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Abstract 
Standard materials are often used to obtain spectra that can be compared to those from 

unknown samples. Spectra measured from these known substances are also used as a 

means of computing sensitivity factors to allow quantification by X-ray Photoelectron 

Spectroscopy (XPS) of less well-defined materials. Spectra from known materials also 

provide line shapes suitable for inclusion in spectral models which, when fitted to spectra, 

permit the chemical state for a sample to be assessed. Both types of information depend on 

isolating photoemission signals from the inelastically scattered signal. In this Insight note, 

technical issues associated with the use of XPS of as received Fe3O4 powder sample surface 

are discussed. The Insight note is designed to show how linear algebraic techniques applied 

to data collected from a sample marketed as pure Fe3O4 powder are used to verify that XPS 

has been performed on chemistry representative of the sample.  The methods described in 

this Insight note can further be utilized in elucidating complex XPS data obtained from thin 

films formed or evolved during cyclic/non-steady use of complex (electro)catalyst surfaces, 

especially in the presence of contaminants. 
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Introduction 
The merit of X-ray Photoelectron Spectroscopy (XPS) is the ability to measure the 

information from the upper few nanometers of a sample while providing elemental and 

chemical state composition. However, the accuracy of quantification obtained by XPS is 

dependent on the availability of scale factors to transform the raw peak area to the amount 

of substance [1]. While, in principle, these scale factors are prescribed, in practice for 

samples of interest such factors can be difficult to obtain and consequently, empirical 

sensitivity factors, calculated by performing XPS on standard materials [2], are often used. 

However, a problem encountered when deriving empirical sensitivity factors is that samples 

presented as standard materials, when measured by XPS are far from the composition of the 

material specified. The strength of XPS is the root cause of this issue; namely, XPS samples 

the signal from the topmost few nanometers. While a standard sample may be pure at 

depths measured in µm, the surface composition often differs from the bulk. The case 

considered in this Insight note is commercially available Fe3O4.The X-ray Diffraction Pattern 

(XRD) and black color of the sample may reflect the expected color for Fe3O4, but the 

chemistry of the surface available to XPS is very different from Fe3O4. Consequently, XPS of 

Fe3O4 powder, unless great care is taken, returns spectra that are not representative of this 

oxide and therefore unsuitable for computing empirical sensitivity factors. 

In this Insight note, analysis of XPS data acquired from Fe3O4 powder surface based on 

Principal Component Analysis (PCA) [3–5], linear algebra [6] and fitting of peak models to 

data [4] confirms the chemistry of the surface is not that of Fe3O4, yet underneath the 

surface layers Fe3O4 stoichiometry does exist. Helium and argon ion beams are used to 

remove surface contaminants allowing XPS of these modified surfaces to obtain spectra with 

characteristics closer to the expected material.  An extensive discussion of PCA and linear 

algebra methods is provided in the Appendix. Terminology related to PCA, used throughout 

this Insight note, is described in the Appendix. The meaning for PCA abstract factors (AFs), 

expressed through the mathematical origins for PCA, is explained and placed in the context 

of XPS. In contexts other than XPS, AFs are described as PCA scores, but AFs are preferred 

within this insight note for reasons explained within the Appendix. 
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Sample Analysis Using Ion Beam and Initial Data Processing to Derive PCA Abstract 

Factors 

Commercial Fe3O4 (Iron (II, III) oxide nanopowder, 97% from Alfa Aesar, 50-100 nm APS 

Powder, S.A 8.5-11.5m2/g) was used as received.  Ideally, XPS does not alter sample 

chemistry but, in practice, changes in surface chemistry do occur, as also demonstrated in 

this Insight. Some samples can materially be altered by interventions necessary during 

measurement by XPS [4,7,8]. When a sample is relatively stable during the XPS 

measurement, changes to a sample surface can be induced by changing the temperature of 

the sample [5] or by interaction with ion beams [9]. When ion beams are used to induce 

changes to the sample, the extent to which changes occur, amongst other factors, is 

governed by the mass of the ion in use, the energy of ions and the duration the sample is 

exposed to the ion beam. The spectra shown in Figure 1 represent the XPS of a sample that 

evolves in surface chemistry through 1 keV helium ion-beam action. The objective in 

acquiring these data in Figure 1 is to create a sequence of spectra that evolve from the as-

received surface but do so in gradual steps that facilitate the use of PCA and linear algebraic 

techniques, as implemented in CasaXPS 2.3.26 [10], to identify the chemistry of a Fe3O4 

sample surface. 

