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STABLE FACTORIZATION OF THE CALDERÓN PROBLEM VIA
THE BORN APPROXIMATION

THIERRY DAUDÉ, FABRICIO MACIÀ, CRISTÓBAL J. MEROÑO,
AND FRANÇOIS NICOLEAU

Abstract. In this article we prove the existence of the Born approximation in the
context of the radial Calderón problem for Schrödinger operators. This is the in-
verse problem of recovering a radial potential on the unit ball from the knowledge of
the Dirichlet-to-Neumann map (DtN map from now on) of the corresponding Schrö-
dinger operator. The Born approximation naturally appears as the linear component
of a factorization of the Calderón problem; we show that the non-linear part, obtain-
ing the potential from the Born approximation, enjoys several interesting properties.
First, this map is local, in the sense that knowledge of the Born approximation in
a neighborhood of the boundary is equivalent to knowledge of the potential in the
same neighborhood, and, second, it is Hölder stable. This shows in particular that
the ill-posedness of the Calderón problem arises solely from the linear step, which
consists in computing the Born approximation from the DtN map by solving a Haus-
dorff moment problem. Moreover, we present an effective algorithm to compute the
potential from the Born approximation and show a result on reconstruction of singu-
larities. Finally, we use the Born approximation to obtain a partial characterization
of the set of DtN maps for radial potentials. The proofs of these results do not
make use of Complex Geometric Optics solutions or its analogues; they are based
on results on inverse spectral theory for Schrödinger operators on the half-line, in
particular on the concept of A-amplitude introduced by Barry Simon.

1. Introduction

1.1. The problem and the setting. Let Ω ⊂ Rd, d ≥ 2, be a smooth bounded
domain, denote by ∂ν the outward normal unit vector field on ∂Ω. The Calderón
problem in Ω is the inverse problem of reconstructing a positive conductivity function
γ in the equation {

∇ · (γ∇u) = 0 in Ω ⊂ Rd,
u = f, on ∂Ω,

from the knowledge of the Dirichlet to Neumann map (in what follows, the DtN map)

Λγ : H1/2(∂Ω) ∋ f 7−→ γ∂νu|∂Ω ∈ H−1/2(∂Ω).

This problem goes back to Calderón who considered it since the fifties and published
his results in 1980 in [Cal80].1 It is well known that this inverse problem is closely
related to the problem of reconstructing a real-valued potential V in the Schrödinger

1This reference has been reprinted in [Cal06].
1
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equation

(1.1)
{

−∆v + V v = 0 in Ω,
v = g, on ∂Ω,

from the corresponding DtN map (provided it is well-defined)

ΛV : H1/2(∂Ω) ∋ g 7−→ ∂νv|∂Ω ∈ H−1/2(∂Ω).

In fact, in the case of regular conductivities, the conductivity problem can be reduced
to the Schrödinger problem by the Liouville transform v =

√
γu, g =

√
γf and with

the potential V =
∆
√
γ√
γ , (see [Uhl92] for instance).

One can interpret the Calderón problem for the Schrödinger equation (1.1) as the
problem of inverting of the non-linear map

Φ : V −→ L(L2(∂Ω)),

V 7−→ ΛV − Λ0,

where V is some class of real-valued potentials defined on Ω, Λ0 is the DtN map
associated to the free Laplacian (V = 0), and L(L2(∂Ω)) is the space of linear bounded
operators on L2(∂Ω).

The uniqueness question for the Calderón problem amounts to showing the injectivity
of the map Φ. This has been established, both for conductivities and potentials, by
many authors at different levels of regularity, starting with Kohn and Vogelius [KV84]
who showed that the DtN map determines uniquely smooth conductivities/potentials
and all their derivatives on ∂Ω. This was one of the ingredients used by Sylvester and
Uhlmann in [SU87] to solve the Calderón problem for dimension d ≥ 3 in the smooth
setting. The other major ingredient was the use of complex geometrical optics (CGO)
solutions which, since then, have played an important role to prove uniqueness and
stability results for less regular potentials and conductivities in dimensions d ≥ 3, see
for instance [Nac88, Cha90, Nac92, Bro96, HT13, Hab15, CR16]. The two-dimensional
case is quite different mathematically, and complete results were obtained later. The
planar Calderón problem for the conductivity equation was solved by Nachman [Nac96]
and by Astala and Päivärinta [AP06] for C2 and L∞ conductivities respectively. The
Calderón problem for the Schrödinger equation was solved in [Buk08] (for C1 potentials)
and [BIY15] (Lp with p > 2). These results also rely on exponentially growing solutions
of the equations, as in the case d ≥ 3.

The inverse map Φ−1 is in general never globally continuous. Alessandrini [Ale88]
showed the existence of sequences of potentials at distance one in L∞ such that their
DtN maps are arbitrarily close in operator norm (for Lp results see [AC08, FKR14]). In
spite of the fact that the Calderón problem is an ill-posed inverse problem, it has been
shown that it is conditionally stable. This means that Φ is an homeomorphism when
restricted to compact subsets of potentials K and in particular, that Φ−1 has a mod-
ulus of continuity on Φ(K). The stability of the reconstruction process can be stated
as the question of estimating this modulus of continuity. For example, Alessandrini
proved in [Ale88] for d ≥ 3 that Φ−1 has a logarithmic modulus of continuity when one
assumes certain a priori regularity and boundedness assumptions on the conductivities
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or the potentials to provide the required compactness (this was extended to d = 2 by
[BFR07]). This result is sharp, as showed by Mandache2 in the case of the unit ball
[Man01, Theorem 1 and Corollary 2] or [KRS21] in a more general setting. In conclu-
sion, even assuming a priori regularity on potentials, the problem of the determination
of the potential V from the DtN map ΛV is still highly unstable.

In this work we show that when Ω = Bd := {x ∈ Rd : |x| < 1} is the unit ball in
Euclidean space, with ∂Ω = Sd−1, d ≥ 2, and V is a suitable, yet very general, class of
real-valued radial potentials, one can factor the inverse map Φ−1 as:

(1.2)
M := Φ(V) V

B

dΦ−1
0

Φ−1

Φ−1
B

ΛV − Λ0 V

V B

dΦ−1
0

Φ−1

Φ−1
B

The map dΦ0 is the Fréchet differential of Φ at V = 0, which is known to be injective,
as it was proved originally by [Cal80] in the conductivity problem. We show that dΦ−1

0
can be extended to M := Φ(V), the set of all operators ΛV −Λ0 arising from potentials
in V, and that it maps each ΛV −Λ0 to a function V B that is supported on Bd. It turns
out that this function is the solution of a certain moment problem and its moments,
to be defined later on, are the eigenvalues of ΛV − Λ0 (see Theorem 1). In short,
dΦ−1

0 is the solution operator for a moment problem, and is unbounded as a map from
L(L2(Sd−1)) to any Lebesgue space, although it enjoys conditional logarithmic-type
stability.

The map ΦB is a non-linear bijection from V onto B, the image dΦ−1
0 (M). We will

show that inverting ΦB one can reconstruct V directly from V B with Hölder stability
in certain L1 weighted spaces, and locally from the boundary—see Theorem 2 and
Theorem 3. More graphically:

(1.3) ΛV − Λ0 V B V.
Conditional log stability

Linear bijection

(local) Hölder stability

Non-linear

Therefore, in a certain sense the linear part of the factorization absorbs completely
the instability and the ill-posedness of the inverse problem. This suggests that V B

should play a important role in the numerical reconstruction of V from the DtN map.
Another remarkable consequence of the previous factorization is that it implies a partial
characterization result for the DtN maps of radial potentials, see Remark 1.1 and
Section 7 for more details.

In the previous diagrams we have used DtN maps for conceptual simplicity but, as we
will see later on, the map dΦ−1

0 is well defined even in cases in which the boundary
value problem has no uniqueness, and ΛV −Λ0 is replaced by the Cauchy data of (1.1)
(defined in Section 2). Also, even if the previous results are relative to the Schrödinger
case (1.1), they can be carried to the conductivity case, at least in the case of regular
conductivities. This will be the subject of a forthcoming paper.

2It is relevant to note, in connection with our results, that the potentials given in [Man01] are not
necessarily radial but Mandache claims that even radial potentials give counterexamples to stability
(see the remark before [Man01, Lemma 4]).
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The function V B plays an analogous role to the Born approximation in scattering
problems. Therefore, from now on we will refer to V B as the Born approximation of
the potential V . It also shares some common traits with its counterparts in scattering
theory. For example, in spite of the fact that it naturally appears when performing a
linearization of the problem, it is globally well-defined (not just in a neighborhood of
the potential where the linearization is made). It also contains qualitative information
on the potential since in general V − V B can be expected to be 2 derivatives more
regular than V (see Theorem 5). This property of the Born approximation is known as
recovery of singularities, and it is well known in scattering problems, see for example
[PS91, Rui01, Mer18, Mer19]. For results of recovery of singularities in the context of
the Calderón problem see [GLS+18].

The proofs of the uniqueness and stability results in this paper do not involve the
construction of exponentially growing solutions like the CGOs commonly used in the
Calderón problem. Instead they arise from the approach to 1-d inverse spectral the-
ory introduced by Simon in [Sim99] and the follow-up papers [GS00, RS00] together
with Gesztesy and Ramm respectively, and later improved by Avdonin Mikhaylov and
Rybkin [AMR07, AM10] using the boundary control approach of the 1-d wave equa-
tion. This approach has been applied in the context of the Steklov problem for warped
product manifolds in [DHN21, DKN21, DKN23, Gen20, Gen22]. In particular, the
results in [DKN21] imply stability and uniqueness results for the radial Calderón prob-
lem both for the conductivity and Schrödinger cases. We also mention that spectral
theory methods had already been used in the context of the radial Calderón problem
in the work [KV85, Section 6], and that they have been used to produce convergent
reconstruction algorithms in [Syl92] in the 2-d conductivity case.

1.2. Existence of the Born approximation. In the previous discussion and in di-
agrams (1.2) and (1.3) we have introduced the Born approximation as the object sat-
isfying the identity

(1.4) V B := dΦ−1
0 (ΛV − Λ0).

The definition (1.4) is formal, since it is not clear that the map dΦ−1
0 can be ex-

tended from its natural domain —the “tangent space” to M, following the analogy
from differential geometry— to the whole set M of operators ΛV − Λ0. This ap-
proach is widely used when building practical reconstruction algorithms in numer-
ical methods for EIT; in that context it is known under different names such as
one step linearization method (see [HS10] for references) or Calderón method (see
[BM08, MLSM20, SM20]). The Born approximation or similar objects also appear in
[BKM11, KM11, DHK11, DK14, HIK+21].

As far as we know there are no rigorous results that justify identity (1.4), except from
partial results in [HS10] for the conductivity case, and in general this problem remains
open. Our first result shows that, under the radial assumption on the potentials,
(1.4) admits a simple reformulation in terms of a Hausdorff moment problem and, in
particular, that V B is a well-defined object.
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Let us first give some heuristics to motivate why such a reformulation can be achieved
and shed some light to the inherent difficulty of rigorously defining the Born approxima-
tion. Suppose for the moment that V ∈ L∞(Bd) is radial and that ΛV is well-defined.
In that case, the spectral theory of ΛV is easy to describe. Denote the subspace of
spherical harmonics of degree k by Hk (these are the restrictions to the sphere Sd−1

of the complex homogeneous polynomials of degree k on Rd that are harmonic). The
spaces Hk are mutually orthogonal in L2(Sd−1), and consist of eigenfunctions of the
DtN map: by separation of variables one can show that

(1.5) ΛV |Hk
= λk[V ] IdHk

,

for every k ∈ N0, where N0 stands for the set of non-negative integers. For example,
when V = 0 a direct computation gives that

Λ0(Yk) = kYk for all Yk ∈ Hk,

and hence, λk[0] = k for every k ∈ N0.

