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Abstract

Generating graphs with realistic structural characteristics is an important
challenge for complex networks analysis, as these graphs are the null models
that allow to describe and understand the properties of real-world networks.
However, the field lacks systematic means to generate samples of graphs with
predefined structural properties, because it is difficult to devise a method
that is both flexible and guarantees to get a uniform sample, i.e., where any
graph of the target set has the same probability to be represented in the
sample. In practice, it limits the experimental investigation to a handful of
models, including the well-known Erdős-Rényi graphs or the configuration
model. The aim of this paper is to provide such a method: we design and
implement a Monte-Carlo Markov Chain process which is both flexible and
satisfies the uniformity condition. Its assumptions are that: 1) the graphs
are simple, 2) their degree sequence is fixed, 3) the user has at least one
graph of the set available. Within these limitations, we prove that it is
possible to generate a uniform sample of any set of such graphs. We provide
an implementation in python and extensive experiments to show that this
method is practically operational in several relevant cases. We use it with five
specific set of constraints and verify that the samples obtained are consistent
with existing methods when such a method is available. In those cases, we
report that state-of-the-art methods are usually faster, as our method favors
versatility at the cost of a lower efficiency. Also, the implementation provided
has been designed so that users may adapt it to relevant constraints for their
own field of work.

Keywords— graph generation, uniform sampling, Monte Carlo Markov Chain method,
conditionally uniform graph models

1 Introduction

Describing the structure of a complex network as a graph is a delicate question, because
it demands a comparison to some form of benchmark that allows to decide if an observed
property is expected or not. This is why null models generation has been an important
focus of interest since the early days of network science. An appropriate null model may
even provide an explanation to the structure of the network in the sense that it reduces
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its structural complexity to a few features. For example, the field of social network
analysis introduced models long before the advent of online social networks to explain the
observed structure, as for instance in [48] or [19]. Beyond this explanatory function, null
models also provide artificial networks with specific characteristics that resemble the ones
of real-world networks when data is missing, which is of utmost importance for simulation
purposes.

To serve their function as null models, the generation process should have no or limited
bias relatively to characteristics which are not contained in the model. A controlled way of
doing so is to generate uniform samples: any graph in the target set of graphs has strictly
the same probability to be in the sample. Unfortunately, uniform generation models are
hard to design. Whereas it is often possible to generate a graph having specific properties,
it is much more difficult to create an unbiased sample of such graphs.

In this work, we propose a method in order to generate null models in a versatile
way. More precisely, our contributions are the following: first, we propose a Markov
Chain based method and prove that it is capable of generating uniform samples of graphs
satisfying any set of properties that includes the degree sequence. It is a significant step
forward as methods in the literature are either uniform but limited to specific properties,
or statistically biased, which weakens the interpretation of their results. Second, we adapt
to our problem an experimental process that evaluates the convergence of this Markov
Chain based method. Third, we provide a python implementation of the method in several
cases which are commonly investigated models in the literature and check experimentally
that the method can be used in practice.

In Section 2, we provide an overview of the works on generating graphs uniformly
at random on practical instances. Then, in Section 3, we describe the method proposed
and prove that it satisfies all the necessary criteria to provide a uniform sampling of the
target set of graphs. Finally, in Section 4, we give a detailed experimental report of the
investigation achieved with the implementation of the method provided with this work.
The implementation is not limited to the realization of the Markov process itself, but
also includes an automated experimental test that the process has converged toward a
uniform sample. We also discuss in that section the practical limits of the method: making
it adaptable to new problems and automatizing the convergence test has a computational
cost, which is why specialized methods tend to outperfom it on specific target set of
graphs.

2 State of the art

In this section, we discuss models in the literature proposed for comparison to real-world
networks. As a comprehensive review of this question is beyond the scope of our work,
we focus on models that provide homogeneous samples of a set of graphs with a given set
of properties, that we call respectively target set and target properties. This category of
models are sometimes referred to as conditionally uniform graph models [40]. Moreover,
we focus on vertex-labeled graphs, meaning that nodes can be distinguished from each
other.

2.1 Historical models based on constructive methods

The best-known conditionally uniform graph model is without doubt the Erdős-Rényi
model [8]. According to it, the target properties are the number of nodes n and edges m,
or alternatively the number of nodes and a fixed density (the density δ being here defined
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as the number of existing edges divided by the number of possible edges). However, this
model has limited use for comparison to real-world networks, because the structure of the
graphs obtained differs in many significant characteristics from real-world ones: degree
distribution, local density, etc.

Graphs with a given degree sequence are widely used models for comparison to real-
world networks. The configuration model (see for instance [32]) refers to a standard
strategy to build a random graph with a given degree sequence. It consists essentially of
giving to each node as many stubs – i.e., half-edges – as its degree, and then pairing stubs
randomly. As long as the degree sequence is graphical, this method allows to generate
uniformly random multi-graphs (allowing multiple edges and self-loops). More precisely,
it generates uniformly at random stub-labeled multi-graphs, as discussed in details in [15].
When considering simple graphs, generating uniformly stub-labeled graphs is equivalent
to generating uniformly vertex-labeled graphs. However, the pairing process naturally
leads to the creation of multi-edges and self-loops. A basic way to solve this issue is
to restart the generation process whenever a multi-edge or a self-loop is created. But
this may lead to extremely high failure rates, especially with real-world graphs, which
often exhibit a heavy-tailed degree distribution. Improved polynomial algorithms have
been proposed to produce random graphs with a given degree sequence provided that
the sequence does not exhibit too many high degree nodes [5, 2]. Note also that these
methods come at the cost of much more elaborate algorithms. Another way to circumvent
the limitations of the configuration model consists in producing samples which are not
uniform, but the bias of which is known. Then, it is possible to correct the measurements
on the biased sample to simulate what would be the corresponding measure with a uniform
sample. These methods are usually known as importance sampling methods, and works
such as [12] and [7] propose methods of this kind.

2.2 On Monte Carlo Markov Chain methods

The methods described above to generate graphs with a given degree sequence are con-
structive methods as the graph is created according to a given building process which uses
the target properties as an input. On another note, Monte Carlo Markov Chain (denoted
MCMC) methods start from any element of the target set and then apply elementary
modifications iteratively until loosing memory of the input graph to obtain a random
element of the target set.

Desired properties of MCMC methods. General MCMC methods for sampling
or enumerating ensembles have been popularized during the 80’s and 90’s in particular
by the works of Jerrum and his colleagues [21]. In order to actually reach a random
element of the set with a uniform probability, we need the Markov chain to satisfy the
three following properties:

� irreducible (or ergodic): any element can be reached from any other element,

� positive recurrent : the expected return time from any element to itself is finite,

� aperiodic: all its states are aperiodic, i.e., there is no T > 1 so that the chain can
return to an element only after a number of steps which is a multiple of T .

