,f,

σa x ∈ Ωa ∪Dgap ∪Dstat,a,

σm x ∈ Dmag,

σc x ∈ Dstat,c,

and νΩ(x, s) =


ν̂(s) x ∈ Ω ∪Dstat,f,

νa x ∈ Ωa ∪Dgap ∪Dstat,a, ,

νm x ∈ Dmag,

νc x ∈ Dstat,c.

(2.11)

In practice, the value of the electric conductivity σa in the air region Ωa ∪ Dgap ∪ Dstat,a is negligible;
moreover, due to the laminated structure of the part filled with ferromagneric material, which is made of
iron sheets, and since the copper wires typically used in electric machines are insulated, the values of σ are
also negligible in Ω ∪Dstat,f and Dstat,c:

σf = σa = σc = 0.

The reluctivity ν takes constant, positive values νa, νm and νc in air, in the magnets, and in the wires,
respectively. However, it is a function ν̂ : R+ → R+ of the amplitude of the gradient of the potential u in
the regions Ω and Dstat,f occupied by ferromagnetic material. As evidenced in [59], the physical properties
of the latter imply that the mapping s 7→ ν̂(s)s in (2.11) is strongly monotone and Lipschitz continuous, i.e.

(2.12) There exists 0 < ν ≤ ν <∞ s.t. ∀s1, s2 ∈ R+,

{
(ν̂(s1)s1 − ν̂(s2)s2)(s1 − s2) ≥ ν(s1 − s2)2,

|ν̂(s1)s1 − ν̂(s2)s2| ≤ ν|s1 − s2|.
In particular, (2.12) implies that ν̂ is uniformly bounded away from 0 and ∞:

∀s ∈ R+, ν ≤ ν̂(s) ≤ ν.

2.3.2. Description of the motion of the rotor

The operation of the motor is analyzed through a representative time period (0, T ); during the latter,
Drot moves according to the smooth velocity field v : (0, T ) × Drot → Rd. The corresponding flow ϕ :
(0, T )×Drot → Rd is the solution to the following ordinary differential equation:

(2.13) ∀x ∈ Drot,

{
∂ϕ
∂t (t, x) = v(t, ϕ(t, x)) on (0, T ),

ϕ(0, x) = x;

we also let the shorthand ϕt ≡ ϕ(t, ·). It follows from the standard theory of ordinary differential equations
that:

(2.14)
• ϕ is smooth over [0, T ]×Drot;
• For each t ∈ [0, T ], the mapping x 7→ ϕ(t, x) is a diffeomorphism from Drot onto itself;

We also assume that the considered motion of the rotor is T -periodic, and so it holds:

(2.15) ∀x ∈ Drot, ϕ(0, x) = ϕ(T, x) = x.

Eventually, for convenience in the mathematical analysis, we extend ϕt to a smooth diffeomorphism of D
such that:

(2.16) ϕt(Dgap) = Dgap, and ϕt ≡ Id on Dstat.

This motion of the rotor induces an evolution in time of the constituent material phases of Drot. Let
Ω(t) := ϕt(Ω) and Γ(t) := ϕt(Γ) (resp. Dmag(t) = ϕt(Dmag), etc.) denote the deformed versions of Ω and
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Γ (resp. Dmag, etc.) induced by ϕt. From the mathematical viewpoint, the material coefficients σ and ν in
(2.21) depend on time, as:

(2.17) ∀x ∈ D, s ∈ R+, σΩ(t)(ϕt(x)) = σΩ(x) and νΩ(t)(ϕt(x), s) = νΩ(x, s).

In practice, the cross-section D of the motor is a two-dimensional disk with center 0 and ϕt corresponds
to the rotation with origin 0 and angle α(t) := 2πt

T :

(2.18) ϕt(x) = Rα(t)

(
x1

x2

)
, where Rα(t) :=

(
cosα(t) − sinα(t)
sinα(t) cosα(t)

)
.

With this definition, a simple calculation reveals that the velocity field v is divergence-free and that the
Jacobian determinant of ϕt identically equals 1:

(2.19) ∀t ∈ [0, T ], x ∈ D, div v(t, x) = 0, and det∇ϕt(x) = 1.

Remark 2.2. Even though this very specific setting where the space dimension d equals 2 and the motion
ϕ(t, x) of the rotor accounts for a rotation is the relevant one in practice, the general case where d is arbitrary
and ϕt is an arbitrary smooth diffeomorphism of D satisfying (2.14) to (2.16), with associated velocity field

v(t, x) = ∂ϕ
∂t (t, ϕ−1

t (x)), does not pose any additional difficulty in the analysis. For this reason, in the
subsequent developments, we retain generic notations for d and ϕ insofar as possible.

2.4. Notations and mathematical formulation of the magneto-quasi-static problem

The following notations are adopted throughout the remainder of this article.

• We denote by Id : Rd → Rd the identity mapping of Rd and by I ∈ Rd×d the identity matrix with
size d.

• For any time t ∈ [0, T ], nΩ(t) (resp. n) stands for the unit normal vector to the deformed interface
Γ(t) (resp. to the interface at rest Γ), pointing outward Ω(t) (resp. outward Ω).

• We denote by

Q = (0, T )×D, and QΩ :=
{

(t, x) ∈ Q, x ∈ Ω(t)
}

the (open) space-time cylinders induced by D and Ω over the time period (0, T ).
• Let α : D → R be a smooth quantity on Ω and D \ Ω, which is possibly discontinuous across the

interface Γ; we denote by

α±(x) = lim
t>0
t→0

α(x± tn(x))

the one-sided limits of α at x ∈ Γ, from outside and inside Ω, respectively.
• In particular, let u : D → R be a smooth function on Ω and D \ Ω, which is possibly discontinuous

at the interface Γ. For any x ∈ Γ, we denote by

∂u±

∂n
(x) = lim

t→0
t>0

∇u(x± tn(x)) · n(x) and ∇Γu
±(x) = ∇u(x± tn(x))− ∂u±

∂n
(x)n(x),

the one-sided normal derivatives and tangential gradients of u at x.
• Let w : D → Rd be a smooth enough vector field. We denote by

wΓ : Γ→ Rd, wΓ(x) = w(x)−
(
w(x) · n(x)

)
n(x)

the tangential part of w on Γ.
• Let u : Q→ R be a smooth enough scalar function of time and space; then,

– ∇u(t, x) denotes the gradient of u with respect to the space variable x only;
– ∂u

∂t (t, x) is the partial derivative of u with respect to the time variable, i.e. the derivative of the
partial mapping t 7→ u(t, x) for fixed x ∈ D;

8



– du
dt (t, x) is the total (or material) derivative of u according to the velocity field v(t, x), that is:

(2.20)
du

dt
(t, x) =

∂u

∂t
(t, x) + v(t, x) · ∇u(t, x);

in other terms, du
dt (t, x) is the derivative of the mapping t 7→ u(t, ϕt(y)) evaluated at time t and

point y = ϕ−1
t (x).

• Let w = (w1, . . . , wd) : Q→ Rd be a (smooth enough) vector-valued function of space and time. We
denote by ∇w, or often [∇w], the derivative of w with respect to the spatial variable, i.e. the d× d
matrix field with entries:

[∇w]ij =
∂wi
∂xj

, i, j = 1, . . . , d.

Summarizing the previous discussions and taking these notations into account, the transverse component
of the vector potential inside the motor, which we denote by uΩ : Q → R to emphasize its dependence on
the phase Ω to be optimized, satisfies the following evolution problem:

(2.21)

 σΩ(t)
duΩ

dt − div
(
νΩ(t)(x, |∇uΩ|)∇uΩ

)
= f in (0, T )×D,

uΩ(t, x) = 0 for t ∈ (0, T ), x ∈ ∂D,
uΩ(0, x) = uΩ(T, x) for x ∈ Dmag,

where the coefficients σΩ(t) and νΩ(t) are given by (2.11). The precise mathematical setting of this problem
and its well-posedness are discussed in Section 4.1 below.

Remark 2.3.

• In passing from the formulation (2.8) to (2.21), we have absorbed the term div(M⊥) at the right-
hand side of the problem (2.8) into the source f . This convenient notational simplification is slightly
abusive though, as both terms f and div(M⊥) are not exactly of the same mathematical nature:
while f(t, ·) will typically belong to L2(D) in our mathematical analysis, the quantity M⊥(t, ·) will
be smooth on Dmag and vanish outside this set, so that div(M⊥)(t, ·) ∈ H−1(D). Nevertheless, the
subsequent developments are easily adapted to handle this term, see Remark 4.4 about this point.

• The subsequent mathematical discussions rely on the fact that the domain Dmag is non empty. If it
were to be the case, (2.21) would simply boil down to decoupled elliptic problems.

• As we have mentioned, the non linearity of the boundary value problem (2.21) (notably, the depen-
dence of the reluctivity on |∇u|) is key in the correct modeling of the physical problem. However, the
linear setting, where

ν̂(s) ≡ νf for some νf > 0,

will sometimes be considered in the mathematical setting, as it allows for a less technical exposition
of the main ideas.

3. Generalities about shape optimization and treatment of an academic problem

In this section, we enter into the optimal design framework of this article. After introducing the model shape
optimization problem under scrutiny in Section 3.1, we detail in Section 3.2 the calculation of a “simple”
shape derivative as a handful preliminary to our subsequent analyses.

3.1. Shape optimization in a nutshell

In this article, we aim to optimize the shape of the phase Ω made of ferromagnetic material with respect to
a physical criterion, that is

(3.1) min
Ω⊂Drot

J(Ω).

The performance criterion under scrutiny J(Ω) depends on Ω via the transverse component of vector potential
uΩ(t, x) of the magnetic flux density, solution to the evolution problem (2.21). We consider a model objective
function of the form

(3.2) J(Ω) =

∫
Q

j(uΩ(t, x)) dxdt,
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where j : R→ R is a smooth function, satisfying the growth conditions:

∃ C > 0, ∀u ∈ R, |j(u)|≤ C(1 + |u|)2, |j′(u)|≤ C(1 + |u|), and |j′′(u)|≤ C.
Note that different quantities of interest could be considered without much changes to our analysis. Notably,
J(Ω) could also depend on the gradient of uΩ, as in the torque functional Tor(uΩ) defined in (2.9), see
Section 6. Besides, constraints (e.g. on the volume of Ω) could be added to the problem (3.1) without much
change to the subsequent theoretical developments.

The numerical solution of the problem (3.1) usually calls for the derivative of the objective function J(Ω)
with respect to the domain – a notion which can be defined in various ways. Here, we rely on Hadamard’s
boundary variation method, see e.g. [36, 54, 67] or [2] for a recent overview. In a nutshell, variations of a
shape Ω ⊂ Drot are considered under the form

Ωθ := (Id + θ)(Ω), θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd) < 1,

that is, Ωθ is a version of Ω whose points have been displaced according to the “small’ vector field θ, see
Fig. 2.
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Figure 2. The variation Ωθ of Ω featured in the method of Hadamard is obtained by dis-
placing its points according to the “small” vector field θ.

A function F (Ω) of the domain is then called shape differentiable at a particular domain Ω provided
the underlying mapping θ 7→ F (Ωθ), from W 1,∞(Rd,Rd) into R, is Fréchet differentiable at θ = 0. The
corresponding shape derivative F ′(Ω)(θ) gives rise to the following expansion:

(3.3) F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−−−→ 0.

In particular, a deformation θ ∈ W 1,∞(Rd,Rd) such that F ′(Ω)(θ) < 0 is a descent direction for F from Ω,
since for a small enough descent step τ > 0,

F (Ωτθ) = F (Ω) + τF ′(Ω)(θ) + o(τ),

i.e. a “small” deformation of Ω according to θ produces a design Ωτθ which is “better” with respect to the
criterion F (Ω).

In the present application, we only optimize the interface Γ between the phases Ω, Ωa of the rotor,
respectively made of ferromagnetic material and air. Accordingly, the deformations θ involved in Hadamard’s
method ought to be restricted to the subspace

Θad :=
{
θ ∈W 1,∞(Rd,Rd), θ = 0 on Dstat, θ · n = 0 on ∂Drot ∪ ∂Dmag

}
.

Let us end this section with a few informal words about the general structure of the shape derivative of a
“smooth enough” function of the domain F (Ω), such as those considered in the sequel; we refer to e.g. §5.9
in [36] for more details about this subject. Usually, several equivalent formulas are available for F ′(Ω)(θ). A
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rigorous calculation usually yields the so-called volume (or distributed) expression of this derivative, which
is of the form:

(3.4) F ′(Ω)(θ) =

∫
D

(
MΩ : ∇θ + sΩ · θ

)
dx,

where MΩ : D → Rd×d and sΩ : D → Rd are matrix and vector fields depending on Ω, uΩ and the function
F (Ω), notably via a so-called adjoint state pΩ, solution to a problem similar to (2.21), with a different
right-hand side. Often, (3.4) can be turned into an equivalent, surface expression:

(3.5) F ′(Ω)(θ) =

∫
Γ

vΩ(θ · n) ds,

featuring a scalar field vΩ : ∂Ω → R. This alternative structure encodes the intuitive fact that F ′(Ω)(θ)
solely depends on the normal component of the deformation θ – roughly speaking, vector fields taking only
tangential directions on the boundary ∂Ω only account for a “reparametrization” of Ω. The surface form
(3.5) is also helpful for numerical purpose, as it immediately reveals a descent direction for F (Ω). Indeed,
letting θ = −vΩn on ∂Ω immediately yields F ′(Ω)(θ) < 0.

Mathematically, the surface formula (3.5) for F ′(Ω)(θ) is often obtained from its volume counterpart (3.4)
after integration by parts, assuming some regularity from the boundary ∂Ω and the functions uΩ, pΩ, see
e.g. the proofs of Lemma 3.1 and Proposition 4.1 below.

3.2. Calculation of the shape derivative of a “simple” functional of the domain

We now present the calculation of the derivative of a “simple” functional J(Ω), depending on the shape Ω
via the integration of a fixed, smooth function f(t, x) on the transformed versions Ω(t) = ϕt(Ω) of Ω for
t ∈ (0, T ). We seize this opportunity to introduce a few technical preliminaries useful throughout this article
in Section 3.2.1, before proceeding to the calculation, properly speaking, in Section 3.2.2.

3.2.1. Technical preliminaries

For any vector field θ ∈ Θad, let us introduce the corresponding space-time deformation mapping Θ : Q →
(0, T )× Rd

(3.6) Θ(t, x) := (Θt(t, x),Θx(t, x)) = (t, ϕt ◦ (Id + θ) ◦ ϕ−1
t (x)),

whose notation omits its dependence on θ for simplicity. The space-time cylinder QΩθ induced by Ωθ then
reads:

QΩθ := Θ(QΩ) =
{

(t, x) ∈ Q, x ∈ ϕt(Ωθ)
}
.

