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Résumé :

Ce travail est dédié à l’application d’un différentiateur semi-implicite et homogène pour estimer la
vitesse angulaire et l’accélération angulaire de chacun des huit moteurs électriques du robot parallèle à
câbles CRAFT à partir de l’enregistrement de la position angulaire de leur arbre de sortie respectif. Ces
moteurs actionnent l’enroulement ou le déroulement de huit câbles pour déplacer la plateforme mobile
du robot en translation et en rotation. Les résultats montrent que ce différentiateur, dont la définition
est fondée sur deux projecteurs, sont des outils performants pour estimer les vitesses et accélérations
angulaires des huit moteurs. Ces vitesses et accélérations estimées sont beaucoup moins bruitées que
leurs signaux de référence obtenus par différence arrière. De plus les grandeurs estimées obtenues avec
ce différenciateur sont comparées avec succès à celles obtenues par un observateur non-linéaire fondé
sur l’interpolation et la différence numérique de la variable de position mesurée. Ces résultats laissent
espérer un apport conséquent pour la commande du robot CRAFT.

Abstract :

This work is dedicated to the application of a semi-implicit homogeneous differentiator to estimate the
angular velocity and the angular acceleration of each of the eight electric motors of the CRAFT cable-
driven parallel robot from the recording of the angular position of their respective output shaft. These
motors drive the winding or unwinding of eight cables to move the robot moving-platform. The results
show that this differentiator, whose the definition is respectively based on two projectors, is an extremely
efficient tool for estimating the angular velocities and accelerations of the eight motors. These estimated
velocities and accelerations are much less noisy than their reference signals obtained by backward dif-
ference. Moreover, the estimated quantities obtained with this differentiator are successfully compared
to those obtained by a non-linear observer based on the interpolation and numerical difference of the
measured position variable. Those promising results will definitely contribute to a better control of the
CRAFT robot.
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Mots clefs : Robot parallèle à câbles, estimateur de vitesse, estimateur d’accélération, différentia-
teurs homogènes continus, différentiateurs homogènes discrets, discrétisation semi-implicite d’Euler,
projecteurs.

Keywords: cable-driven parallel robot, velocity estimation, acceleration estimation, homogeneous
differentiators, homogeneous discretized differentiators, semi-implicit Euler discretization, projectors.
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1 Introduction
A cable-driven parallel robot (CDPR) consists of a moving-platform that is connected to a rigid frame
by means of cables and actuators, the latter being generally mounted on the ground. Most of the existing
robots are powered by electric motors. These robots are very attractive for handling tasks [1–3] because
of their low inertia, a higher payload to weight ratio and a large workspace compared to conventional
manipulator robots with articulated rigid limbs. A CDPR, named CRAFT and located at LS2N, Centrale
Nantes campus, is equipped with eight actuators and a moving-platform. Each motor has an encoder
sensor measuring the angular velocity of its output shaft allowing to evaluate the performances of the
differentiation solutions. The moving-platform has six degrees of freedom. This moving platform is
thus over-actuated [4].

The possible application fields of a CDPR can be industrial, or dedicated to search-and-rescue oper-
ations. However, for tasks such as motion planning realized with CDPRs, haptic control is still im-
provable. To deal with various restrictions on cable tensions, cable elasticity, collisions and obstacle
avoidance, over-actuation of the moving platform is actually a challenging scientific problem [5], [6].

As a consequence the control of CDPRs is challenging. One key point for their control design is the
access, for each electric motor shaft, to the angular variable and its time derivatives. These data are
useful to design the robot control in tracking position or in haptic control [7]. Usually, the measurement
of the angular variable of the output shaft of each actuator is made thanks to an encoder sensor or a
resolver-to-digital converter. However, the measurement of the angular velocity of the output shaft is
not usual. Due to weight restrictions, reliability, and financial cost, a tachymeter is not usually available.