The fact that an experiment involving an ion beam causes a change in the sample is not 

surprising. In fact, as a rule, the role of an ion beam in XPS measurements is to either 

remove adventitious material from a sample before performing XPS or to etch the surface 

with an ion beam to uncover buried layers of the material – an option not only commonly 

used in XPS but also routinely used in Low Energy Ion Scattering (LEIS). The most obvious 

change to the sample, which can be observed from the spectra in Figure 1, is the attenuation 

of the C 1s signal. Thus, even for helium ions with an energy of 1 keV, the material is 

removed from the sample surface. However, Fe 2p, O 1s and valence band spectra are also 

modified due to the ion beam action. These less obvious changes can be observed and 

quantified using linear algebra. The use of PCA is illustrated by application to the data in 

Figure 1. Spectra in Figure 1 are transformed into PCA AFs, whereby the signal is extracted 

from spectra and presented as AFs that are ordered concerning a statistic that measures 

variance. The first AF is a curve that fits all spectra in the data set such that the sum of the 

square differences between the first AF and each spectrum in the data set is a minimum. For 
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this reason, the first AF for each set of spectra corresponding to C 1s, O 1s, Fe 2p and 

valence band shown in Figure 2 have the appearance of an average spectrum. Computing 

PCA AFs is a recursive procedure. Once an AF is computed, the computed AF can be 

removed (illustrated by the deflation step in NIPALS (Appendix 2, Equation A2.7)) from the 

set of spectra. The new data set is in a state where the same steps used to calculate the AF 

can be applied to the new data set to compute the next AF for the original spectra. Figure 2 

includes the first four PCA AFs corresponding to the greatest variance of spectra overlaid in 

Figure 1. The results in Figure 2 are obtained by PCA calculations performed independently 

for C 1s, O 1s, Fe 2p and valence band data. Each PCA AF with variation in intensity is 

different from variations expected for noise indicating changes to spectra occurred during 

the experiment. In particular, the PCA AFs shown in Figure 2 of Fe 2p spectra in Figure 1 

include two AFs with shapes distinct from noise. Hence, based on PCA applied to Fe 2p 

spectra in Figure 1, it is reasonable to assume the surface composition experienced by iron 

changed throughout the experiment. Further, these changes can be characterized by two 

distinct shapes within Fe 2p spectra. PCA does not directly provide spectral shapes that 

would be required to identify physically meaningful spectral forms for Fe 2p spectra but it 

does show that changes of significance did occur during the experiment. 

Further analysis of the beam-modified spectra of Fe3O4 

The experiment yielding the spectra in Figure 1 was designed so that changes to the sample 

were limited, yet could still be identified and monitored. Despite XRD indicating the sample 

is Fe3O4, PCA AFs shown in Figure 2 suggest that the XPS of the Fe3O4 pellets does not yield 

spectra typical of pure Fe3O4, indicating the composition of both bulk and surface is not 

identical. In fact, the Fe 2p spectrum measured from the as-received surface (Figure 1, 

iteration 0) does not have the appearance of Fe 2p photoemission from Fe3O4, with the as-

received surface exhibiting a satellite at ~719 eV, characteristic of Fe2O3 [11,12]. Moreover, 

iterations of XPS-only measurements using short acquisition times yield one abstract factor 

(Figure 3) for Fe 2p suggesting the surface oxide can be measured by XPS without alteration.  

When PCA is applied to the Fe 2p spectra in Figure 1, the existence of two abstract factors 

shown in Figure 2 is potentially due to a side-effect of the ion beam removing adventitious 

material, causing alteration of the iron oxidation state. However, ion beam damage is 

thought not to be entirely responsible for the changes in the spectra since it is possible to 
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observe a change in the Fe 2p photoemission by XPS measurement alone. An identically 

prepared Fe3O4 pellet was measured iteratively using a Kratos Axis Nova using electron-only 

charge compensation and X-ray power of 300 W with a measurement duration totaling 6 

hours. Similar changes to Fe 2p spectra were observed in the absence of ion beam damage 

to the sample, as shown by the number of abstract factors (three) computed for these data 

in Figure 4. The mechanisms responsible for these changes in surface chemistry for 

iterations of XPS are different from the mechanism causing alteration to surface chemistry 

by helium ions.  While the helium ion beam appears to behave similarly to XPS 

measurements, changes to the Fe3O4 pellet are induced by the use of argon ions. PCA 

applied to data recorded on a ThermoFisher NEXSA G2, where 200 eV argon ions are used 

rather than 1 keV helium ions (Figure 5), results in three AFs for Fe 2p spectra. Clearly, in the 

case of these Fe3O4 pellets, argon ions cause greater damage to the chemistry of iron than 

either excessive use of XPS or normal use of XPS combined with helium ions. The conclusion 

from these observations is that linear algebra applied to data collected using helium ions 

offers a means of transforming the spectra to two component spectra capable of 

reproducing, via linear least squares fitting, all spectra measured except for the argon 

irradiated sample. In particular, the decomposition into two component spectra provides 

insight into the chemistry of the as-received Fe3O4 pellet. 