For a radial function F = F0(| · |) and any k ∈ N0, we define the moments:

(1.6) σk[F ] :=
1

|Sd−1|

∫
Bd

F (x)|x|2k dx =

∫ 1

0
F0(r)r

2k+d−1 dr.

This definition makes sense as soon as3 F ∈ L1(Bd, |x|2κdx) and k ≥ κ ≥ 0, and
extends by duality to the subspace of E ′(Rd) formed by the compactly supported radial
distributions supported in Bd (this is recalled in Section 6).

In [BCMM22, Theorem 2] it is proved that there exits Cd > 0 such that

|λk[V ]− k − σk[V ]| ≤ Cdk
−3∥V ∥2L∞(Bd), ∀k > ∥V ∥1/2

L∞(Bd)
− d−2

2 .

This identity implies that the Fréchet derivative of Φ at the zero potential verifies that
dΦ0(V ) is a bounded operator in L2(Sd−1) satisfying:

dΦ0(V )|Hk
= σk[V ] IdHk

, ∀k ∈ N0.

Since dΦ0(V
B) = ΛV − Λ0, identity (1.4) implies that formally

(1.7) σk[V
B] = λk[V ]− k, ∀k ∈ N0.

Therefore, V B should be a function/distribution in Bd whose moments are the eigen-
values of ΛV −Λ0, i.e. V B is the solution to a Hausdorff moment problem. This formal
statement has been obtained through different means in [BCMM22, BCMM24], and
implicitly in [DKN21]. While uniqueness is in general guaranteed (see Section 6), the
existence of solutions to (1.7) is a subtle issue. In fact, most sequences of complex
numbers are not sequences of moments of any function (see Section 7).

In order to state precisely the main result in this work, it is convenient to introduce
the following norm on the class of measurable functions F : Bd −→ C:

(1.8) ∥F∥Vd
:= sup

j∈N0

∫
2−(j+1)<|x|<2−j

|F (x)||x|2−d dx.

3In what follows, Lp(Bd, |x|κdx) will denote the spaces of measurable functions F such that∫
Bd |F (x)|p|x|κdx < ∞.



6 T. DAUDÉ, F. MACIÀ, C. J. MEROÑO, AND F. NICOLEAU

We define the associated Banach space of radial and real-valued functions:

Vd := {V ∈ L1
loc(Bd \ {0};R) : V = q(| · |), ∥V ∥Vd

< ∞}.

This space contains and is strictly larger than the set of radial potentials in Ld/2(Bd),
since it includes the critical potential V (x) = c|x|−2 with c ∈ R (in fact, it contains the
radial functions in the Lorentz space Ld/2,∞(Bd), with d > 2, see Appendix B).

Note that the DtN map is not always well-defined for every potential V ∈ Vd, for it
could happen, for instance, that 0 is in the Dirichlet spectrum of −∆ + V or that
−∆ + V is not essentially self-adjoint. However, working in the radial setting allows
to give a meaningful definition of λk[V ] in terms of separation of variables (see Defini-
tion 2.4) that coincides with the spectral definition when the DtN map exists. When
the standard weak formulation of (1.1) with Ω = Bd is well-defined, then the values
λk[V ] for k > kV , where

(1.9) kV := βV − (d− 2)/2, βV :=
2

|Sd−1|
max

(√
6|Sd−1|∥V ∥Vd

, 3e ∥V ∥Vd

)
,

can be determined from a section of the Cauchy data of −∆ + V (see Remark 2.3).
The eventual ambiguity in the definition of λk[V ] for some indices k ≤ kV will have no
effect on the definition of the Born approximation outside of the origin.

Theorem 1 (Existence). Let d ≥ 2 and V ∈ Vd; then the following hold.

i) There exists a unique radial function V B ∈ L1(Bd, |x|2k0dx) for some k0 ∈ N0 such
that k0 ≤ kV + 1 and

(1.10) σk[V
B] = λk[V ]− k, for all k ≥ k0.

ii) There exits a unique distribution V B
r ∈ E ′(Rd), radially symmetric and supported

in Bd, such that

(1.11) σk[V
B
r ] = λk[V ]− k, for all k ∈ N0,

In addition, V B
r = V B in Bd \ {0} in the sense of distributions.

This theorem shows that the Born approximation V B is a well defined function that
exists for all the potentials V ∈ Vd. However, V B can be in some cases a strongly
singular function in x = 0, which explains why (1.10) only holds in general for k > kV ,
(see Section 3.4 for explicit examples that present such behavior). This motivates the
introduction of the distribution V B

r , which is a regularization of the Born approximation
in the sense of [GS64, p. 11], since it is a distribution that coincides identically with
V B when x ̸= 0, and vanishes outside the ball. Either way, (1.10) and (1.11) provide
two rigorous interpretations of the formal identity (1.7).

One advantage of introducing the regularized Born approximation V B
r is that in Theo-

rem 6.1 we show that there is an explicit expression to compute V B
r from the spectrum

of the DtN map:

(1.12) V̂ B
r (ξ) = 2πd/2

∞∑
k=0

(−1)k

k!Γ(k + d/2)

(
|ξ|
2

)2k

(λk[V ]− k),
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where the following convention for the Fourier transform of integrable functions is used

f̂(ξ) = F(f)(ξ) :=

∫
Rd

f(x)e−ix·ξ dx,

with its natural extension to E ′(Rd). Identity (1.12) originates from a solution for-
mula for the moment problem for compactly supported distributions (see Lemma 6.2
and [BCMM22, Section 3]) and it serves to reconstruct V B

r explicitly, and hence V B

by restriction to Bd \ {0}, from the eigenvalues of ΛV . This formula appeared origi-
nally in [BCMM22, Theorem 1] as a formal expression obtained by linearizing a well
known formula to reconstruct V from the DtN map using CGOs, and has been used to
numerically reconstruct V B in [BCMM24].

Remark 1.1. As we have already mentioned, the existence of solutions of the Hausdorff
moment problem is a subtle issue, since a sequence of moments must satisfy certain
non-trivial necessary conditions (see, for example, [Hau23] and [Bor78]). The existence
of the Born approximation obtained by Theorem 1 can be considered then as a kind of
partial characterization of DtN operators. This is discussed in more detail in Section 7.

1.3. Stable reconstruction of a potential from its Born approximation. We
start by establishing that the correspondence ΦB(V ) = V B depicted in (1.2) is injective.
In fact, the Born approximation contains all the necessary information to reconstruct
V locally from the boundary.

Theorem 2 (Uniqueness). Let d ≥ 2 and 0 < b < 1. Assume that V ∈ Vd is a radial
potential. Then

V B
1 (x) = V B

2 (x) a.e. for b < |x| < 1 ⇐⇒ V1(x) = V2(x) a.e. for b < |x| < 1.

A simple consequence of Theorem 2 is that V (x) = 0 for b < |x| < 1 iff V B(x) = 0
for b < |x| < 1. The ability to recover the exterior support of V from V B is connected
to the results obtained in [HS10] for the non-radial conductivity problem, and can
be clearly observed in numerical reconstructions of V B obtained in [BCMM24] using
(1.12).

A remarkable feature of this uniqueness result, apart from the interesting local be-
haviour which was already exhibited in [DKN21, Theorem 4], is that the proof does
not involve the use of exponentially growing solutions or CGOs. Instead, it is based on
the approach to 1-dimensional inverse spectral theory originally introduced by Simon
in [Sim99]: the Born approximation is the exact counterpart in the radial Calderon
problem of the A-amplitude introduced in that paper. Previous uniqueness results for
the radial Calderón problem using techniques from inverse spectral theory can be found
in [KV85, Syl92].

We now turn to the question of stability. The following theorem shows that the non-
linear map ΦB in the factorization (1.3) is Hölder-stable.

Theorem 3 (Stability). Let d ≥ 2. Consider two radial potentials V1, V2 ∈ Vd with
Vi = qi(|·|), and their respective Born approximations V B

1 and V B
2 . Fix some 0 < b < 1,
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and let ε0 < min(1,− log b). Let 1 < p ≤ ∞ and assume that there is a constant
Kp(b) < ∞ such that

(1.13)
max
i=1,2

(∫ 1

b
r2p−1|qi(r)|p dr

)1/p

< Kp(b) if 1 < p < ∞,

max
i=1,2

(
sup

b<r<1
|qi(r)|

)
< K∞(b) if p = ∞.

Then, if p′ is the Hölder conjugate exponent of p, and

(1.14)
∫
b<|x|<1

∣∣V B
1 (x)− V B

2 (x)
∣∣ |x|2−d dx < ε

(1+p′)/p′

0 ,

it holds that

(1.15)
∫
b<|x|<1

|V1(x)− V2(x)| |x|2−d dx

< C(b,Kp(b))

(∫
b<|x|<1

∣∣V B
1 (x)− V B

2 (x)
∣∣ |x|2−d dx

)1/(p′+1)

,

where the constant C(b,Kp(b)) > 0 can be computed explicitly in terms of b and Kp(b).

An important feature of this result is that the stability estimate of the map Φ−1
B :

V B 7−→ V is not a conditional stability estimate: simple integrability conditions (1.13)
are required on the potentials (which do not imply they lie in a compact set). Theorem 3
implies that Φ−1

B is Hölder continuous, at least in a local sense in the annuli b < |x| < 1.

We conclude from this that the linear operator dΦ−1
0 : ΛV −Λ0 7−→ V B is decompressing

the information on V contained in the DtN map, and transforming the ill-posed inverse
problem of inverting Φ : V 7−→ ΛV in a well posed inverse problem of inverting the
map ΦB : V 7−→ V B. Unfortunately, the fact that V B may be singular at x = 0 means
that the stability estimate (1.15) cannot hold in the whole ball Bd (i. e. with b = 0),
at least not without imposing extra assumptions on the potentials, (see the examples
in Section 3.4). The instability and ill-posedness of the Calderón problem must be
then caused solely by the map dΦ−1

0 , the solution operator to the Hausdorff moment
problem, which is a notoriously ill-posed problem.
Theorem 3 follows from Theorem 5.2, a stability result for a problem in inverse spectral
theory from Schrödinger operators in the half-line. The proof of this result is based on
the work [Sim99], where uniqueness for a problem in inverse spectral theory is proved
using a method that is close to constitute an explicit reconstruction algorithm. We
analyze this in Section 4, where we elaborate these results in a proper reconstruction
method for the radial Calderón problem. We present next a simplified version of this
method for radial C1(Bd) potentials (see Algorithm 4.9 for the general version).

Algorithm 4 (Reconstruction). Given (λk[V ])k∈N0 one reconstructs V as follows.
1) Using (1.12) and that V B = V B

r in Bd \ {0}, one can reconstruct V B from the
eigenvalues of the DtN map (λk[V ])k∈N0 (or the Cauchy data, when the DtN map is
not well-defined).
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2) Find the unique C1 solution of

r
∂W

∂r
(r, s)− s

∂W

∂s
(r, s) = s2

∫ 1

r
W
( r
ν
, s
)
W (ν, s)

dν

ν
, r, s ∈ (0, 1),

such that W (|x|, 1) = V B(x). As it turns out, W (|x|, s) = s−2[Vs]
B(x) where

Vs(x) = s2V (sx). In other words, W (·, s) is the radial profile of the Born ap-
proximation of the dilated potential Vs.

3) Once W (r, s) is known, use that W (1, |x|) = V (x). This holds since, by Theorem 5
below, the Born approximation always coincides with the potential at the boundary
of Bd.