Edge-swap based MCMC methods. Several instances of these processes have
been explored on graphs, one of the most popular is certainly the edge swap (also called
edge switch, or rewiring, or flip) which consists in selecting two random edges and exchang-
ing their ends. There are variants of this basic description, depending on the fact that
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the graph is directed or not, a simple, multi or pseudograph. This method is commonly
used to generate undirected simple graphs with a given degree sequence by iterating edge
swaps until it leads to a random element (e.g., [27, 3]), the process being irreducible [44].
More precisely, suppose that edges (u, v) and (x, y) have been randomly drawn, a stan-
dard edge swap replaces these two edges by (u, x) and (v, y). Such a swap is authorized
if and only if edges (u, x) and (v, y) do not already exist, u and x are distinct nodes, as
well as v and y, thus avoiding the creation of multi-edges or self-loops. Another way of
looking at this situation is that an alternating cycle of length four has been found in the
graph. We remind that an alternating cycle is an even sequence of edges alternating with
non-edges of the form (u1, u2), (u2, u3), . . . , (uk−1, uk), (uk, u1) where (ui, uj) denotes a
non-edge, as represented in Figure 1. The corresponding adjacency matrix configuration,
called a tetrad is represented opposite to the alternating 4-cycle. Here, the swap itself
consists in changing the edges of this cycle into non-edges and vice versa.
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Figure 1: Left: alternating 4-cycle, plain lines correspond to existing edges, dotted
lines correspond to non-existing edges. Right: corresponding tetrad configuration
in the adjacency matrix (for undirected graphs, a symmetric tetrad also exists).

Any discrete markovian process can be represented as a directed graph, called Markov
graph. Its nodes are the elements (i.e., graphs) of the target set to be described, and
directed edges represent the possibility to go from one element to another through an
elementary modification. The directed edges of the Markov graph are weighted by the
probability to go from a node to another according to a given process. The irreducibility
of the Markov chain translates into having a strongly connected Markov graph.

A fundamental issue with these methods is that the number of elementary modifica-
tions needed to reach the stationary state (or mixing time) of the Markovian process is
unknown in general. Determining the cases where the mixing is rapid (which is defined
as having a mixing time which is a polynomial function of the logarithm of the number
of steps in the chain) has been a focus of much work [20, 38]. In the case of graphs with
a given degree sequence, the works of Péter Erdős et al. [14] addressed the problem by
establishing graph properties which allow to have rapid mixing. While proving the rapid
mixing of MCMC methods is often a difficult task, it has been observed experimentally
that the edge-swapping MCMC to produce graphs with a given degree sequence has in
general a short enough mixing time to be used practically [17, 28, 47, 13], making it an
interesting method to generate unbiased samples of such graphs.

Beyond edge-swap based MCMC methods. Rao et al. [35] successfully applied
MCMC methods to the uniform generation of directed simple graphs with a given degree
sequence. This problem is relevant as a simple swap method is known to be reducible
and thus cannot be used to uniformly generate samples of such graphs. However, the
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authors prove that it is possible to create an irreducible Markov process in the directed
case too. Using an adjacency matrix description, a simple directed graph is represented
by a boolean matrix which must contain 0 in its diagonal. With such a description,
a swap is an alternating 4-cycle (or tetrade), as represented in Figure 1. The authors
achieve irreducibility by using not only alternating 4-cycles but also alternating 6-cycles
in the MCMC process. An alternating 6-cycle is an extension of the alternating 4-cycle
equivalent to finding an hexade when considering adjacency matrices (see Figure 2).
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Figure 2: Left: alternating 6-cycle, plain lines correspond to existing edges, dotted
lines correspond to non-existing edges. Right: corresponding hexad configuration
in the adjacency matrix (for undirected graphs, a symmetric hexad also exists).

Among the MCMC methods designed to generate graphs with a given degree se-
quence, it is also worth mentioning Carstens et al.’s Curveball and Global Curveball

methods [9], which are able to randomize uniformly graphs with a given degree sequence
in multiple contexts: bipartite graphs, undirected and directed graphs with self-loops. To
achieve this, the authors use a specific kind of elementary step called trades, previously
introduced by Verhelst [46], without going into more details, a trade modifies more edges
of the graph than a basic swap does, which explains higher convergence speed in practice.

2.3 Beyond graphs with a given degree sequence

In spite of their successes, graphs with a given degree sequence cannot account for local
density, degree correlations, community structure, etc. Thus, an important effort has been
made to go beyond this model and propose new models and methods that yield uniform
samples of more realistic and elaborate constraints.

Models including degree correlations. Generating graphs with a given degree
sequence and given degree correlations has attracted interest in various ways. Degree
correlation may indeed be integrated to the model in a constricting form by setting the
joint degree matrix (JDM) of the graph, that is to say the number of edges connecting
a node of degree k to a node of degree k′ [41, 16, 4, 10, 1]. It can also be added to the
model with less strict constraints, for instance by setting the Pearson correlation coefficient
between degrees of neighbors in the graph [30, 11]. Some authors have proposed the dK-
series framework [25] where degree-based graph models are part of a hierarchical ensemble:
the 1K-model corresponds to random graphs with a given degree sequence, the 2K-model
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corresponds to random graphs with a given joint degree distribution, etc. While dK-series
were initially considered in the context of the Internet topology, this framework has also
been used for other applications [34]. However, it is unclear in [25] how the generation
processes actually work for d ≥ 2, besides that, there is currently no standard method to
generate dK-graphs for d > 2.

The earliest models to generate graphs with degree correlations were known to be
biased [30, 11] and they were used to investigate the effect of degree correlations on other
phenomena, such as epidemic spreading. Gjoka et al. [16] propose to generate graphs
with a prescribed degree sequence and additional properties: a fixed joint degree matrix
(JDM) and possibly other properties such as a tunable clustering coefficient or specific
node attributes. However, the generating process proposed is not uniform. To the best
of our knowledge, Stanton and Pinar [41] are the first to propose a method to generate a
random graph with a given JDM in a uniform way. First, they describe an algorithm that
generates an instance of a graph having a given JDM. Second, they propose a MCMC
method based on an edge-swap procedure to sample the set of graphs with the given
JDM. They prove that this procedure guarantees to obtain a uniform sample, and in
particular that the Markov Chain is irreducible. This proof was later shown to be flawed,
but corrected proofs were proposed later to show that MCMC swap-based methods can
indeed be used to generate graphs with a given joint degree matrix [10, 1]. Interestingly,
the authors of [41] also highlighted the advantages and drawbacks of the MCMC based
procedures: they are often the only way to generate uniform samples of graphs with
elaborate constraints, however proving that they produce uniform sample is demanding.
Similarly to graphs with a given degree sequence, computing a bound to the mixing time is
difficult but it is observed experimentally that this time is short enough for many practical
instances. Later, Bassler et al. [4] proposed a polynomial algorithm – precisely, quadratic
for sparse graphs – to generate graphs with a given JDM. This method is exclusively
constructive and offers guarantees in terms of time complexity.

