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WEAK AND STRONG LAW OF LARGE NUMBERS FOR STRICTLY

STATIONARY BANACH-VALUED RANDOM FIELDS

Institut de Recherche Mathématique Avancée UMR 7501, Université de Strasbourg and

CNRS 7 rue René Descartes 67000 Strasbourg, France

DAVIDE GIRAUDO

Abstract. In this paper, we investigate the law of large numbers for strictly stationary random fields,

that is, we provide sufficient conditions on the moments and the dependence of the random field in order

to guarantee the almost sure convergence to 0 and the convergence in Lp of partials sums over squares or

rectangles of Zd. Approximation by multi-indexed martingales as well as by m-dependent random fields

are investigated. Applications to functions of d-independent Bernoulli shifts and to functionals of i.i.d.

random fields are also provided.

1. Introduction

The law of large numbers is one of the most fundamental theorems in probability theory and statistics.

It states that if (Xi)i>1 is an i.i.d. sequence such that E [|X1|] < ∞, then n−1
∑n

i=1Xi converges to E [X1]

in the almost sure sense. A more general version, called Marcinkiewicz strong law of large numbers,

states that if 1 6 p < 2 and E [|X1|
p] < ∞, then n−1/p

∑n
i=1 (Xi − E [Xi]) converges to 0 almost surely.

Several authors investigated then the case of dependent sequences, see for instance [29, 6, 22, 25, 5].

We are interested in analoguous results for collections of random variables indexed by Zd. Throughtout

the paper, we will denote for a positive integer d the set {1, . . . , d} by J1, dK, for i = (iℓ)ℓ∈J1,dK and

j = (jℓ)ℓ∈J1,dK, i 4 j means that for each ℓ ∈ J1, dK, iℓ 6 jℓ. We will write 1 for the element of Zd whose

coordinates are all equal to one and for n = (nℓ)ℓ∈J1,dK, |n| =
∏d

ℓ=1 nℓ. We are looking for conditions

on the dependence and the moments of the centered random field (Xi)i∈Zd taking values in a Banach

space (B, ‖·‖B) in order to guarantee the convergence of

(1.1)
1

|n|

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

to 0 in the almost sure sense or in Lp for some p in a range that depends on the Banach space B, as

one of the coordinates of n goes to infinity. We will also consider the almost sure convergence to 0 of

the sum of squares, namely

(1.2)
1

nd/p

∥

∥

∥

∥

∥

∥

∑

14i4n1

Xi

∥

∥

∥

∥

∥

∥

B

→ 0

as n goes to infinity.
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In the i.i.d. and B = R case, [14] provided a necessary and sufficient condition for the convergence

the term involved in (1.1) as all the coordinates of n go to infinity when B = R, namely, that

(1.3) E
[

|X0|
p (log (1 + |X0|))

d−1
]

< ∞.

Still for independent random variables, a necessary and sufficient condition has been found in [24],

Theorem 2.2, when the summation is done over sets that are not necessarily rectangles.

Under the assumption that the random field (Xi)i∈Zd is i.i.d. and satisfies a condition which is

stronger than E [|X1|] < ∞ but weaker than E
[

|X1| (log (1 + |X1|))
d−1
]

, a strong law of large numbers

for weighted sums over rectangle have been established in [19].

Under the independence but without the identical distribution assumption, a law of large number

and convergence rates have been obtained in [15]. A result of the same spirit for pairwise independent

random fields has been obtained in [4].

Assymetric law of large numbers, that is, with the normalization
∏

ℓ∈J1,dK n
αℓ
ℓ with potentially different

exponents αℓ, for negatively associated random fields has been investigated in [17]. In Theorem 3.2 of

[8], a strong law of large numbers for martingale random fields has been established. On one hand,

there condition on the martingale property is more restrictive than orthomartingales (see Definition 2.3).