In this algorithm one reconstructs the potential layer by layer: the information on
V that is already known is taken outside the ball by dilating the potential. This
is reminiscent of the so-called layer stripping methods used in EIT, see [CNS20] for
references.

Nonetheless, the previous reconstruction method has the strong disadvantage of be-
ing based on a non-linear integro-differential equation. Using the boundary control
approach for the wave equation, a much simpler reconstruction method for the same
inverse spectral problem studied by Simon has been developed in [AM10]. This pro-
vides provides an alternative reconstruction method for the radial Calderón problem
which is based on solving a much simpler linear integral equation. Details will be given
in a forthcoming article.

1.4. Structure and approximation properties of the Born approximation. In
the previous discussion we have analyzed the uniqueness, stability and reconstruction
properties of V B and the maps introduced in (1.2). We now turn to investigate the
qualitative behavior of V B and its connections to the potential V .

Theorem 5 (Approximation properties). Let V ∈ Vd, d ≥ 2, such that V = q(| · |),
and let

α(r) := min

(
βV ,

∫ 1

r
s|q(s)| ds

)
.

Then V B = V + F (| · |), where F is a continuous function in (0, 1] that satisfies:

(1.16) |F (r)| ≤ 1

rα(r)+2

(∫ 1

r
s|q(s)| ds

)2

, F (1) = 0, F ′(1−) = 0.

In addition, if q is Cm in (b, 1] with m ∈ N0, then F is in Cm+2 in (b, 1].

This theorem shows that V B approximates V when b < |x| < 1 with an error that
only depends on b and the size of the potential in that region. It also implies that
V B contains all the singularities and discontinuities of the potential. The recovery
of singularities from the Born approximation is a well known phenomenon in certain
scattering problems (see the references given previously), and can be observed in the
numerical reconstructions of V B in [BCMM24]. The Born approximation also enjoys a
simple monotonicity property.
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Theorem 6 (Monotonicity). Let d ≥ 2 and V ∈ Vd. Then,

V1(x) ≤ −V2(x) on {b < |x| < 1} =⇒ V B
1 (x) ≤ −V B

2 (x) on {b < |x| < 1},

for any 0 < b < 1.

1.5. Structure of the paper. In Section 2 we introduce necessary background on
the radial Calderón Problem. Theorem 1(i), Theorem 2 and Theorem 5 are based in
the works [Sim99, AMR07], and the monotonicity result Theorem 6 on [GS00]. All
these results are proved in Section 3. In Section 4 we discuss a reconstruction method
for the radial Calderón problem based on the Born approximation, in particular the
validity of Algorithm 4 is proved there. We then use this to address in Section 5
the stability result for the Born approximation Theorem 3, which is based on a new
stability result for the A-amplitude of inverse spectral theory given in Theorem 5.2.
The regularization of the Born approximation is introduced in Section 6, together with
the proof of Theorem 1(ii). Finally, Section 7 presents the consequences of our result
towards giving a characterization of the set of radial DtN maps.

Acknowledgements. FM and CJM acknowledge the support of Agencia Estatal de In-
vestigación (Spain) through grant PID2021-124195NB-C31. FN is supported by the
French Gdr Dynqua.

2. The direct problem in the radial case

In this section present several useful facts on the Dirichlet problem for Schrödinger
operators with potentials V ∈ Vd, which may have low regularity, as well as the precise
definition of the sequence (λk[V ])k∈N0 when the DtN map is not well-defined.

2.1. The DtN map and Cauchy data.

Consider the Dirichlet problem

(2.1)
{

−∆u+ V u = 0 on Bd,
u|Sd−1 = f,

where f ∈ H1/2(Sd−1) and Sd−1 = ∂Bd.

The general version of the Calderón Problem for the Schrödinger equation consists in
determining the potential V in (2.1) from the Cauchy data

(2.2) C(V ) = {(f, ∂νu|Sd−1) ∈ H1/2(Sd−1)×H−1/2(Sd−1) :

u ∈ H1(Bd) is a solution of (2.1)}.

Here ∂νu|Sd−1 is defined in the weak sense using that for all f, g ∈ H1/2(Sd−1)

(2.3) ⟨g, ∂νu|Sd−1⟩H1/2(Sd−1)×H−1/2(Sd−1)

=

∫
Bd

∇u(x) · ∇v(x) dx+

∫
Bd

V (x)u(x)v(x) dx,

where u solves (2.1) and v ∈ H1(Bd) is any function such that v|Sd−1 = g.
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The weak formulation of (2.1) and the expression (2.3) are well defined if one assumes

(2.4) V ∈ Lp(Bd) with p > 1 and p ≥ d/2.

In addition, if one also requires that

(2.5) 0 /∈ SpecH1
0 (Bd) (−∆+ V ) ,

then there is a unique solution u ∈ H1(Bd) of (2.1) for each f ∈ H1/2(Sd−1). When
(2.5) holds, one can define the Dirichlet to Neumann (or DtN map), a bounded operator

ΛV : H1/2(Sd−1) → H−1/2(Sd−1),

by ΛV (f) := ∂νu|Sd−1 . In this case, the Cauchy data C(V ) coincides with the graph of
the DtN map.

Let uj ∈ H1(Bd), j = 1, 2, be the solutions of (2.1) with V = Vj and f = fj , and
assume (2.5) holds for both potentials. Then from (2.3) it follows that

(2.6) ⟨f1, (ΛV1 − ΛV2)f2⟩H1/2(Sd−1)×H−1/2(Sd−1) =

∫
Bd

(V1(x)− V2(x))u1(x)u2(x) dx.

For smooth potentials V , the DtN map ΛV is a classical pseudo-differential operator
(modulo a smoothing operator) of order one and its symbol can be calculated explicitly.
For such potentials, the difference ΛV1 − ΛV2 always belongs to the space of compact
operators K(L2(Sd−1)) ⊂ L(L2(Sd−1)) since its principal symbol is of order −1, (see
for instance [NSU95] where calculations are done in the case of Schrödinger operators
with magnetic fields).

2.2. Generalized DtN eigenvalues in the radial case.

Note that Vd contains very singular potentials, for which that the weak formulation
(2.3) does not make sense (and thus even the Cauchy data (2.2) are not well-defined);
the operator −∆+ V could even fail to be essentially self-adjoint (for instance, when
V (x) = c|x|−2 with 0 ≤ c + (d−1)(d−3)

4 < 3
4 , see ([RS75], Theorem X.11)). The rest

of this section is devoted to show that even in these situations one has a well-defined
sequence (λk[V ])k∈N0 from which the Born approximation can be defined.

Assume for the moment that V (x) = q(|x|) for some measurable function q : (0, 1) → R
such that (2.4) holds. Recall that, as in the introduction, Hk stands for the subspace
of spherical harmonics of degree k in Sd−1. Let Yk ∈ Hk then:

−∆Sd−1Yk(ω) = k(k + d− 2)Yk(ω), ω ∈ Sd−1.

Taking f = Yk in (2.1) and using a Fourier expansion in spherical harmonics of u, it
yields that u(x) = bk(|x|)Yk(x/|x|), where bk is a solution of

(2.7) − 1

rd−1

d

dr

(
rd−1 d

dr
bk(r)

)
+

(
k(k + d− 2)

r2
+ q(r)

)
bk(r) = 0,

subject to the boundary condition bk(1) = 1.

Note that if, in addition to (2.4), the potential satisfies (2.5) then there exists a unique
solution bk such that bk(|x|)Yk(x/|x|) belongs to H1(Bd). Since the normal derivative
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coincides with the radial derivative in spherical coordinates, it turns out that the DtN
map is well-defined and satisfies that

ΛV (Yk) = ∂rbk(1)Yk.

This shows that Yk is an eigenfunction of ΛV , and that the space Hk is an invariant
subspace of the DtN map operator with eigenvalue

(2.8) λk[V ] := ∂rbk(1).

We now want understand how this can be generalized when conditions (2.4) or (2.5)
fail and the DtN map is not well-defined. The key technical point to achieve this is
contained in the following result. We recall that kV is the constant defined in (1.9).

Lemma 2.1. Let d ≥ 2, V ∈ Vd. Then, for every k > kV there is a unique solution bk of
(2.7) with bk(1) = 1 such that for every Yk ∈ Hk, the function uk(x) = bk(|x|)Yk(x/|x|)
satisfies that

(2.9) uk ∈ L2(Bd, |x|−1dx).

Remark 2.2. When the conclusion of Lemma 2.1 holds, then uk is an H1
loc solution to

(2.10)
{

−∆uk + V uk = 0 on Bd \ {0},
uk|Sd−1 = Yk.

In fact uk ∈ C1(Bd \ 0), since bk ∈ C1(0, 1) and the solid harmonic is a polynomial.

Remark 2.3. In addition, if V ∈ Lp(Bd) with p > 1 and p ≥ d/2, then the solutions uk
obtained in Lemma 2.1 are a proper weak H1(Bd) solutions of (2.10); and given any
other solution u ∈ H1(Bd) of (2.10) with the same k it holds that

(2.11) ∂rbk(1) = (Yk, ∂νu|Sd−1)L2(Sd−1),

for all Yk ∈ Hk with ∥Yk∥L2(Sd−1) = 1. This assertion is proved using standard argu-
ments from the theory of linear elliptic equations, see Lemma A.1 in Appendix A.

The proof of Lemma 2.1 is given in Section 2.3. This result shows, in particular, that
for a potential satisfying (1.8), problem (2.10) always possesses a unique solution of
separation of variables, at least for k large enough (even when (2.10) is not well-posed).
This motivates the following definition.

Definition 2.4. Let V ∈ Vd and denote by BV the set of indices k ∈ N0 such that the
conclusion of Lemma 2.1 fails. We define:

(2.12) λk[V ] :=

{
∂rbk(1), k ∈ N0 \ BV

k, k ∈ BV .

Note that Lemma 2.1 states that BV is at most finite. In addition, if (2.4) holds,
solutions uk with k > kV constitute a well-defined section of the Cauchy data (2.2),
and for each of those k, Remark 2.3 ensures that λk[V ] can be determined from any
solution of (2.10) via (2.11). If in addition (2.5) holds, then (λk[V ])k∈N0 coincides
exactly with the spectrum of the DtN map.
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2.3. Reduction to a Schrödinger operator on the half-line.
In this section we prove Lemma 2.1. Let r = e−t; then, writing

(2.13) Q(t) := e−2tq(e−t),

so that q(r) = r−2Q(− log r), we have the following. A function bk is a solution to (2.7)
if and only if

(2.14) vk(t) := e−
d−2
2

tbk(e
−t),

solves the following boundary value problem on the half-line:

(2.15)
{

−v′′k +Qvk = −
(
k + d−2

2

)2
vk on R+,

vk(0) = 1.

We will show that for potentials Q satisfying that

(2.16) |||Q||| := sup
y>0

∫ y+1

y
|Q(t)| dt < ∞,

problem (2.15) posseses a unique solution provided that k is big enough (see Lemma 2.6).
Performing a change of variables will yield Lemma 2.1.
Assumption (2.16) comes from [AMR07, Theorem 2] and essentially corresponds to
case 2 in [RS00]. In particular it implies that the operator

(2.17) − d2

dt2
+Q,

(with Dirichlet boundary condition at t = 0), is in the limit point case at infinity.
This operator is essentially self-adjoint on C∞

c (R+) and bounded from below, (see e.g
[Eas72], [RS75], Theorem X.7 ). This condition motivates the introduction of the norm
∥·∥Vd

in (1.8).