Models including motifs. Another family of graphs which has been a focus of
attention are random graphs with a given number of small size motifs. Here, motifs
designate small connected patterns (usually 5 nodes or less), sometimes also referred to
as graphlets. Triangles in particular are often thought to be a basic network motif which
plays an important role in real-world networks, as suggested by the wealth of work related
to the topic. Indeed, many real-world networks are known to exhibit a larger number of
triangles than expected if we consider a random graph with the same degree sequence.
Consequently, there have been many attempts in the literature to generate graphs with
a fixed number of triangles, a fixed distribution of triangles per node, or graphs with a
fixed number of various motifs [26, 31, 22, 42, 43, 33].

Constructive methods have been applied for this family too. In particular, Newman
has proposed a model which is strongly related to the configuration model to generate
graphs with a fixed sequence of degree and triangles per node [31]. This model has
been generalized since then to random graphs with arbitrary distributions of subgraphs
in [22]. While such generating processes are relatively simple to implement and analyti-
cally tractable to some extent, they have limitations which are comparable to the ones of
the configuration model mentioned above.

Considering MCMC, it is known that a standard edge swap process cannot be sys-
tematically applied to guarantee uniform samples of target sets with constraints related
to the number of motifs. In the context of directed graphs, it has been extensively dis-
cussed since the work by Rao et al. aforementioned [35]. For instance, in [37], Roberts
uses an adaptation of Rao et al. procedure in various contexts, using alternating 4-cycles
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with probability p, but also alternating 6-cycles with probability 1− p. By this mean, he
attempts at generating directed graphs with a given degree sequence and a given number
of mutual dyads, i.e. links connecting two nodes in both directions. Later, McDonald [26]
showed that Roberts’ proposition was actually non-ergodic for the mutual dyads con-
straints considered. He employed related MCMC methods, which were then proved to be
reducible too in the context of the target sets that McDonald considered [43].

Moreover, in the case of undirected graphs, it has been shown, for instance in [42],
that the simple edge swap process is reducible for any set of graphs with a fixed degree
sequence and a fixed number of triangles. In [33], Nishimura even exhibited examples of
degree and triangle constraints which have disconnected Markov graphs (so, the process
is reducible), even in the case of swaps involving 8 edges.

Various types of complex constraints. We now discuss other types of complex
constraints which do not fall in the previous categories. In general, constructive methods
have to be redefined for each specific set of properties. Consequently, for any elaborate
target set, it is a new challenge to propose a constructive method that would allow to
sample uniformly the target set of graphs. For this reason, MCMC methods are favored
because they have the outstanding advantage of following an adaptable scheme and thus
offer possibilities to achieve uniform graph generation with various sets of constraints.

In a recent article, Van Koevering et al. proposed a MCMC-based method to generate
uniformly random graphs with a given core-sequence [45]. We remind that a k-core of a
graph is its maximal subgraph in which every node has degree at least k and that this
concept is most useful to describe the embeddedness of a node in the graph structure.
Interestingly, the moves allowed in this MCMC method are not restricted to edge swaps:
a range of legal moves of different sorts are possible and the authors proved that these
moves guarantee the irreducibility of the Markovian process. Without going into details,
the authors propose a rejection sampling trick to guarantee the uniformity of the process.
Note that this contribution, by contrast with others mentioned in this section does not
include the degree sequence among the target constraints.

Finally, we point at a particularly interesting method in the perspective of our study,
proposed by Tao in [43]. To the best of our knowledge, it is the only instance of an
algorithm in the literature that guarantees the irreducibility of a Markov process in order
to generate a sample of graphs with a given degree sequence and any additional property.
Instead of setting the length of the alternating cycles to swap, as is the case in several
works mentioned above, the author proposes to follow an alternating path until going
back to the starting node, therefore discovering an alternating cycle of variable length at
each step. The author proves the irreducibility of such a process as well as its uniformity
by making use of the detailed balance principle. While it is applied with some success
to a few examples, notably in the cases of the target constraints of Roberts in [37] and
McDonald in [26], mentioned above, the method comes at a cost: it scales rather poorly
and thus can only be used on relatively small graphs. This is however an inspiring method
on which we build in this work.

3 The probabilistic k-swap method

The main contribution of this work is to propose a MCMC process which is guaranteed
to be irreducible, positive recurrent, aperiodic and uniform for any (non-empty) target
properties of simple graphs that include the degree sequence of the graph. It improves
upon the method developed in [42] which could not guarantee irreducibility and thus
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resorted to a complex experimental procedure to get closer to irreducibility. In this
section, we describe our method and prove that it has all the necessary properties to
guarantee a uniform sampling of the target set of graphs.

3.1 Description of the Markov process

The probabilistic Markov process that we propose can be interpreted as a probabilistic
k-swap. For short, we call it pks process in the following. At step s, we apply the following
transformation to graph Gs = (V,Es):

� Draw an integer k ∈ J2 : mK according to the following law: P (k) ∼ 1
kγ

, γ is a
parameter satisfying γ ∈ ]1 :∞[.

� Select k different edges randomly in Es, arbitrarily directed and ordered:
(u1, v1) . . . (uk, vk).

� Let σ be a random permutation of the index in J1 : kK and consider the set of edges:
E′s = Es \ {(u1, v1), . . . , (uk, vk)} ∪ {(u1, vσ(1)), . . . , (uk, vσ(k))},
if G′s = (V,E′s) satisfies the set of target constraints, then Gs+1 = G′s, otherwise
Gs+1 = Gs.

Note that the law that we use for P (k) is close to the Zipf law, except for its support.
It is not necessary to use the Zipf law to select k, any P (k) distribution that allows to
have all values of k ∈ J2 : mK with a non-zero probability would also ensure ergodicity.
We choose it because it has a higher probability to draw low k values, which is supposed
to accelerate the mixing process, as discussed in more details in Section 4.

Note also that the standard edge-swap process [27, 3] can be seen as a limit case of
the pks process where P (2) = 1 and P (k) = 0 for any other k.

3.2 Properties of the Markov Chain

Lemma 1. For any non-empty target set, the Markov chain is irreducible.

Proof. For any two graphs of the target set Gi = (V,Ei) and Gj = (V,Ej), consider an
edge (u1, v1) present in Ei but absent in Ej . As the degree of node v1 is the same in Ei
and Ej , there must exist an edge (v1, u2) ∈ Ej and (v1, u2) /∈ Ei. We can do the same
reasoning to find an edge (u2, v2) ∈ Ei but (u2, v2) /∈ Ej and iterate this reasoning until
we reach a node uq or vq which is already involved in the alternating path. Without loss
of generality, suppose that we find the edge (vp, u1) ∈ Ej and (vp, u1) /∈ Ei. The sequence
(u1, v1), (v1, u2), (u2, v2), . . . , (up, vp), (vp, u1) is an alternating cycle between edges of Ei
not in Ej and reciprocally. This reasoning may be done for any edge in E∆ = Ei∆Ej , the
symmetric difference between Ei and Ej . Consequently, E∆ is constituted of alternating
cycles of the form given above (a similar argument is made in Tao [43]).