A solution to get the value (or the estimation) of the angular velocity can be based on numerical differen-
tiators, which are currently the focus of very active research. For CRAFT in order to estimate the angular
velocity and angular acceleration from the measured output motor shaft angles the design of continuous
time differentiators can be a good solution [8], [9]. However to be closer to physical systems, discretiza-
tion differentiation is more convenient. The problem of digital differentiation is not new and several
methods exist. Diop et al [10] investigate interpolation and numerical differentiation for constructing
an approach to the design of nonlinear observers. The measured signal is sampled at discrete instants and
interpolated by a polynomial for a window data. This elegant method is unfortunately not applicable in
real time without introducing delays depending on the computation windows. Real-time discrete signal
differentiation has been investigated with sliding-modes techniques. Carjaval-Rubio et al [11] derived
two discretization algorithms for the homogeneous high-order sliding mode. The main problem to de-
sign digital differentiation is how to reject as much as possible the noise effects. Acary & Brogliato [12]
introduced an implicit discretization technique, which overcomes some limitations such as the chatter-
ing of the classical sliding-mode. They replace the sign function by an implicit projector. Mojallizadeh
et al [13] develop the implicit discretization scheme for the arbitrary-order super-twisting differentiator.
This very effective method has, however, a weakness in some areas, which will be explained in this paper.
Semi-implicit discretization is an alternative method that overcomes the implementation difficulties of
implicit discretization of homogeneous differentiators. The semi-implicit discretization of various dif-
ferentiators has been studied and tested. The algorithms for realizing causal systems are provided and
semi-implicit schemes are presented to make the implementation straightforward. On the other hand,
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for control purpose, Yang et al [14] proposed a semi-implicit Euler algorithm for the multivariable su-
per twisting algorithm (STA) in order to attenuate the numerical chattering and preserve its robustness
during digital implementations. They analyzed the stability of the semi-implicit Euler implementation
algorithm theoretically. Xiong et al [15] developed a semi-implicit implementation scheme for the STA
with a high control accuracy that is insensitive to the gain overestimation of the STA. A semi-implicit
discretization differentiator with one projector was studied in [16] and applied for a nonlinear and non-
stationary pneumatic setup [17]. In [18] Yang et al presents a digital implementation scheme for the
conditioned STA based on a semi-implicit Euler discretization method. Readers can refer to [19] to
obtain a good survey with details and a state-of-the-art of differentiation solutions.

Among the numerous algorithms in the framework of the discrete homogeneous differentiation, the pro-
posed differentiator SIHD-2, which combines explicit terms with implicit one including two projectors
in order to reduce the effects of chattering as well as noise and disturbances, is efficient [20]. This
method was chosen to estimate the velocity of the CRAFT actuators.

The contribution of this paper is to adapt this algorithm with its parameter in order to estimate both the
angular velocity and angular acceleration of each motor shaft of CRAFT. Furthermore, the performance
of the new numerical differentiation scheme is compared experimentally to the performance of the al-
gorithm proposed by Diop et al [10]. This comparison shows that the results of the differentiator are
coherent with those of this algorithm for both angular velocity and angular acceleration.

The remaining of the paper is organized as follows. Section 2 is devoted to the presentation of CRAFT
namely, its geometric, kinematic, and dynamic models. The problem is stated in Sec. 3 in order to present
the homogeneous continuous-time differentiator. The semi-implicit Euler discretization is determined
in Sec. 4. The experimental results are presented in Sec. 5. Conclusions and future work are drawn in
Sec. 6.

2 The cable-driven parallel robot CRAFT
This section is dedicated to the description of CRAFT and its dynamic model.

2.1 CRAFT prototype located at LS2N, Nantes, France.
The cable-driven parallel robot prototype, named CRAFT is located at LS2N, France. The base frame
of CRAFT is 4 m long, 3.5 m wide, and 2.7 m high, see Figure 1. The three-DoF translational motions
and the three-DoF rotational motions of its suspended moving-platform (MP) are controlled with eight
cables being respectively wound around eight actuated reels fixed to the ground. The MP is 0.28 m long,
0.28 m wide, and 0.2 m high, its overall mass being equal to 5 kg.
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Figure 1: CRAFT’s prototype located at LS2N, Nantes, France.

Figure 2 shows the main hardware of the prototype, which consists of a PC (equipped with © MATLAB
and © ControlDesk software), eight © PARKER SME60 motors and TPD−M drivers, a © dSPACE
DS1007-based real-time controller and eight custom made winches. Each cable can exert a tension up
to 150 N to the MP. The maximum velocity of each cable is equal to 5.9 m/s. The cable tensions are
measured using eight FUTEK FSH04097 sensors, one for each cable, attached to cable anchor points.
Their signal is amplified using eight FSH03863 voltage amplifiers and sent to the robot controller by a
coaxial cable. Their measurement frequency is 1 kHz.
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Figure 2: The hardware of the prototype CRAFT.