Remark 2.5. Let V (x) = q(|x|) on Bd and Q(t) = e−2tq(e−t). Then

(2.18)
1

3
|Sd−1||||Q||| ≤ ∥V ∥Vd

≤ |Sd−1||||Q|||.

In fact it follows from (1.8) that

∥V ∥Vd
= |Sd−1| sup

j∈N0

∫ (j+1) log 2

j log 2
|Q(t)| dt, j ∈ N0.

The space Vd contains the radial functions in Lorentz space Ld/2,∞(Bd) with d > 2,
(the weak Ld/2(Bd) space), see Appendix B.
Define the constant

(2.19) βQ := 2max
(√

2|||Q|||, e|||Q|||
)
.

Lemma 2.6. Let Q ∈ L1
loc(R+) such that |||Q||| < ∞, and consider the equation

−u′′z +Quz = zuz.

Then, for all z ∈ C \ [−βQ
2,∞) there exists a unique solution uz such that uz(0) = 1

and uz ∈ L2(R+).
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Proof. Under condition (2.16), it is known that − d2

dx2 +Q is limit point at infinity, (see
[Sim99]). Thus, for Im z ̸= 0, there exists a unique solution uz with uz(0) = 1 which is
L2 at infinity. Moreover, for Im z ̸= 0 one has, (see e.g [Tes14], Lemma 9.14):

(2.20) ImM(z) = Im z

∫ +∞

0
|uz(x)|2 dx,

where M(z) is the so-called Weyl-Titchmarsh function (see Section 3 for details). One
has M(z) = M(z̄) and under the assumption (2.16), the map k → M(−k2) has an
analytic continuation to Re k > βQ, (see [AMR07], Section 5, Algorithm 1).

For a fixed k > βQ, (k real), and for ϵ > 0 small enough, we set

(2.21) f(ϵ) := ImM(−k2 + iϵ).

Clearly, f is smooth, f(0) = 0 and using (2.20), one gets

f(ϵ)

ϵ
=

∫ +∞

0
|u−k2+iϵ(x)|2 dx.

Taking ϵ → 0 and using Fatou’s lemma, we see that u−k2 is L2 at infinity. Uniqueness
follows from the fact that − d2

dx2 +Q is limit point at infinity. □

We can now prove Lemma 2.1.

Proof of Lemma 2.1. As we have seen, using the change of variables (2.14) in (2.7), the
function vk(t) = e−

d−2
2

tbk(e
−t) satisfies (2.15) with Q(t) = e−2tq(e−t). Since V = q(|·|),

by (2.18) we know that ∥V ∥Vd
< ∞ implies |||Q||| < ∞. Therefore, by Lemma 2.6, for

all k+(d−2)/2 > βQ there exists a unique solution vk of (2.15) such that vk ∈ L2(R+).
Also, from (1.9), (2.19) and (2.18), it follows that βQ ≤ βV .

Now, using that bk(r) = r−
d−2
2 vk(− log r) it follows that

∥vk∥2L2(R+) =

∫ 1

0
|bk(r)|2

1

r
dr =

∫
Bd

|uk(x)|2
1

|x|
dx,

where uk(x) = bk(x)Yk(x/|x|). Thus, bk is the unique solution of (2.7) such that (2.9)
holds. □

3. Connection with inverse spectral theory and Simon’s A-amplitude

This section is devoted to the proofs of Theorems 1(i), 2, 5 and 6. This will be done by
establishing a link between Simon’s approach to inverse spectral theory for Schrödinger
operators on the half-line and the radial Calderón problem.

3.1. The DtN map and Weyl-Titchmarsh function.

Recall that βQ = 2max
(√

2|||Q|||, e|||Q|||
)
. By Lemma 2.6 if Q satisfies (2.16), the

Schrödinger equation
−u′′z +Quz = zuz, on R+,

has a unique solution uz ∈ L2(R+) up to a multiplicative constant whenever Im(z) > 0.
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The Weyl-Titchmarsh function M(z) associated to the half-line Schrödinger operator
is defined as

M(z) :=
u′z(0)

uz(0)
, z ∈ C+ := {Im(z) > 0}.

M(z) is analytic in C+. and, under the assumption |||Q||| < ∞, M(z) has an analytic
continuation to C \ [−β2

Q,∞), (see Lemma 2.6). Therefore, by (2.15) we have that

v′k(0) = M
(
−κ2k

)
,

where, for simplicity, we introduce the notation

κk = k +
d− 2

2
.

On the other hand, using (2.8) and inverting the change of variables (2.14) one obtains

λk[V ] = ∂rbk(1) = ∂r

[
r−

d−2
2 vk(− log r)

] ∣∣∣∣
r=1

= −d− 2

2
− v′k(0).

From this, it follows that

(3.1) λk[V ] = −d− 2

2
−M(−κ2k).

This shows that when (2.13) holds, the eigenvalues of the DtN map of V coincide with
the values of the M -function of Q on a certain discrete set.

3.2. Simon’s A-amplitude.
Simon proved in [Sim99], and was later refined in [AMR07] assuming just that Q
satisfies (2.16), that there exists a function A ∈ L1

loc(R+) such that

(3.2) M(−κ2) = −κ−
∫ ∞

0
A(t)e−2κt dt for Re(κ) > βQ,

where the integral is absolutely convergent. The function A is called the A-amplitude
of Q. This function enjoys a series of interesting properties.

Theorem 3.1 (Theorem 1.5 [Sim99] and [AMR07]). Under the assumption (2.16), Q
on [0, a] is only a function of A on [0, a]. More precisely

Q1(t) = Q2(t) a.e. on [0, a] ⇐⇒ A1(t) = A2(t) a.e. on [0, a].

Theorem 3.2 (Simon [Sim99] and [AMR07]). Assume Q satisfies (2.16). Then A ∈
L1
loc(R+), and

A(t) = Q(t) + E(t),

where E ∈ C(R+) satisfies, for every t > 0,

(3.3) |E(t)| ≤ 1

2

(∫ t

0
|Q(s)| ds

)2{
e2

√
2|||Q|||t +

1√
2π

e2e|||Q|||t
}
,

and

(3.4) |E(t)| ≤
(∫ t

0
|Q(s)| ds

)2

exp

(
t

∫ t

0
|Q(s)| ds

)
.

In addition, if Q is of class Cm, m ≥ 1 in (0, a), then E is of class Cm+2 in (0, a).
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The previous theorem implies that the difference between E = A−Q is small close to
the origin and that eventually E(0) = 0 and E′(0+) = 0. It also provides a recovery
of singularities result. Estimate (3.4) shows that the error only depends locally on
Q, while (3.3) provides a global control of the growth of the exponential factor when
|||Q||| < ∞.

3.3. From the A-amplitude to the Born approximation.

Proof of Theorem 1(i). We can combine the relation between the eigenvalues of the
DtN map and the M function given by (3.1) with the representation of the M as a
Laplace transform given in (3.2) to obtain that

(3.5) λk[V ] = k +

∫ ∞

0
A(t)e−2(k+ d−2

2 )t dt, for all k > kQ,

where kQ := βQ − d−2
2 . Using the change of variables r = e−t, we have

λk[V ]− k =

∫ 1

0
A(− log r)r2k+d−3 dr, for all k > kQ,

which can also be written as

(3.6) λk[V ]− k =
1

|Sd−1|

∫
Bd

|x|2kA(− log |x|)
|x|2

dx for all k > kQ.

Recall that, formally, V B should be a solution of the moment problem (1.7). The
previous expression implies that there exists such a solution for all k > kQ, since we
can take

(3.7) V B(x) :=
A(− log |x|)

|x|2
.

Notice that this is a actual solution of the problem, since the fact that (3.5) converges
absolutely implies that also (3.6) is absolutely convergent. Thus, we finally have that

(3.8) λk[V ]− k =
1

|Sd−1|

∫
Bd

|x|2kV B(x) dx for all k > kQ.

Uniqueness is proved in Section 7 (see in particular identity (7.1)), and the identity
(1.10) follows from (3.8), since by Remark 2.5 one always has βQ < βV and kQ < kV
when (2.13) holds. □

Proof of Theorem 2. Is a direct consequence of Theorem 3.1 using that

□(3.9) V (x) = |x|−2Q(− log |x|), and V B(x) = |x|−2A(− log |x|).

Proof of Theorem 5. Using the change of variables q(r) = r−2Q(− log r), it follows that∫ t

0
|Q(u)| du =

∫ 1

r
s|q(s)| ds.

Therefore, since F (r) = r−2E(− log r), and |||Q||| = ∥V ∥Vd
, estimate (3.3) becomes

|F (r)| ≤ 1

2

(∫ 1

r
s|q(s)| ds

)2 {
r−2

√
2∥V ∥Vd + r−2e∥V ∥∗

}
,
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and (3.4) becomes

|F (r)| ≤
(∫ 1

r
s|q(s)| ds

)2

r−
∫ 1
r s|q(s)| ds,

which together yield (1.16). The recovery of singularities statement follows directly
from (2.16). □

Proof of Theorem 6. It is a direct consequence of [GS00, Theorem 10.2] together with
(3.9). □

3.4. Some explicit examples.

We present two examples for which the Born approximation V B can be computed
explicitly. They show in particular that the Born approximation can effectively be
more singular at the origin than the potential V .

First, let us consider the so-called Bargmann potentials in R+:

Q(t) = −8µ2µ− ν

µ+ ν

e
−2µt(

1 + µ−ν
µ+ν e

−2µt
)2 ,

where µ > 0, and ν ≥ 0. Then, in [GS00, Section 11] it is shown that for s ≥ 0,

A(s) = 2(ν2 − µ2)e−2νs.

Therefore, using (3.9) one gets:

V (x) = −8µ2µ− ν

µ+ ν

|x|2(µ−1)(
1 + µ−ν

µ+ν |x|2µ
)2 ,

and
V B(x) = 2(ν2 − µ2)|x|2(ν−1).

When µ ≥ 1, V is a continuous function on Bd whereas the Born approximation V B

has a singularity at the origin if ν < 1.

Secondly, let us consider the potential defined in the unit ball Bd by

V (x) =
q0
|x|2

, q0 ∈ R.

As discussed previously (see also Appendix B), V ∈ L
d
2
,∞(Bd), (and if q0 is small

enough, the DtN map is well defined, see Remark B.2). This potential corresponds,
by the change of variables (2.13), to the case Q(t) = q0, t ∈ R+, which was studied in
[GS00, Theorem 10.1] to conclude the following.

If q0 > 0, the Born approximation is given by

(3.10) V B(x) = −
√
q0

|x|2 log |x|
J1(−2

√
q0 log |x|).
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Using the well-known asymptotics for the Bessel functions at infinity, (see [Leb65, Eq.
(5.11.6)] we see that:

(3.11) V B(x) = O

(
1

|x|2| log |x||
3
2

)
, |x| → 0.

In particular, we see that the singularity at the origin for the potential V B is more or
less the same as the one for the initial potential V .

In the same way, if q0 < 0, we obtain:

(3.12) V B(x) = −
√
−q0

|x|2 log |x|
I1(−2

√
−q0 log |x|),

where I1 is the corresponding modified Bessel function of order one, and we have the
following asymptotics (see [Leb65, Eq. (5.11.10)]):

(3.13) V B(x) = O

(
1

|x|2+2
√
−q0 | log |x||

3
2

)
, |x| → 0.

So, in this case the singularity at x = 0 for V B is stronger than the one for V .

4. Effective reconstruction algorithms

The proof of Theorem 3.1 in [Sim99] is close to constitute an explicit reconstruction
algorithm for the potential Q in terms of the A-amplitude. In this section we show
that this approach can be adapted to the Calderón problem, and together with formula
(6.4), yields Algorithm 4.9, a method to reconstruct a radial potential V from its
Cauchy Data or DtN map.

