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Abstract

This paper introduces a new co-design approach based on optimization for the modular multilevel
converters (MMCs) using wide-bandgap (WBG) switches. This method takes into account several control
strategies from the beginning and through the entire procedure. Gallium-Nitride (GaN) mature switches
are attractive solutions to increase the compactness and efficiency in embedded applications. It could be
a great opportunity for new grid-connected converters, thanks to their improved switching characteristics
and lower on-resistance. Nevertheless, their 650 V rating requires the use of multilevel topologies to reach
new 1.5 kV DC grids for eco-districts or, more generally, for MVDC grids. The proposed design method is
validated using an experimental prototype involving GaN half-bridge submodules (SM-HB).

1 Introduction

Wide-bandgap (WBG) components have shown disruptive performance, particularly in terms of losses and
therefore efficiency, ability to increase switching frequency, and power density [1]. The work presented
here is part of a wider project aimed at developing, assessing, and revealing the potential of WBG
components in multilevel converters. The first step in this direction was the development of a 3-level
active neutral point clamped converter (ANPC) prototype based on GaN half-bridge modules [2]. The
latter having shown interesting performances, work is now done to push further by dealing with the 5-level
MMC.

The main novelty lies within the development of a sizing procedure for the MMC involving a fast and simple
optimization algorithm where the user can specify a control strategy. An MMC optimization co-design
concept that both integrates control and sizing constraints is thus proposed. In the paper, the control
strategy selection focuses on the circulating current for which the control strategy is chosen from the very
beginning of the sizing procedure. Compared to the recent work from [3], the proposed work implements
a new step to the sizing process and considers a wider range of possibilities of the DC and AC grid.

First, section 2 introduces the model for the sizing procedure. The latter is then described in section 3 as
well as the formulation of the associated optimization problem. The method is applied afterward to the
case of an MVDC-grid to LVAC-grid connection that meets the European grid standards. Section 4 shows
the first results in simulation and the corresponding test bench prototype that make it possible to validate
the generic sizing approach.

2 Operational sizing-oriented model of the MMC
The approach is straitforward, based on models from [4], [5]. More details will be found in the full paper.



3 Optimization-based sizing of the MMC
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Fig. 1: MMC optimization-based sizing procedure (from left to right).

The sizing procedure proposed here is presented in Fig. 1. It consists of five steps, the first of which is
where optimization takes place, to find the maximum power that can be converted by the MMC while
minimizing losses in the converter arms:
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in, () = #Ac@ sin(2m fact — ¢, — ) (AC-side grid current definition)

(OSP): § v, (t) := Vacsin(2r fact — ¢,) (AC-side grid voltage definition) (1)

Yoeid (t) — %z‘ﬁy(t)A D if, () = vy ()i, (t) + RoiZ, (t)* (Power balance constraint)
z'%y(t) + z’ﬁy(t) <+2 z%” (Arm current upper boundary constraint)

ix, (t) + 45, (t) > —244m  (Arm current lower boundary constraint)

In Eq. (1), the circulating current control strategy (CCCS) allows the determination of the optimum
circulating current injection (CCI) to guarantee the energy balancing of the converter while minimizing the
losses associated with this current. If the desired effect is to suppress the circulating current (CCS), the
equation iz, (t) — ;& YU iny (t) = 0 must be included in the (OSP) as an equality constraint. An important
concept to keep in mind is that this optimization also takes into account the maximum %fjg]l constraint that
the arms can withstand, to achieve sizing as close as possible to actual realization capabilities. Details

about the four remaining steps will be found in the full paper.

4 Validation of the sizing procedure

The proposed procedure is applied to the case of a typical PV-to-grid power supply, between a 1.5 kV DC
grid and the 230 V, 50 Hz AC grid. After validation in single-phase case, it will be extended to three-phase.

Table 1 provides the parameters as well as the sizing results. The sized MMC is simulated using a
high-fidelity PLECS model of the converter and module losses, in order to validate the sizing before
producing the prototype. In simulation the system tracks a power set point that sweeps the operating
range up to nominal power. The MMC control architecture implementing the CCCS is described in [5].

Figure 2 (a) shows the simulation results for the converter. Total converter losses are shown in black
on the top plot with a maximum of 7.5 W for a power delivered to the AC grid of 1.53 kW, i.e. a 99.5%
efficiency. Simulations show that the evolution of the efficiency versus the operating point is over 99%
throughout the operating range from 5% to 100% of rated power. These results will be compared with
those of the prototype in the full version of the paper. As the prototype is currently under production, the
3D computer-aided design (CAD) rendering is shown in Fig. 2 (b).
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Tab. 1: Parameters of the MMC

Power (W)

Description Value
Sizing procedure inputs - single-phase case
DC bus voltage Ve =15 kV
DC bus impedance R,=0Q,Ls=0H
AC voltage amplitude Vac = 230v2 ~ 327V
AC grid frequency and period f, =50 Hz, T, = 20 ms
AC-side power factor cos = 0.93
AC-side impedance R,=09Q,L,=21mH
Arm current limit iim = 5y/2 ~7.07 A
Capacitor nominal voltage v =1.6 KV
Stack voltage ripple ratio SVE=5%

DC bus current gradient limit GPC =12000 5!
Sizing procedure outputs - single-phase case

MMC rated apparent power SHt =1.64 kVA
Number of SMs per arm N=14
SM Capacitor C =330 uF
Arm impedance L=61mH

MMC Power Losses - Rated Power: 1.53 kW
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(a) Conduction, switching and arm power losses. (b) 3D CAD rendering of the MMC prototype (40 x

30 x 7 cm).

Fig. 2: Simulation result using the GaN submodule losses detailed model.
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