Implications of the PCA analysis of beam-modified spectra of Fe3O4 

The evidence described to this point suggests the spectra measured from an as-received 

Fe3O4 pellet are not representative of Fe3O4. Using an ion beam to alter the surface may also 

result in chemistry different from Fe3O4. However, given the data shown in Figure 1, it is 

possible to compute component spectra that cast light on the chemistry measured by XPS. 

Figure 6 presents three component spectra computed from the data in Figure 1 using C 1s, 

Fe 2p and O 1s spectra. These three spectral regions are merged to form one spectrum per 

XPS measurement. Combining narrow scan spectra from C 1s, Fe 2p and O 1s to form a 

single spectrum per measurement allows the construction of the difference spectra. These 

difference spectra provide intensity distributions some of which take on shapes that are 

compatible with physical properties. Three examples of difference spectra computed from 

the data in Figure 1 are shown in Figure 6. The difference spectrum labeled Phase 1 was 

chosen because this shape included the Fe 2p signal where the lower-binding-energy onset 
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of the Fe 2p signal is at an energy above the lower binding energy onset Fe 2p signal in the 

original spectra. The heuristic used in making this selection was that a signal from iron in a 

higher oxidation state is expected to occur at higher binding energies than in lower oxidation 

states. Therefore Phase 1 represents a signal that can be considered from iron in a higher 

oxidation state, such as the initial Fe2O3, likely with some traces of FeOOH, as observed from 

the O 1s region shoulder at 532.0 eV. The difference spectra labeled Phase 2a and Phase 2b 

are two alternative options for Fe 2p in a lower oxidation state than Phase 1. Of these two 

options, the difference spectrum labeled Phase 2b is considered more useful in terms of 

understanding the proposed composition of the sample. Phase 2a is interesting in the sense 

that the Fe 2p shape includes narrow, better-defined peak shapes but these shapes occur 

only when the C 1s signal is distinctly non-physical in shape. A possible interpretation of 

Phase 2a is that the distribution of the Fe 2p signal is characteristic of ion beam-damaged 

iron oxide. That is, the process by which the sample evolves is the initial chemistry is 

systematically changed through growth within the oxide of the material identified by Phase 

2a Fe 2p. Phase 2b Fe 2p signal correlates with O 1s and an absence of C 1s signal. That is, 

Phase 2b, is chosen to minimize the C 1s signal and has the merit that the ratio of Fe 2p to O 

1s (Figure 6 d) equals 3:3.9, which is close to the expected 3:4 ratio for Fe3O4.  The ratio for 

Phase 1 for iron and oxygen is 2:5 and is therefore clearly very different from the expected 

ratio for Fe3O4. Even accounting for carbon-oxygen chemistry that is included in the 

difference spectrum in Figure 6 c, the ratio 2:5 implies higher oxidation states for iron than is 

expected for Fe3O4. 

The chosen component spectra to a peak model, capable of fitting all spectra from Figure 1, 

are difference spectra Phase 1 and Phase 2b. Two examples of fits to data based on these 

two component spectra are shown in Figures 6 e and f. Data used in these example-fits are 

the as-received Fe3O4 pellet and the Fe3O4 pellet after 3,507 seconds of irradiation with 1 

keV helium ions. It should be noted that similar component spectra to Phase 1 and Phase 2b 

were obtained through the analysis of data corresponding to PCA AFs shown in Figure 4, 

which are computed from data collected without the use of an ion beam during the 

experiment. This observation is intended to emphasize that while helium ions cause an 

evolution in the Fe3O4 pellet, the types of changes in spectra caused by helium ions are very 

similar to changes induced by XPS alone. The implication is that helium ions are delivering 
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energy to the sample without excessive impact damage. Hence Phase 2b is chosen for the 

peak model rather than Phase 2a. 

Conclusions 

The objective of using PCA is to understand the nature of these changes in a mathematical 

sense. That is, PCA applied to a set of spectra returns mathematical shapes ordered by 

variance which convey visually how the signal is partitioned into abstract shapes such that 

these mathematical shapes are both necessary and sufficient to permit each spectrum in the 

original data set to be precisely defined by a unique linear-combination of these abstract 

factors. The uniqueness property of PCA AFs (in terms of reconstruction of spectra by 

forming linear combinations of AFs) is noteworthy since fitting curves to data in the sense of 

fitting measured spectra from standard materials to data, or when fitting mathematically-

defined components in a peak model to XPS data while has the advantage of linking 

component-spectra to chemical state in the sample, also has the disadvantage of lack of 

uniqueness. Whenever we construct a set of curves with the intention of fitting data there 

are choices made in terms of line shapes, background curves and constraints applied to 

fitting parameters [13]. These choices represent ambiguity and guesswork on the part of the 

analyst that seldom matches the mathematical rigor offered by PCA decomposition of data 

into AFs. The consequence of fitting curves to data that do not include a complete set of 

shapes necessary to reconstruct the data is that least-squares-fitting allows fits to data that 

may change when the line shapes change [14], even slightly. The disadvantage of PCA AFs is 

that all AFs are mathematical and do not, in general, identify individual component spectra 

that represent distinct chemical states for a sample. Nevertheless, PCA does offer insight 

into how many different curves are required to make sense of a data set. 