4.1. Simon’s approach to reconstruction.

The idea introduced by Simon in [Sim99] is to study the A-amplitudes of the translated
potentials Qs(t) = Q(t+ s). Notice that this removes a part from Q from the domain
R+, since we are translating Q to the left. The key is that one can read the value of
Qs(0) = Q(s) from the corresponding A-amplitudes of Qs as the potential is translated
out of the domain. It also will be essential to use that the A-amplitudes of Qs are
related by a certain equation.

Let Q : R+ → R be a potential satisfying assumption (2.16). Let A be the A-amplitude
associated to Q. For every fixed s ≥ 0, consider the potential Qs(t) = Q(t+ s), where
t ∈ R+, and denote by A(t, s) the corresponding A-amplitude of Qs. Since Q has just
local L1 regularity, and so does A, it is not clear if A(t, s) is well defined. The simplest
way overcome this difficulty, given a specific realization of Q, is to pick the realization
of A(t, s) such that A(t, s) − Qs(t) is a continuous function for every fixed s (this is
possible by Theorem 3.2). This is enough to properly define A(t, s), as the following
lemma shows.

Lemma 4.1. Assume that Q satisfies (2.16). Then, for all t, s ∈ R+ it holds that

|A(t, s)−Q(t+ s)| ≤ α(t, s)2et α(t,s),
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where

α(t, s) =

∫ t

0
|Q(y + s)| dy =

∫ t+s

s
|Q(y)| dy.

Moreover A(t, s)−Q(t+ s) is a jointly continuous function on [0,∞)× [0,∞).

The first statement follows applying Theorem 3.2 to the potential Qs(t). We postpone
momentarily the proof of the continuity statement.

Let Q ∈ C1(R+) satisfying (2.16). In [Sim99] it is shown that A(t, s) satisfies the initial
value problem

(4.1)
∂A

∂s
(t, s) =

∂A

∂t
(t, s) +

∫ t

0
A(w, s)A(t− w, s) dw, (t, s) ∈ R+ × R+,

A(t, 0) = A(t), t ∈ R+,

where A(t) denotes the A-amplitude of Q. If Q ∈ C1(R+) this equation holds in
the strong sense, and also in the general case under a suitable weak formulation (see
Theorem 4.2). Then, it follows from Theorem 3.2 that

(4.2) lim
t→0+

A(t, s) = Q(s),

where the convergence holds in L1(0, T ) for all T > 0. If Q is continuous, then the
convergence holds also point-wise, and in general will hold at any point of right Lebesgue
continuity of Q (see [Sim99]). Therefore (4.2) together with (4.1) give a procedure to
reconstruct the potential Q from its A-amplitude, provided that (4.1) can be uniquely
solved under certain assumptions. This will be proved in Lemma 4.4 below, and in
Section 5 we will analyze the stability of this reconstruction procedure. We start by
stating a weak version of Equation (4.1).

Theorem 4.2 (Theorem 6.3 of [Sim99]). Let Q such that (2.16) holds.
If K(t, s) = A(t− s, s) then

(4.3) K(t, s2) = K(t, s1) +

∫ s2

s1

∫ t

y2

K(y1, y2)K (t− y1 + y2, y2) dy1dy2,

with 0 < s1 < s2 < t < ∞.

Remark 4.3. The previous theorem implies that K satisfies an initial value problem
with K(t, 0) = A(t, 0) = A(t), where A(t) is the A-amplitude of Q. Moreover, by
Lemma 4.1 we know that K(t, s)−A(t) = K(t, s)−Q(t) + (A(t)−Q(t)) is continuous
for 0 ≤ s ≤ t < ∞.

The previous conditions are enough to obtain a uniqueness result for the initial value
problem for (4.3), as the following lemma shows.

Lemma 4.4. Let a ∈ R+ and f ∈ L1(0, a). There is at most one solution of (4.3) in
{0 < s1 < s2 < t < a} such that

K(t, s) = f(t) +K0(t, s),

where K0(t, s) is a continuous function on 0 < s ≤ t ≤ a and K0(t, 0) = 0.
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This lemma is a consequence of the estimates proved by Simon in [Sim99, Section 7].
Since the result is not explicitly stated in [Sim99], we give a proof here for completeness.

Proof. Assume that K(t, s) = f(t) + K0(t, s) and K̃(t, s) = f(t) + K̃0(t, s) are two
solutions satisfying the conditions of the statement of the lemma. Let

g(s) :=

∫ a

s

∣∣∣K(t, s)− K̃(t, s)
∣∣∣ dt = ∫ a

s

∣∣∣K0(t, s)− K̃0(t, s)
∣∣∣ dt.

By the previous assumptions, g is a continuous function in [0, a]. Moreover

(4.4) D := sup
0≤s<a

∫ a

s

(
|K(t, s)|+

∣∣∣K̃(t, s)
∣∣∣) dt

<

∫ a

s

(
|K0(t, s)|+

∣∣∣K̃0(t, s)
∣∣∣+ 2 |f(t)|

)
dt < ∞

since the function of s obtained from last integral is continuous on [0, a]. Using this in
(4.3) it follows that

g(s2) ≤ g(s1) +D

∫ s2

s1

g(y) dy.

We now define hz(s) = supz≤y≤s g(y). The previous estimate implies that

hs1(s2) ≤ hs1(s1) +Dhs1(s2)

∫ s2

s1

dy.

Therefore, if hs1(s1) = g(s1) = 0 and (s2 − s1)D < 1, then it follows that hs1(s2) = 0.
This shows that if g(s1) vanishes, then g(s) vanishes in (s1, s1 + 1/D).

Since g(0) = 0 one can apply the previous argument a finite number of times to deduce
that g(s) = 0 in [0, a], and therefore that K = K̃ on {0 < s1 < s2 < t < a}. □

We can now prove that A(t, s) − Q(t + s) is a jointly continuous function, as stated
previously.

Proof of Lemma 4.1. The first estimate is a direct application of (3.4).

To prove that A(t, s)−Q(t+ s) is continuous in t and s, we start from the estimate

(4.5) |A1(t)−Q1(t)− (A2(t)−Q2(t))| ≤ et(αQ1
(t)2+αQ2

(t)2)

∫ t

0
|Q1(s)−Q2(s)| ds,

where

αQ(t) =

∫ t

0
|Q(s)| ds, j = 1, 2.

This shows that A−Q is a continuous function of Q in L1(0, T ) for all T > 0. This is
proved in [Sim99, Theorem 2.1] for L1(R+) potentials4, but the extension for general
potentials is immediate due to the local dependence of the A-amplitude from Q (see
Theorem 3.1).

4Note that [Sim99, equation (2.4)] contains a typograhpical error, the correct left hand side is the
one in (4.5) instead of just |A1(t)−A2(t)|.
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Let T > 0 and s1, s2 ∈ [0, T ) with s1 < s2. We now apply (4.5) with Q1(t) = Q(t+ s1)
and Q2(t) = Q(t+s2). With this choice we have A1(t) = A(t, s1), A2(t) = A(t, s2) and

(4.6) sup
t∈[0,T ]

|A(t, s1)−Q(t+ s1)− (A(t, s2)−Q(t+ s2))|

≤ e2TαQ(2T )2
∫ 2T

0
|Q(s)−Q(s+ s2 − s1)| ds,

where we have used a change of variable s = s′ + s1 in the integral term. Since
translations are continuous in the L1 norm, we have that limε→0+ ω(ε) = 0 where

ω(ε) =

∫ 2T

0
|Q1(s)−Q2(s+ ε)| ds.

From Theorem 3.2 it follows that for any fixed s ∈ [0, T ) the function A(t, s)−Q(t+s)
is continuous in t for t ∈ [0, T ]. Combining this with the estimate

sup
t∈[0,T ]

|A(t, s1)−Q(t+ s1)− (A(t, s2)−Q(t+ s2))| ≤ CTω(s2 − s1),

that follows from (4.6), we obtain that A(t, s)−Q(t+s) is a jointly continuous function
in [0, T )2. Since T is arbitrary, this finishes the proof of the lemma. □

4.2. Reconstruction for the radial Calderón problem.

It is not difficult to adapt the prevous reconstruction method to the radial Calderón
problem using the transformation V (x) = q(|x|) = |x|−2Q(− log |x|) for the potentials,
as we now show.

Let V (x) = q(|x|) and define

Vs(x) := s2V (sx), qs(r) := s2q(sr) s ∈ [0, 1].

If V B
s := [Vs]

B we introduce the W function given by

(4.7) W (|x|, s) := 1

s2
V B
s (x), s ∈ [0, 1].

It will be convenient to use the notation

V B(x) = qB(|x|), and V B
s (x) = qBs (|x|),

for the radial profiles of the Born approximations. Thus W (r, s) = s−2qBs (r).

In terms of the A-amplitude it holds that

(4.8) A(t, s) = e−2(t+s)W (e−t, e−s), W (r, s) =
1

r2s2
A(− log r,− log s).

We restate Lemma 4.1 in this context as follows.

Lemma 4.5. Assume that V = q(| · |) with V ∈ Vd. Then, for all r, s ∈ (0, 1] it holds
that

|Fs(r)| ≤
s−2

r2+g(r,s)
g(r, s)2,
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where

Fs(r) := W (r, s)− q(rs), and g(r, s) :=

∫ 1

r
ws2|q(sw)| dw =

∫ s

rs
t|q(t)| dw.

Moreover Fs(r) is a jointly continuous function on (0, 1]× (0, 1].

The proof is straightforward using (4.8) and Lemma 4.1. We can now prove the ana-
logue of (4.2).

Proposition 4.6. Assume that V ∈ Vd with V = q(| · |) and fix b such that 0 < b < 1.
Then, if W is given by (4.7) it holds that

lim
r→1−

W (r, ·) = q(·), in L1(b, 1).

Proof. We use that

W (r, s) = q(s) + (W (r, s)− q(sr)) + (q(sr)− q(s))

= q(s) + Fs(r) + (q(sr)− q(s)),

where Fs(r) = W (r, s)− q(rs). From Lemma 4.5 it follows that

|Fs(r)| ≤
s−2

rg(r,s)+2
g(r, s)2, with g(r, s) ≤

∫ 1

br
t|q(t)| dt.

Hence limr→1− sups∈(b,1) Fs(r) = 0, which finishes the proof of the proposition. □

Using the transformation (4.8) in (4.1), one can show that W satisfies also a first order
PDE with a non-linear integral term:

(4.9) r
∂W

∂r
(r, s)− s

∂W

∂s
(r, s) = s2

∫ 1

r
W
( r
ν
, s
)
W (ν, s)

dν

ν
,

for all (r, s) ∈ (0, 1)×(0, 1). This holds in the classical sense for C1(Bd) potentials, since
in this case A(t, s)—and hence W (r, s)—is a jointly C1 function, as shown in [Sim99,
Section 2].

With the change variables U(r, s) = W
(
r
s , s
)

the equation (4.9) becomes
∂U

∂s
(r, s) = −s

∫ s

r
U(ν, s)U

(
r
s

ν
, s
) dν

ν
, 0 < r < s < 1.

In the general case V /∈ C1(Bd), W (r, s) can be shown to satisfy the integral version of
the previous equation.

Proposition 4.7. Let V ∈ Vd and let W be given by (4.7). Define

U(r, s) := W
(r
s
, s
)
, 0 < r < s < 1.

Then, we have that

(4.10) U(r, s2) = U(r, s1) +

∫ s1

s2

y2

∫ y2

r
U(y1, y2)U

(
r
y2
y1

, y2

)
dy1
y1

dy2,

for all 0 < r < s2 < s1 < 1.