Also, it should be noted that |E∆| ≤ m. So, there is some k ∈ J2 : mK which
allows to select exactly the edges in Ei \ Ej and a permutation σ such that by applying
the transformation above, we exactly find Ej . Precisely, this permutation is such that
σ(1) = 2, σ(2) = 3, . . . , σ(p1) = p, σ(p) = 1 for the index corresponding to the first
alternating cycle, and follows a similar logic for the other alternating cycles in E∆. In
other words, we have exhibited a transition that allows to go directly from Gi to Gj with
a probability pij > 0.

Note that this property is more than what we need to ensure irreducibility: we have
proved that this process can connect two random graphs of the set in one step. In short,
the Markov graph is complete, while we only need to have a strongly connected Markov
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graph to ensure irreducibility. Still, this property guarantees to have an irreducible chain
even with complicated target properties and target sets.

Lemma 2. The Markov chain is aperiodic and positive recurrent.

Proof. The Markov chain is finite and irreducible, thus it is positive recurrent. For any
state of the chain, the probability to stay in the same state is strictly positive. Indeed, it
is possible to draw for any k the permutation σ corresponding to the identity, in which
case the chain remains in the same state. This ensures that the process is aperiodic.

The Markov chain is irreducible, positive recurrent and aperiodic, so we know by
theorem that it converges to a unique stationary state π.

3.3 Uniformity of the stationary state

Lemma 3. The stationary state π of the Markov chain is uniform.

Proof. We prove that we have detailed balance, i.e. the transition matrix of the Markov
process is symmetric, pij = pji, which entails that the uniform distribution is the unique
stationary state.

By definition, pij =
∑m
k=2 P (k)p

(k)
ij , where p

(k)
ij is the probability to go from state i to

state j for a fixed value of k and P (k) is the probability to draw k. p
(k)
ij is the number of

permutations N
(k)
ij of k edges in state i which leads to state j divided by the total possible

number of k edges combinations among m edges. As for any permutation leading from
state i to state j, the exact reverse permutation leads from state j to state i, we know
that N

(k)
ij = N

(k)
ji . Moreover, the denominator only depends on k or m (and not on i or

j), so we have p
(k)
ij = p

(k)
ji thus pij = pji.

3.4 Conclusion on the theoretical properties

From the properties proved above, we conclude that after a sufficient number of iterations
of the Markov process described in Section 3.1, we obtain any graph of the target set with
a uniform probability. Note that this process demands the target set to be non-empty of
course, but also to have at least one element available as the starting point of the process.
This constraint can often be overcome for relatively simple target sets: for instance to
generate a simple undirected graph with a given degree sequence, it is always possible
to use the Havel-Hakimi procedure to generate a given instance. Nevertheless, it is not
necessarily the case for any target set.

3.5 Complexity and limitations of the method

In this section, we compute the theoretical complexity of the process. Then, we discuss
the technical limitations that a user may encounter, which are not explicit through the
complexity analysis. These limitations stem from the mixing problem of the Markov
chain.

3.5.1 Complexity of the Markov process

We can express the time complexity of the pks process as a function of s, the number of
steps (or k-swap trials), µk the expectation of the number of edges involved in a trial and
structural features of the graph, typically n and m.
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At each step, k edges are selected for swapping, and possibly actually swapped. An
appropriate data structure allows to implement the selection and swap with an amortized
complexity of O(k). That is the case of the implementation provided. In addition to
this, we have to check if the target properties are satisfied by the modified graph. This
depends on the nature of the properties, and must be computed for each specific case.

In the simplest case, we only check if the graph remains simple, i.e, we do not create
loops or multi-edges, which can be done in O(k). Therefore, the amortized complexity of
the method in this simple case is in O(

∑s
1 k.P (k)) = O(s.µk). The expression of µk only

depends on the probabilistic law chosen to draw k.

3.5.2 Mixing time and convergence criterion

The main weakness of the MCMC sampling methods is the fact that there is no
universal theoretical argument to know the number of steps needed to reach the stationary
state a priori. Moreover, this question is known to be very difficult to address theoretically.
Therefore, defining an experimental criterion to decide when the steady state is reached
is the common practice. The experimenter usually chooses a “quantity of interest”, e.g.,
the assortativity of the graph, its number of triangles, its diameter, etc. and evaluates
its convergence along the MCMC process [17]. In [47], the authors make the assumption
based on experimental studies that there is a linear relation between the number of edges
m of the graph and the number of necessary swaps to reach the steady state, at least in
the case of connected graphs with a given degree sequence.

To address the problem in a robust and systematic way, experimental criteria have
been designed to evaluate the convergence of MCMC sampling methods. For instance,
Stanton and Pinar [41] investigate the integrated autocorrelation time of each edge and
evaluate with an experimental threshold when they can consider that they have reached
the steady state. It is also common practice to use time-series convergence diagnostics on
quantities of interest, such as the Gelman-Rubin or the Raftery-Lewis tests [36]. Recently,
Dutta et al. [13] showed that their criterion based on the Dickey-Fuller Generalized Least
Squares test is more appropriate to sample graphs than other diagnostic methods. Note
that while most of these techniques are applied in the context of graphs with a given
degree sequence in various graph families (multigraphs or simple graphs, with or without
self-loops), there is no fundamental obstacle to use them with other types of MCMC
sampling methods.

While there is a range of possibilities, we propose here to apply a procedure close
to the one proposed by Dutta et al. in [13] which has been designed specifically for the
swap-based method described in [15], as it appears to be very comprehensive and safe.

3.5.3 Limitations

A user of the method should be aware that there is no guarantee in general of rapid
mixing with MCMC sampling methods. Therefore, it is possible that a target set of
constraints does not lead to a rapid mixing on a specific input, which translates to an
unacceptably slow convergence.

In particular, when large k values are needed to reach ergodicity, we may experience
a dramatic drop in the success rates of the Markov process. An illustrative toy example
is detailed in [33]: the author considers a specific family of graphs with a given degree
sequence and number of triangles such that k = 8 edge swaps are necessary to reach
ergodicity with this set of constraints. It means in practice that any k-swap with k < 8
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will fail, but also that 8 or more swaps are very unlikely to succeed because those leading
to other elements of the set are only a small fraction among all combinations.

Fortunately, such configurations are rather unusual in real networks, and thus we
assume that in many interesting practical cases, large k values are not needed. In any
event, this question has to be investigated experimentally, which is what we develop in
the next section.