Remark 3.1. Loosely speaking, the space-time deformation mapping Θ transmits the effect of θ on the
configuration at rest Ω (which is deformed into Ωθ) to the rotated configurations Ω(t) = ϕt(Ω) (which become
ϕt(Ωθ)). Contrary to the works [13, 14], we do not aim to find a time-dependent shape, but rather optimize
the design of its configuration at rest with respect to a measure of performance depending on its known
deformations ϕt(Ω). The action of Θ on the space-time cylinder QΩ is exemplified in Fig. 3.

The derivative of Θ(t, x) with respect to the variables (t, x) is the following (d+ 1)× (d+ 1) matrix field
F (θ) : Q→ R(d+1)×(d+1):

F (θ) =

(
Ftt(θ) Ftx(θ)
Fxt(θ) Fxx(θ)

)
,

whose 1× 1 and 1× d blocks Ftt(θ) and Ftx(θ) read:

Ftt(θ)(t, x) =
∂Θt

∂t
(t, x) = 1, Ftx(θ)(t, x) = ∇Θt(t, x) = 0,
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Figure 3. One deformation θ of the shape Ω, with the associated deformation Θ of the
space-time cylinder QΩ.

and whose d× 1 and d× d blocks Fxt(θ) and Fxx(θ) are given by:

Fxt(θ)(t, x) =
∂Θx

∂t
(t, x)

=
∂ϕt
∂t

((Id + θ)(ϕ−1
t (x))) +

[
∇ϕt((Id + θ)(ϕ−1

t (x)))
][

(I +∇θ)(ϕ−1
t (x))

] ∂
∂t

(ϕ−1
t (x)),

Fxx(θ)(t, x) = ∇Θx(t, x)

=
[
∇ϕt((Id + θ)(ϕ−1

t (x)))
] [

(I +∇θ)(ϕ−1
t (x))

] [
∇ϕ−1

t (x)
]
.

A simple calculation immediately yields the expression of the matrix field F (θ)−T :

(3.7) F (θ)−T =

(
1 b(θ)T

0 Fxx(θ)−T

)
, where b(θ) : Q→ Rd is defined by b(θ) := −

[
Fxx(θ)

]−1

Fxt(θ).

Let now u : Q → R be a smooth enough function; the derivative of the composite function v := u ◦ Θ :
Q→ R satisfies: (

∂u
∂t

∇u

)
◦Θ = F (θ)−T

(
∂v
∂t

∇v

)
,

and so

(3.8)

(
∂u

∂t

)
◦Θ =

∂v

∂t
+ b(θ) · ∇v, and (∇u) ◦Θ =

[
Fxx(θ)

]−T
∇v.

We now list a series of useful technical identities in the calculation of shape derivatives. These can be
rigorously established along the lines of Chap. 5 in [36]; for brevity, we limit ourselves to formal statements
and computations which in particular omit the functional setting.
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• The vector field b(0) : Q→ Rd equals:

b(0)(t, x) = −Fxt(0)(t, x)

= −∂ϕt
∂t

(ϕ−1
t (x))−

[
∇ϕt(ϕ−1

t (x))
] ∂
∂t

(ϕ−1
t (x))

= − ∂

∂t
(ϕt(ϕ

−1
t (x)))

= 0,

where we have used the fact that

Fxx(0)(t, x) =
[
∇ϕt(ϕ−1

t (x))
][
∇ϕ−1

t (x)
]

= ∇(ϕt ◦ ϕ−1
t (x)) = I.

• It follows easily from the above two relations that the mapping θ 7→ b(θ) is Fréchet differentiable at
θ = 0, with derivative:

(3.9) b′(0)(θ) = −F ′xt(0)(θ).

• The derivatives of the mappings θ 7→ Fxt(θ) and θ 7→ Fxx(θ) at θ = 0 read:

(3.10) F ′xt(0)(θ)(t, x) =

[
∇
(
∂ϕt
∂t

)
(ϕ−1
t (x))

]
θ(ϕ−1

t (x)) +
[
∇2ϕt(ϕ

−1
t (x))θ(ϕ−1

t (x))
] ∂
∂t

(ϕ−1
t (x))

+
[
∇ϕt(ϕ−1

t (x))
][
∇θ(ϕ−1

t (x))
] ∂
∂t

(ϕ−1
t (x)),

and

(3.11) F ′xx(0)(θ)(t, x) =
[
∇2ϕt(ϕ

−1
t (x))θ(ϕ−1

t (x))
][
∇ϕ−1

t (x)
]

+
[
∇ϕt(ϕ−1

t (x))
][
∇θ(ϕ−1

t (x))
][
∇ϕ−1

t (x)
]
.

• The determinant m(θ) : Q→ R of the space-time change of variables induced by Θ in (3.6),

(3.12) m(θ) := |detF (θ)| ,
is a Fréchet differentiable function of θ at 0 and:

(3.13) m′(0)(θ)(t, x) := tr
([
∇2ϕt(ϕ

−1
t (x))θ(ϕ−1

t (x))
][
∇ϕ−1

t (x)
])

+ (divθ)(ϕ−1
t (x)).

• Let f : Q → R be a smooth scalar function. The mapping θ 7→ f ◦ Θ is Fréchet differentiable at
θ = 0, and its derivative f1(θ) reads:

(3.14) f1(θ)(t, x) :=

([
∇ϕt(ϕ−1

t (x))
]T
∇f(t, x)

)
· θ(ϕ−1

t (x)).

• Likewise, let w : Q → Rd be a smooth vector field; then the mapping θ 7→ w ◦ Θ is Fréchet
differentiable at θ = 0, and its derivative w1(θ) reads

(3.15) w1(θ)(t, x) :=
[
∇w(t, x)

][
∇ϕt(ϕ−1

t (x))
]
θ(ϕ−1

t (x)).

• The matrix-valued mapping A(θ) : Q→ Rd×d defined by

(3.16) A(θ) := m(θ) F−1
xx (θ)F−Txx (θ);

is Fréchet differentiable at θ = 0, with derivative:

(3.17) A′(0)(θ) = m′(0)(θ)I− F ′xx(0)(θ)− F ′xx(0)(θ)T .

Remark 3.2. When the motion ϕt is induced by a rotation as in (2.18), some of the above expressions can
be conveniently simplified. Indeed, it holds in this case:

dRα(t)

dt
= α′(t)

(
− sin(α(t)) − cos(α(t))
cos(α(t)) − sin(α(t))

)
and

[
∇v(t, x)

]
= α′(t)

(
0 −1
1 0

)
,

and so:

F ′xx(0)(θ) = Rα(t)

[
∇θ(ϕ−1

t (x))
]
R−α(t),

F ′xt(0)(θ) =
(

dRα(t)

dt

)
θ(ϕ−1

t (x)) +Rα(t)

[
∇θ(ϕ−1

t (x))
] (

dR−α(t)

dt

)
,
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and for any smooth enough vector field w : Q→ Rd,

w1(θ) =
[
∇w(t, x)

]
Rα(t)θ(ϕ

−1
t (x)).

3.2.2. An academic shape optimization problem

In this section, we calculate the derivative of the following shape functional:

(3.18) J(Ω) =

∫
QΩ

f(t, x) dxdt,

depending on the domain Ω via the integral of a smooth function f ∈ C∞([0, T ] × Rd) over the space-time
cylinder QΩ, which involves all the deformed version Ω(t) of Ω, t ∈ (0, T ). Again, this quite academic question
is a useful preliminary to the treatment of the more “physical” shape functionals described in Section 4.

Lemma 3.1. The functional J(Ω) in (3.18) is shape differentiable at any bounded Lipschitz shape Ω ⊂ Rd,
and its shape derivative reads, in volume form:

(3.19) J ′(Ω)(θ) =

∫
QΩ

tr
([
∇2ϕt(ϕ

−1
t (x))θ(ϕ−1

t (x))
][
∇ϕ−1

t (x)
])
f(t, x) dxdt

+

∫
QΩ

(divθ)(ϕ−1
t (x))f(t, x) dxdt+

∫
QΩ

[
∇ϕt(ϕ−1

t (x))
]T
∇f(t, x) · θ(ϕ−1

t (x)) dxdt,

or equivalently, in surface form:

(3.20) J ′(Ω)(θ) =

∫
∂Ω

vΩ θ · n ds, where vΩ(x) :=

∫ T

0

|det∇ϕt(x)|f(t, ϕt(x)) dt.

Proof. For any small enough deformation θ ∈ Θad, the definition of J(Ωθ) reads:

J(Ωθ) =

∫
QΩθ

f(t, x) dxdt.

Using a change of variables based on the mapping Θ in (3.6) and the fact that, by definition Θ−1(QΩθ ) = QΩ,
we obtain:

J(Ωθ) =

∫
QΩ

m(θ)(f ◦Θ)(t, x) dxdt,

where we recall the notation m(θ) = |detF (θ)|. Combining the expansions (3.13) and (3.14) of the two terms
in the above integrand, we see that the mapping θ 7→ J(Ωθ) is differentiable at θ = 0, with derivative

J ′(Ω)(θ) =

∫
QΩ

tr
([
∇2ϕt(ϕ

−1
t (x))θ(ϕ−1

t (x))
][
∇ϕ−1

t (x)
])
f(t, x) dxdt

+

∫
QΩ

(divθ)(ϕ−1
t (x))f(t, x) dxdt+

∫
QΩ

[
∇ϕt(ϕ−1

t (x))
]T
∇f(t, x) · θ(ϕ−1

t (x)) dxdt,

which is the announced formula (3.19).
To infer the surface expression (3.20), we first express (3.19) as nested integrals over (0, T ) and ϕt(Ω) and

we use a change of variables in terms of the mapping ϕt in the spatial integral to obtain

(3.21) J ′(Ω)(θ) =

∫ T

0

∫
Ω

|det∇ϕt(x)|tr
([
∇2ϕt(x)θ(x)

][
∇ϕ−1

t (ϕt(x))
])
f(t, ϕt(x)) dxdt

+

∫ T

0

∫
Ω

|det∇ϕt(x)|(divθ)(x)f(t, ϕt(x)) dxdt+

∫ T

0

∫
Ω

|det∇ϕt(x)|
[
∇ϕt(x)

]T
∇f(t, ϕt(x)) · θ(x) dxdt.

We now proceed according to the strategy summarized in e.g. [2]: integrating by parts in all the terms of
the above expression containing derivatives of θ yields an expression of the form:

J ′(Ω)(θ) =

∫
Ω

MΩ · θ dx+

∫
Γ

vΩ(θ · n) ds+

∫
Γ

tΩ · θΓ ds,
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where MΩ : D → Rd, vΩ : Γ → R and tΩ : Γ → Rd depend on the function f and on Ω. If we expect that
J ′(Ω)(θ) admits an expression with the desirable structure (3.5), the vector fields MΩ and tΩ must vanish.
That this indeed holds is eventually verified by an elementary, albeit tedious calculation.

In the present case, an integration by parts in the second integral on the right-hand side of (3.21) (which
is the only one involving derivatives of θ) produces the following expression:

J ′(Ω)(θ) =

∫ T

0

∫
Γ

|det∇ϕt(x)|f(t, ϕt(x)) θ(x) · n(x) ds(x)dt+ r(θ),

where r(θ) is a collection of integrals posed on the domain Ω involving only θ (and not its derivatives).
A simple, albeit tedious calculation which is omitted for brevity reveals that r(θ) actually vanishes, which
allows to conclude. �

4. Calculation of the shape derivative in the magneto-quasi-static context

In this section, we turn to the calculation of the shape derivative of a “physical” objective function J(Ω) which
depends on the shape Ω via the potential uΩ, solution to the magneto-quasi-static problem (2.21) where Ω
represents the phase occupied by ferromagnetic material. After sketching some mathematical preliminaries
about this evolution problem in Section 4.1 and a few technical features about its solution in Section 4.2, we
proceed to the calculation of the shape derivative J ′(Ω)(θ) in Section 4.3, under the simplifying assumption
that the reluctivity ν of the ferromagnetic material is constant, in which case (2.21) becomes linear. We
eventually provide the formal extension of this result in the general situation of a non linear material in
Section 4.4.

4.1. Mathematical preliminaries about the magneto quasi-static evolution problem

The analysis of the evolution problem (2.21) brings into play suitable functional spaces for functions de-
pending on the time and space variables. For the sake of convenience, a few basic facts about these are
recalled in Appendix B.1; we refer to e.g. §1 in Chap. XVIII of [21], or Chap. 23 in [74] for more exhaustive
presentations.

Let us consider the functional space L2(0, T ;H1
0 (D)), whose dual L2(0, T ;H1

0 (D))∗ can be identified with
L2(0, T ;H−1(D)), see (B.2). We also introduce

W :=

{
u ∈ L2(0, T ;H1

0 (D)) s.t. σΩ(t)
∂u

∂t
∈ L2(0, T ;H−1(D))

}
,

which is a Hilbert space when equipped with the norm

||u||2W :=

∫ T

0

||u(t, ·)||2H1
0 (D) dt+

∫ T

0

∣∣∣∣∣∣∣∣σΩ(t)
∂u

∂t
(t, ·)

∣∣∣∣∣∣∣∣2
H−1(D)

dt.

Intuitively, W is a variant of the more classical space W (0, T ;H1
0 (D), L2(D)) defined in (B.3), which is

adapted to handle the fact that the coefficient σΩ(t) vanishes outside the region Dmag(t) ⊂ D, see (2.11).

The properties of W (0, T ;H1
0 (D), L2(D)) summarized in Lemma B.1 are also verified by W , as the proof of

this result can be straightforwardly adapted to the present case. In particular, any element u ∈ W induces
a continuous mapping [0, T ] 3 t 7→ u(t, ·) ∈ L2(Dmag), which allows to introduce the closed subspace Wper

of W defined by:

(4.1) Wper :=
{
u ∈W s.t. u(t = 0, ·) = u(t = T, ·) on Dmag

}
.

Remark 4.1.

• As the conductivity σΩ(t) equals σm > 0 on Dmag(t) and vanishes outside Dmag(t), the time derivative
∂
∂t (u(t, ϕt(·))) of a function u ∈W belongs to L2(0, T ;H1(Dmag)∗).