STABLE FACTORIZATION OF THE CALDERÓN PROBLEM 23

In addition, it holds that U(r, s) is the unique solution of (4.10) in 0 < r < s < 1 such
that:

i) U0(r, s) := U(r, s) − U(r, 1) is a continuous function for 0 ≤ r ≤ s < 1 and
U0(r, 1) = 0.

ii) U(r, 1) = qB(r) for 0 < r < 1.

The equation (4.10) has a strong local behaviour even if it contains a non-local term:
the value U(s0, r0) of a solution only depends on the values of U in the triangular region

D(r0,s0) = {(r, s) ∈ (0, 1)2 : r ≤ s, r ≥ r0, s ≥ s0}.

To see this notice that taking s2 = s0 and r = r0 in the integral term in (4.8) we have
y2 ≥ s0, y1 ≥ r0 and r0

y2
y1

≥ r0. This gives the equation a local behaviour that is in
turn reflected in Theorem 2 and other results.

The proof of Proposition 4.7 is based on the fact that the initial value problem for
(4.10) has at most one solution that is a continuous perturbation of a free solution, as
the next lemma states.

Lemma 4.8. Let b ∈ (0, 1) and f ∈ L1(b, 1). There is a unique solution of

U(r, s2) = U(r, s1) +

∫ s1

s2

y2

∫ y2

r
U(y1, y2)U

(
r
y2
y1

, y2

)
dy1
y1

dy2,

with b < r < s1 < s2 < 1 such that

U(r, s) = f(r) + U0(r, s),

where U0(r, s) is a continuous function for b < r ≤ s ≤ 1 and U0(r, 1) = 0.

Proof. Is an immediate consequence of Lemma 4.4 and (4.8). which implies that

U(r, s) = W
(r
s
, s
)
=

1

r2s2
A(− log(r) + log s,− log s) =

1

r2s2
K(− log r,− log s).

□

Proof of Proposition 4.7. That (4.10) holds for all V ∈ Vd follows directly from (4.8)
and Theorem 4.2.

The second statement follows from Lemma 4.8, provided that we show that U0(r, s) =
W
(
r
s , s
)
−W (r, 1) is a continuous function on {0 < r ≤ s ≤ 1}. We have that

(4.11)
U0(sr, s) = W (r, s)−W (rs, 1)

= Fs(r)−
(
qB(rs)− q(rs)

)
.

By Lemma 4.5 we know that that Fs(r) is continuous on (0, 1]2. On the other hand,
qB(r′) − q(r′) = F1(r

′) is continuous on (0, 1], so, taking r′ = rs, the second term
in (4.11) is also continuous on (0, 1]2. Replacing r by r/s in (4.11) we conclude that
U0(r, s) is a continuous function on {0 < r ≤ s ≤ 1}. □

We can finally state the algorithm to reconstruct V ∈ Vd form V B.
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Algorithm 4.9. Given V B and 0 < b < 1, it is possible to reconstruct V ∈ Vd in the
region b < |x| < 1 with the following three steps:
1) Using (1.12) and that V B = V B

r on Bd \ {0}, reconstruct V B from (λk[V ])k∈N0.
2) Find the unique solution U(r, s) of (4.10) such that U0(r, s) = U(r, s) − qB(r) is a

continuous function with U0(r, 1) = 0 and qB(|x|) = V B(x).
3) Use that limr→1− U(r|x|, |x|) = V (x) in the sense of Proposition 4.6.

5. A local Hölder stability estimate

The goal of this section is to present a Hölder stability estimate for the map that
associates the A-amplitude to the potential Q; this is presented in Theorem 5.2. We
then show how Theorem 3 follows from this result.

5.1. A local stability estimate for the A-amplitude.
Let Qs(t) and A(t, s) as in Section 4. We now consider two potentials, Q1 and Q2.
Denote by A1(t, s) and A2(t, s) the corresponding A-amplitudes of the translated po-
tentials. Also, let a > 0 be fixed, and define

(5.1) ga(s) :=

∫ a−s

0
|A2(t, s)−A1(t, s)| dt, s ∈ [0, a],

and the constant

(5.2) D(a) := sup
0≤s<a

∫ a−s

0
[|A1(t, s)|+ |A2(t, s)|] dt.

Lemma 5.1. Let Q1, Q2 satisfying (2.16), and fix a > 0. Then ga(s) is a continuous
function on [0, a] and D(a) < ∞. In addition,

(5.3) ga(s) ≤ ga(0)e
sD(a).

Proof of Lemma 5.1. The proof follows from arguments in [Sim99, Section 7]. For
convenience of the reader we give a proof here. Recall the definitions of ga(s) and D(a)
given, respectively, in (5.2) and (5.1), and define Kj(t, s) = Aj(t − s, s) for j = 1, 2.
The proof is similar to that of Lemma 4.4.
Since Kj(t, s) − Aj(t) is a continuous function (see Remark 4.3), it follows that ga(s)
is continuous on [0, a] (notice that ga is the analogue of g in the proof of Lemma 4.4).
On the other hand, Kj(t, s) satisfies (4.3) for j = 1, 2, so taking the difference of the
equation for j = 1 and j = 2, and making a simple estimate, one can show that

ga(s2) ≤ ga(s1) +D(a)

∫ s2

s1

ga(y) dy, s1 < s2 < a.

Therefore for s1 = 0 and s2 = s it reduces to

ga(s) ≤ ga(0) +D(a)

∫ s

0
ga(y) dy,

so, since ga is continuous, a direct application of Grönwall’s inequality yields (5.3).
It remains to justify that D(a) < ∞, but this can be done in the same way as in
(4.4). □
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Using the previous lemma we can now prove a local stability estimate for the map
A 7−→ Q.

Theorem 5.2. Consider two potentials Q1, Q2 satisfying assumption (2.16) and their
respective A-amplitudes A1 and A2. Fix any a > 0 and take any ε0 < min(1, a). Let
1 < p ≤ ∞, denote by p′ its Hölder conjugate exponent, and assume that there is a
constant Mp(a) < ∞ such that

(5.4)
max
i=1,2

(∫ a

0
|Qi(t)|p dt

)1/p

< Mp(a) if 1 < p < ∞,

max
i=1,2

(
sup

t∈[0,a]
|Qi(t)|

)
< M∞(a) if p = ∞.

Then, if

(5.5)
∫ a

0
|A1(t)−A2(t)| dt < ε

(1+p′)/p′

0 ,

then ∫ a

0
|Q1(t)−Q2(t)| dt < C1(a,Mp(a), D(a))

(∫ a

0
|A1(t)−A2(t)| dt

)1/(p′+1)

,

where D(a) is the constant defined in (5.2), and C1(a,Mp(a), D(a)) is a constant that
can be computed explicitly in terms of a, D(a), and Mp(a).

Remark 5.3. The constant D(a) may seem impractical since it depends on the A-
amplitudes of the translated potentials. This can be overcome using (5.4) in (5.2)
together with the rough bound provided by Lemma 4.1. This implies that

D(a) < 2a3Mp(a)
2ea

2Mp(a) + 2aMp(a),

and gives
C1(a,Mp(a), D(a)) < C2(a,Mp(a)),

for an appropriate constant C2(a,Mp(a)) that depends only on a and Mp(a).

Proof of Theorem 5.2. First, assume that s, t ≥ 0. Then we have that

Q1(s+ t)−Q2(s+ t) =

Q1(s+ t)−A1(t, s)− (Q2(s)−A2(t, s)) + (A1(t, s)−A2(t, s)) .

In particular, for any 0 < ε < ε0 and s ≥ 0

(5.6)
∫ ε

0
|Q1(s+ t)−Q2(s+ t)| dt ≤

∫ s+ε−s

0
|A1(t, s)−A2(t, s)| dt

+

∫ ε

0
|A1(t, s)−Q1(s+ t)| dt+

∫ ε

0
|A2(t, s)−Q2(s+ t)| dt.

We now assume that 0 ≤ s < a− ε0. By (5.1), the first term on the right satisfies

(5.7)
∫ s+ε−s

0
|A1(t, s)−A2(t, s)| dt = gs+ε(s) < ga(s),
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since s+ ε < s+ ε0 < a. If i = 1, 2, applying Lemma 4.1 with Q = Qi, the remaining
terms satisfy

(5.8)
∫ ε

0
|Ai(t, s)−Qi(s+ t)| dt ≤

∫ ε

0
α(t, s)2etα(t,s) dt

≤ εα(ε, s)2eεα(ε,s) = ε

(∫ s+ε

s
|Qi(y)| dy

)2

eε
∫ s+ε
s |Qi(y)| dy,

since 0 ≤ t ≤ ε implies α(t, s)2etα(t,s) ≤ α(ε, s)2eεα(ε,s). By (5.4) and using Hölder
inequality together with the fact that s+ ε < a, we have

α(ε, s) ≤ ε1/p
′
Mp(a),

where 1 ≤ p′ < ∞ is the conjugate exponent of p. Then (5.8) becomes

(5.9)
∫ ε

0
|Ai(t, s)−Qi(s+ t)| dt < ε1+2/p′Mp(a)

2eMp(a)ε1+1/p′
.

Inserting (5.7) and (5.9) in (5.6) gives∫ ε

0
|Q1(s+ t)−Q2(s+ t)| dt < ga(s) + 2ε1+2/p′Mp(a)

2eMp(a)ε1+1/p′
,

and hence, Lemma 5.1 yields∫ ε

0
|Q1(s+ t)−Q2(s+ t)| dt < ga(0)e

sD(a) + 2ε1+2/p′Mp(a)
2eMp(a)ε1+1/p′

.

We now integrate both sides in the s variable:∫ ε

0

∫ a−ε

0
|Q1(s+ t)−Q2(s+ t)| ds dt

<
ga(0)

D(a)

(
e(a−ε)D(a) − 1

)
+ 2(a− ε)ε1+2/p′Mp(a)

2eMp(a)ε1+1/p′

<
ga(0)

D(a)
eaD(a) + 2aε1+2/p′Mp(a)

2eMp(a)ε1+1/p′
,

which, changing variables in the integrals, becomes

(5.10)
∫ ε

0

∫ a+t−ε

t
|Q1(s)−Q2(s)| ds dt <

ga(0)

D(a)
eaD(a)+2aε1+2/p′Mp(a)

2eMp(a)ε1+1/p′
.

We now want to get rid of the dependence in t of the limits of the second integral.
Now, by Hölder inequality∫ ε

0

∫ t

0
|Q1(s)−Q2(s)| ds dt ≤ 2

∫ ε

0
t1/p

′
Mp(a) dt =

2

1 + 1/p′
ε1+1/p′Mp(a),

and, analogously,∫ ε

0

∫ a

a+t−ε
|Q1(s)−Q2(s)| ds dt ≤ 2

∫ ε

0
(ε− t)1/p

′
Mp(a) dt =

2

1 + 1/p′
ε1+1/p′Mp(a).
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Combining these two observations we obtain that∫ ε

0

∫ a+t−ε

t
|Q1(s)−Q2(s)| ds dt

>

∫ ε

0

∫ a

0
|Q1(s)−Q2(s)| ds dt−

4

1 + 1/p′
ε1+1/p′Mp(a)

= ε

∫ a

0
|Q1(s)−Q2(s)| ds−

4

1 + 1/p′
ε1+1/p′Mp(a).

Inserting this estimate in (5.10) gives

ε

∫ a

0
|Q1(s)−Q2(s)| ds < ga(0)

eaD(a)

D(a)
+ ε1+2/p′2aMp(a)

2eMp(a)ε1+1/p′

+ ε1+1/p′ 4

1 + 1/p′
Mp(a).