XPS analysis of a sample with the bulk composition of Fe3O4 was performed through 

iterations of spectral regions. Comparing results from XPS-only experiments and equivalent 

XPS measurements interleaved with irradiating the sample with ions demonstrates that, 

depending on ion beam, ion-beam energy and duration of ion-beam action, the as-received 

sample evolves in composition. PCA of data sets is used to show similarities and differences 

in data sets, which help to evaluate the sample and create component spectra that describe 

the evolution of sample chemistry from, the uncertain initial composition to, a composition 
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more representative of Fe3O4. Results obtained when exploring data sets presented herein 

suggest samples presented as standard material, which in theory should be suitable for 

computing empirical sensitivity factors or providing XPS line shapes, require careful analysis 

before concluding these empirical items can be used to understand the chemistry of 

unknown samples. 

Acknowledgments 

This work by JB was supported as part of Understanding & Controlling Accelerated and 

Gradual Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center 

funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under 

Award # DE-SC0012577.  The CNRS is acknowledged for financial support to the Thematic 

Workshop (N° 1317144) held at the Station Biologique, Roscoff, France.  

Author contributions 

Pascal Bargiela: Investigation (lead); Writing – review and editing (equal). Vincent Fernandez: 

Investigation (lead); Writing – review and editing (equal). David Morgan: Methodology 

(supporting); Writing – review and editing (equal). Neal Fairley: Conceptualization (lead); 

Investigation (supporting); Methodology (lead); Writing – original draft (equal); Writing – 

review and editing (equal). Jonas Baltrusaitis: Conceptualization (supporting); Methodology 

(supporting); Supervision (lead); Writing – original draft (equal); Writing – review and editing 

(equal).  

Competing interests 

The authors declare no competing interests. 

 

References 
1. Shard, A.G. (2020) Practical guides for x-ray photoelectron spectroscopy: Quantitative XPS. J. 

Vac. Sci. Technol. A, 38 (4), 041201. 

2. Wagner, C.D., Davis, L.E., Zeller, M. V, Taylor, J.A., Raymond, R.H., and Gale, L.H. (1981) 
Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for 
chemical analysis. Surf. Interface Anal., 3 (5), 211–225. 

3. Fairley, N., Bargiela, P., Huang, W.-M., and Baltrusaitis, J. (2023) Principal Component Analysis 
(PCA) unravels spectral components present in XPS spectra of complex oxide films on iron foil. 
Appl. Surf. Sci. Adv., 17, 100447. 

4. Fernandez, V., Morgan, D., Bargiela, P., Fairley, N., and Baltrusaitis, J. (2023) Combining PCA 
and nonlinear fitting of peak models to re-evaluate C 1s XPS spectrum of cellulose. Appl. Surf. 



9 
 

Sci., 614, 156182. 

5. Garland, B.M., Fairley, N., Strandwitz, N.C., Thorpe, R., Bargiela, P., and Baltrusaitis, J. (2022) A 
study of in situ reduction of MoO3 to MoO2 by X-ray Photoelectron Spectroscopy. Appl. Surf. 
Sci., 598, 153827. 

6. Bauer, F.L., Householder, A.S., Wilkinson, J.H., and Reinsch, C. (2012) Handbook for Automatic 
Computation: Volume II: Linear Algebra, Springer, Berlin Heidelberg. 

7. Morgan, D.J., and Uthayasekaran, S. (2022) Revisiting degradation in the XPS analysis of 
polymers. Surf. Interface Anal. 

8. Baltrusaitis, J., Mendoza-Sanchez, B., Fernandez, V., Veenstra, R., Dukstiene, N., Roberts, A., 
and Fairley, N. (2015) Generalized molybdenum oxide surface chemical state XPS 
determination via informed amorphous sample model. Appl. Surf. Sci., 326, 151–161. 

9. Greczynski, G., and Hultman, L. (2021) Towards reliable X-ray photoelectron spectroscopy: 
Sputter-damage effects in transition metal borides, carbides, nitrides, and oxides. Appl. Surf. 
Sci., 542, 148599. 