• The time periodicity condition satisfied by functions u ∈Wper only holds in Dmag, as an application
of Lemma B.1 (ii).
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Using this language, the magneto-quasi-static problem (2.21) can be expressed in variational form:

(4.2) Search for uΩ ∈Wper, s.t. ∀w ∈ L2(0, T ;H1
0 (D)),∫

Q

σΩ(t)

(
∂uΩ

∂t
+ v · ∇uΩ

)
w dxdt+

∫
Q

νΩ(t)(x, |∇uΩ|)∇uΩ · ∇w dxdt =

∫
Q

fw dxdt,

or equivalently:

(4.3) Search for uΩ ∈Wper, s.t. for a.e. t ∈ (0, T ),

∀w ∈ H1
0 (D),

∫
D

σΩ(t)

(
∂uΩ

∂t
+ v · ∇uΩ

)
w dx+

∫
D

νΩ(t)(x, |∇uΩ|)∇uΩ · ∇w dx =

∫
D

fw dx.

The following theorem deals with the well-posedness of the variational problem (4.2).

Theorem 4.1. Let ϕt be a time-dependent diffeomorphism of D satisfying (2.14) to (2.16). For any source
f ∈ L2(0, T ;H−1(D)), the evolution problem (4.2) has a unique solution uΩ ∈ Wper, which has a Lipschitz
dependence on f : there exists a constant C > 0 such that the solutions u1, u2 ∈ Wper associated to the
respective right-hand sides f1, f2 ∈ L2(0, T ;H−1(D)) satisfy:

||u1 − u2||W≤ C||f1 − f2||L2(0,T ;H−1(D)).

The proof of this result is sketched in Appendix B. Let us point out that the analysis of a similar statement
about a linear version of (4.2) was presented recently in [28].

4.2. A few properties of the solution to the magneto-quasi-static problem

This section is devoted to a few useful technical facts about functions in the space W , and more precisely
about the solution uΩ to (4.2). Throughout, ϕt is a smooth time-dependent diffeomorphism of D satisfying
(2.14) to (2.16) and the coefficients σΩ(t) and νΩ(t) are given by (2.11).

The first remark is an avatar of the so-called Reynolds (or transport) theorem:

Lemma 4.1. Let u, p ∈W ; the following identity holds in the sense of distributions on (0, T ):

d

dt

(∫
D

σΩ(t)(x)u(t, x)p(t, x) dx

)
=

∫
D

σΩ(t)(x)
du

dt
(t, x)p(t, x) dx

+

∫
D

σΩ(t)(x)u(t, x)
dp

dt
(t, x) dx+

∫
Q

σΩ(t)divv(t, x)u(t, x)p(t, x) dxdt,

where we recall the notation du
dt , dp

dt in (2.20) for the total time derivatives of u and p.

Proof. By Lemma B.1 (i), it is enough to prove that the desired identity holds at every t ∈ (0, T ) when u
and p belong to the space C∞([0, T ], H1

0 (D)). To achieve this, we first use a change of variables based on the
mapping ϕt:∫

D

σΩ(t)(x)u(t, x)p(t, x) dx =

∫
D

|det∇ϕt(x)|σΩ(t)(ϕt(x))u(t, ϕt(x))p(t, ϕt(x)) dx

=

∫
D

|det∇ϕt(x)|σΩ(x) u(t, ϕt(x))p(t, ϕt(x)) dx,

where the second line follows from (2.17). Taking derivatives with respect to time, we obtain:

d

dt

(∫
D

σΩ(t)(x)u(t, x)p(t, x) dx

)
=

∫
D

|det∇ϕt(x)|σΩ(x)
du

dt
(t, ϕt(x))p(t, ϕt(x)) dx

+

∫
D

|det∇ϕt(x)|σΩ(x)u(t, ϕt(x))
dp

dt
(t, ϕt(x)) dx

+

∫
D

|det∇ϕt(x)|tr
(
∇ϕt(x)−1∇

(
∂ϕt
∂t

)
(x)

)
σΩ(x)u(t, ϕt(x))p(t, ϕt(x)) dx.
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Here, we have used the usual formula for the derivative of the determinant mapping. Another change of
variables now yields:

d

dt

(∫
D

σΩ(t)(x)u(t, x)p(t, x) dx

)
=

∫
D

σΩ(t)(x)
du

dt
(t, x)p(t, x) dx+

∫
D

σΩ(t)(x)u(t, x)
dp

dt
(t, x) dx

+

∫
D

tr

(
∇ϕt(ϕ−1

t (x))−1∇
(
∂ϕt
∂t

)
(ϕ−1
t (x))

)
σΩ(t)(x)u(t, x)p(t, x) dx.

The desired identity eventually results from the following elementary calculation and the definition (2.13) of
the velocity field v(t, x):

∇
(
∂ϕt
∂t

)
(ϕ−1
t (x))∇ϕt(ϕ−1

t (x))−1 = ∇
(
∂ϕt
∂t

)
(ϕ−1
t (x))∇(ϕ−1

t (x))

= ∇
(
∂ϕt
∂t

(ϕ−1
t (x))

)
= ∇v(t, x).

�

Corollary 4.1. The following relation holds, for all u, p ∈W :∫
Q

σΩ(t)
du

dt
p dxdt =

∫
D

(
σΩ(T )u(T, x)p(T, x)− σΩ(0)u(0, x)p(0, x)

)
dx

−
∫
Q

σΩ(t)
dp

dt
u dxdt−

∫
Q

σΩ(t)(divv)up dxdt.

Proof. For a.e. t ∈ (0, T ), Lemma 4.1 states that:∫
D

σΩ(t)(x)
du

dt
(t, x)p(t, x) dx =

d

dt

(∫
D

σΩ(t)(x)u(t, x)p(t, x) dx

)
−
∫
D

σΩ(t)(x)u(t, x)
dp

dt
(t, x) dx−

∫
D

σΩ(t)divv(t, x)u(t, x)p(t, x) dx.

In particular, the mapping t 7→
∫
D
σΩ(t)u(t, x)p(t, x)dx is absolutely continuous on (0, T ). The result follows

immediately from integration of this identity over the time period (0, T ). �

The variational problem (4.2) implicitly encompasses jump conditions for uΩ(t, ·) at the interface Γ(t)
where the conductivity and the reluctivity are discontinuous; these are the subject of the next lemma:

Lemma 4.2. Let the right-hand side f belong to the space L2(0, T, L2(D)); the corresponding solution uΩ(t, ·)
to (4.2) is continuous across Γ(t):

(4.4) ∀t ∈ (0, T ), x ∈ Γ, u−Ω(t, ϕt(x)) = u+
Ω(t, ϕt(x)),

and so are its normal flux and tangential gradient:

(4.5) ∀t ∈ (0, T ), x ∈ Γ,
(
νΩ∇uΩ(t, ϕt(x))

)−
· nΩ(t)(ϕt(x)) =

(
νΩ∇uΩ(t, ϕt(x))

)+

· nΩ(t)(ϕt(x)),

(4.6) ∀t ∈ (0, T ), x ∈ Γ, ∇Γ(t)u
−
Ω(t, ϕt(x)) = ∇Γ(t)u

+
Ω(t, ϕt(x)).

Finally, it holds:

(4.7) ∀t ∈ (0, T ), x ∈ Γ,
du−Ω
dt

(t, ϕt(x)) =
du+

Ω

dt
(t, ϕt(x)).

Proof. Since uΩ ∈ L2(0, T ;H1
0 (D)), the function uΩ(t, ·) belongs to H1

0 (D) for a.e. t ∈ (0, T ), and so (4.4)
holds true.

Let now t ∈ (0, T ) be given; by considering smooth test functions w ∈ C∞c (D) with compact support

inside Ω(t0) or D \ Ω(t0) in (4.3), then integrating by parts, we see that:

(4.8) σΩ(t)
duΩ

dt
(t, x)− div

(
νΩ(t)(x, |∇uΩ(t, x)|)∇uΩ(t, x)

)
= f(t, x)
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in the sense of distributions in Ω(t) or D \ Ω(t). Repeating the calculation with arbitrary smooth test
functions w ∈ C∞c (D) and using (4.8), we now obtain:∫

Γ(t)

(
νΩ(t)

∂uΩ

∂n

)−
w ds−

∫
Γ(t)

(
νΩ(t)

∂uΩ

∂n

)+

w ds = 0,

and (4.5) follows immediately.
Eventually, (4.6) is obtained by taking the tangential gradient in (4.4), and taking time derivatives in

(4.4) yields the last jump relation (4.7). �

Remark 4.2. In the following, we denote by ∇Γ(t)uΩ(t, ϕt(x)) and νΩ(t)∇uΩ(t, ϕt(x)) · nΩ(t)(ϕt(x)) the
common values of the one-sided limits of the tangential gradient and normal flux of uΩ(t, ·) through Γ(t).

4.3. Calculation of the shape derivative of a physical objective function J(Ω) in the linear
magneto-quasi-static setting

In this section, we detail the calculation of the shape derivative of the physical objective function J(Ω) in
(3.2) involving the magneto-quasi-static potential uΩ, with a particular emphasis on the arguments which are
quite specific to the present physical context. To keep technicality at a minimum, our analysis is conducted
in the linear case where the reluctivity ν̂ of the ferromagnetic material is a constant function ν̂ ≡ νf , see
Remark 2.3. The needed adaptations to the general case of a non constant function ν̂ are elementary,
albeit tedious; they are discussed in the next Section 4.4. Throughout the remainder of this section, we
rely on the following shorthand in notation: we denote by Ω1 := Ω the optimized phase of the rotor filled
by ferromagnetic material, and by Ω2 := D \ Ω its complement in D. Accordingly, we denote by ν1, σ1

the reluctivity and conductivity inside Ω1, and by ν2, σ2 the piecewise constant functions matching the
repartition (2.11).

The evolution problem (2.21) then rewrites:

(4.9)

 σΩ(t)
duΩ

dt − div
(
νΩ(t)∇uΩ

)
= f in Q,

uΩ(t, x) = 0 for t ∈ (0, T ), x ∈ ∂D,
uΩ(0, x) = uΩ(T, x) for x ∈ Dmag,

where

σΩ(t)(x) =

{
σ1 if x ∈ Ω(t),
σ2 otherwise,

and νΩ(t)(x) =

{
ν1 if x ∈ Ω(t),
ν2 otherwise.

Proposition 4.1. Let the source term f : Q→ R be smooth; the functional J(Ω) in (3.2) is shape differen-
tiable at any bounded and Lipschitz shape Ω ⊂ Drot, and its shape derivative reads, under volume form:

(4.10) ∀θ ∈ Θad, J ′(Ω)(θ) =

∫
Q

m′(0)(θ)j(uΩ) dxdt

+

∫
Q

σΩ(t)

(
m′(0)(θ)

duΩ

dt
−
[
F ′xx(0)(θ)

]
v · ∇uΩ + v1(θ) · ∇uΩ + b′(0)(θ) · ∇uΩ

)
pΩ dxdt

+

∫
Q

νΩ(t)

[
A′(0)(θ)

]
∇uΩ · ∇pΩ dxdt−

∫
Q

(
m′(0)(θ)f + f1(θ)

)
pΩ dxdt,

where the quantities A′(0)(θ), m′(0)(θ), F ′xx(0)(θ) and b′(0)(θ) are respectively defined by (3.9), (3.11), (3.13)
and (3.17), and f1(θ) and v1(θ) are the derivatives of the mappings θ 7→ f ◦ Θ and θ 7→ v ◦ Θ, see (3.14)
and (3.15).

The adjoint state pΩ is the unique solution in Wper to the evolution problem:

(4.11)

 −σΩ(t)
dpΩ

dt − div
(
νΩ(t)∇pΩ

)
− σΩ(t)(divv)pΩ = −j′(uΩ) in Q,

pΩ(t, x) = 0 for t ∈ (0, T ), x ∈ ∂D,
pΩ(0, x) = pΩ(T, x) for x ∈ D.
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It is equivalently characterized as the solution to the following variational problem:

(4.12) Search for pΩ ∈Wper s.t. ∀w ∈ L2(0, T ;H1
0 (D)),∫

Q

(
− σΩ(t)

dpΩ

dt
w + νΩ(t)∇pΩ · ∇w − σΩ(t)(divv)pΩw

)
dxdt = −

∫
Q

j′(uΩ)w dxdt.

Assuming Ω to be smooth, the shape derivative J ′(Ω)(θ) admits the surface form:

(4.13) ∀θ ∈ Θad, J ′(Ω)(θ) =

∫
Γ

vΩ (θ · n) ds, where

vΩ(x) := −(σ2 − σ1)

∫ T

0

|det∇ϕt(x)|duΩ

dt
(t, ϕt(x))pΩ(t, ϕt(x)) dt

− (ν2 − ν1)

∫ T

0

|det∇ϕt(x)|∇Γ(t)uΩ(t, ϕt(x)) · ∇Γ(t)pΩ(t, ϕt(x)) dt

+

(
1

ν2
− 1

ν1

)∫ T

0

|det∇ϕt(x)|
(
νΩ(t)∇uΩ(t, ϕt(x)) · nΩ(t)(ϕt(x))

)(
νΩ(t)∇pΩ(t, ϕt(x)) · nΩ(t)(ϕt(x))

)
dt.

Remark 4.3.

• The well-posedness of the (linear) adjoint problem (4.11) follows from similar, although simpler
arguments to those involved in the proof of Theorem 4.1 about the (non linear) state problem (2.21).

• Like uΩ(t, ·), the adjoint state pΩ(t, ·) satisfies jump relations at the interface Γ(t); a similar analysis
to that in the proof of Lemma 4.2 indeed yields:

∀t ∈ (0, T ), x ∈ Γ, p−Ω(t, ϕt(x)) = p+
Ω(t, ϕt(x)),

and

∀t ∈ (0, T ), x ∈ Γ, (νΩ∇pΩ(t, ϕt(x)))− · nΩ(t)(ϕt(x)) = (νΩ∇pΩ(t, ϕt(x)))+ · nΩ(t)(ϕt(x)).

Remark 4.4.

• The smoothness assumption about the source f in the statement of Proposition 4.1 can be weak-
ened in various ways. For instance, the statement holds mutatis mutandis if f only belongs to
L2(0, T ;H−1(D)), but for each time t ∈ (0, T ), f(t, ·) has support in the region Dstat where defor-
mations θ ∈ Θad vanish.

• As we have evoked in Remark 2.3, in realistic applications, the right-hand side f contains a contri-
bution of the form div(L1Dmag(t)) where the smooth vector field L(t, x) stands for the 90◦ clockwise

rotate M⊥ of the magnetization M . In such case, the last integral in the right-hand side of (4.10)
should be supplemented with:

(4.14) −
∫
QDmag

(
m′(0)(θ)L+ L1(θ)−

[
F ′xx(0)(θ)

]
L
)
· ∇pΩ dxdt,

where L1(θ) is the first-order term in the asymptotic expansion of the vector field L ◦Θ at θ = 0, see
(3.15).