2.2 Dynamic Model
The dynamic model of CRAFT used in this paper only considers the mass and inertia of the MP, the
latter being pulled by the cables. Indeed, assuming that the diameters of the cables and the pulleys are
small, the dynamic effects of the pulleys and the cables are neglected. A more general dynamic model
taking into account also the dynamics of the motors, gearboxes, winches could be considered, but would
not provide fundamentally different information on the movement of the platform.

As described in [2] the dynamic equilibrium equation of the moving platform is expressed as:

Ipp̈+Cṗ−wg = Wτ +we (1)

where W is the wrench matrix that maps the cable tension vector τ into the wrench exerted by the cables
onto the MP, and

ṗ =

[
ṫ
ω

]
p̈ =

[
ẗ
α

]
, (2)

where ṫ = [ṫx, ṫy, ṫz]⊤ and ẗ = [ẗx, ẗy, ẗz]⊤ are the vectors of the moving platform linear velocity and acceler-
ation, respectively, while ω = [ωx,ωy,ωz]

⊤ and α = [αx,αy,αz]
⊤ are the vectors of the moving platform

angular velocity and acceleration, respectively.

The external wrench we is a 6-dimensional vector expressed in the fixed reference frame Fb and takes
the form

we =
[
f⊤e ,m

⊤
e

]⊤
= [ fx, fy, fz,mx,my,mz]

⊤ (3)
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fx, fy, and fz are the x, y, and z components of the external force vector fe. mx, my, and mz are the x,
y, and z components of the external moment vector me, respectively. The components of the external
wrench we are assumed to be bounded as follows

fmin ≤ fx, fy, fz ≤ fmax (4)

mmin ≤ mx,my,mz ≤ mmax (5)

According to (4) and (5), the set [we]r, called the Required External Wrench Set (REWS), that the cables
have to balance is a hyper-rectangle.

The Center of Mass (CoM) of the moving platform, G, may not coincide with the origin of the frame
Fp attached to the platform. The mass of the platform being denoted by M, the wrench wg due to the
gravity acceleration vector g is defined as follows

wg =

[
MI3

MŜp

]
g (6)

where I3 is the 3×3 identity matrix, MSp = R [Mxp,Myp,Mzp]
⊤ is the first momentum of the moving

platform defined with respect to frame Fb. The vector Sp = [xp,yp,zp]
⊤ defines the position of G in

frame Fp. MŜp is the skew-symmetric matrix associated with MSp.

The matrix Ip represents the spatial inertia of the platform

Ip =

[
MI3 −MŜp

MŜp Ip

]
(7)

where Ip is the inertia tensor matrix of the moving-platform, which can be computed by the Huygens-
Steiner theorem from the moving platform inertia tensor, Ig, defined with respect to the platform CoM

Ip = RIgR⊤−
MŜpMŜp

M
(8)

R is the rotation matrix defining the moving-platform orientation and C is the matrix of the centrifugal
and Coriolis wrenches, defined as

Cṗ =

[
ω̂ω̂MSp

ω̂Ipω

]
(9)

where ω̂ is the skew-symmetric matrix associated to ω .

The 3D dynamic model of CRAFT is non-linear. In order to perform the most successful positioning
or co-manipulation task, the knowledge of the robot state is necessary. CRAFT is not equipped with a
sensor to measure the velocity of the output motor shaft angles. A numerical derivative of output motor
shaft angles is thus required. In the following, a strategy is presented in order to obtain the numerical
derivation of the output motor shaft angles.

3 Statement of the problem
The purpose is to estimate the velocity of the angular variable exclusively from the measured position of
the output shaft for each of the eight motors. The continuous-time and the Euler implicit state models of



Submitted to Mechanics & Industry

the considered system are presented. Then the homogeneous continuous-time differentiator is introduced
and its semi-implicit discretization is finally justified.