On the other hand, we put restriction on the filtration, namely commutativity, while Dung and Duy

Tien do not. When applied to identically distributed random fields, convergence (2.11) holds under

a slightly stronger moment assumption since they need E
[

‖D0‖
p+δ
B

]

to be finite for some positive

δ. This result was improved in [31], Theorem 3.3, where a similar result under the same martingale

assumption as in [8], but with the optimal moment assumption E
[

‖D0‖
p
B (log (1 + ‖D0‖B))

d−1
]

< ∞

. An other type of martingale difference random fields were investigated in [16], which does not seem

to be directly comparable with orthomartingales. The case of real-valued orthomartingales have been

treated in [18], but it is not easy to compare with our conditions because of the condition (4.2) in

the aforementioned paper where some convergence rates on a conditional maximum are required. An

other result concerning orthomartingale difference random fields which are not necessarily identically

distributed or stochastically dominated has been studied in [30]. When p = 1, the convergence (2.11)

has been shown in [23] in the context of pairwise independent and identically distributed random fields.

In this paper, we are interested in the strong law of large for random fields, that is, collections

of random variables indexed by d-uples of integers and the summation over {1, . . . , n} is replaced by

rectangles of Zd. We will assume that the involved random variables take their values in a separable

Banach space (B, ‖·‖B).

We will use essentially two approaches: a first one by approximating via multi-indexed martingales

and a second one by approximation bym-dependent random fields, giving different ranges of application.

The paper is organized as follows. In Section 2, we establish results on the Marcinkiewicz law of

large numbers for stationary random fields using an approximation by multi-indexed martingales. We

first complement the already obtained statement for the strong law of large numbers on rectangles

by providing sufficient conditions for the strong law of large numbers on squares and the convergence

in Lp. Then we provide results for stationary random fields by approximating by such martingale

differences random fields. This method was performed in order to derive weak invariance principles

[9, 34, 33, 20, 21, 27], quenched invariance principles [26, 37, 28] and the bounded law of the iterated

logarithms [11].

In Section 3, the results obtained by orthomartingale approximation are used in order to derive

a Marcinkiewicz strong law of large numbers for random fields that can be expressed as a Hölder

continuous function of d mutually independent sequences expressable as functions of i.i.d. sequences.
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The condition involves the exponent of Hölder regularity, the dimension d and the dependence coefficient

of each involved sequence.

In Section 4, we investigate the aforementioned laws of large numbers for random fields expressable

as a functional of an i.i.d. random field. We propose an application to a Hölder continuous funtional

of a Banach valued linear random field. The condition is written in terms of the exponent of Hölder

regularity, the moments of the innovations and the operator norm of the coefficients.

Section 5 is devoted to the proofs of the results of Sections 2, 3 and 4. The needed auxiliary results

are grouped in the Appendix.

2. Weak and strong law of large numbers via orthomartingale approximation

2.1. The orthormartingale case. The notion of multi-indexed martingale requires the notion of

multi-indexed filtration. We will also require the filtration to be commuting in the following sense.

Definition 2.1. We say that a collection of σ-algebras (Fi)i∈Zd is a completely commuting filtration if

(1) for each i, j ∈ Zd such that i 4 j, Fi ⊂ Fj and

(2) for each Y ∈ L1 and each i, j ∈ Zd,

(2.1) E [E [Y | Fi] | Fj ] = E
[

Y | Fmin{i,j}

]

,

where min {i, j} is the element of Zd defined as the coordinatewise minimum of i and j, that is,

min {i, j} = (min {iℓ, jℓ})
d
ℓ=1.

Let us give two examples of commuting filtrations.

Proposition 2.2. (1) If (εu)u∈Zd is i.i.d., then defining Fi = σ
(

εu,u ∈ Zd,u 4 i
)

, the filtration

(Fi)i∈Zd is completely commuting.

(2) Suppose that
(

F
(ℓ)
iℓ

)

iℓ∈Z
, 1 6 ℓ 6 d, are filtrations on a probability space (Ω,F ,P). Suppose that

for each i1, . . . , id ∈ Z, the σ-algebras F
(ℓ)
iℓ

, 1 6 ℓ 6 d, are independent. Let Fi =
∨d

ℓ=1F
(ℓ)
iℓ

.

Then (Fi)i∈Zd is completely commuting.

Both examples where introduced in Section 1 of [2], but without proof. The first item is a direct

consequence of Proposition 2 p. 1693 of [34].

We are now in position to define orthomartingale martingale difference random field, which allows to

exploit the martingale property in every direction. To formize this, we need to denote by eℓ, ℓ ∈ J1, dK,

the element of Zd whose ℓ-th coordinate is 1 and all the others are zero.