Proof of Proposition 4.1. However technically tedious, the proof follows a quite classical trail, as exposed for
instance in [2, 54, 36]. We proceed in five steps.

Step 1: We prove that the mapping Ω 7→ uΩ has a “Lagrangian derivative”.

More precisely, we prove that the transported potential θ 7→ uΩ(θ) := uΩθ ◦Θ is Fréchet differentiable from
a neighborhood of 0 in Θad into Wper. This starts from the variational problem satisfied by the magneto-
quasi-static field uΩθ ∈Wper:

(4.15) ∀w ∈ L2(0, T ;H1
0 (D)),

∫
Q

σϕt(Ωθ)(x)
duΩθ

dt
w dxdt+

∫
Q

νϕt(Ωθ)(x)∇uΩθ · ∇w dxdt =

∫
Q

fw dxdt.
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A change of variables via Θ in the above integrals yields:

(4.16)

∫
Q

(σϕt(Ωθ) ◦Θx)m(θ)

((
∂uΩθ

∂t

)
◦Θ + (v ◦Θ) · (∇uΩθ ◦Θ)

)
(w ◦Θ) dxdt

+

∫
Q

(νϕt(Ωθ) ◦Θx)m(θ)
(
∇uΩθ ◦Θ

)
·
(
∇w ◦Θ

)
dxdt =

∫
Q

m(θ)(f ◦Θ)(w ◦Θ) dxdt,

where we recall the expression (3.12) of m(θ). Now, from the definitions (2.17) of σΩ and νΩ, it holds:

σϕt(Ωθ) ◦Θx = σΩ(t), and νϕt(Ωθ) ◦Θx = νΩ(t),

so that, by using the relations (3.8) and taking test functions of the form w ◦Θ−1, w ∈ L2(0, T ;H1
0 (D)), we

see that the transported function uΩ(θ) satisfies the variational problem:

(4.17)

∀w ∈ L2(0, T ;H1
0 (D)),

∫
Q

σΩ(t)m(θ)

(
∂uΩ(θ)

∂t
+ b(θ) · ∇uΩ(θ) +

[
F−1
xx (θ)

]
(v ◦Θ) · ∇uΩ(θ)

)
w dxdt

+

∫
Q

νΩ(t)

[
A(θ)

]
∇uΩ(θ) · ∇w dxdt =

∫
Q

m(θ)(f ◦Θ)w dxdt,

where A(θ) and b(θ) are respectively defined by (3.16) and (3.7).
This problem can be reformulated as a more abstract equation for uΩ(θ):

Search for u ∈Wper s.t. F(θ, u) = 0,

where we have defined the mapping F : Θad ×Wper 7→ L2(0, T ;H−1(D)) by:

(4.18) F(θ, u) =

 w 7→
∫
Q

σΩ(t)m(θ)

(
∂u

∂t
+ b(θ) · ∇u+

[
F−1
xx (θ)

]
(v ◦Θ) · ∇u

)
w dxdt

+

∫
Q

νΩ(t)

[
A(θ)

]
∇u · ∇w dxdt−

∫
Q

m(θ)(f ◦Θ)w dxdt

 .
An elementary verification shows that this equation fulfills the assumptions of the implicit function theorem
at the point (0, uΩ), see e.g. [45] Chap. I, Th. 5.9. Hence, the mapping θ 7→ uΩ(θ) is Fréchet differentiable
at θ = 0. Its derivative, denoted by ůΩ(θ), is the so-called Lagrangian derivative of uΩ.

Step 2: We characterize the Lagrangian derivative ůΩ(θ) ∈Wper.

Relying on the information that the mapping θ 7→ uΩ(θ) is differentiable at θ = 0, taking derivatives in
(4.17) shows that the function ůΩ(θ) ∈Wper satisfies, for all w ∈ L2(0, T ;H1

0 (D)):

(4.19)

∫
Q

σΩ(t)
důΩ(θ)

dt
w dxdt+

∫
Q

νΩ(t)∇ůΩ(θ) · ∇w dxdt = −
∫
Q

σΩ(t)m
′(0)(θ)

duΩ

dt
w dxdt

+

∫
Q

σΩ(t)

[
F ′xx(0)(θ)

]
v · ∇uΩw dxdt−

∫
Q

σΩ(t)v1(θ) · ∇uΩw dxdt−
∫
Q

σΩ(t)b
′(0)(θ) · ∇uΩw dxdt

−
∫
Q

νΩ(t)

[
A′(0)(θ)

]
∇uΩ · ∇w dxdt+

∫
Q

(
m′(0)(θ)f + f1(θ)

)
w dxdt.

This is a well-posed evolution problem for ůΩ(θ) ∈Wper.

Step 3: We calculate the derivative of the functional J(Ω) in (3.2).

A change of variables based on the mapping Θ in the definition of J(Ωθ) yields the following expression:

J(Ωθ) =

∫
Q

m(θ)j(uΩ(θ)) dxdt,

which naturally brings into play the transported function uΩ(θ). As we have proved the differentiability of
the latter with respect to the deformation θ, we now obtain, by taking derivatives in the above expression:

(4.20) J ′(Ω)(θ) =

∫
Q

(
m′(0)(θ)j(uΩ) + j′(uΩ)ůΩ(θ)

)
dxdt.
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Step 4: We apply the adjoint method to derive the volume form of J ′(Ω)(θ).

The expression (4.20) is not suitable for practical calculations, as it depends in a complicated way on θ, via
the Lagrangian derivative ůΩ(θ), which is only known implicitly, as the solution to (4.19). In particular,
(4.20) does not allow for the simple identification of a descent direction for J(Ω).

To overcome this classical issue, we rely on the adjoint method from optimal control theory, see e.g. [50] or
[60] for an intuitive presentation. We introduce the adjoint state pΩ ∈Wper as the solution to the variational
problem (4.12), and take w = ůΩ(θ) as test function in there to obtain:

−
∫
Q

j′(uΩ)ůΩ(θ) dxdt =

∫
Q

(
−σΩ(t)

dpΩ

dt
ůΩ(θ) + νΩ(t)∇pΩ · ∇ůΩ(θ)− σΩ(t)(divv)pΩůΩ(θ)

)
dxdt.

Using Corollary 4.1 and the fact that ůΩ(θ) ∈Wper together with σΩ(T ) = σΩ(0) due to (2.15) and (2.16), it
follows: ∫

Q

(
σΩ(t)

důΩ(θ)

dt
pΩ + νΩ(t)∇pΩ · ∇ůΩ(θ)

)
dxdt = −

∫
Q

j′(uΩ)ůΩ(θ) dxdt.

Now introducing the variational characterization (4.19) of ůΩ(θ), we obtain:
(4.21)∫

Q

j′(uΩ)ůΩ(θ) dxdt =

∫
Q

σΩ(t)m
′(0)(θ)

duΩ

dt
pΩ dxdt−

∫
Q

σΩ(t)

[
F ′xx(0)(θ)

]
v · ∇uΩ pΩ dxdt

+

∫
Q

σΩ(t)v1(θ) · ∇uΩ pΩ dxdt+

∫
Q

σΩ(t)b
′(0)(θ) · ∇uΩ pΩ dxdt

+

∫
Q

νΩ(t)

[
A′(0)(θ)

]
∇uΩ · ∇pΩ dxdt−

∫
Q

(
m′(0)(θ)f + f1(θ)

)
pΩ dxdt.

Injecting this expression into (4.20), we obtain the volume form (4.10) of the shape derivative of J(Ω).

Step 5: We infer the surface form (4.13) of J ′(Ω)(θ) from the volume form (4.10).

Let us write (4.10) under the form

J ′(Ω)(θ) =

4∑
i=1

Ii(θ),

where Ii(θ), i = 1, . . . , 4 are the four integral quantities at the right-hand side of (4.10). Our derivation of
the surface form of J ′(Ω)(θ) follows the methodology exposed in [2], which we have already exemplified in
the proof of Lemma 3.1: we integrate by parts all the terms featured in the Ii(θ) which involve derivatives
of θ, and among the resulting terms, we only retain those featuring boundary integrals on Γ of the normal
component θ · n, since the other contributions are expected to cancel according to the prediction of the
structure theorem for shape derivatives.

Let us treat the first integral I1(θ); injecting the expression (3.13) of m′(0)(θ), we see that:

I1(θ) =

∫
Q

(divθ)(ϕ−1
t (x))j(uΩ(t, x)) dxdt+ r(θ).

Here and throughout the proof, r(θ) is a remainder that may change from one line to the next, of the form

r(θ) =

∫
D

sΩ · θ dx+

∫
Γ

tΩ · θΓ ds,

for some vector fields sΩ : D → Rd, tΩ : Γ→ Rd that depend on uΩ, pΩ and the motion ϕt. Decomposing the
integral in the above right-hand side as a nested integral over (0, T ) and D, and using a change of variables
by ϕt in the innermost integral, we obtain:

I1(θ) =

∫ T

0

∫
D

|det∇ϕt(x)|divθ(x)j(uΩ(t, ϕt(x))) dxdt+ r(θ)

=

∫ T

0

∫
∂D

|det∇ϕt(x)|j(uΩ(t, ϕt(x))) (θ · n)(x) dxdt+ r(θ),
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where we have used an integration by parts from the first line to the second one, together with the continuity
of uΩ(t, ·) across Γ(t), see Lemma 4.2. Since θ ∈ Θad vanishes on ∂D, it follows that:

I1(θ) = r(θ).

Let us now turn to the second integral I2(θ), which rewrites:

I2(θ) =

∫
Q

σΩ(t)

(
m′(0)(θ)

duΩ

dt
−
[
F ′xx(0)(θ)

]
v · ∇uΩ + v1(θ) · ∇uΩ − F ′xt(0)(θ) · ∇uΩ

)
pΩ dxdt

=

∫ T

0

∫
D

σΩ(t)(x)
(

(divθ)(ϕ−1
t (x))

duΩ

dt
(t, x)−

[
∇ϕt(ϕ−1

t (x))
][
∇θ(ϕ−1

t (x))
][
∇ϕ−1

t (x)
]
v(t, x) · ∇uΩ(t, x)

−
[
∇ϕt(ϕ−1

t (x))
][
∇θ(ϕ−1

t (x))
] ∂
∂t

(ϕ−1
t (x)) · ∇uΩ

)
pΩ(t, x) dxdt+ r(θ),

where we have used the derivatives (3.10), (3.11) and (3.13). Again, the change of variables x 7→ ϕt(x) in
the innermost integral yields:

I2(θ) =

∫ T

0

∫
D

σΩ(x)|det∇ϕt(x)|
(

(divθ)(x)
duΩ

dt
(t, ϕt(x))−

[
∇ϕt(x)

][
∇θ(x)

][
∇ϕ−1

t (ϕt(x))
]
v(t, ϕt(x))·∇uΩ(t, ϕt(x))

−
[
∇ϕt(x)

][
∇θ(x)

]∂ϕ−1
t

∂t
(ϕt(x)) · ∇uΩ(t, ϕt(x))

)
pΩ(t, ϕt(x)) dxdt+ r(θ),

and so

I2(θ) =

∫ T

0

∫
D

σΩ(x)|det∇ϕt(x)|
(

(divθ)(x)
duΩ

dt
(t, ϕt(x))−

[
∇θ(x)

][
∇ϕ−1

t (ϕt(x))
]
v(t, ϕt(x))·

[
∇ϕt(x)

]T
∇uΩ(t, ϕt(x))

−
[
∇θ(x)

]∂ϕ−1
t

∂t
(ϕt(x)) ·

[
∇ϕt(x)

]T
∇uΩ(t, ϕt(x))

)
pΩ(t, ϕt(x)) dxdt+ r(θ).

Decomposing the innermost integral as the sum of its contributions on Ω and D \ Ω, then integrating by
parts with Proposition A.1, we obtain:

I2(θ) = −(σ2 − σ1)

∫ T

0

∫
Γ

|det∇ϕt(x)|duΩ

dt
(t, ϕt(x))pΩ(t, ϕt(x))(θ · n)(x) dsdt

+

∫ T

0

∫
Γ

|det∇ϕt(x)|
([
∇ϕ−1

t (ϕt(x))
]
v(t, ϕt(x)) · n(x) +

∂ϕ−1
t

∂t
(ϕt(x)) · n(x)

)
(
σ2∇u+

Ω(t, ϕt(x))− σ1∇u−Ω(t, ϕt(x))
)
·
([
∇ϕt(x)

]
θ(x)

)
pΩ(t, ϕt(x)) dsdt+ r(θ).

Eventually, remarking that the definition (2.13) of the velocity v(t, x) implies that

[
∇ϕ−1

t (ϕt(x))
]
v(t, ϕt(x)) +

∂ϕ−1
t

∂t
(ϕt(x)) =

∂

∂t

(
ϕ−1
t (ϕt(x))

)
= 0,

we obtain:

I2(θ) = −(σ2 − σ1)

∫ T

0

∫
Γ

|det∇ϕt(x)|duΩ

dt
(t, ϕt(x))pΩ(t, ϕt(x))(θ · n)(x) dsdt+ r(θ).
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We next turn to the third integral I3(θ) on the right-hand side of (4.10). At first, injecting the derivatives
(3.11) and (3.17) into the defining formula, we have:

I3(θ) =

∫
Q

νΩ(t)

[
A′(0)(θ)

]
∇uΩ · ∇pΩ dxdt

=

∫ T

0

∫
D

νΩ(t)

(
m′(0)(θ)I−

[
F ′xx(0)(θ)

]
−
[
F ′xx(0)(θ)

]T)
∇uΩ · ∇pΩ dxdt

=

∫ T

0

∫
D

νΩ(t)(x)

(
(divθ)(ϕ−1

t (x))I−
[
∇ϕt(ϕ−1

t (x))
][
∇θ(ϕ−1

t (x))
][
∇ϕ−1

t (x)
]

−
[
∇ϕ−1

t (x)
]T [
∇θ(ϕ−1

t (x))
]T [
∇ϕt(ϕ−1

t (x))
]T)
∇uΩ(t, x) · ∇pΩ(t, x) dxdt+ r(θ).