4 Experiments

In this section, we implement experimentally the pks method with several types of target
sets that have attracted interest in the literature for various problems related to complex
networks analysis. More precisely, we first consider different flavors of simple graphs
with a given degree sequence, then we address the generation of graphs with additional
constraints: a fixed joint degree matrix for undirected graphs, and a fixed number of
mutualistic dyads for directed graphs.

Note that in the case of simple graphs, it is not different to sample vertex-labeled
graphs and stub-labeled graph, as discussed in details in [15]: “the choice of graph labeling
is inconsequential for studies of simple graphs”, the reason being essentially that the
number of stub-labeled graphs corresponding to the same vertex-labeled graph is exactly
identical for any graph of the sets considered. So the sampling that we are doing here is
usable for simple labeled graphs in general.

Throughout our experiments, we are concerned with the uniformity of the sampling
achieved and compare to other existing methods, when such a method is available. We
also report the computation times, investigate how the process scales, which parts are
time-consuming and what is the impact of the parameters.

4.1 Experimental evaluation of the mixing times

As mentioned before, several works present methods to evaluate experimentally the con-
vergence of a MCMC based process in the specific context of graph generation and we
chose to follow the one proposed by Dutta et al. in [13] because of its comprehensiveness.
Then, we discuss the question of how to modify this process and accelerate it.

4.1.1 General scheme

In [13], the authors propose a comprehensive method to generate graphs with a given
degree sequence in a standardized manner. The statistic chosen to characterize the pro-
gression of the Markov process is the network degree assortativity, as it has the advantage
of being fast to compute and update. The generation process is separated into two phases:

� First, there is the estimation of the sampling gap η for the process. It is itself
decomposed in two sub-parts: the burn-in, which intends at reaching the stationary
state of the Markov process by applying a large number of iterations (typically
1000m), and after the burn-in, the evaluation of η itself. The sampling gap is
the number of iterations of the Markov process separating two samples, when the
chain has reached its stationary state. It is supposed to be above the threshold
so that the samples can be considered as uncorrelated. For that purpose, the
authors of [13] set η to a small value and test for autocorrelation at lag-1. If the
independence hypothesis is rejected, η is increased by a constant amount and the
process is iterated, otherwise it is considered that the threshold value is reached.
The smallest value η above the threshold will be used for the following step.
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� Second, there is the actual sample generation phase: they run the Markov chain
and create a set of sample graphs using η during the corresponding window. The
convergence of the process is checked by analyzing the distribution of the network
statistic over this window. By comparing different convergence methods for this
purpose, they come to the conclusion that the most appropriate one is the Dickey-
Fuller Generalized Least Squares test (or DFGLS), as it ensures to obtain both a
good accuracy and time-efficiency.

For the implementation details of the autocorrelation at lag-1 and DFGLS tests (level
of significance, parameters, etc), we point the interested reader to the original paper [13]
and underline that we can make similar choices as they do not depend on the nature of
the target set.

We give in Algorithm 1 a summarized version of the generation part of the process as
we implement it, without going into the details of the tests which depend on the target
properties.

Algorithm 1 Summarized pks sample generation

Input: G0 = (V0, E0) ∈ Target Set; sampling gap η; sample size N ; statistic f
1: t = 0 ; T ← False ; S ← ∅
2: while not T do
3: Gt+1 ← k-swap(Gt)
4: t = t+ 1
5: if t ≡ 0 (mod N.η) then
6: S ← {Gt−N.η, Gt−(N−1).η, . . . , Gt} . Collecting sample
7: T ← DFGLS-test(f, S) . Testing convergence

8: return S
9: procedure k-swap(G)

10: draw k according to P (k) distribution
11: draw k edges (u1, v1), . . . , (uk, vk) ∈ E
12: draw permutation σ of J1 : kK
13: E′ ← E \ {(u1, v1), . . . , (uk, vk)} ∪ {(u1, vσ(1)), . . . , (uk, vσ(k))}
14: G′ ← (V,E′)
15: if G′ ∈ Target Set then
16: return G′

17: else
18: return G

4.1.2 Accelerating the computation

It is difficult to reduce the time spent on the generation phase itself, which depends on the
size of the sample to produce. By contrast, there is some room to reduce the computation
time of the first phase (sampling gap estimation) of the process.

Dutta et al. [13] have already made this observation and proposed acceleration heuris-
tics adapted to the case of graphs with a given degree sequence in various spaces. They
observed experimentally that a typical threshold for η value is a few m, which is consistent
with previous experimental observations from other authors [17, 47] and with the decision
tree proposed in [13] depending on the graph density. Besides, it is intuitively reasonable
that there is a linear relationship between m and the number of swaps that is necessary
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to randomize the graph, as a swap is itself a modification of a set of edges. Unfortunately,
these heuristics are not adapted to the case of various target sets that we investigate.
Indeed, more constrained target sets imply that the success rate ρ of the Markov process
drops and we intuitively expect that the number of edges should be related to the number
of swap successes rather than the number of swap attempts. In short, any acceleration
scheme that does not take ρ into account is certainly not suited to our study.

However, we reduce the computation time of the sampling gap. According to Algo-
rithm 1 in [13], η initial value is chosen equal to 0 then it is increased by the same constant
amount 0.05m. Practically, it implies some useless tests of the autocorrelation at lag-1.
Therefore, we propose to choose the initial η value by assessing ρ during the burn-in phase
of the process and to start the search of the sampling gap with η = m/ρ. Then, instead
of looking for η with a linear search, we use a binary search: if the stationary test is
rejected, we change η to 2η and iterate the process, if it is not, we change η to η/2 and
iterate the process. This recursive procedure is halted as soon as the behavior changes:
if the stationary test was rejected and is now accepted, we consider that we have reached
the threshold by lower values ; alternatively if the test was accepted and is now rejected,
we consider that the penultimate η value was just above the threshold. Note that the
gain between our binary search and the original sequential search is not significant when
ρ is close to 1. But we will also see examples where ρ is much lower than 1 which leads
to significantly faster binary searches than sequential searches.

4.2 Datasets

For comparison and reproducibility purposes, we use public datasets investigated in the
literature, principally extracted from Konect database http://konect.cc/. We explore
datasets of different sizes to evaluate how the procedure scales up. Depending on the cases
considered (undirected or directed graphs, bipartite or not) we use different datasets for
various sets of constraints. Note that all graphs considered are simple (no multi-edge,
no loop) and that bipartite graphs are also undirected. We summarize in Table 1 some
global structural properties of the datasets considered, as well as the sources used.