Choosing ε = ga(0)
p′

p′+1 to optimize the inequality, and using that ε < ε0 < 1, gives∫ a

0
|Q1(s)−Q2(s)| ds < ga(0)

1
p′+1

(
eaD(a)

D(a)
+ 2aMp(a)

2eMp(a) + 2Mp(a)

)
.

This concludes the proof of the theorem, since, by (5.1)

ga(0) =

∫ a

0
|A2(t)−A1(t)| dt. □

5.2. Proof of Theorem 3. By Theorem 1 for each potential Vj , i = 1, 2 the Born
approximation is well defined. In addition, by (3.7) we have that

(5.11) V B
j (x) = |x|−2Aj(− log |x|), i = 1, 2,

where Aj is the A-function associated to the potential Qj , defined by

Qj(t) = e−2tqj(e
−t), i = 1, 2.

Here Qj satisfies (2.16) by (2.18) for j = 1, 2.

Fix a = − log b. A direct change of variables r = e−t in (1.13) implies that (5.4)
holds with Mp(a) = Kp(b). Also, using the same change of variables and (5.11) in
(1.14) means that (5.5) holds for ε0 < min(1,− log b) = min(1, a). Thus we can apply
Theorem 5.2 which, taking into account Remark 5.3, gives the estimate∫ − log b

0
|Q1(t)−Q2(t)| dt < C2(− log b,Kp(b))

(∫ − log b

0
|A1(t)−A2(t)| dt

)1/(p′+1)

.

Using the change of variables t = − log r this becomes (1.15) with C(b,Kp(b)) :=
C2(− log b,Kp(b)). □
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6. Canonical regularization of the Born approximation

Here we denote by E ′(Rd) and S ′(Rd), respectively, the spaces of compactly supported
and tempered distributions, where S(Rd) is the Schwartz class. We also denote by
D′(U) the space of distributions on an open set U ⊂ Rd. The Fourier transform
is an isomorphism of S ′(Rd); and the Paley-Wiener theorem ensures that given any
f ∈ E ′(Rd), its Fourier transform:

(6.1) f̂(ξ) := ⟨f, e−iξ⟩E ′×C∞ , eξ(x) := eξ·x, x, ξ ∈ Rd,

extends to an entire function in Cd. The moments σk[f ] of a distribution f ∈ E ′(Rd)
are defined by

(6.2) σk[f ] := |Sd−1|−1 ⟨f,mk⟩E ′×C∞ , mk(x) := |x|2k, ∀k ∈ N0.

A distribution f ∈ D′(Rd) is is radially symmetric (or just radial) if and only if

⟨f, φ ◦ ρ⟩D′×C∞
c

= ⟨f, φ⟩D′×C∞
c
, ∀ρ ∈ SO(d), ∀φ ∈ C∞

c (Rd).

In what follows, given V ∈ Vd, we will denote by V B
e the extension by zero of V B

to Rd. Since Theorem 1(i) ensures that V B ∈ L1
loc(Bd \ {0}), one automatically has

V B
e ∈ L1

loc(Rd \ {0}) ⊂ D′(Rd \ {0}).
Theorem 1(ii) follows directly from the following result.

Theorem 6.1. Let d ≥ 2 and V ∈ Vd. There exists a unique compactly supported
radial distribution V B

r ∈ E ′(Rd) such that

(6.3) σk[V
B
r ] = λk[V ]− k, ∀k ∈ N0.

In addition, V B
r is a regularization of V B

e , namely,〈
V B
r , φ

〉
E ′×C∞ =

〈
V B
e , φ

〉
E ′×C∞ , ∀φ ∈ C∞

c (Rd \ {0}),

(and in particular suppV B
r ⊆ Bd) and the Fourier transform of V B

r satisfies the follow-
ing identities:

i) For all ξ ∈ Rd

(6.4) V̂ B
r (ξ) = 2πd/2

∞∑
k=0

(−1)k

k!Γ(k + d/2)

(
|ξ|
2

)2k

(λk[V ]− k).

ii) If ΛV is well defined then, for every ξ ∈ Rd \ {0}, and for all ζ1, ζ2 ∈ Cd such that
ζ1 · ζ1 = ζ2 · ζ2 = 0 and ζ1 + ζ2 = −iξ the following holds

(6.5) V̂ B
r (ξ) = (eζ1 , (ΛV − Λ0)eζ2)L2(Sd−1),

where, for ζ ∈ Cd, we have written eζ(x) := eζ·x.

Note that the fact that (λk[V ] − k)k∈N0 is the sequence of moments of a unique ra-
dial distribution in E ′(Rd) is a non-trivial information on the structure of DtN maps
(Section 7 delves on this topic). Since V B

r coincides exactly with V B outside the ori-
gin, formula (6.4) offers an explicit method to reconstruct V B

r and, therefore V B, from
(λk[V ] − k)k∈N0 . Identity (6.5) connects the concept of the Born approximation with
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the method of Complex Geometrical Optics solutions of the Schrödinger equation of
[SU87], was used in [BCMM22] to introduce the Born approximation in the context
of the Calderón problem. In fact, assertions (i) and (ii) are proven in [BCMM22,
Theorem 1] (that result shows the equality between the right-hand sides of (6.4) and
(6.5)).

To prove Theorem 6.1 we need to show that the Fourier transform of a radial compactly
supported distribution can always be reconstructed from the moments (6.2) by an
explicit formula. The following extends [BCMM22, Identity (1.20)] to distributions.

Lemma 6.2. Let f ∈ E ′(Rd) be radially symmetric. Then

(6.6) f̂(ξ) = 2πd/2
∞∑
k=0

(−1)k

k!Γ(k + d/2)

(
|ξ|
2

)2k

σk[f ].

Proof. If f ∈ E ′(Rd) then the Paley-Wiener theorem ensures that f̂ is an entire function
on Rd (see, for example, [H9̈0, Theorem 7.3.1]). Moreover f is radial if and only if f̂ is
radial. Therefore it must hold that

f̂(ξ) =
∞∑
k=0

ak|ξ|2k,

for some appropriate coefficients ak ∈ C.

On the other hand, ak = bk(−∆)kf̂(0) for all k ∈ N0, where (bk)k∈N0 are some co-
efficients independent of f—notice that bk is essentially a coefficient of the Taylor
expansion of the radial profile function of f̂ . Using (6.1) one can show that

(−∆)kf̂(0) = ⟨f,mk⟩E ′×C∞ .

Hence we conclude that

(6.7) f̂(ξ) =

∞∑
k=0

bk|ξ|2kσk[f ],

where the (bk)k∈N0 coefficients are independent of f ∈ E ′(Rd). Formula (6.6) is proved
in [BCMM22, p. 19] for compactly supported f ∈ L1(Rd). Using this, and the fact that
(bk)k∈N0 are universal, concludes the proof the lemma. □

Proof of Theorem 6.1. By Theorem 5 we know that V B
e ∈ L1

loc(Rd \ {0}) and that at
x = 0 it has a singularity of order |x|−α for some α > 0 that depends on V . Then, by
[GS64, Proposition 1 p. 11] there is always an extension F ∈ D′(Rd) of V B

e such that

⟨F,φ⟩D′×C∞
c

=
〈
V B
e , φ

〉
D′×C∞

c
∀φ ∈ C∞

c (Rd \ {0}).

Such an extension is called a regularization of the singular function V B
e . In particular,

we have that F ∈ E ′(Rd) since it coincides with V B
e outside the origin, and hence van-

ishes outside B. Notice that two different regularizations of V B
e differ in a distribution

supported at x = 0, or in other words, in a finite linear combination of derivatives of
the Dirac delta distribution δ0 which is supported at x = 0.
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We now claim that, since there exists an N ∈ N0 large enough such that mNV B
e ∈

L1(Rd), for every regularization F of V B
e one can always find an N ′ ∈ N0 such that

⟨mkF,φ⟩E ′×C∞ =
〈
mkV

B
e , φ

〉
E ′×C∞ for all φ ∈ C∞

c (Rd), and for all k ≥ N ′.

In other words, mkF = mkV
B
e as distributions in E ′(Rd), for all k ≥ N ′.

As an immediate consequence of this, we obtain that

(6.8) σk[F ] = σk[V
B] = λk[V ]− k for all k ≥ N ′.

To prove the claim, start by observing that mNF and mNV B are both compactly
supported distributions that are identical outside x = 0, so they differ only in a finite
linear combination of derivatives of δ0. Let M be the maximum order of the derivatives
of δ0. Therefore, for any N ′ ≥ N large enough

mN ′F −mN ′V B = mN ′−N (mNF −mNV B)

= mN ′−N

∑
|α|≤M

cα∂
α
x δ0 = 0,

where the right hand side will vanish provided N ′ −N > M .

Now, define formally V B
r by

V̂ B
r (ξ) := 2πd/2

∞∑
k=0

(−1)k

k!Γ(k + d/2)

(
|ξ|
2

)2k

(λk[V ]− k).

An immediate consequence of Lemma 6.2 and (6.8) is that

F̂ (ξ) = V̂ B
r (ξ) + P (|ξ|2),

where P is a polynomial of order N ′ at most. This proves that V̂ B
r is a tempered

distribution and that V B
r ∈ S ′(Rd) is well defined. Moreover, since the inverse Fourier

transform of P (|ξ|2) is a linear combination of derivatives of δ0, we actually have that
V B
r ∈ E ′(Rd) is supported in the ball and that V B

r = V B outside x = 0. Therefore, V B
r

is a regularization of V B. As an extra property, we also get from the formula defining
V̂ B
r (ξ) that V B

r is a radial distribution.

To summarize, we have proved that there exits a radial distribution V B
r ∈ E ′(Rd)

supported in the closed unit ball, such that (6.3) holds. This distribution is uniquely
determined by (6.4) and it is a regularization of V B. The fact that V B

r satisfies the
identity (ii) of the statement is a consequence of [BCMM22, Theorem 1]. □

7. A partial characterization of DtN operators

We recall (see (3.7)) that the Born approximation V B(x) ∈ L1(Bd, |x|2k0dx) with k0 :=
⌊kV ⌋+ 1 > ⌊kQ⌋+ 1 is given by

V B(x) =
A(− log |x|)

|x|2
.
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Let qB(r) := r−2A(− log r). It follows that for k ≥ k0,

σk[V
B] =

∫ 1

0
qB(r)r2k+d−1 dr =

∫ 1

0

(
1

2
qB(

√
t) t

d
2
−1

)
tk dt.

Clearly,

QB(t) :=
1

2
qB(

√
t) t

d
2
−1+k0 ,

verifies QB ∈ L1((0, 1)). For f ∈ L1((0, 1), dt), we define the Hausdorff moments by

µk[f ] =

∫ 1

0
tkf(t) dt, ∀k ∈ N0.

so that one has

(7.1) σk+k0 [V
B] = µk[Q

B], ∀k ∈ N0.

Since the classical Hausdorff moment problem possesses a unique solution in L1((0, 1))
(see [Wid41, Chapter III]), it follows that V B is the unique function in L1(Bd, |x|2k0dx)
such that σk[V

B] = λk[V ]− k for all k ≥ k0.

Moreover, we can give a partial characterization of DtN operators ΛV (through their
eigenvalues λk[V ]). To this end, we set µn := λn+k0 [V ] − (n + k0) with n ≥ 0, and
following [Wid41, p. 101], we introduce several definitions:

∆kµn :=

k∑
m=0

(−1)m
(
k

m

)
µn+k−m, k ≥ 0,

λk,m :=

(
k

m

)
(−1)k−m∆k−mµm, k ≥ m ≥ 0.

Finally, for k ≥ 1, we define

Lk(t) := (k + 1)λk,⌊kt⌋, t ∈ [0, 1].