Hence, a change of variables based on the diffeomorphism ϕt in the innermost integral produces:

I3(θ) =

∫ T

0

∫
D

νΩ(x)|det∇ϕt(x)|
(

(divθ)(x)I−
[
∇ϕt(x)

][
∇θ(x)

][
∇ϕ−1

t (ϕt(x))
]

−
[
∇ϕ−1

t (ϕt(x))
]T [
∇θ(x)

]T [
∇ϕt(x)

]T)
∇uΩ(t, ϕt(x)) · ∇pΩ(t, ϕt(x)) dxdt+ r(θ),

and so

I3(θ) =

∫ T

0

∫
D

νΩ(x)|det∇ϕt(x)|(divθ)(x)∇uΩ(t, ϕt(x)) · ∇pΩ(t, ϕt(x)) dxdt

−
∫ T

0

∫
D

νΩ(x)|det∇ϕt(x)|
[
∇θ(x)

][
∇ϕ−1

t (ϕt(x))
]
∇uΩ(t, ϕt(x)) ·

[
∇ϕt(x)

]T
∇pΩ(t, ϕt(x)) dxdt

−
∫ T

0

∫
D

νΩ(x)|det∇ϕt(x)|
[
∇θ(x)

][
∇ϕ−1

t (ϕt(x))
]
∇pΩ(t, ϕt(x)) ·

[
∇ϕt(x)

]T
∇uΩ(t, ϕt(x)) dxdt+ r(θ).

Decomposing each integral over D as the sum of two integrals over Ω and D \Ω, then using the integration
by parts formulas in Proposition A.1, we obtain:

I3(θ) = −
∫ T

0

∫
Γ

|det∇ϕt(x)|
(
ν2∇u+

Ω(t, ϕt(x))·∇p+
Ω(t, ϕt(x))−ν1∇u−Ω(t, ϕt(x))·∇p−Ω(t, ϕt(x))

)
(θ·n)(x)ds(x)dt

+

∫ T

0

∫
Γ

|det∇ϕt(x)|
(
ν2

([
∇ϕ−1

t (ϕt(x))
]
∇u+

Ω(t, ϕt(x)) · n(x)
)([
∇ϕt(x)

]T
∇p+

Ω(t, ϕt(x)) · θ(x)
)

− ν1

([
∇ϕ−1

t (ϕt(x))
]
∇u−Ω(t, ϕt(x)) · n(x)

)([
∇ϕt(x)

]T
∇p−Ω(t, ϕt(x)) · θ(x)

))
ds(x)dt

+

∫ T

0

∫
Γ

|det∇ϕt(x)|
(
ν2

([
∇ϕ−1

t (ϕt(x))
]
∇p+

Ω(t, ϕt(x)) · n(x)
)([
∇ϕt(x)

]T
∇u+

Ω(t, ϕt(x)) · θ(x)
)

− ν1

([
∇ϕ−1

t (ϕt(x))
]
∇p−Ω(t, ϕt(x)) · n(x)

)([
∇ϕt(x)

]T
∇u−Ω(t, ϕt(x)) · θ(x)

))
ds(x)dt+ r(θ),

and we now proceed to simplify each of the three integrals in the above right-hand side, which we denote by
J1(θ), J2(θ) and J3(θ), respectively.
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At first, we introduce the tangential and normal components of the gradients of uΩ(t, ·) and pΩ(t, ·); using
the jump relations from Lemma 4.2 and Remark 4.3, J1(θ) rewrites:

J1(θ) = −(ν2 − ν1)

∫ T

0

∫
Γ

|det∇ϕt(x)|∇Γ(t)uΩ(t, ϕt(x)) · ∇Γ(t)pΩ(t, ϕt(x))(θ · n)(x) ds(x)dt

−
(

1

ν2
− 1

ν1

)∫ T

0

∫
Γ

|det∇ϕt(x)|
(
νΩ(t)∇uΩ(t, ϕt(x))·nΩ(t)(ϕt(x))

)(
νΩ(t)∇pΩ(t, ϕt(x))·nΩ(t)(ϕt(x))

)
(θ·n)(x)ds(x)dt.

Let us next deal with J2(θ); to this end, we observe that

|det∇ϕt(x)|ν2

([
∇ϕ−1

t (ϕt(x))
]
∇u+

Ω(t, ϕt(x)) · n(x)
)

= ν2

(
∇u+

Ω(t, ϕt(x)) ·
([

com(∇ϕt(x))
]
n(x)

))
,

where com(M) is the cofactor matrix of a d × d matrix. Hence, using Lemma A.1 and the jump relations
from Lemma 4.2, it follows that
(4.22)

|det∇ϕt(x)|ν2

([
∇ϕ−1

t (ϕt(x))
]
∇u+

Ω(t, ϕt(x)) · n(x)
)

= |det∇ϕt(x)|ν1

([
∇ϕ−1

t (ϕt(x))
]
∇u−Ω(t, ϕt(x)) · n(x)

)
= |com(∇ϕt((x)))n(x)|

(
νΩ(t)∇uΩ · nΩ(t)(t, ϕt(x))

)
,

and so:

(4.23) J2(θ) =∫ T

0

∫
Γ

|com(∇ϕt(x))n(x)|
(
νΩ∇uΩ·nΩ(t)(t, ϕt(x))

)([
∇ϕt(x)

]T
∇p+

Ω(t, ϕt(x))·θ(x)−
[
∇ϕt(x)

]T
∇p−Ω(t, ϕt(x))·θ(x)

)
ds(x)dt.

We now bring into play the jump relations satisfied by pΩ, summarized in Remark 4.3 to simplify the second
parenthesis in the above integrand:[
∇ϕt(x)

]T
∇p+

Ω(t, ϕt(x)) · θ(x)−
[
∇ϕt(x)

]T
∇p−Ω(t, ϕt(x)) · θ(x)

=
(
∇p+

Ω(t, ϕt(x))−∇p−Ω(t, ϕt(x))
)
·
([
∇ϕt(x)

]
θ(x)

)
=

(
1

ν2
− 1

ν1

)(
νΩ(t)∇pΩ(t, ϕt(x)) · nΩ(t)(ϕt(x))

)([
∇ϕt(x)

]
θ(x) · nΩ(t)(ϕt(x))

)
=

(
1

ν2
− 1

ν1

) |det∇ϕt(x)|
|com(∇ϕt(x))n(x)|

(
νΩ(t)∇pΩ(t, ϕt(x)) · nΩ(t)(ϕt(x))

)
(θ · n)(x).

Hence, J2(θ) equals:

J2(θ) =

(
1

ν2
− 1

ν1

)∫ T

0

∫
Γ

|det∇ϕt(x)|
(
νΩ∇uΩ · nΩ(t)(t, ϕt(x))

)(
νΩ∇pΩ · nΩ(t)(t, ϕt(x))

)
(θ · n)(x) ds(x)dt.

Applying a similar treatment to J3(θ), it follows:

J3(θ) = −(ν2 − ν1)

∫ T

0

∫
Γ

|det∇ϕt(x)|∇Γ(t)uΩ(t, ϕt(x)) · ∇Γ(t)pΩ(t, ϕt(x))(θ · n)(x) ds(x)dt

+

(
1

ν2
− 1

ν1

)∫ T

0

∫
Γ

|det∇ϕt(x)|
(
νΩ∇uΩ(t, ϕt(x))·nΩ(t)(ϕt(x))

)(
νΩ∇pΩ(t, ϕt(x))·nΩ(t)(ϕt(x))

)
(θ·n)(x)ds(x)dt

+ r(θ).

Eventually, the fourth and last integral I4(θ) in the right-hand side of (4.21) equals:

I4(θ) =

∫
Q

(
m′(0)(θ)f + f1(θ)

)
pΩ dxdt =

∫ T

0

∫
D

(divθ)(ϕ−1
t (x))f(t, x)pΩ(t, x) dxdt+ r(θ).

Since pΩ(t, ·) is continuous across Γ(t) (see again Remark 4.3), it follows like in the treatment of I1(θ) that

I4(θ) = r(θ).
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Eventually, the desired surface expression (4.13) of the shape derivative J ′(Ω)(θ) is obtained by gathering
the above expressions of the various integrals Ii(θ), i = 1, . . . , 4 and Jj(θ), j = 1, . . . , 3, and by checking
that the integrals collected in the various remainders r(θ) do cancel, which is elementary, but tedious. This
concludes the proof of the theorem. �

4.4. Extensions of these results to the non linear setting

In this section, we outline how the shape differentiability of the functional J(Ω) in (3.2), proved in Section 4.3,
extends to the general situation where the function ν̂ : R+ → R+ characterizing the reluctivity of the
ferromagnetic material is no longer a constant, in which case the state equation (2.21) for uΩ becomes a non
linear evolution problem.

We content ourselves with the statement of the volume form of the shape derivative of J(Ω), as it is the
only information used in our numerical implementation, see Section 5.3. This formula results from a formal
calculation similar to that involved in the proof of Proposition 4.1, see also [30] for a related analysis.

Proposition 4.2. The functional J(Ω) in (3.2), featuring the solution uΩ to the non linear version of the
evolution problem (2.21) with a reluctivity coefficient ν̂ as in (2.12), is shape differentiable at any bounded,
Lipschitz shape Ω ⊂ Drot and its shape derivative reads:

(4.24) ∀θ ∈ Θad, J ′(Ω)(θ) =

∫
Q

m′(0)(θ)j(uΩ) dxdt

+

∫
Q

σΩ(t)

(
m′(0)(θ)

duΩ

dt
−
[
F ′xx(0)(θ)

]
v · ∇uΩ + v1(θ) · ∇uΩ + b′(0)(θ) · ∇uΩ

)
pΩ dxdt

+

∫
Q

(
νΩ(t)(x, |∇uΩ|)

[
A′(0)(θ)

]
−
ν′Ω(t)(x, |∇uΩ|)
|∇uΩ|

([
F ′xx(0)(θ)

]T
∇uΩ · ∇uΩ

)
I

)
∇uΩ · ∇pΩ dxdt

−
∫
Q

(
m′(0)(θ)f + f1(θ)

)
pΩ dxdt.

Here, ν′Ω(t)(x, s) stands for the derivative of the partial mapping s 7→ νΩ(t)(x, s), and pΩ is the solution to

the adjoint evolution problem:

(4.25) Search for pΩ ∈Wper s.t. ∀w ∈ L2(0, T ;H1
0 (D)),∫

Q

(
−σΩ(t)

dpΩ

dt
w − σΩ(t)(divv)pΩw +

(
νΩ(t)(x, |∇uΩ|)I +

ν′Ω(t)(x, |∇uΩ|)
|∇uΩ|

∇uΩ ⊗∇uΩ

)
∇pΩ · ∇w

)
dxdt =

−
∫
Q

j′(uΩ)w dxdt.

The quantities b′(0)(θ), F ′xx(0)(θ), f1(θ), v1(θ) and A′(0)(θ) are respectively given by (3.9), (3.11), (3.14),
(3.15) and (3.17).

Again, note that the formula in (4.24) is supplemented by the terms (4.14) in the presence of permanent
magnetization, see Remark 4.4.

Remark 4.5. As usual in the practice of the adjoint method, the defining problem for pΩ is (the transpose
of) the linearized version of the state problem (2.21) for uΩ. In particular, the well-posedness of (4.25) is
not an immediate consequence of that of (2.21). In the present context, this property results from similar
arguments to those in the proof of Theorem 4.1, once we have observed that the matrix field

A(x) :=

(
ν̂(|∇uΩ|)I +

ν̂′(|∇uΩ|)
|∇uΩ|

∇uΩ ⊗∇uΩ

)
induces a linear and uniformly elliptic operator in Dmag. To see this, we first note that, by taking s2 = s,
s1 = s+ h in (2.12) for s > 0 and sufficiently small h ∈ R, then dividing both sides by h2 and letting h→ 0,
we obtain:

(4.26) sν̂′(s) + ν̂(s) ≥ ν.
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Now, for any unit vector ξ ∈ Rd, the operator attached to A(x) satisfies:

A(x)ξ · ξ = ν̂(|∇uΩ|)|ξ|2+
ν̂′(|∇uΩ|)
|∇uΩ|

|∇uΩ · ξ|2.

Then, if ν̂′(|∇uΩ|) ≥ 0, we obtain immediately that

A(x)ξ · ξ ≥ ν|ξ|2.
If on the contrary ν̂′(|∇uΩ|) ≤ 0 the Cauchy-Schwarz inequality together with (4.26) yield:

A(x)ξ · ξ ≥
(
ν̂(|∇uΩ|) +

ν̂′(|∇uΩ|)
|∇uΩ|

|∇uΩ|2
)
|ξ|2,

≥ ν|ξ|2,
which is the expected conclusion.

5. Numerical methods

The shape optimization problems of interest in this work are of the form

(5.1) min
Ω⊂Drot

J(Ω),

where J depends on the 2d ferromagnetic phase Ω within (the cross-section of) the rotor Drot via the solution
uΩ to the (linear or non linear) magneto-quasi-static problem (2.21).

In this section, we describe the main numerical methods employed in our shape optimization framework.
After sketching the overall strategy in Section 5.1, we outline in Section 5.2 the practical resolution of the
state and adjoint evolution problems (2.21) and (4.11). We eventually discuss in Section 5.3 how the formulas
provided by Propositions 4.1 and 4.2 are used in practice to identify a suitable descent direction for J(Ω).

5.1. Sketch of the shape optimization workflow

In a nutshell, we solve (5.1) thanks to a gradient descent algorithm, which improves the shape Ω by successive
deformations along descent directions for the objective function J(Ω). The numerical discretization is based
on a space-time finite element framework: the 3d space-time cylinder Q = (0, T )×D is consistently equipped
with a tetrahedral mesh K which (approximately) resolves the moving phases Ω(t), Ωa(t), Dmag(t) etc. for all
times t ∈ [0, T ]. In our experiments, this space-time mesh is constructed by defining the moving space-time
geometry, e.g., using the Open Cascade Technology (OCCT) geometry kernel2, and creating an unstructured
tetrahedral mesh for this geometry using the mesh generator Netgen/NGSolve3.

The global strategy is outlined in Algorithm 1. In there, and throughout the following, we denote with
an n superscript the instances of the different objects at stake (the shape Ω, the descent direction θ, ...) at
each iteration n = 0, . . . of the process.

Algorithm 1 Shape gradient algorithm for the solution of (5.1).

Initialization: 3d tetrahedral mesh K0 of Q where the moving phases ϕt(Ω
0), ϕt(Ω

0
a), etc. are discretized

for t ∈ (0, T ).
for n = 0, ..., until convergence do

(1) Solve the state (2.21) and adjoint (4.25) equations for uΩn , pΩn : Q→ R.
(2) Evaluate the volume form of the shape derivative J ′(Ωn)(θ) (4.24).
(3) Identify a descent direction θn : D → Rd for J(Ω) from Ωn using the Hilbertian procedure (5.2).
(4) Select a suitably small descent step τn and calculate the space-time deformation Θn associated

to τnθn via (3.6).
(5) Modify the space-time mesh Kn according to Θn to obtain the new mesh Kn+1.

end for
return Mesh Kn of Q, where the deformations Ωn(tk) of the optimized 2d shape Ωn are explicitly
discretized.