Dataset type family n m source

Zachary m-u friendship 34 78 [24]
Les Misérables m-u co-appearance 77 254 [24]

Powergrid m-u infrastructure 4941 6594 [24]
Managers m-d friendship 21 100 [23]

Yeast m-d gene regulation 688 1079 [29]
Air Traffic m-d infrastructure 1226 2615 [24]

Finches b-u co-occurrence 17;19 55 [18]
Chiloe b-u mutualistic 129;26 312 [39]
Crime b-u person-crime 829;551 1476 [24]

Table 1: Global structural properties of the graph datasets investigated. The
type depicts if the network is monopartite (m) or bipartite (b), undirected (u) or
directed (d). We also indicate what is the network family; their number of nodes
n and edges m and the source in the literature where this dataset can be found.
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4.3 Implementation and hardware

All the experiments are run on a server with 252GB of RAM and 4 64-bit Intel Xeon E5-
4617-0 CPUs with 6 cores at 2.90GHz. The implementations of the code are in python,
the source code and documentation are available at the address https://gitlab.lip6.

fr/tabourier/code-pks-generation. As described in the documentation, the different
constraints are indicated as arguments of the program, so that there is a unique imple-
mentation for all the variants described in what follows. Note also that the η estimation
time implementation is by default parallelized on 4 threads, if allowed by the system and
hardware.

4.4 Fixed degree sequences

We implement several flavors of models with fixed degree sequences. Namely, we consider
simple monopartite undirected graphs, simple monopartite directed graphs and simple
bipartite undirected graphs, all three of them with fixed degree sequences. In all these
cases, we only have to check if a k-swap generates a loop or a multi-edge, which can be
done in O(k). It makes the complexity of the process in O(s.µk) with the notations given
in Section 3.5.

There are existing methods to generate such graphs, in particular the Curveball

method by Carstens et al., described in [9], which is also a MCMC method relying on
a different elementary step. More precisely, we use the global Curveball method to
generate uniform samples of such graphs, to which we compare the samples obtained with
our method. It is available in python NetworKit at this address: https://networkit.

github.io/dev-docs/notebooks/Randomization.html.

4.4.1 Simple monopartite undirected graphs

We first consider simple monopartite graphs. This class of graphs have been largely
studied, as detailed in the state of the art Section. We investigate in more details the
generation of the reference m-u graphs listed in Section 4.2.

In the default settings of our experiments, we generate a sample of 1000 graphs in each
case, using the pks method, with γ = 2. The number of triangles of the graph is used as a
statistic to follow the process, both for the autocorrelation at lag-1 test used to determine
the sampling gap, and for the DFGLS test used to check the convergence of the process.
We have chosen this quantity because it is fast to compute and update. Note that in [13],
the authors used the assortativity measure, which is even faster to update, however the
assortativity is a real value, which implies using bins in order to make statistical tests.
For this reason, we favor the number of triangles.

In Table 2, we report the results of our experiments, which are the η obtained and the
computation times of each part of the process: η estimation, convergence and generation
of 1000 graphs. The computation times indicated are CPU times, but the wall clock
times are actually shorter as the η estimation phase is parallelized (on 4 threads by
default). We observe that the convergence time is negligible, and above all that the η
estimation dominates the computation time, as it is typically 8 times larger than the
sample generation time. Note that the sample generation time is a linear function of
the number of graphs generated and can therefore be modulated depending on the user’s
needs.

To illustrate the convergence process, we follow the evolution of the distribution of
triangles throughout the evaluation of the experimental η for the dataset Les Misérables.
It is expected that its shape and average evolves before stabilizing when the stationary
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η estimation convergence sample gen. total CPU
Dataset η time (in s) time (in s) time (in s) time (in s)

Zachary 751 1,731 2 221 1,954
Les Misérables 1,781 5,478 6 679 6,163

Powergrid 16,137 205,946 55 27,527 233,528

Table 2: Computation times for a 1000 graphs sample generation in the case of
simple monopartite undirected graphs with a fixed degree sequence.

state of the process is reached. This evolution, reported in Figure 3, is consistent with
this expectation.

Figure 3: Evolution of the distribution of triangles through the convergence process
on the dataset Les Misérables. Each distribution corresponds to a fixed value of the
number of swap attempts (evaluated in m), for 1000 graphs. When the stationary
state is reached, the distribution does not evolve significantly, as detected by the
DFGLS test.

It is also possible to compare the distribution obtained in the stationary state of our
process to the sample distribution obtained using the global Curveball method. Note
that we set global Curveball number of global rounds parameter to 100 in order to
guarantee the convergence of the process. To evaluate if these two distributions can be
considered as produced from the same set, we use a two-sample Kolmogorov-Smirnov
(KS) test on the number of triangle distribution of both samples. We remind that the
KS-test evaluates if the samples can come from the same distribution, and a p-value larger
than a given threshold (we choose a standard 0.05), indicates that this assumption cannot
be rejected. With 1000 graph samples, we obtain p-values of 0.969 (Zachary), 0.501 (Les
Misérables) and 0.723 (Powergrid), so largely above the fixed threshold.

For practical purposes, it is worth noticing that global Curveball is much faster than
our method. A direct comparison is not simply doable because there is no equivalent to the
automatic search for η in global Curveball. However, one can consider that the sample
generation times in our pks method can be compared to global Curveball computation
(CPU) times. With a number of global rounds of 100 and a sample of 1000 graphs, they
are the following: 73s (Zachary), 75s (Les Misérables) 372s (Powergrid), to be compared
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to the pks sample generation times in Table 2, so a ratio ranging from 3 to 78 times faster.
Indeed, global Curveball is specifically designed for the purpose of generating graphs
with a given degree sequence very efficiently, while the pks method favors versatility and
adaptability at the cost of a lower efficiency.

4.4.2 Simple monopartite directed graphs

We consider the problem of generating a sample of simple directed graphs with a fixed
degree sequence. This problem is different from the one examined in the previous section
because of the edge directions, which makes the simple swap process reducible in the
general case.

In Table 3, we report the generation times for our reference m-d graphs. We precise
that here again, we use the number of triangles as a statistic. Although, several definitions
of this concept are available in the context of directed graphs, we choose to use the number
of triangles of the undirected graphs with the same set of nodes and edges but creating for
each directed edge an undirected edge between the same nodes (possible multiple edges
are converted to simple edges).

η estimation convergence sample gen. total CPU
Dataset η time (in s) time (in s) time (in s) time (in s)

Managers 1,762 1,563 21 313 1,897
Yeast 3,394 24,900 20 1,077 25,997

Air Traffic 6,719 33,905 35 3,877 37,817

Table 3: Computation times for a 1000 graphs sample generation in the case of
simple monopartite directed graphs with a fixed degree sequence.

global Curveball can also produce uniform samples of directed graphs as long as a
preprocessing step is enabled (see [6]). Thus we can also make a comparison between the
1000 graph samples obtained, using a Kolmogorov-Smirnov test on the distributions of the
number of triangles of both samples. It yields p-values of 0.410 (Managers), 0.078 (Yeast)
and 0.433 (Air Traffic), above the threshold demanded. Here also, global Curveball

outperforms pks on the ground of speed, with computation times of 72s (Managers),
92s (Yeast) and 293s (Air Traffic), so 5 to 13 times faster than pks sample generation.