10. Fairley, N., Fernandez, V., Richard‐Plouet, M., Guillot-Deudon, C., Walton, J., Smith, E., 
Flahaut, D., Greiner, M., Biesinger, M., Tougaard, S., Morgan, D., and Baltrusaitis, J. (2021) 
Systematic and collaborative approach to problem solving using X-ray photoelectron 
spectroscopy. Appl. Surf. Sci. Adv., 5, 100112. 

11. Bagus, P.S., Nelin, C.J., Brundle, C.R., Crist, B.V., Lahiri, N., and Rosso, K.M. (2021) Combined 
multiplet theory and experiment for the Fe 2p and 3p XPS of FeO and Fe2O3. J. Chem. Phys., 
154 (9). 

12. Bagus, P.S., Nelin, C.J., Brundle, C.R., Crist, B.V., Lahiri, N., and Rosso, K.M. (2022) Origin of the 
complex main and satellite features in Fe 2p XPS of Fe 2 O 3. Phys. Chem. Chem. Phys., 24 (7), 
4562–4575. 

13. Major, G.H., Fernandez, V., Fairley, N., Smith, E.F., and Linford, M.R. (2022) Guide to XPS data 
analysis: Applying appropriate constraints to synthetic peaks in XPS peak fitting. J. Vac. Sci. 
Technol. A, 40 (6), 063201. 

14. Moeini, B., Linford, M.R., Fairley, N., Barlow, A., Cumpson, P., Morgan, D., Fernandez, V., and 
Baltrusaitis, J. (2021) Definition of a new (Doniach‐Sunjic‐Shirley) peak shape for fitting 
asymmetric signals applied to reduced graphene oxide/graphene oxide XPS spectra. Surf. 
Interface Anal. 

15. Walton, J., and Fairley, N. (2005) Noise reduction in X-ray photoelectron spectromicroscopy by 
a singular value decomposition sorting procedure. J. Electron Spectros. Relat. Phenomena, 
148 (1), 29–40. 

16. Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments 
in numerical treatments for large data sets of XPS images. Surf. Interface Anal., 48 (5), 301–
309. 

17. E.R. Malinowski (2002) Factor analysis in chemistry, John Wiley & Sons, Ltd. 

18. Major, G.H., Fairley, N., Sherwood, P.M.A., Linford, M.R., Terry, J., Fernandez, V., and 
Artyushkova, K. (2020) Practical guide for curve fitting in x-ray photoelectron spectroscopy. J. 
Vac. Sci. Technol. A, 38 (6), 061203. 

19. Walton, J., and Fairley, N. (2009) Data scaling for quantitative imaging XPS. Surf. Interface 
Anal., 41 (2), 114–118. 



10 
 

20. Golub, G.H., and Reinsch, C. (1970) Singular value decomposition and least squares solutions. 
Numer. Math., 14 (5), 403–420. 

 

  



11 
 

  

  

  

Fe2p [0.0]

Fe2p [600.4]

10

20

30

40

50

60

70

80

90
In

te
n

s
it

y
 (

C
P

S
) 

x
 1

0
-3

740 730 720 710 700 690
Binding Energy (eV)

600

490

420

350

280

210

140

70

0
744 738 732 726 720 714 708 702

Binding Energy (eV)

20

30

40

50

60

70

80

90

In
te

n
s

it
y
 (

C
P

S
) 

x
 1

0
-3

O1s [0.0]

O1s [600.4]

0

2

4

6

8

10

12

In
te

n
s

it
y
 (

C
P

S
) 

x
 1

0
-4

544 540 536 532 528 524
Binding Energy (eV)

600

490

420

350

280

210

140

70

0
543 540 537 534 531 528 525

Binding Energy (eV)

2

4

6

8

10

12

In
te

n
s

it
y
 (

C
P

S
) 

x
 1

0
-4

C1s [0.0]

C1s [600.4]

4

6

8

10

12

14

In
te

n
s

it
y
 (

C
P

S
) 

x
 1

0
-3

300 296 292 288 284 280
Binding Energy (eV)

600

490

420

350

280

210

140

70

0
300 297 294 291 288 285 282 279

Binding Energy (eV)

4

6

8

10

12

14

In
te

n
s
it

y
 (

C
P

S
) 

x
 1

0
-3



12 
 

  

Figure 1. XPS spectra were measured from the sample with bulk composition Fe3O4 using 

ThermoFisher NEXSA G2. These spectra represent iterations of identical XPS interleaved with 1keV 

helium ion-beam sputter cycles. The variation in color for spectra is representative of the increasing 

time ( seconds) the sample is exposed to helium ion sputtering. 
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Figure 2. PCA AFs computed for XPS measurements interleaved with helium 1 keV energy ion-beam 

cycles of 10 seconds per cycle from Fe3O4 pellet performed using ThermoFisher NEXSA G2. The 

number of abstract factors of significance is as follows: C 1s (2), O 1s (3), Fe 2p (2) and VB (2). 
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Figure 3. PCA AFs computed for XPS-only measurements from Fe3O4 pellet performed using 