2https://dev.opencascade.org/doc/refman/html/index.html
3https://ngsolve.org/
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Briefly, the algorithm starts with the datum of a tetrahedral mesh of the 3d space-time cylinder where the
configurations of the various moving or fixed phases (the ferromagnetic phase ϕt(Ω

0), the air phase ϕt(Ω
0
a),

etc.) are approximately discretized for t ∈ [0, T ].
At each iteration n = 0, . . . of the process, the evolution problems for uΩn and pΩn are solved on the

mesh Kn of the space-time cylinder via the space-time finite element method. This task is described in
Section 5.2. This allows to evaluate the volume form of the shape derivative J ′(Ωn) and to extract a suitable
descent direction θn from the latter via the so-called Hilbertian procedure. This operation is detailed in
Section 5.3. Then, the space-time deformation mapping Θn induced by τnθn is calculated, where τn is a
“small” descent step, and it is used to deform the mesh Kn of Q into a new mesh Kn+1 where the updated
shape Ωn+1 = (Id + τnθn)(Ωn) (and the other constituent phases of the motor) is explicitly discretized.

5.2. Resolution of the state and adjoint equations

At any iteration n of the execution of Algorithm 1, the space-time cylinder Q = (0, T )×D is equipped with
a tetrahedral mesh Kn in which the deformed structures of the motor (in particular, the ferromagnetic phase
Ωn(t), the air phase Ωna (t), etc.) for t ∈ [0, T ] are explicitly discretized. Hence, the motion of the structure
of the motor induced by ϕt is directly encoded in the space-time mesh.

This mesh serves as the support for the numerical solution of the state and adjoint equations (2.21)
and (4.25) for uΩn and pΩn via a space-time finite element method. These are discretized on the mesh Kn
by means of continuous, piecewise linear finite elements as suggested in [68], see also [27] for an application
to the parallel simulation of an electric machine. We mention that also higher order polynomial degrees
could be used, see e.g. [47] for a related investigation in an optimal control setting. The non linearity in
the magneto-quasi-static problem (2.21) for the state uΩn is handled thanks to a Newton-Raphson method
with damping in order to ensure a decrease of the residual. The time-periodic conditions can be treated
in a straightforward way by identifying the degrees of freedom lying on the bottom and top sections of the
mesh Kn of the space-time cylinder Q provided that the bottom and top surfaces of the space-time cylinder
feature an identical mesh.

Our numerical experiments rely on the finite element environment NGSolve [64]. Note that the precise
setting at hand does not allow to take advantage of the capabilities of this package to compute automatically
shape derivatives in the context of more “standard” shape optimization problems [31].

Remark 5.1.

• As we have mentioned in the introduction, in principle, space-time finite element approaches allow
for parallelization of the numerical resolution of an evolution problem in space-time by means of clas-
sical domain decomposition approaches, see e.g. [27]. In the same spirit, adaptive mesh refinement
in space-time is possible [47]. Last but not least, the state and adjoint equations could actually be
gathered into a single system and be solved in parallel, allowing for another level of parallelization
when compared to more conventional time-stepping schemes. While we do solve the associated sys-
tems of linear equations in parallel, as discussed in Section 6.2.2, adaptivity and the combination of
state and adjoint are not exploited in the present study, but they are interesting leads for future work.

• The present use of a space-time finite element method is possible since the physical problem under
scrutiny arises in two space dimensions, thus resulting in a 3d space-time mesh. This strategy could
be extended to the case of three space dimensions, provided numerical method for meshing (3 + 1)-
dimensional space-time domains and solving related variational problems be available [47].

5.3. Evaluation of the shape derivative J ′(Ω)(θ) and calculation of a descent direction

At any iteration n = 0, . . . of Algorithm 1, the reference to which is omitted in this section for notational
simplicity, we rely on the volume form of the shape derivative J ′(Ω)(θ) to identify a descent direction for J(Ω).
As discussed in e.g. [2, 32], the use of the volume form is a priori less convenient to achieve this purpose than
that of the surface form. Nevertheless, it presents several advantages, such as the less stringent regularity
demanded from Ω, uΩ, pΩ, a better consistency between the theoretical and discrete shape optimization
settings [37], and the possibility to conduct part of the evaluation in an automated way [31].

To exploit the volume form of J ′(Ω)(θ), we rely on the so-called “Hilbertian method”, for which we refer
to e.g. [7, 18, 22]. Let V be a Hilbert space of vector fields on D, equipped with an inner product b(·, ·),

27



which is continuously embedded in Θad. We solve the following auxiliary variational problem for the shape
gradient θ of the derivative J ′(Ω) associated to the Hilbert space (V, b(·, ·)):
(5.2) Search for θ ∈ V s.t. for all η ∈ V, b(θ, η) = J ′(Ω)(η),

If θ is the solution to (5.3), then −θ is a descent direction for J(Ω), since

J ′(Ω)(−θ) = −b(θ, θ) < 0.

Moreover, θ benefits from the features encoded in the space V , such as for instance a higher regularity than
mere vector fields in Θad, etc.

Several choices are possible about V and b, starting from Sobolev spaces Hm(D)d, for m large enough.
One efficient and popular choice, albeit formal, is the following:

V = H1
0 (D)d, with the inner product b(θ, η) :=

∫
D

(
α(x)(∇θ +∇θ>) : ∇η + β(x)θ · η

)
dx,(5.3)

where α, β : D → R are smooth, positive and non negative weights, respectively. Intuitively, this choice,
inspired by the linear elasticity system, produces shape gradient which “resemble” elastic displacements, and
thereby cause as little compression as possible in the mesh. In the same spirit, one may also enrich b(·, ·)
with a term attached to the Cauchy-Riemann equations, as a means to urge the solution θ to (5.2) to be
(approximately) conformal, thus preserving (approximately) the angles of the mesh, see [38].

The numerical solution of the identification problem (5.2) raises the need to calculate the volume form
of J ′(Ω)(θ) – by this, we mean, for a given shape Ω, to calculate the quantity J ′(Ω)(θ) for a wide range
of deformation fields θ. To achieve this, we note that the shape derivatives (3.19), (4.10) and (4.24) of the
functionals considered in this article can be written under the form

J ′(Ω)(θ) =

∫ T

0

∫
ϕt(D)

(
S0(t, x) · θ(ϕ−1

t (x)) + S1(t, x) : ∇θ(ϕ−1
t (x))

)
dx dt,

for some vector and matrix fields S0 : Q→ Rd and S1 : Q→ Rd×d, see [48] for a general result in this spirit.
Hence, a change of variables yields:

J ′(Ω)(θ) =

∫ T

0

∫
D

|det∇ϕt(x)|
(
S0(t, ϕt(x)) · θ(x) + S1(t, ϕt(x)) : ∇θ(x)

)
dx dt

=

∫
D

g0(x) · θ(x) + g1(x) : ∇θ(x) dx,

with

(5.4) g0(x) =

∫ T

0

S0(t, ϕt(x))|det∇ϕt(x)| dt, and g1(x) =

∫ T

0

S1(t, ϕt(x))|det∇ϕt(x)| dt.

Hence, in practice, when it comes to evaluate J ′(Ω)(θ), we first calculate the fields g0(x) and g1(x) on a
triangular mesh T of the spatial domain D. For instance, T can be a mesh of the bottom surface of the
space-time cylinder Q enclosed in the total 3d mesh K. We use a piecewise constant approximation of the
functions gi (i = 0, 1) on T : the constant value of gi on each triangle T ∈ T is obtained by evaluating
the “vertical line integral” featured in (5.4) at the centroid of T ; this is realized, in turn, by traveling the
space-time mesh K of Q and using a composite trapezoidal rule.

Eventually, once a descent direction θ is obtained for J(Ω) and a suitable descent step τ > 0 is selected,
the corresponding space-time deformation mapping

Θ(t, x) = (t, ϕt ◦ (Id + τθ) ◦ ϕ−1
t (x))

is used to update the space-time mesh K, see again Fig. 3.

6. Numerical examples

In this section we discuss two numerical examples to illustrate the shape derivative formulas of Proposi-
tions 4.1 and 4.2 and the implementation of our numerical strategy dedicated to shape optimization prob-
lems involving moving domains. The first Section 6.1 deals with a rather academic situation where the
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one-dimensional optimized shape is subjected to a motion which is slightly more complicated than a rota-
tion. We then turn in the Section 6.2 to the original motivation for this work, namely the optimization of
the 2d structure of a rotating electric machine.

6.1. An academic, spatially one-dimensional example

This first example arises in one space dimension (d = 1). The domain D is the unit interval (0, 1) ⊂ R and we
consider a simplified version of the structure described in Section 2.3: D is solely made of two complementary
phases Ω1 := Ω and Ω2 := D \ Ω, whose constituent materials have constant conductivity and reluctivity,
set to σ1 = ν1 = 1 and σ2 = ν2 = 5, respectively.

This arrangement of D is subjected to the deformation ϕt(x) = x+tx2 over the time period (0, T ) = (0, 1).
The physical behavior of Ω is then accounted for by the solution uΩ to the linear version of the magneto-
quasi-static equation (2.21), where the source term f(t, x) reads:

f(t, ϕt(x)) = (x− 0.4)(x− 0.6)
√
ϕt(x)(1 + t− ϕt(x))

see Fig. 4 (a).
Admittedly, this setting does not exactly comply with the assumptions of Sections 2, 3.2 and 4: the

mapping t 7→ ϕt(x) is not periodic, and so the domains Ω, D at initial time do not coincide with their
respective final versions Ω(T ), D(T ). However, a simple verification reveals that all the findings in there
– and notably, the well-posedness Theorem 4.1 about (2.21) and the calculation of the shape derivative in
Proposition 4.1 – remain valid in this context, provided the time-periodicity condition encompassed in Wper

is replaced with the more general version:

u(0, x) = u(T, ϕT (x)), x ∈ D.
In this setting, we consider the shape optimization problem

(6.1) min
Ω⊂D

J(Ω), where J(Ω) =

∫
Q

uΩ(t, x) dxdt

where uΩ solves (2.21) with σ1 = 10, σ2 = 0, ν1 = 1, ν2 = 10, recalling the notation of Section 4.3. This
problem (6.1) is solved by means of the shape gradient Algorithm 1. The inner product b(·, ·) featured in
the practice (5.3) of the Hilbertian method is induced by the Laplace operator: we solve (5.2) with α = 0.5,
β = 0.

The initial shape Ω0 is the interval (0.4, 0.6), see Fig. 4 (b), and the solution uΩ0 to (2.21) is depicted
in Fig. 4 (c). The deformation Θ0 applied to the space-time mesh at the first iteration is represented on
Fig. 5 (a). We apply 59 iterations of the gradient-based Algorithm 1 until the norm of the calculated
descent direction gets lower than a prescribed threshold of 10−9. The optimized design Ω∗ as well as the
corresponding potential uΩ∗ are depicted in Fig. 5 (b) and (c), respectively. The value of J(Ω) decreases
from 5.091 · 10−4 to 4.231 · 10−4 in the process.

a b c

Figure 4. (a) Right-hand side f(t, x); (b) Space-time cylinder Q associated to the initial
design Ω0 in the 1d academic example of Section 6.1; (c) Potential uΩ0 associated to Ω0.

6.2. Optimization of the structure of a rotating electric machine

In this section, we consider the optimization of the structure of an electric motor.
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a b c

Figure 5. (a) Descent direction Θ0 from the initial design Ω0, after extension of θ0 to the
space-time cylinder; (b) Space-time cylinder QΩ∗ associated to the optimized design Ω∗; (c)
Potential uΩ∗ for the optimized design Ω∗.

6.2.1. Description of the geometric setting

The considered machine operates at steady state with a constant rotational speed of 600 rotations per minute.
The geometry of its 2d cross-section D is symmetric with respect to both coordinates axes, see again Fig. 1;
hence, the time horizon T is chosen as the duration of a 90 degree rotation, i.e. T = 0.025 s.

The conductivities of the various materials at play take the values:

σf = σa = σc = 0, σm = 106 A2 · s3 · kg−1 ·m−3,

and the reluctivity of air, copper and magnet equal:

νa = νc =
107

4π
Am ·V−1 · s−1, and νm =

νa
1.05

Am ·V−1 · s−1.

The material behaviour of the ferromagnetic material is characterized by the nonlinear reluctivity function
ν̂ defined by:

ν̂(s) = νa − (νa − c1)exp(−c2sc3),

with the parameters c1 = 200, c2 = 0.001, c3 = 6, see Fig. 6 (a). We also assume that the magnet region
Dmag is the support of a permanent magnetization field M . The direction of M is depicted in Fig. 6 (b) and
its magnitude equals |M |= νmBr A ·m−1, where Br = 1.216 V · s ·m−2 is the magnetic remanence.

The coil region Dstat,c of the stator is occupied by a large number of thin copper wires wound around the
iron core of the machine. This phase is subdivided into six regions ΩU+ ,ΩU− ,ΩV+ ,ΩV− ,ΩW+ ,ΩW− and the
source current density f is spatially homogeneous with smooth time variations in each of these:

f(t, x) =
(
1ΩU+ (x)− 1ΩU−

(x)
)
IU (t) +

(
1ΩV+ (x)− 1ΩV−

(x)
)
IV (t) +

(
1ΩW+ (x)− 1ΩW−

(x)
)
IW (t).(6.2)

In this expression, the current densities read:

IU (t) = a sin(4α(t) + ψ), IV (t) = a sin

(
4α(t) + ψ +

4

3
π

)
, IW (t) = a sin

(
4α(t) + ψ +

2

3
π

)
,

where α(t) = π
2
t
T and ψ = π

18 is called the current angle. Here, the amplitude a is given by a = I c/A where
I = 1555.64 A is the product of the current intensity and the number of copper wires per coil, c = 2.75 is
the stacking factor and A ≈ 1.8 · 10−4 m2 is the area of one coil.

In this application, the transformation ϕt stands for a rotation of the inner part Drot at constant angular
velocity α′(t) = π

2T s−1, i.e.,

ϕt(x) =

{
Rα(t)x if x ∈ Drot

x if x ∈ Dstat,
where Rα(t) =

(
cosα(t) − sinα(t)
sinα(t) cosα(t)

)
.