4.4.3 Simple bipartite undirected graphs

The third case of graphs with a fixed degree sequence that we examine are bipartite graphs
with a given degree sequence. For bipartite graphs, it is not possible to follow the process
with the number of triangles (which is 0 by definition), so we resort to the assortativity
and report the results on our reference b-u graphs in Table 4.

Again, global Curveball is able to generate uniformly random bipartite graph with
a given degree sequence, so we make a comparison between the samples obtained, using
a Kolmogorov-Smirnov test on the assortativity distribution, as there is no triangle in a
bipartite graph. It yields p-values of 0.055 (Finches), 0.648 (Chiloe) and 0.536 (Crime).
These values are above the threshold, but only slightly concerning Finches. It is probably
due to the fact that we are using a KS-test on a discrete distribution, which might generate
Type I errors (unnecessary rejections), especially for highly discretized distributions which
may happen with a small graph such as Finches. Concerning speed, global Curveball
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η estimation convergence generation total CPU
Dataset η time (in s) time (in s) time (in s) time (in s)

Finches 930 993 1 111 1,005
Chiloe 3,042 11,067 21 539 11,627
Crime 3,869 12,416 16 1,453 13,885

Table 4: Computation times for a 1000 graphs sample generation in the case of
simple bipartite undirected graphs with fixed degree sequences.

computation times are 73s (Finches), 72s (Chiloe) and 302s (Crime), so from 1.5 to 5
times faster than pks sample generation.

4.5 Fixed joint degree matrix

Now, we consider the generation of uniform samples of graphs with a more elaborate
set of properties, namely simple undirected graphs with a fixed joint degree matrix. By
definition, the element (j, k) of the joint degree matrix (JDM) contains the number of
edges connecting nodes of degree j to nodes of degree k. Consequently, setting the JDM
implies setting the degree sequence.

Note that a priori global Curveball is not usable in this context, as nothing ensures
the irreducibility of the associated Markov Chain. However, the method proposed by Stan-
ton and Pinar [41] allows to generate uniform samples of graphs with a fixed JDM. Thus,
we will use it for comparison purposes. The related program, named graphMC is currently
available online at https://www.sandia.gov/-jairay/open-source-software/ with de-
tails in paper [36].

In Table 5, we report the generation times for the m-u graphs that we consider in this
work. We follow the process with the number of triangles in the graph.

η estimation convergence sample gen. total CPU
Dataset η time (in s) time (in s) time (in s) time (in s)

Zachary 5,053 2,811 5 1,368 4,184
Les Misérables 24,643 17,824 28 8,546 26,398

Powergrid 197,180 1,682,480 6,023 313,048 2,001,551

Table 5: Computation times for a 1000 graphs sample generation in the case of
simple monopartite undirected graphs with fixed degree sequences and fixed joint
degree matrices.

In this case, we see that the η estimation phase dominates the total computation
time, in a ratio which is roughly 2/3 to 1/3, when generating a 1000 graphs sample. By
comparison to the case of simple monopartite graphs with a fixed degree sequence, we
observe that the estimated η as well as the overall generation times are much larger. It is
expected as the constraint is stronger, we know that the target set with a fixed JDM is
strictly included in the one with a fixed degree sequence (discussed in Section 4.4.1).

We quantify this observation by measuring the success rates ρ of swaps in these two
series of experiments. The results are reported in Table 6. We can see that on the graphs
examined the success rates typically drop by a factor which is up to 27 on Powergrid
dataset. This factor is simply indicative, as it varies significantly from a graph to another,
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but it reflects the fact that much less graphs have the same JDM as the original graph.
In particular, the success rate appears to be much smaller than 1, which illustrates the
remark about the sampling gap computation: assessing the success rate ρ during the
burn-in phase is useful as it can be low when the target set is heavily constrained.

degree sequence only joint degree matrix
Dataset η ρ η ρ

Zachary 751 10.39% 5,053 1.54%
Les Misérables 1,781 14.26% 24,643 1.03%

Powergrid 16,137 40.86% 197,180 1.54%

Table 6: Comparison between the pks success rates for the generation processes of
a set of graphs with fixed degree sequence only and a set of graphs with fixed joint
degree matrix.

The samples are compared to the ones that are produced with GraphMC. To evaluate
if these two distributions can be considered as produced from the same set, we use a
Kolmogorov-Smirnov test with 1000 graph samples, which yield the following p-values:
0.573 (Zachary), 0.954 (Les Misérables) and 0.936 (Powergrid), above the fixed 0.05
threshold, which confirms that the samples obtained with graphMC and our method are
statistically similar.

Similarly to the discussion in Section 4.4, we can compare the computation times of
graphMC to pks sample generation times, although we expect that graphMC is more efficient
because it is especially designed to generate graphs with a fixed joint degree matrix and
because it is coded in C++ which is a more efficient language than python. The parameter
N in GraphMC can be related to η by the following relation: m.N = S.η for a sample of size
S This is indeed the case, we observe the following CPU times: 15s (Zachary), 148s (Les
Misérables) and 66,950s (Powergrid). We can see that GraphMC outperforms our method
by a factor from 5 to 90 on these examples. More generally, it is fair to assume for
practical usages that a specialist method should outperform pks, but the advantage of our
method emerges when considering target sets where there is no other method available.

4.6 Fixed degree sequences and number of mutual dyads

Finally, we examine the problem of generating a set of directed graphs with a given degree
sequence and a fixed number of mutual dyads. Mutual dyads are reciprocal connections
between two nodes, and they have been especially studied in the context of social net-
works where mutual relationships have a completely different meaning from non-mutual
relationships. In particular, in social graphs, reciprocal relationships are known to be
over-represented when compared to simple graphs with a fixed degree sequence only.
While several attempts have been made to generate uniformly random graphs obeying
these constraints, the ones by Roberts [37] then McDonald et al. [26] failed to be actually
uniform. Tao [43] proposed an algorithm for these graphs which is uniformly random;
unfortunately, there is no implementation available. So, to the best of our knowledge, our
method is currently the only one available to generate such graphs.

We report the results of the generation process in Table 7 on our reference m-d graphs.
Here we can see that η estimation times largely dominate the overall generation times,
as it ranges from 8 to 17 more time than the sample generation itself, for 1000 graph
samples.
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η estimation convergence sample gen. total CPU
Dataset η time (in s) time (in s) time (in s) time (in s)

Managers 4,892 15,377 88 879 16,344
Yeast 3,426 24,273 7 3,006 27,386

Air Traffic 12,332 585,711 264 24,797 610,772

Table 7: Computation times for a 1000 graphs sample generation in the case of
simple monopartite directed graphs with a fixed degree sequence and a fixed total
number of mutual dyads.