It is showed in [Wid41, p. 112] that (λn+k0 [V ]−(n+k0))n∈N0 are the Hausdorff moments
of QB ∈ L1((0, 1)) if and only if the sequence (Ln(t))n∈N converges in L1((0, 1)). This
is a partial characterization of the DtN operators since the aforementioned condition
only characterizes the Born approximation V B. Moreover, this result is not easily
interpreted, independently of the functions Ln(t), in terms of the sequence (µn)n∈N0 .

In contrast, if only potentials V ∈ Lp(Bd) ⊂ Vd with p > d/2 are considered, one
can obtain a clearer partial characterization involving directly the eigenvalues λn[V ].
Indeed, using Hölder’s inequality, we easily see that the function F (r) introduced in
(1.16) satisfies the following estimate:

|F (r)| ≤ C

rα+2
,

where C is a suitable constant and

α := min

βV ,

(
1

1 + p′(1 + 1−d
p )

) 1
p′ ||V ||Lp(Bd)

|Sd−1]|
1
p

 ,
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p′ being the conjugate exponent of p. With the help of Theorem 5, one gets qB(r) =
q(r) + F (r), thus clearly qB(r) satisfies∫ 1

0
|qB(r)|p rd−1+2k1 dr < ∞,

where
k1 :=

⌊p(α+ 2)− d

2

⌋
+ 1.

It follows that
Q̃B(t) :=

1

2
qB(

√
t) t

d
2
−1+k1

is a function in Lp((0, 1)) and we have σk+k1 [V
B] = µk[Q̃

B], k ≥ 0. As previously, we
define the sequence (µ̃n)n≥0 by µ̃n := λn+k1 [V ]− (n+ k1), and we set

λ̃k,m[V ] :=

(
k

m

)
(−1)k−m∆k−mµ̃m , k ≥ m ≥ 0.

Now, using [Wid41, Theorem 5, p. 110], we see that (λn+k1 [V ]− (n+ k1))n∈N0 are the
Hausdorff moments of Q̃B ∈ Lp((0, 1)) if and only if

(7.2) sup
k∈N0

(k + 1)p−1
k∑

m=0

|λ̃k,m[V ]|p < ∞, ∀k ∈ N0.

Summarizing, we have shown that the eigenvalues of any DtN map issued from a radial
potential in Lp(Bd), p > d/2, must satisfy condition (7.2).

Remark 7.1. Condition (7.2) can be viewed as a partial characterization of DtN oper-
ators for radial potentials V ∈ Lp(Bd), p > d/2. Nonetheless, a total characterization
should involve additional conditions. This is due to the fact that not every locally in-
tegrable function is the A-amplitude of a Schrödinger operator on the half-line, as has
been shown by Remling [Rem03].The characterization problem for radial DtN maps
will be addressed in a forthcoming work.

Appendix A. Solutions by separation of variables

Lemma A.1. Let d ≥ 2 and V ∈ Lp(Bd) with p > 1 and p ≥ d/2 be a radial function.
Then, for every k > kV there is a unique solution bk of (2.7) with bk(1) = 1 such
that the function uk(x) = bk(|x|)Yk(x/|x|) is a proper weak H1(Bd) solution of (2.10).
Moreover, for any other solution u ∈ H1(Bd) of (2.10) it holds that

∂rbk(1) = (Yk, ∂νu|Sd−1)L2(Sd−1),

for all Yk ∈ Hk with ∥Yk∥L2(Sd−1) = 1.

Proof. Let u0 be an H1
0 (Bd) solution of

(A.1)
{

−∆u0 + V u0 = 0 on Bd,
u0|Sd−1 = 0,

Since V is radial, using a Fourier expansion in spherical harmonics of u0, one can show
that u0(x) =

∑∞
k=0 ak(|x|)Yk(x/|x|), for some Yk ∈ Hk, where ak(r) is a solution of
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(2.7) with ak(1) = 0. Defining vk(t) := e−
d−2
2

tak(e
−t) and Q from the radial profile of

V by (2.13), we obtain that vk solves{
−v′′k +Qvk = −

(
k + d−2

2

)2
vk on R+,

vk(0) = 0.

This implies that vk is a Dirichlet eigenfunction of the 1-d operator (2.17) with eigen-
value −

(
k + d−2

2

)2. By Lemma 2.6, we know that k + d−2
2 ≤ βQ, and therefore

(A.2) u0(x) =
∑

0≤k≤kV

ak(|x|)Yk(x/|x|),

where we have used that kV = βV + d−2
2 and βQ ≤ βV , and imposed ak = 0 whenever

k + d−2
2 > βQ. Notice that any choice of Yk ∈ Hk in (A.2) gives a solution (not

necessarily distinct) of the homogeneous problem (A.1).

Problem (2.1) can be reduced to

(A.3)
{

−∆w + V w = −V w0 on Bd,
w|Sd−1 = 0,

using the change of variables u = w+w0, where w0 is the unique harmonic function in
Bd satisfying w0|Sd−1 = f . Notice that

(A.4) w0(x) =
∞∑
k=0

|x|kYk(x/|x|), Yk = ΠHk
f,

where ΠHk
stands for the L2(Sd−1) projector to the subspace Hk of spherical harmonics.

If V ∈ Lp(Bd) with p > 1 and p ≥ d/2, the standard theory of elliptic equations implies
that (A.3) has a solution w if and only if

(V w0, u0)L2(Bd) = 0,

for all u0 that are solutions of the homogeneous problem (A.1), see for example5 [Eva98,
Section 6.2.3]. By the previous discussion we know that u0 must satisfy (A.2). There-
fore, using (A.4) and that V is radial, one can verify that (V w0, u0)L2(Bd) = 0 holds if
we require ΠHk

f = 0 for all 0 ≤ k ≤ kV .

Therefore, given f such that

f =
∑
k>kV

Yk, Yk ∈ Hk,

there always exits a solution w ∈ H1(Bd) of (A.3) and, as a consequence, a solution
u = w+w0 in H1(Bd) of (2.1), even if (2.5) does not necessarily hold. Using a Fourier
expansion in spherical harmonics of u in (2.1), one can show that u must satisfy

u(x) =

∞∑
k>kV

bk(|x|)Yk(x/|x|) + u0,

5This is proved for bounded potentials, but the case Ld/2(Bd) can be proved using the same
arguments.
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where bk solves (2.7) with boundary conditions bk(1) = 1 if k > kV , and u0 is any
homogeneous solution. In particular it clearly holds by (A.2) that

∂rbk(1) =
1

∥Yk∥2L2(Sd−1)

(Yk, ∂νu|Sd−1)L2(Sd−1).

Also, since we can choose u0 = 0 there is a unique solution uf ∈ H1(Bd) of (2.1) such
that

uf (x) =
∑
k>kV

bk(|x|)Yk(x/|x|).

In the particular case of f = Yk one obtains that uk(x) := uf (x) = bk(|x|)Yk(x/|x|).
This is the only solution of separation of variables since any other solution differs in a
homogeneous solution satisfying (A.2). This finishes the proof of the lemma. □

Appendix B. The space Vd

It is simple to show that the space Vd defined in (1.2) contains the radial Ld/2(Bd).
Note first that

∥V ∥Ld/2(Bd) = |Sd−1|2/d ∥Q∥Ld/2(R+).

Since ∫ y+1

y
|Q(t)| dt ≤

(∫ y+1

y
|Q(t)|d/2 dt

)2/d

≤ ∥Q∥Ld/2(R+),

it follows that |||Q||| ≤ ∥Q∥Ld/2(R+), and as a consequence we obtain that

(B.1) ∥V ∥Vd
≤ |Sd−1|(d−2)/d∥V ∥Ld/2(Bd).

In fact, a stronger estimate holds for d > 2.

Lemma B.1. Let d > 2 and let V ∈ Ld/2,∞(Bd) be a (not necessarily radial 6) potential.
Then

∥V ∥Vd
≤ Cd∥V ∥Ld/2,∞(Bd),

where Cd > 0 only depends of d.

Proof. Let Aj = {x ∈ Rd : 2−j−1 < |x| < 2−j} and denote by χAj the characteristic
function of the set Aj . From (1.8), since d

d−2 is the Hölder conjugate exponent of d
2 , it

follows using Hölder inequality for Lorentz spaces [Hun66] that

∥V ∥Vd
≤ Cd sup

j∈N0

∥χAj | · |2−d∥
L

d
d−2

,1
(Bd)

∥χAjV ∥
L

d
2 ,∞(Bd)

≤ Cd

(
sup
j∈N0

∥χAj | · |2−d∥
L

d
d−2

,1
(Bd)

)
∥V ∥

L
d
2 ,∞(Bd)

.

6Notice that ∥V ∥Vd is well defined for non-radial potentials in (1.8) even if, for convenience, we
have included the radial assumption in the definition of Vd.
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To finish, we need to show that the factor with the supj∈N0
is finite. The norm of the

Lorentz space L
d

d−2
,1(Bd) is given by

∥χAj | · |2−d∥
L

d
d−2

,1
(Bd)

=
d

d− 2

∫ ∞

0
|gj(t)|

d−2
d dt,

where gj(t) is the distribution function of χAj |x|2−d, i. e.

gj(t) = |{x ∈ Bd : 2−j−1 < |x| < 2−j , |x|2−d > t}|.

From an explicit computation of gj(t) it follows that

gj(t) ≤
1

d

(
1− 1

2d

)
|Sd−1|

{
2−dj 0 < t ≤ 2(j+1)(d−2),

0 2(j+1)(d−2) < t < ∞.

Hence

∥χAj | · |2−d∥
L

d−2
d

,1(Bd)
≤ Cd

(
2−dj

) d−2
d

2(j+1)(d−2) = 2d−2Cd,

which proves that

sup
j∈N0

∥χAj | · |2−d∥
L

d
d−2

,1
(Bd)

= Cd < ∞,

and finishes the proof of the lemma. □

The previous lemma shows that the set of radial potentials in the Lorenz space Ld/2,∞(Bd)
are contained in Vd with d > 2. Among other things, in the radial case this implies
that all potentials V (x) = |x|−2f(|x|) with f bounded, belong to Vd. The inclusion
Ld/2,∞(Bd) ⊂ Vd is strict, since Vd also contains any radial L1(Bd) potential which
vanishes in a neighborhood of the origin. It is not clear that this inclusion holds in
dimension d = 2. Indeed, we can not apply Hölder inequality for Lorentz spaces in
this case, (since L∞,q(B2) = {0} for q ̸= ∞). Nevertheless, note that the critical po-
tential V (x) = c|x|−2 belongs to V2 (and also to L1,∞(B2)). In principle one can only
guarantee in this case the trivial inclusion L1(B2) ⊂ V2.

Remark B.2. In general, the Schrödinger equation (1.1) is not (uniquely) solvable for
potentials in Ld/2,∞(Bd). Nevertheless, for potentials V with a small norm living in
the so-called Fefferman-Phong class Fp ⊃ L

d
2
,∞(Rd) with d−1

2 < p < d
2 and d ≥ 3, it

is shown in [Cha90, Proof of Lemma 2], that the DtN map ΛV is always well defined :
using a Poincaré-type inequality, we see that the bilinear form related to the operator
H = −∆+ V is continuous and coercive in H1

0 (Bd). It follows that 0 is not a Dirichlet
eigenvalue of H. Moreover, Chanillo shows that the map V 7→ ΛV is injective. This
last result is closely related to the unique continuation principle (UCP). Generically,
(UCP) does not hold for potentials belonging to these Lorentz spaces, (see the nice
counterexamples in [KT02]), except for potentials with a small norm ([JK85]).
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