In this setting, we aim to optimize the average torque of the device by acting on the shape of the phase
Ω ⊂ Drot containing ferromagnetic material – and thereby on the shape of the air pockets near the magnets
in the rotor domain – while keeping fixed the region Dmag containing the permanent magnets:

(6.3) min
Ω⊂D

J(Ω), where J(Ω) := −Tor(uΩ),

where the magneto-quasi-static potential uΩ is the solution to the non linear evolution problem (2.21) and
the torque Tor(u) is defined in (2.9). Note that, strictly speaking, J(Ω) is not of the form considered
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a b

Figure 6. Magnetic reluctivity curve s 7→ ν̂(s) in the ferromagnetic material considered in
the motor optimal design example of Section 6.2; (b) Zoom on the initial design Ω0.

in Section 4, as it involves the gradient of the potential uΩ. Nevertheless, as noted in Section 3.1, our
calculations performed can be adapted straightforwardly to handle this case.

6.2.2. Practical implementation details

At each iteration n = 0, . . . of Algorithm 1, the tetrahedral space-time mesh Kn of the cylinder Q consists
of 320,597 vertices and 1,758,666 elements. As discussed in Section 5.2, the non linear magneto-quasi-static
problem (2.21) for uΩ is solved by a Newton-Raphson method with damping, based on the space-time finite
element framework. In the first optimization iteration n = 0, this method is initialized with the function 0,
while at each subsequent iteration n ≥ 1, the numerical solution uΩn−1 to (2.21) at the previous iteration is
chosen instead, which reduces the number of necessary Newton iterations. The systems of linear equations
involved in the procedure are solved in parallel with openMPI [25] and MUMPS [4], via the PETSc[9] library. We
use NGSolve for both the meshing and the assembly of the finite element stiffness matrices and right-hand
side vectors. Since, at the current state, NGSolve does not support MPI parallelization in combination with
periodic boundary conditions, the meshing and finite element assembly operations can be carried out on one
core only. We run the simulations on RICAM’s RADON cluster4 by using a single node with 40 cores and
1TB of RAM. The solution of the state problem (2.21) at the first optimization iteration n = 0 requires
19 Newton iterations, for about one hour of computation. The needed CPU time to achieve this operation
is reduced by half at the subsequent steps, as only 9 Newton iterations are needed. The (linear) adjoint
problem (4.11) is solved in the same way within about two minutes.

The evaluation of the volume form of the shape derivative J ′(Ω)(θ) is carried out along the lines of
Section 5.3. Since only the interface Γ between the ferromagnetic material and air phases Ω and Ωa is
optimized, we restrict the resulting descent directions θ considered in the shape derivative (4.24) and the
auxiliary problem (5.3) to the rotor domain Drot deprived of the magnet region Dmag, i.e. we actually solve
the identification problem (5.2) with the Hilbert space V = H1

0 (Ω∪Ωa)2 and the inner product in (5.3) with
the weights α(x) ≡ 1 and β(x) ≡ 0. In addition, following [38] we add a term of Cauchy-Riemann type to
the bilinear form b(·, ·) which helps in preserving the mesh quality.

Remark 6.1. Note that the smoothness assumption about the source function f in the derivation of Section 4
is not satisfied by (6.2). However, as noted in Remark 4.4, Propositions 4.1 and 4.2 still hold in the present
case where f(t, ·) has support only in Dstat.

4https://www.oeaw.ac.at/ricam/hpc
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a b c

Figure 7. Solution uΩ0 to the version of the magneto-quasi-static state problem (2.21)
considered in Section 6.2, attached to the initial design Ω0 at times (a) t = 0; (b) t = T/2;
(c) t = T .

a b

Figure 8. (a) Spatial descent direction θ0 at the initial iteration; (b) Corresponding space-
time deformation (0,Θ0(t, x)− x).

a b c

Figure 9. Optimized design of the rotating machine considered in Section 6.2 at times (a)
t = 0; (b) t = T/2, and (c) t = T .
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6.2.3. Description of the numerical results

The initial design Ω0 is sketched in Fig. 6 (b), and the values of the potential uΩ0(t, ·) at times t = 0,
t = T/2 and t = T are depicted in Fig. 7 in three cross sections of the space-time mesh. The first descent
direction θ0 : D → Rd is shown in Fig. 8 (a) and the corresponding space-time vector field (0,Θ0

x(t, x)− x)
is represented at several times in Fig. 8 (b).

At each iteration of Algorithm 1, a suitable descent step τn is calculated via a line search procedure in
which τn is decreased by half as long as the scaled deformation τnθn does not allow for a decrease of the
objective function J(Ω). This procedure is interrupted when τn becomes smaller than 10−10.

The optimized design resulting from this procedure after 14 iterations is depicted in Fig. 9 at the three
different times t = 0, t = T/2 and t = T ; the torque Tor(uΩ) is increased from 522.94 N·m to 587.79 N·m in
the process. We note that, at the final iteration, the norm of the vector field θn does not vanish, but it no
longer allows to decrease the value of J(Ω). One possible explanation for this fact is that the components of
Ωa made of the air pockets close to the magnet regions Dmag tend to get closer and eventually merge with
the air gap region Dgap, which is not allowed by the homogeneous Dirichlet boundary condition on ∂Dstat

imposed in the identification problem (5.2) for θ. In principle, this undesirable behavior could be prevented
by adding a constraint about the mechanical stiffness of the device to the optimization problem (6.3), as in
e.g. [16]. This issue will be addressed in a further work.

Remark 6.2. A careful look at Fig. 9 shows that the rotated versions of the optimized design at the considered
times tk do not have exactly the same look. This numerical artifact is caused by the approximation of the
extension of the deformation vector field θ into the space-time deformation mapping Θ in (3.6), which is
realized on an unstructured mesh of Q.

7. Conclusion and perspectives

In this article, we have addressed a shape optimization problem related to the internal structure of an
electric motor. This work departs from the related literature by the fact that the physical problem at stake
is described by a version of the non linear magneto-quasi-static equation featuring a time evolving geometry –
a rich setting, which captures fine, realistic effects. After proving the well-posedness of the physical problem
and calculating the shape derivative of a generic optimization criterion in this context, we have proposed a
shape gradient workflow based on the space-time finite element method. We have validated our numerical
strategy on an academic problem and tackled a more realistic example in the physical context of interest.

The work in this article paves the way to multiple further investigations. On the one hand, the physical
model, although already complicated enough, could be enriched to include multiphysics effects, for instance
couplings between electromagnetic and thermal effects. This could require time horizons larger than one
single rotation period, and could be addressed by combining the present space-time finite element method
with time-stepping techniques. On a different note, constraints about the mechanical integrity and stability
of the optimized design could be modeled with the help of structural mechanics, as suggested in [73]. From
the numerical viewpoint, more robust methods could be implemented to deal with the update of the shape,
such as the level set method [3] or one of its avatars [1, 20] retaining an exact, meshed description of
the optimized phases. Eventually, optimal design strategies based on topological derivatives could also be
considered in this context, see e.g. [29] for a related investigation.

Acknowledgments. The work of A. C. and P. G. is supported by the FWF funded project P32911 as well as
the joint DFG/FWF Collaborative Research Centre CREATOR (CRC – TRR361/F90) at TU Darmstadt,
TU Graz, RICAM and JKU Linz. This work was completed while C. D. was visiting the Laboratoire
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Appendix A. A few useful formulas in shape calculus

The following integration by parts formula is a version of the usual Green’s formula that is used repeatedly
in the main part of the article.

Proposition A.1. Let Ω ⊂ Rd be a Lipschitz bounded domain.
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(i) Let θ ∈W 1,∞(Rd,Rd) and a : Rd → R be a smooth scalar field. Then:∫
Ω

∂θi
∂xj

a dx =

∫
∂Ω

θianj ds−
∫

Ω

∂a

∂xj
θi dx.

(ii) Let θ ∈ W 1,∞(Rd,Rd) and a, b : Rd → Rd be smooth vector fields. The following integration by parts
formula holds:∫

Ω

∇θa · b dx =

∫
∂Ω

(θ · b)(a · n) ds−
∫

Ω

(diva)(θ · b) dx−
∫

Ω

∇ba · θ dx

Let us also recall the following relation between the normal and tangent vectors to the boundary of a
domain and those attached to a deformed configuration.

Lemma A.1. Let Ω ⊂ Rd be a bounded Lipschitz domain, and let ϕ : Rd → Rd be a Lipschitz continuous
homeomorphism with Lipschitz inverse. Then, for any tangential vector field τ : ∂Ω → Rd, the vector field
∇ϕ(ϕ−1(y))τ(ϕ−1(y)) is tangential to ∂(ϕ(Ω)). Besides, the unit normal vector fields nΩ and nϕ(Ω) are
related by:

∀x ∈ Ω, nϕ(Ω)(ϕ(x)) =
1

|com(∇ϕ(x))nΩ(x)|com(∇ϕ(x))nΩ(x),

where com(M) ∈ Rd×d is the cofactor matrix of a d× d matrix M .

Appendix B. Main results about space-time variational problems

This appendix is devoted to the proof of Theorem 4.1, which states the well-posedness of the version (2.21)
of the non linear magneto-quasi-static equation featuring coefficients depending on the rotating distribution
of materials within the domain D. Although the proof hinges on quite classical methods for the analysis of
non linear evolution equations and mixed parabolic-elliptic equations, the exact setting considered in this
article, featuring a time-dependent geometry, is new to the best of our knowledge (see however [8, 41] for
related investigations).

After recalling a few facts about time-space functional spaces in Appendix B.1 and providing the statement
of some needed results about the well-posedness of non linear boundary value and evolution problem in
Appendix B.2, we detail the proof of Theorem 4.1, properly speaking, in Appendix B.3.

B.1. A few words about time-space functional spaces

This section gathers a few definitions and basic facts about the time-space functional spaces which are
naturally involved in the mathematical formulation of evolution problems.

Let V ⊂ H ⊂ V ∗ be an evolution triple, that is:

• (V, 〈·, ·〉V ) and (H, 〈·, ·〉H) are real and separable Hilbert spaces, and V ∗ is the topological dual of
V ; we denote by 〈·, ·〉V ∗,V the usual duality pairing between V ∗ and V .

• The inclusion V ⊂ H is continuous and dense.

Given a fixed time interval [0, T ], we define the space L2(0, T ;V ) by:

(B.1) L2(0, T ;V ) =

{
u : [0, T ]→ V,

∫ T

0

||u(t)||2V dt <∞
}
.

The latter is a Hilbert space when equipped with the natural inner product

〈u(t), v(t)〉L2(0,T ;V ) :=

∫ T

0

〈u(t), v(t)〉V dt.

Its topological dual L2(0, T ;V )∗ is naturally identified to L2(0, T ;V ∗) via the pairing:

(B.2) 〈f, u〉L2(0,T ;V ∗),L2(0,T ;V ) =

∫ T

0

〈f(t), u(t)〉V ∗,V dt.
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Definition B.1. Let V ⊂ H ⊂ V ∗ be an evolution triple, and let Z be another Hilbert space. A function
u ∈ L2(0, T ;V ) has a time derivative in the space L2(0, T ;Z) if there exists z ∈ L2(0, T ;Z) such that, for
all real-valued test functions ϕ ∈ C∞c (0, T ), it holds:∫ T

0

u(t)ϕ′(t) dt = −
∫ T

0

z(t)ϕ(t) dt.

This derivative is then denoted by ∂u
∂t = z.

Let V ⊂ H ⊂ V ∗ be an evolution triple. The time-dependent problems considered in this article bring
into play Hilbert spaces of the form

(B.3) W (0, T ;V,H) =
{
u ∈ L2(0, T ;V ) s.t.

∂u

∂t
∈ L2(0, T ;V ∗)

}
,

equipped with the natural norm

||u||2W (0,T ;V,H) :=

∫ T

0

||u(t)||2V dt+

∫ T

0

∣∣∣∣∣∣∣∣∂u∂t (t)

∣∣∣∣∣∣∣∣2
V ∗

dt.

We recall the following facts about such functional spaces, see Lemmas 1 and 2 of Chap XVIII, §1.2 of [21].

Lemma B.1.

(i) The subspace {
u(t) =

K∑
k=0

tkuk, K ≥ 0, uk ∈ V
}
⊂W (0, T ;V,H)

of polynomial functions in the time variable with coefficients in V is dense in W (0, T ;V,H). In par-
ticular, the space C∞([0, T ], V ) of smooth V -valued functions on [0, T ] is dense in W (0, T ;V,H).

(ii) The space W (0, T ;V,H) is continuously embedded in the space C([0, T ];H) of continuous H-valued
functions on [0, T ].

The last point of this lemma is of crucial importance in practice, as it gives a rigorous meaning to the
time (e.g. initial, periodic) conditions usually imposed to the solution of an evolution problem when it is
sought in W (0, T ;V,H).

B.2. Preliminary results about the well-posedness of some non linear problems

Let us first recall the following consequence of the Banach fixed point theorem, about the solution to a non
linear stationary equation in a Hilbert space, whose operator satisfies suitable monotonicity and continuity
conditions, see Th. 25 B. from [75].

Theorem B.1. Let (V, ||·||V ) be a real Hilbert space and let A : V → V ∗ be a (possibly non linear) mapping
satisfying the following properties:

(i) A is strongly monotone, i.e. there exists α > 0 such that:

∀u, v ∈ V, 〈Au−Av, u− v〉V ∗,V ≥ α||u− v||2V .
(ii) A is Lipschitz continuous, i.e. there exists L > 0 such that:

∀u, v ∈ V, ||Au−Av||V ∗ ≤ L||u− v||V .
Then, for each b ∈ V ∗, the equation

(B.4) Au = b

has a unique solution u ∈ V . This solution has a Lipschitz continuous dependence with respect to the data:
there exists a constant C > 0 depending only on α and L such that, if u1, u2 are the solutions to (B.4) with
respective right-hand sides b1, b2 ∈ V ∗, it holds:

||u1 − u2||V ≤ C||b1 − b2||V ∗ .
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In particular, the above result is the pivotal ingredient in the proof of the following lemma about the
well-posedness of a stationary version of the considered evolution problem (2.21), see [59] for a similar
argument:

Lemma B.2. Let O be a bounded Lipschitz domain in Rd, let ν̂ : R+ → R+ be a function satisfying (2.12),
and let B ∈ C∞(O;Rd×d) be a matrix-valued function such that B(x) is invertible for all x ∈ O. Then for
all data f ∈ L2(O) and g ∈ H1/2(∂O), the boundary value problem

(B.5)

{
−div(ν̂(|BT (x)∇u|)B(x)BT (x)∇u) = f in O,

u = g on ∂O,

has a unique solution u ∈ H1(O) which is Lipschitz continuous with respect to the data: the solutions u1,
u2 ∈ H1(O) associated to different data (f1, g1), (f2, g2) ∈ L2(O)×H1/2(∂O) satisfy the following inequality:

||u1 − u2||H1(O)≤ C
(
||f1 − f2||L2(O)+||g1 − g2||H1/2(∂O)

)
,

for a constant C which depends only on the domain O, the matrix B and the coefficients ν, ν in (2.12).