4.7 Impacts of γ and the graph statistic

We remind that the method has one parameter, which is the exponent γ when selecting
the value of k at each step of the algorithm. A smaller γ induces a higher probability to
select larger k. We know experimentally that this parameter is related to the convergence
speed of the method, however the relation is not trivial as there are several counteracting
effects. Indeed, a swap implying more edges has a higher probability to fail, but also, if
the swap succeeds, it leads to a better mixing of the graph structure. It means that it
is hard to predict what will be the effect of a larger γ on η and on the generation time.
To have a better idea of the impact of this parameter, we make some experiments on the
m-u graphs with a fixed degree sequence and test the following γ values: {2, 3, 4}.

We also investigate the impact of the choice of the network statistics on the estimation
of the convergence. This statistic has two important roles throughout the protocol: for the
autocorrelation at lag-1 which is used to estimate the sampling gap η, and for the DFGLS
test which guarantees the convergence. This question has already been explored in other
studies, in particular in [13, Appendix F], essentially concluding that all the statistics
examined have converged when the convergence is detected according to the protocol
with the assortativity. We compare the convergence estimations with the two statistics
which are implemented in our code: the assortativity and the number of triangles on the
m-u graphs with a fixed degree sequence.

N Zachary Les Misérables Powergrid
γ η ρ time (s) η ρ time (s) η ρ time (s)

2 751 10.39% 1,954 1,781 14.26% 6,163 16,137 40.86% 233,528
3 533 14.63% 1,075 1,281 19.83% 7,951 14,911 44.22% 204,742
4 456 17.09% 867 1,127 22.53% 2,496 14,264 46.23% 181,570

a Zachary Les Misérables Powergrid
γ η ρ time (s) η ρ time (s) η ρ time (s)

2 743 10.53% 2,003 1,773 14.33% 5,954 16,125 40.89% 265,890
3 528 14.78% 976 1,290 19.70% 16,959 14,901 44.22% 206,511
4 457 17.08% 2,136 1,130 22.48% 5,883 14,265 46.23% 181,570

Table 8: Comparison of η (sampling gap), ρ (success rate) and total time in the
case of undirected monopartite graphs with a fixed degree sequence for various
γ, when the convergence is followed using the number of triangles (top) and the
assortativity (bottom).

Results on both questions are summarized in Table 8. We know that lower k generally
implies larger success rates ρ. We can decompose the success rates for different k values
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and denote ρk the success rate corresponding to the value k of a k-swap. For instance,
if we decompose ρ in the case of Les Misérables dataset, we observe that for k = 2 it
is ρ2 ' 26.47%, while for k = 3 it is ρ3 ' 12.09%, for k = 4 it is ρ4 ' 9.98%, and
ρk continues to drop as k increases. Consequently, as increasing γ implies lower k on
average, we observe a higher success rates ρ. However, η and the generation times may
vary differently: for Les Misérables dataset, we observe with γ = 3 that η is lower but
the generation time is larger than with γ = 2. Here, we certainly see the effect of the fact
that a lower γ induces a lower success rate but might result in a shorter convergence time
because of a more efficient mixing.

Concerning the graph statistics (assortativity and number of triangles), we first note
that η is roughly similar for both statistics, which is not surprising considering the fact
that we are looking for η using a binary search. Second, ρ does not depend on the
graph statistic, but only on the Markov process itself, therefore it is the same (except for
statistical fluctuations) in both series of experiments. The most important point is the
generation time and there is no definitive answer: in some cases, using the assortativity
leads to shorter generation times than using the number of triangles, in others we see the
opposite. In all cases, both statistics lead to the same order of magnitude of convergence
time, which is consistent with the conclusion of [13].

Finally, we check the consistency of the samples obtained using KS tests, by choosing
a reference sample (γ = 2, followed with the number of triangles) and comparing it to the
other ones obtained for the same dataset. The p-values obtained are summarized in the
Table 9 and show that in all cases they are above the 0.05 threshold, which shows that
the different samples are consistent.

γ = 3 (N) γ = 4 (N) γ = 2 (a) γ = 3 (a) γ = 4 (a)
Zachary 1.000 0.401 0.936 0.685 0.888

Les Misérables 0.573 0.370 0.994 0.969 0.314
Powergrid 1.000 0.980 0.610 0.914 0.536

Table 9: p-values of the KS-tests comparing the distribution of triangles of the
samples obtained with different values of γ and graph statistics to the reference
case (γ = 2, convergence followed with the number of triangles).

Conclusion

In this work, we have presented a methodology to generate uniform samples of simple
graphs obeying a specific degree sequence and any additional property, provided that
we have at least one element of the target set of graphs. It is based on a Monte Carlo
Markov Chain method, and its principle is to select at each step a set of k edges, k being
drawn from a predefined distribution, then to permute the extremities of these edges
randomly. We also provide a documented implementation of this algorithm in python,
which is designed to generate samples of undirected, directed and bipartite simple graphs
with a given degree sequence, directed graphs with a given number of mutual dyads, or
undirected graphs with a given joint degree matrix. We have shown experimentally that
this generator is indeed able to produce random samples of graphs on these examples, in
particular in the case of directed graphs with a given number of mutual dyads, for which
no other method is currently available. The code has been designed to be modified by
future users in order to adapt it to their own needs, by adjusting the set of constraints.
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In that sense, this work opens the way to some interesting prospects. One of the
first modification that comes to mind is to adapt it to generate samples of loopy- and
multi-graphs, in the spirit of what has been done by Fosdick et al. in the context of
the configuration model [15]. Another interesting lead is to integrate to the Markovian
process the possibility to add or delete an edge, in the line of what has been proposed
by Van Koevering et al. to generate random graphs with a given core sequence [45].
It would allow to generate uniform samples of a whole new variety of models. While
this improvement sounds theoretically doable using the same probabilistic logic as pks,
it also has a major shortcoming: MCMC sampling methods usually have no guarantee
on the convergence time and practically, the convergence process can be very slow when
considering specific input sequences and constraints. In particular, including the edge
addition and deletion to the process allows to enlarge the target set so much that it might
make the convergence times too long for practical purposes.

This brings back to the main practical issue encountered with MCMC sampling meth-
ods, which is the issue of the convergence time. We suggest that accelerating heuristics
could be developed to reach convergence faster. Indeed, we believe that the burn-in phase
may be eliminated, as we observe experimentally that m/ρ is generally a sufficient amount
of steps to reach the stationary state, based on the autocorrelation test at lag-1. This
remark calls for deeper experimental investigation.
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and assortativity for diffusion-like processes in scale-free networks. EPL (Europhysics
Letters), 97(6):68006, 2012.

[12] Charo I Del Genio, Hyunju Kim, Zoltán Toroczkai, and Kevin E Bassler. Efficient
and exact sampling of simple graphs with given arbitrary degree sequence. PloS one,
5(4), 2010.

[13] Upasana Dutta, Bailey K. Fosdick, and Aaron Clauset. Sampling random graphs
with specified degree sequences. arXiv preprint arXiv:2105.12120, 2022.
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