ThermoFisher NEXSA G2. The number of abstract factors of significance are as follows: C 1s (1), O 1s 

(2), Fe 2p (1) and VB (1). 
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Figure 4. PCA AFs computed for XPS-only measurements from Fe3O4 pellet performed using Kratos 

Axis Nova. The number of abstract factors of significance is as follows: C 1s (3), O 1s (3), Fe 2p (3) and 

VB (2). 
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Figure 5. PCA AFs computed for XPS measurements, interleaved with argon 200 eV energy ion-beam 

cycles (of 10 seconds per cycle), from Fe3O4 pellet performed using ThermoFisher NEXSA G2. The 

number of abstract factors of significance is as follows: C 1s (2), O 1s (3), Fe 2p (3) and VB (2). 
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Figure 6. Three-component spectra composed of Fe 2p, O 1s and C 1s, computed from data in Figure 

1, are presented with atomic concentration tables computed from these component spectra. Two 

examples of data, where linear least squares fit a model (constructed using two-component spectra) 

to data, illustrate the quality of fit. a) Component-spectra corresponding to Fe 2p photoemission. b) 

Component-spectra corresponding to O 1s photoemission. c) Component-spectra corresponding to C 

1s photoemission. d) Atomic concentration computed from each of the three component spectra. e) 

Model spectrum constructed by linear least squares fitting of component spectra Phase 1 and Phase 

2b to data that includes signal from Fe 2p, O 1s and C 1s from the as-received surface of the Fe3O4 

pellet. e) Model spectrum constructed by linear least squares fitting of component spectra Phase 1 

and Phase 2b to data that includes signal from Fe 2p, O 1s and C 1s from the surface of the Fe3O4 

pellet following 3507 seconds of exposure to 1 keV helium ion beam. 
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Appendix - Review of Principal Component Analysis Concepts 
Principal Component Analysis (PCA) is the application of Singular Valued Decomposition 
(SVD) [6] to experimental data. SVD is a linear algebraic procedure (Appendix 1) that accepts 
a set of vectors with no ordering metric and transforms them into a set of vectors with a 
very precise ordering. The computed vectors are mutually orthogonal and one of these 
vectors points in the direction of greatest variance in the original set of vectors.  

When used to process XPS data, the SVD input vectors are either conventional spectra or 
spectra obtained from images [15]. The vector computed by SVD pointing in the direction of 
greatest variance in the original set of vectors which, in terms of XPS, is a spectrum that can 
be described as the principal component of the data set. The precise steps used to compute 
an SVD are only important so sufficient precision is achieved in an acceptable time. However, 
some algorithms of SVD are insightful because a sequence of iterations applied to a set of 
vectors without preprocessing of any kind creates, on termination of the initial sequence of 
iterations, the principal component. In the process of computing the principal component a 
set of vectors of reduced dimension is also created and vectors within the newly created set 
are all orthogonal to the principal component. Therefore, an iterative algorithm separates 
the initial data set containing n vectors into a principal component vector plus a data set of 
n-1 vectors. Applying the same iterative steps to the data set containing n-1 processed 
vectors returns the principal component for the remaining data plus a data set of dimension 
n-2. Thus, computing SVD iteratively and recursively generates a sequence of vectors in the 
order of greatest variance concerning the original data set. Hence, SVD generates a new set 
of n vectors that are arranged in order and mathematically describes the original data set 
since any vector from the original data set can be constructed by forming a linear 
combination of vectors from the set of vectors constructed by SVD. Effectively, PCA creates 
vectors in an order of importance to signal in the data set.  

Altogether, PCA is used to form an alternative perspective of a data set. Principal 
components are not, in general, physically useful,however, principal components can be of 
value en route to a meaningful interpretation of data. One use of PCA is to enhance signal 
and suppress noise in a data set. If it is decided that at some point in the SVD algorithm, an 
iteration returns a principal component that is essentially noise [16], then making use of 
only the preceding principal components obtained during SVD to form a linear 
approximation to the original data set, analysis creates vectors that contain mostly signal. 
The number of principal components deemed to be signals conveys insight into the true 
composition of spectra or images. That is, the number of principal components indicates the 
minimum number of spectral shapes required when defining a model with chemical 
meaning, applicable to all data from an experiment. 