Proof. Let g̃ ∈ H1(O) be such that g̃|∂O= g. Letting the change of unknown functions w = u− g̃ ∈ H1
0 (O),

the considered boundary value problem (B.5) rewrites:

(B.6)

{
−div(ν̂(|BT (x)(∇w +∇g̃)|)B(x)BT (x)(∇w +∇g̃)) = f in O,

w = 0 on ∂O.

Let us equip H1
0 (O) with the inner product

〈u, v〉H1
0 (O) :=

∫
O
∇u · ∇v dx,

and let us introduce the operator A : H1
0 (O)→ H−1(O) defined by:

Aw = −div(ν̂(|BT (x)(∇w +∇g̃)|)B(x)BT (x)(∇w +∇g̃)).

We aim to show that A is strongly monotone; to this end, let u1, u2 ∈ H1
0 (O) be arbitrary functions;

introducing the shorthand Ui = BT (x)(∇ui +∇g̃) ∈ L2(O)d, i = 1, 2, an elementary calculation yields:

〈Au1 −Au2, u1 − u2〉H−1(O),H1
0 (O)

=

∫
O

(
ν̂(|U1|)U1 − ν̂(|U2|)U2

)
· (U1 − U2) dx

= ν

∫
O
|U1 − U2|2 dx+

∫
O

(
(ν̂(|U1|)− ν)U1 − (ν̂(|U2|)− ν)U2

)
· (U1 − U2) dx

= ν

∫
O
|U1 − U2|2 dx

+

∫
O

(
(ν̂(|U1|)− ν)|U1|2+(ν̂(|U2|)− ν)|U2|2−(ν̂(|U1|) + ν̂(|U2|)− 2ν)U1 · U2

)
dx

≥ ν

∫
O
|U1 − U2|2 dx

+

∫
O

(
(ν̂(|U1|)− ν)|U1|2+(ν̂(|U2|)− ν)|U2|2−(ν̂(|U1|) + ν̂(|U2|)− 2ν)|U1||U2|

)
dx

= ν

∫
O
|U1 − U2|2 dx+

∫
O

(
ν̂(|U1|)|U1|−ν̂(|U2|)|U2|

)
(|U1|−|U2|) dx

−ν
∫
O
||U1|−|U2||2 dx

≥ ν ||U1 − U2||2L2(O)d ,
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where we have used the Cauchy-Schwarz inequality to pass from the third to the fourth line and (2.12) to
obtain the last line. Now, by definition of U1, U2 it holds:

||U1 − U2||2L2(O)d=

∫
O
B(x)BT (x)(∇u1 −∇u2) · (∇u1 −∇u2) dx.

Besides, since B is a smooth matrix-valued function on O such that B(x) is invertible for all x ∈ O, there
exists a constant γ > 0 such that

∀x ∈ O, ∀ξ ∈ Rd, B(x)BT (x)ξ · ξ > γ|ξ|2.
We eventually infer from these facts that:

〈Au1 −Au2, u1 − u2〉H−1(O),H1
0 (O) ≥ νγ||∇u1 −∇u2||2L2(O)d ,

which precisely expresses that strong monotonicity of A.
A similar calculation shows thatA : H1

0 (O)→ H−1(O) is a Lipschitz continuous operator, with a Lipschitz
constant depending only on ν and the matrix B(x).

It follows from Theorem B.1 that the problem (B.6) has a unique solution w, with Lipschitz continuous
dependence on the data function f , which readily implies the desired statement about (B.5). �

Our study of (2.21) rests on results about the well-posedness of non linear evolution problems which stem
from the general theory of maximal monotone operators. For simplicity, we limit ourselves with a relatively
simple statement which is enough for our purpose, see e.g. Chap. 32 of [75] (and notably Th. 32.D).

Theorem B.2. Let V ⊂ H ⊂ V ∗ be an evolution triple. For every t ∈ (0, T ), let A(t) : V → V ∗ be a
strongly monotone and Lipschitz continuous operator, whose monotonicity and Lipschitz constants do not
depend on t. Then for each f ∈ L2(0, T ;V ∗), the evolution equation{

∂u
∂t +Au = f in (0, T ),
u(0) = u(T ),

has a unique solution u in W (0, T ;V,H).

Remark B.1. Strictly speaking, the statement of Th. 32.D in [75] features a non linear operator A which
is independent of time. However, inspection of the proof of this result reveals that it carries over mutatis
mutandis to the time-dependent case, provided the strong monotonicity and Lipschitz constants of A are
independent of time.

B.3. Proof of Theorem 4.1

We proceed in four steps. In the first three steps, we assume that there exists a solution u ∈ Wper to the
variational problem (4.2)-(4.3), and we construct an equivalent problem for u, see (B.9); the well-posedness
of the latter results from the application of Theorem B.2. This procedure implies, in particular, that a
solution u to (4.2) is unique, if it exists. In the final step, we construct a solution to (4.2) from the solution
to (B.9), thus concluding about the existence part of the statement.

Step 1: We use a change of variables to obtain an equivalent variational problem to (4.3) featuring a fixed
arrangement of phases within D.

Let us assume that (4.2)-(4.3) has a solution u in the space Wper defined by (4.1). Then, for a.e. t ∈ (0, T ),
the following identity is satisfied for all test functions w ∈ H1

0 (D):

(B.7)

∫
D

σΩ(t)(x)

(
∂u

∂t
(t, x) + v(t, x) · ∇u(t, x)

)
w(x) dx

+

∫
D

νΩ(t)(x, |∇u(t, x)|)∇u(t, x) · ∇w(x) dx =

∫
D

f(t, x)w(x) dx.

We introduce the transported function

u ∈ L2(0, T ;H1
0 (D)), u(t, x) := u(t, ϕt(x)) for t ∈ [0, T ] and x ∈ D.
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By considering test functions of the form w = w ◦ ϕ−1
t , w ∈ H1

0 (D), a change of variables based on ϕt in
(B.7) yields, for a.e. t ∈ (0, T ):

(B.8) ∀w ∈ H1
0 (D),

∫
D

σΩ(x)
∂u

∂t
(t, x)w(x) dx

+

∫
D

νΩ(x, |BTt (x)∇u(t, x)|)Bt(x)BTt (x)∇u(t, x) · ∇w(x) dx =

∫
D

f(t, ϕt(x))w(x) dx,

where, we have defined the smooth matrix-valued function:

Bt(x) = ∇ϕ−1
t (x),

and we have used the calculus identities (2.17). The evolution problem (B.8) is of mixed parabolic-elliptic
problem, since σΩ vanishes outside the subset Dmag of D, where it takes the value σm > 0.

Step 2: We reformulate (B.8) as a parabolic evolution problem posed on Dmag.

By using test functions w with compact support inside D \Dmag in (B.8), we see that u satisfies:

−div
(
νΩ(x, |BTt (x)∇u(t, x)|)Bt(x)BTt (x)∇u(t, x)

)
= f(t, ϕt(x)) in D \Dmag.

On the other hand, an integration by parts in (B.8) reveals that the spatial restriction of u(t, ·) to Dmag,
which we still denote by u, satisfies the following problem:

(B.9) ∀w ∈ H1(Dmag), σm

∫
Dmag

∂u

∂t
(t, x)w(x) dx+ 〈Au,w〉H1(Dmag)∗,H1(Dmag)

+ 〈Bu,w〉H1(Dmag)∗,H1(Dmag) =

∫
Dmag

f(t, ϕt(x))w(x) dx.

Here, we have introduced the linear operator A : H1(Dmag) → H1(Dmag)∗ and the non linear operator
B : H1(Dmag)→ H1(Dmag)∗ defined by, respectively:

∀u,w ∈ H1(Dmag), 〈Au,w〉H1(Dmag)∗,H1(Dmag) = νm

∫
Dmag

Bt(x)BTt (x)∇u(t, x) · ∇w(x) dx,

and

∀u, v ∈ H1(Dmag), 〈Bu,w〉H1(Dmag)∗,H1(Dmag) =

−
∫
∂Dmag

(
νΩ(x, |BTt (x)∇Ltu(t, x)|)Bt(x)BTt (x)∇Ltu(t, x)

)
· n(x) w(x) ds(x),

where n is the unit normal vector to ∂Dmag pointing outward Dmag and for z ∈ H1(Dmag), Ltz ∈ H1(D \
Dmag) is the unique solution to the boundary value problem:

(B.10)

 −div(ν(x, |BTt (x)∇Ltz(x)|)Bt(x)BTt (x)∇Ltz(x)) = f(t, x) in D \Dmag,
Ltz = z on ∂Dmag,
Ltz = 0 on ∂D.

Let us then analyze A and B.

• The linear operator A is continuous and monotone; more precisely, it holds:

∀u ∈ H1(Dmag), 〈Au, u〉H1(Dmag)∗,H1(Dmag) ≥ C ||∇u||
2
L2(Dmag)d .

Here and throughout the rest of the proof, C stands for a positive constant which may change from
one line to the other but is independent of time. The existence of such a constant in the above
inequality is guaranteed by the smoothness and invertibility of the mapping ϕ.

• The operator B is Lipschitz continuous, with a Lipschitz constant independent of t, as readily follows
from the application of Lemma B.2 to the non linear operator Lt : H1(Dmag)→ H1(D \Dmag).

Moreover, for all elements u1, u2 ∈ H1(Dmag), several integrations by parts followed by a calcu-
lation identical to that conducted in the proof of Lemma B.2 yield:

〈Bu1 − Bu2, u1 − u2〉H1(Dmag)∗,H1(Dmag) ≥ C||∇Ltu1 −∇Ltu2||2L2(D\Dmag)d
.
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Since the mappings u 7→ ||∇u||L2(D)d and u 7→ ||u||H1(D\Dmag) are equivalent norms on the subspace

of H1(D \Dmag) functions with null trace on ∂D, we obtain:

〈Bu1 − Bu2, u1 − u2〉H1(Dmag)∗,H1(Dmag) ≥ C||u1 − u2||2H1(D\Dmag)

≥ C||u1 − u2||2H1/2(∂Dmag)
,

where the second line follows from the trace inequality.

The combination of both points reveals that the sum A + B is Lipschitz continuous; it is also strongly
monotone since, for all functions u1, u2 ∈ H1(Dmag), it holds:

〈(A+ B)u1 − (A+ B)u2, u1 − u2〉H1(Dmag)∗,H1(Dmag) ≥ C
(
||∇(u1 − u2)||2L2(Dmag)d + ||u1 − u2||2H1/2(∂Dmag)

)
≥ C ||u1 − u2||2H1(Dmag) ,

as follows from (an avatar of) Poincaré’s inequality. Moreover, the Lipschitz and strong monotonicity
constants of (A+ B) are independent of time.

Step 3: We use the abstract Theorem B.2.

The application of Theorem B.2 reveals that the variational problem (B.9) has a unique solution u ∈
W (0, T ;H1(Dmag), L2(Dmag)) such that u(t = 0, ·) = u(t = T, ·). This almost readily implies that the
solution u ∈Wper to the original evolution problem (4.2) is unique, when it exists. Indeed, if ui, i = 1, 2 are
two such solutions, let us define the functions ui ∈ L2(0, T ;H1

0 (D)) and zi ∈ L2(0, T ;H1(Dmag)) by:

ui(t, x) = ui(t, ϕt(x)), and zi(t, ·) = ui(t, ·)|Dmag
.

As a result of the previous steps, both functions zi belong to W (0, T ;H1(Dmag), L2(Dmag)) and satisfy the
evolution equation (B.9) with the time periodic condition zi(t = 0, ·) = zi(t = T, ·), i = 1, 2. As a result,
z1 = z2, i.e. for a.e. t ∈ [0, T ], u1(t, ·) and u2(t, ·) coincide on Dmag. Moreover, since ui(t, ·)|D\Dmag

= Ltzi
on D \Dmag, it immediately follows that u1 = u2 in L2(0, T ;H1

0 (D)), so that u1 = u2.
Summarizing, we have proved that there exists at most one solution u ∈Wper to (B.9).

Step 4: We construct a solution u ∈Wper to (B.9).

This task essentially relies on the previous three steps. Let z ∈W (0, T ;H1(Dmag), L2(Dmag)) be the unique
solution to the well-posed variational problem (B.9) equipped with time periodic boundary conditions:

z(t = 0, ·) = z(t = T, ·) in L2(Dmag).

In particular, z(t, ·) is an H1(Dmag) function for a.e. t ∈ [0, T ], and so we may introduce the unique solution

zext(t, ·) = Ltz(t, ·) ∈ H1(D \Dmag) to the version of (B.10) featuring Dirichlet data z(t, ·) on ∂Dmag. Let
now u(t, ·) ∈ H1

0 (D) be defined by:

u(t, x) =

{
z(t, x) if x ∈ Dmag,
zext(t, x) if x ∈ D \Dmag.

By construction, u belongs to L2(0, T ;H1
0 (D)), and it is one solution to (B.8).

It is also easily seen that σΩ
∂u
∂t ∈ L2(0, T ;H−1(D)), since ∂z

∂t ∈ L2(0, T ;H1(Dmag)∗) and for a.e. t ∈ [0, T ]

and for any test function ψ ∈ H1
0 (D),〈

σΩ
∂u

∂t
(t, ·), ψ

〉
H−1(D),H1

0 (D)

= σm

〈
∂z

∂t
(t, ·), ψ

〉
H1(Dmag)∗,H1(Dmag)

.

Eventually, let u ∈Wper be defined by

u(t, x) = u(t, ϕ−1
t (x)), t ∈ [0, T ], x ∈ D.

By reusing the calculations conducted in the first step, we see that u is one solution to (B.9). The Lipschitz
dependence of this function on the data function f results immediately from the Lipschitz dependence of the
solutions to the problems (B.9) and (B.10) with respect to their right-hand sides, and we omit the details
for brevity. This terminates the proof.
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[13] R. Brügger and H. Harbrecht, On the reformulation of the classical stefan problem as a shape optimization problem,
SIAM Journal on Control and Optimization, 60 (2022), pp. 310–329.
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