3.1 Continuous-time state model systems
The continuous model under consideration is the following one:

Σ :


ẋ1 = x2

ẋ2 = p(t)
y = x1

(10)

where x1 and x2 are respectively the angular variable and its velocity; y is the measure signal of x1,
y ∈ C ω̄ , i.e., y is assumed to be as an analytic signal:

y(t +h) = y(t)+
∞

∑
j=1

y( j)(t)
h j

j!
(11)

where y( j) denotes the jth time derivative of y and h is the sampling time.
Let p(t) be a bounded perturbation, which is unknown such that there exists:

pM > 0 such that |p(t)|< pM for all t > 0. (12)

Let the following notation be used for the discretized variable:

•(t = (k+1)h) = •+

•(t = kh) = •.
(13)

The perturbation p(t) is assumed to be a constant parameter or a slow variable. This implies that for a
sufficient small sampling-time h > 0, p ≡ p+. As a consequence an implicit Euler discretization of the
continuous-time model can be written with (13) as follows:

x+1 = x1 +hx+2 = x1 +h(x2 +hp+)

x+2 = x2 +hp+

y=x1

. (14)

3.2 Homogeneous continuous-time differentiator.
Homogeneity approach is very interesting because if for example a local stability is obtained due to the
dilatation, this framework allows extending this local property to global settings, [21]. The option of a
continuous-time homogeneous differentiator is therefore chosen under the assumption (12) [22], [23].
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This differentiator can be written as, 

ż1 = z2 +λ1µ⌈ε1⌋α

ż2 = λ2µ2⌈ε1⌋2α−1

ŷ = z1

(15)

where α ∈ [0.5 ,1[ has to be fixed [24], ε1 = y− z1, and the notation ⌈•⌋α = | • |αsgn(•) is adopted
along the paper. If α = 0.5 the algorithm (15) becomes the super-twisting differentiator [8] that has a
very good accuracy with respect to perturbation, but it is more sensitive to noise. If α = 1 the algorithm
(15) becomes a linear differentiator that has good properties with respect to noise but its accuracy is
degraded under perturbation [23]. The degree of homogeneity of the differentiator (15) d is equal to
α − 1 with respect to dilatation Λr with r = (r1 = 1,r2 = 1) [22]. Moreover, λi > 0, i = 1,2 are the
linear part gains, which are considered and allow to have the eigenvalues of the differentiation error ε1

in the left part of the complex plane, i.e., the eigenvalues have a negative real part, while the coefficient
µ is chosen sufficiently large to cancel the effect of the unknown perturbation p(t).

In order to be closer to the cable-driven parallel robot CRAFT and deal with real signal differentiation
application, differentiators based on an Euler discretization approach will be designed in the next section.

3.3 Existing Euler discretization of the homogeneous continuous-
time differentiator (15)

To design the Euler discretization of the continuous-time homogeneous differentiator (15), several fea-
sible solutions are obtained using explicit, implicit or semi-implicit methods. The semi-implicit method
is chosen in this paper for the following reasons.

Among the different Euler discretization methods two can be considered as follows:

• The usual explicit method: zi and żi for i = 1, 2 are known at tk = kh and z+i is calculated such as.

z+i = zi +hżi (16)

With (16) the explicit Euler discretization of the continuous-time differentiator (15) is deduced as
follows, 

z+1 = z1 +h(z2 +λ1µ⌈ε1⌋α)

z+2 = z2 +hλ2µ2⌈ε1⌋2α−1.

(17)

This algorithm (17) unfortunately leads to a chattering effect and therefore the numerical solution
is not attractive.

• Implicit method: zi is known, ż+i is chosen such that z+i is equal to.

z+i = zi +hż+i . (18)
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With (18) the implicit Euler discretization [12] of the continuous-time differentiator (14) is de-
duced as follows, 

z+1 = z1 +h
(
z+2 +λ1µ⌈ε

+
1 ⌋α

)
z+2 = z2 +hλ2µ2⌈ε

+
1 ⌋2α−1.

(19)

Subtracting the two equations of (19) from the first two equations of (14) gives:
ε
+
1 = ε1 −h

(
ε
+
2 +λ1µ⌈ε

+
1 ⌋α

)
ε
+
2 = ε2 +hp+−hλ2µ2⌈ε

+
1 ⌋2α−1.

(20)

with εi = xi−zi (i= 1,2). As it is usually assumed with the implicit Euler method [25], an analyze
of the dynamics on the sliding surface ε

+
1 = 0 leads to the following estimation error model:
ε1 = −hε

+
2

ε
+
2 = ε2 +hp+

. (21)

The scalar equations of (21) are similar and the feedback correction terms as function of λi (i =
1,2) are removed. There is no possible correction term to reject the influence of the perturbation
term p+ in this error model (21). If the perturbation term p+ is zero in the second scalar equation
of (21), the variable ε2 is steady stable and equals to a constant. However, the second scalar
equation of (21) could have an unstable dynamics when the perturbation term p+ is non-zero.