The terminology used in this Insight note differs from terminology often used relating to 
PCA. Principal components, as described above, in Factor Analysis [17] are often replaced by 
the quantities referred to as scores. Scores and loadings are a more general description of 
relationships found in multivariate problems. XPS use of SVD is more specific. The results of 
SVD are matrices from which scores are obtained.  However, in XPS columns or scores are 
not independent entities but are governed by correlated photoemission signals. The concept 
of a principal component in XPS is better understood by describing the   matrix (Appendix 
1) as constructed from column vectors that are mathematically equivalent to spectra or 
images. Hence, rather than talking about scores and loadings, XPS data analysis is better 
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served by talking about PCA abstract factors (AFs) and coefficients rather than loadings. 
Loadings are the coefficients in linear combinations of PCA AFs that are used to convert PCA 
AFs back to the original spectra or images. Thus, loadings in XPS terms are coefficients used 
to fit PCA AFs to data through least squares optimization. Spectra, curves and fitting of 
curves to data [18] are more natural to XPS than scores and loadings which lend more to a 
statistical analysis of data. Hence, PCA is presented here in terms of PCA AFs and how PCA 
AFs are fitted to spectra to recover the signal from noise. 

Accordingly, it is sometimes recommended to perform data scaling and shift preprocessing 
in preparation for PCA or other algorithms based on linear algebra. The use of these 
preprocessing steps is not without cost.  Namely, the direct connection to spectral shapes is 
further removed by preprocessing data. In applications other than XPS there may be merit in 
preprocessing data. However, XPS spectra convey in the shape of peaks and background 
information used to understand a sample. Even simple preprocessing, such as mean 
centering of spectra, distorts data from spectroscopic forms and creates a false impression 
from the outputs of PCA. Mean scaling is a good example of an operation that is performed 
but serves no real purpose which can be seen by following the mathematical logic for the 
NIPALS algorithm described in Appendix 2. Mean centering of data is performed by 
computing the mean average spectrum and then subtracting the mean average spectrum 
from each of the spectra in the data set. The mean average spectrum approximates the first 
principal component for a data set. NIPALS computes the first component spectrum and 
once obtained, via Equation A2.7 removes the first principal component from the data set to 
resume iterations that compute the second principal component. Effectively, Equation A2.7 
is a more sophisticated way to recenter spectra than to subtract off the mean spectrum. The 
reason one might mean center spectra is based on numerical analysis.  Namely, summing 
data held in floating point precision does not cause a loss of significant digits in the average 
spectrum. Subtracting the full numerical precision mean average spectrum from all spectra 
minimizes the loss of significant digits when floating point arithmetic is used during PCA. 
However, the data set created by mean centering is nothing other than the data set created 
by the first iteration of NIPALS with the exception that a rather poor approximation to the 
first principal component was used to reduce the dimension of the data set by unity 
(Appendix 3). The numerical design of a PCA algorithm is the place to limit the influence of 
loss of significant digits rather than perturbing the data set from spectroscopic forms before 
performing PCA. There are, however, some clear advantages to scaling of data that aid in 
extracting signal from noise that justify distorting spectroscopic or imaging data before an 
application of PCA [19]. 

Appendix 1: Singular Valued Decomposition 
PCA is an exercise, in constructing a singular value decomposition (SVD) for a data matrix, where a 

data matrix is an       matrix formed by the   coordinate values for data vectors             . 

The measure for variance in a data set and the corresponding direction for which variance is shown 

to be a maximum is encapsulated in the definition of the covariance matrix that is used to construct 

an SVD for a data matrix               .  

Given a set of three data vectors             , the standard procedure for expressing these three 

vectors, as a set of abstract vectors             , is by performing a singular valued 

decomposition [20] of the data matrix into three matrices in Equation [A1.1]. 
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[A1.1]            

where 

     ,      ,                and                   

  is a diagonal matrix with diagonal matrix elements equal to the square root of the eigenvalues 

computed for the covariance matrix 

[A1.2]           

and   is the matrix formed from the normalized eigenvectors of   ordered concerning the 

eigenvalues. The columns and rows of the matrices   and   and ordered concerning the magnitude 

of values that appear along the diagonal of  . 

Appendix 2: Nonlinear Iterative Partial Least Squares (NIPALS) Algorithm 
The NIPALS algorithm is an iterative procedure for generating principal components, where one 

iterative step calculates one principal component. NIPALS is not the algorithm of choice for 

computing principal components, but rather has merit in the sense that, the NIPALS procedure is 

insightful for those wishing to appreciate the logic of PCA without the need to understand the 

intricacies of linear algebra required by other algorithms. 