A third approach, the semi-implicit homogeneous Euler discretization allows to overcome the drawbacks
of these two previous numerical schemes, [16]. The implicit discretization is kept only in the signum
multi valued function sgn(ε+

1 ) while all other terms are explicitly discretized as follows.
z+1 = z1 +h

(
z+2 +λ1µ|ε1|αsgn(ε+

1 )
)

z+2 = z2 +E+
1 hλ2µ2|ε1|2α−1sgn(ε+

1 ).

(22)

That is why this approach is chosen to discretize the continuous-time model (15). This is presented in the
next section to design a variant of the semi-implicit homogeneous Euler differentiator, where sgn(ε+

1 )

is computed to cancel the influence of the past in ε
+
1 dynamic E+

1 is the convergence flag of ε
+
1 .

4 Semi-implicit Homogeneous Euler differentiator based on two
projectors (SIHD-2)

The considered semi-implicit Euler discretization differentiator is defined with the acronym SIHD-2
because two projectors N1 and N2 are used to design its correction terms [20]. The strategy aims to
"generalize" the multi valued sign function sgn(ε+

1 ) in sliding-based differentiator in order to reduce the
chattering and preserve stability properties for high time steps. The two different projectors, N1 and
N2 are respectively dedicated to the estimation of z1 and z2. From the experimental setup CRAFT it has
been highlighted that the SIHD-2 algorithm offers better performances than with only one projector. As
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a result, the semi-implicit homogeneous Euler discretization based on two projectors (SIHD-2) reads as:
z+1 = z1 +h

(
z+2 +λ1µ|ε1|αN1

)
z+2 = z2 +E+

1 hλ2µ2|ε1|2α−1N2.

(23)

Subtracting the two equations of (23) from the first two of (14) leads to the following estimation error
model: 

ε
+
1 = ε1 +h

(
ε
+
2 −λ1µ|ε1|αN1

)
ε
+
2 = ε2 +h p+−E+

1 hλ2µ2|ε1|2α−1N2,

(24)

Here the definition of the projector N1 and the tuning of the flag E+
1 are such as:

N1(ε1) :=


ε1 ∈ SD → N1 =

⌈ε1⌋1−α

λ1µh
, E+

1 = 1

ε1 /∈ SD → N1 = sign(ε1), E+
1 = 0,

(25)

with the domain of attraction SD = {ε1 / |ε1| ≤ (λ1µh)
1

1−α }.
When ε1 ∈ SD the equality ε1 = hε2 (remark that this equality is different from the one of (21)) holds,
N2 reads as:

N2(ε1) :=


ε1 ∈ SD′ → N2 =

⌈ε1⌋2(1−α)

λ2h2µ2

ε1 /∈ SD′ → N2 = sign(ε1),

(26)

where SD′ = {ε1 ∈ SD/ |ε1| ≤ (λ1µ2h2)
1

2(1−α) ≡ |ε2| ≤ (λ1µ2)
1

2(1−α) h
α

1−α }. The terms |e1|α and |e1|2α−1

are the explicit parts while the projectors (the terms N1 and N2) refer to the implicit part.

5 Experimental validation

5.1 Condition of data capture
For each of the eight electrical motors an encoder sensor measures the angular variable qi, (i = 1, · · · ,8)
of its shaft. The eight motors are equipped with a gearbox reducer of ratio n = 8. The measured value is
divided by n in order to obtain the angular position of the output shaft of the gearbox reducer. The robot
CRAFT has no tachometer. As a result, there is no reference measurement of angular velocity and hence
angular acceleration for each of the eight motors. The reference signals of the rotation velocity and
the rotation acceleration are obtained thanks to the algorithm proposed by Diop et al [10] and recalled
in this section. As this algorithm cannot be used in real time, the comparison with the differentiator
SIHD-2 algorithm is made offline. This choice was made because it is well-known robust with respect
to measurement noise, which is not the case with conventional methods such as numerical differentiation
(see Fig. 6). The sampling period of the acquisition data from the experimental setup is equal to h= 1 ms.
Of course, it’s possible to apply the estimator algorithm proposed by Diop et al in real time, i.e., online
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by its definition on a moving segmentation window. However, applying this estimator algorithm in real
time will cause the estimated angular velocity and acceleration to lag behind the actual angular velocity
and acceleration.