It might seem odd to use the term nonlinear when naming an algorithm, that involves an application 

of linear algebra to computing principal components. However, the use of nonlinear in NIPALS is 

referring to the rate of convergence rather than any nonlinearity in the mathematics. NIPALS is 

nonlinear in the same sense that the Newton-Raphson method (for finding a root of a function) is 

nonlinear. Nonlinear, in both cases, relates to the number of significant digits in the value-of-interest, 

achieved following one iterative cycle of these algorithms. Sadly, in NIPALS like Newton-Raphson, 

nonlinear convergence is the best-case behavior. Worst-case convergence can be slow. It is worth 

considering why NIPALS performs well in calculating the first few principal components. One of the 

most remarkable aspects of the iterative procedure is how, for most data sets, the first eigenvector is 

obtained with almost no effort. This observation is particularly-true for spectra typical of XPS. The 

reason for this rapid convergence of NIPALS, when computing the first principal component, is 

photoemission peaks are superimposed on the background signal, the result of which is the variance 

in an XPS data set is heavily weighted in favor of the first principal component. The mathematics, 

described below, explains why weighting in variance, favors or hinders the convergence of NIPALS to 

a given principal component. 

The mathematics of NIPALS is now presented. 

Let   be a vector of dimension  , where the dimension for   corresponds to the number of data 

vectors    available to the NIPALS algorithm. A matrix                   is formed from these 

data vectors   , each of which has   acquisition channels. 

If it is assumed a set of   eigenvectors    exist corresponding to the covariance matrix     

[A2.1]          
 
     

 

and all else being equal, the eigen Equation A2.1 yields   orthonormal eigenvectors. Since these 

eigenvectors for a real symmetric matrix form a basis set it is possible to write 

[A2.2]            
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Thus, for any vector  , performing matrix multiplication of    by the matrix     can be expressed in 

terms of eigenvalues and eigenvectors of     as follows. 

[A2.3]                 
 
          

   
 

 
             

 
     

 

 

Therefore, repeated multiplication by     results in a transformation of   as follows. 

[A2.4]                  
  

 
 
     

Thus, by repeatedly multiplying a vector by the matrix     , the eigenvalues are raised to a power. If 

one eigenvalue is larger than all others, that factor will dominate the summation term. Hence the 

resulting vector due to iterations is the eigenvector corresponding to the largest eigenvalue. 

A further consideration derives from Equation A2.2. Since     belongs to a set of orthonormal 

eigenvectors        
    
    

  and therefore the coefficients in Equation A2.2 are computed as 

follows          . 

If       then         and         . These relationships provide an alternative perspective for 

the converging sequence of vectors. In the event the eigenvalues differ only marginally resulting in a 

slow movement towards the largest of these similar eigenvalues, a good guess for the initial 

eigenvector is important to obtain convergence within a reasonable number of iterations. 

NIPALS includes iterative steps which rely on these types of transformations. However rather than 

forming a covariance matrix      the data matrix   is used to transform vectors in a sequence 

leading to the computation of   , the abstract factor corresponding to the largest eigenvalue of     

. 

The essential iterative steps performed during a NIPALS are as follows. 

The input to an iterative step is a matrix   , where initially     . The output from each iterative 

sequence makes use of    is a vector    and a matrix     . These steps involve selecting an initial 

vector    of dimension   . A vector    of dimension   is computed using the following operations. 

[A2.5]       
        

[A2.6]                

where    is the unit vector corresponding to the vector  . These steps represent a vector multiplied 

by a matrix rather than directly constructing a covariance matrix. Separating the action of the 

covariance matrix into these two intermediate steps is advantageous if convergence to the desired 

vector is rapid as it is designed to avoid matrix multiplication. 

A sequence of vectors      is constructed which converges to the vector   , corresponding to the 

largest eigenvalue of   
    . Once the vector    is established the ultimate operation for a single 

iteration is to deflate       
    

    
      

   using the computed vector    

[A2.7]       
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resulting in the next matrix in the NIPALS sequence      . The new matrix represents a set of vectors 

all belonging to a subspace of dimension one less than the previous step. The projection operation in 

Equation A2.7 is found also in Gram-Schmidt, a procedure for constructing a set of mutually 

orthogonal vectors. Deflating these    matrices permit the next iteration of the NIPALS procedure to 

target the next largest eigenvalue and hence compute the next vector     . 

Appendix 3: Mean Centre of Data 
Given data vectors             , the mean spectrum    is computed using Equation A3.1. 

[A3.1]        
 

 
   

 
    

A set of mean centred vectors is obtained by computing             , where         . 

However, if we consider   , for example, by definition    
 
     , therefore        

 
   . Hence 

  is a linear combination of             . Therefore, the set              is of dimension one 

less than the dimension of the set of vectors             . Moreover, the set of vectors 

                is of the same dimension as             , hence any spectrum in the original 

data set can be constructed from the abstract factors              computed from              

by reversing the offset    using Equation A3.2. 

[A3.2]             
 
    and          