5.2 Attenuation noise projectors
The measured angular positions are noisy such as y becomes ym = x1 +η where η is a measurement
noise. The output corrective term ε1 becomes ε1m = ym − z1. As a consequence, a modified projector
including a new parameter θ is introduced in order to mitigate the influence of noise. The semi-implicit
Euler homogeneous differentiator SIHD 2 becomes:

SIHD-2 
z+1 = z1 +h

(
z+2 +λ1µ|ε1m|αNθ1

)
z+2 = z2 +E+

θ1
hλ2µ2|ε1m|2α−1Nθ2 ,

(27)

with

Nθ1 :=


(1−θ1)|ε1m|1−α < λ1µh → Nθ1 =

(1−θ1)⌈ε1m⌋1−α

λ1hµ

(1−θ1)|ε1m|1−α ≥ λ1µh → Nθ1 = sign(ε1m)

and

Nθ2 :=


(1−θ2) |ε1m|2(1−α) < λ2µ2h2 → Nθ2 =

(1−θ2)⌈ε1m⌋2(1−α)

λ2h2µ2

(1−θ2) |ε1m|2(1−α) ≥ λ2µ2h2 → Nθ2 = sign(ε1m).

5.3 Principle of the observer strategy proposed by Diop et al. [10]
For a window of the recorded data {ym

k−w, · · · ,ym
k } an interpolating polynomial function of order N is

denoted by
ŷ = a0 +a1(t − tk−w)+ · · ·+aN(t − tk−w)

N (28)

where tk = kh and w is such that wh defines the length in time of the moving window used for data
interpolation and w+ 1 in the number of data points in the window. The coefficients {a0,a1, · · · ,aN}
are determined from the squares solution of the following over-determined system:

1 0 · · · 0
1 h · · · hN

...
...

...
...

1 wh · · · (wh)N




a0

a1
...

aN

=


yk−w

yk−w+1
...

yk

 (29)
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Figure 3: Estimation variables ˆ̇qi and ˆ̈qi respectively of the angular velocity and the angular acceleration
thanks to the SIHD-2 algorithm with a cascade connection.

with respect to the Euclidean norm. The estimates of the ith time derivatives of y at time t∗ are determined
by

d̂iyk(t∗)
dt i :=

diŷk(t)
dt i

∣∣∣∣
t=t∗

(30)

For the experimental tests of this current study the parameters of this numerical differentiation are:

W = 2000, N = 4. (31)

5.4 Determination of the semi-implicit Homogeneous Euler dif-
ferentiator parameters

The estimation of the angular velocity q̇i and the angular acceleration q̈i with the SIHD-2 algorithm is
carried out by connecting in cascade two SIHD-2 differentiators, which are similar to (27), see Fig. 3.
Eight parameters are defined for the SIHD-2 algorithm in : λ1, λ2, θ1 for the differentiator 1, λ3, λ4,
and θ2 for the differentiator 2, α , and µ for both. The λi, i = 1,4 parameters are chosen such that the
linear part is stable. The value of homogeneous exponent α is chosen between the coefficient of Levant’s
differentiator (α∗ = 0.5) and the linear solution of the discretized differentiator SIHD-2 (α∗ = 1). The
parameters θ j, j = 1,2 is chosen by numerical trial an error allowing a good filtering of the noise, i.e.,
0.5 < θ j < 1. The µ parameter is also chosen by numerical test trial and error to determine the best
possible action of the projectors Nθ 1 and Nθ 2. The numerical values of these eight parameters are
tuned as follows:

λ1 = 210, λ2 = 210, λ3 = 525, λ4 = 525,

α = 0.95, θ1 = 0.9, θ2 = 0.999, µ = 1.
(32)
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5.5 Discussion about the experimental results
Figures 4 and 5, present for the eight motors the recorded angular positions of the output shaft, which
supports the winch, after the gearbox, and the associate velocities and associate accelerations calculated
with the SIHD-2 algorithm. The behavior of the differentiator is quasi uniform whatever the motors.
When the platform stops no significant delay can be identified with the velocity and acceleration signals.
As there is no tachymeter sensor on the motor shaft, it is difficult to present the backward difference as
the one that gives the reference angular velocity and acceleration. Nevertheless, we can evaluate each
of the angular velocity signal in terms of their sensitivity to noise. In a common time window, which is
equal to 29s-31s and represented by a black dashed line in Fig. 6 the standard deviation is determined for
the angular velocity ˆ̇q1 and the angular acceleration ˆ̈q1 respectively estimated with the SIHD-2 method.
Remark that the velocity discontinuity at 60 s induces an overshoot with the algorithm, which is proposed
by Diop et. al. It is due to the fact that the polynomial function before 60 s is different from the one after,
a constant. With respect to the same phenomenon, SIHD-2 is destabilized at 60 s and converges after
a couple of seconds. Table 1 gathers the results for the fourth motor, which represents quite well the
general behavior of the eight motors. The sensitivity to noise is much lower for the angular velocity
and acceleration signals with the SIHD-2 method than with the backward difference. Figure 6 proves
that the results obtained with the differentiator are consistent with those obtained by interpolating the
measured positions and the numerical differences of the designed polynomial functions. Although the
angular position graph may give the impression of a continuous signal, it is nonetheless a measured
signal sampled at the 10 ms period. When digitally derived with the Backward difference method, i.e.,
the simplest Euler differentiation (function of Matlab diff®), we can observe noise, see Fig. 7.
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Figure 4: Experimental data for the first four motors: Recording angular positions qi (radian), estimated
angular velocities ˆ̇qi (radian s−1), and estimated angular accelerations ˆ̈qi (radian s−2) with the SIHD-2
algorithm, (i = 1, · · · ,4).
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Figure 5: Experimental data for the last four motors: Recording angular positions qi (radian), estimated
angular velocities ˆ̇qi (radian s−1), and estimated angular accelerations ˆ̈qi (radian s−2) with the SIHD-2
algorithm, (i = 5, · · · ,8).
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Figure 6: Experimental data for the fourth motor: (top) Recording angular positions defined by (q1);
estimated angular position defined by (q̂1) thanks to the differentiator SIHD-2; (middle) estimated an-
gular velocity ˆ̇q1 and (bottom) estimated angular acceleration ˆ̈q1 respectively thanks to the differentiator
SIHD-2 and the observer proposed by Diop et al. [10].

Table 1: Standard deviation to evaluate the noise for the angular velocity and the angular acceleration
of the fourth motor (BD means Backward difference method).

angular velocity (rd/s) angular acceleration (rd/s2)
σ BD σ SIHD2 σ BD σ SIHD2

motor 1 0.4021 0.0038 24.7197 0.0036

0 10 20 30 40 50 60 70
-20

-10

0

10

0 10 20 30 40 50 60 70

-1

0

1

Figure 7: Recording angular positions q1 (radian), estimated angular velocities ˆ̇q1 (radian s−1) with the
SIHD-2 algorithm, and the Backward difference method.
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6 Conclusion
The cable-driven parallel robot CRAFT is a complex mechanical system for which the control is dif-
ficult due to its over-actuated nature and cable tension constraints. However, its future is promising
for applications such as handling, rescue or personal assistance. Two new semi-implicit homogeneous
differentiators are applied with success to estimate the angular velocity of the output shaft of the eight
motors of the robot CRAFT. The obtained velocities are less noisy than those calculated with backward
difference.

The results open a great perspective window for this family of robots. First the application of semi-
implicit homogeneous differentiators for identification tasks of model parameters such as Coulomb or
kinematic frictions, inertia moments, masses could be very efficient. Secondly one important task of a
cable-driven parallel robot is the co-manipulation between its effector and human thanks a force sensor.
From the measure of a force sensor, a mass parameter allows to deduce an acceleration vector. After
a double integration of this acceleration vector a Cartesian trajectory is deduced. Finally, a reference
trajectory for each motor can be deduced thanks an inverse geometric model and an inverse kinematic
model [7]. The tracking of these reference trajectories has to be perfect with high gain values, from
which denoising signals are requested, to obtain an efficient co-manipulation. As a consequence the
semi-implicit homogeneous differentiator SIHD-2 will be very useful for the cable-driven parallel robot
CRAFT.
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