Definition 2.3. Let (Xi)i∈Zd be a random field taking values in a separable Banach space (B, ‖·‖B). We

say that (Xi)i∈Zd is an orthomartingale martingale difference random field with respect to the completely

commuting filtration (Fi)i∈Zd if for each i ∈ Zd, ‖Xi‖B is integrable, Xi is Fi-measurable and for each

ℓ ∈ J1, dK, E [Xi | Fi−eℓ ] = 0.

Such a definition is very convenient because summation on a rectangular region of Zd can be treated

with martingale properties when summing on a fixed coordinate.

The proof of the law of large number usually rest on satisfactory moment inequalities for martingales.

Therefore, we will work will smooth Banach spaces in the following sense.

Definition 2.4. Let (B, ‖·‖B) be a separable Banach space. We say that B is r-smooth for 1 < r 6 2 if

there exists an equivalent norm ‖·‖′B on B such that

(2.2) sup
t>0

sup
x,y∈B,‖x‖′

B
=‖y‖′

B
=1,

‖x+ ty‖′B + ‖x− ty‖′B − 2

tr
< ∞.
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For example, if µ is σ-finite on the Borel σ-algebra of R, then Lp (R, µ) is min {p, 2}-smooth. Moreover,

a separable Hilbert space is 2-smooth.

Given a random variable X taking values in a separable Banach space (B, ‖·‖B) and p > 1, q > 0, we

define

(2.3) ‖X‖B,p :=
(

E
[

‖X‖pB
])1/p

and

(2.4) ‖X‖B,p,q := ‖‖X‖B‖p,q ,

where, for a real valued random variable Y ,

(2.5) ‖Y ‖p,q = inf

{

λ > 0, ϕp,q

(

|Y |

λ

)

6 1

}

, ϕp,q (t) = tp (1 + 1t>1 ln t)
q .

Note that ‖X‖B,p,0 = ‖X‖B,p. Denote by Lp,q the space of random variables Y such that E [ϕp,q (‖Y ‖B)] <

∞. Conditions of the form

(2.6) E
[

‖D0‖
p
B (log (1 + ‖D0‖B))

q] < ∞

for some p and q are usual in the context of random fields. For instance, the quenched functional central

limit theorem on rectangles for a strictly stationary orthomartingale difference random field requires

(2.6) for p = 2 and q = d − 1 (see [26]) and for the bounded law of the iterated logarithms, (2.6) for

p = 2 and q = 2d − 2 (see [11]). Therefore, the condition on the moments can be expressed with the

help of the norm ‖·‖p,q.

We also define

(2.7) ‖X‖B,p,w := sup
A:P(A)>0

P (A)−1+1/p
E [‖X‖B 1A] .

When B = R, we shall simply write ‖X‖p, ‖X‖p,q and ‖X‖p,w respectively. Note that there exists

constants cp and c′p such that for each random variable X,

(2.8) cp

(

sup
t>0

tpP (‖X‖B > t)

)1/p

6 ‖X‖B,p,w 6 c′p

(

sup
t>0

tpP (‖X‖B > t)

)1/p

.

For n = (nℓ)
d
ℓ=1 ∈ Nd, we define 2n = (2nℓ)dℓ=1 and maxn = max16ℓ6d nℓ and we recall that

|n| =
∏d

ℓ=1 nℓ.

The following result has been obtained for the convergence of normalized partial sums on rectangles

of an orthomartingale difference random field.

Theorem 2.5 (Theorem 2.2 in [13], law of large numbers on rectangles). Let (B, ‖·‖B) be a separable

r-smooth Banach space for some r ∈ (1, 2], 1 < p < r and d ∈ N. There exists a constant Kp,d,B such

that the following holds: if (Di)i∈Zd is an identically distributed orthomartingale difference random field

such that ‖D0‖B,p,d−1 < ∞, then for all positive t, the following inequality holds

(2.9)
∑

N∈Nd

P

(

∣

∣2N
∣

∣

−1/p
max

14n42N

‖Sn‖B > t

)

6 Kp,dE

[

ϕp,d−1

(

‖D0‖B
t

)]

,

where Sn =
∑

14i4nDi. In particular, for some constant CB,d,p depending only on B, d and p,

(2.10)

∥

∥

∥

∥

∥

sup
n<1

‖Sn‖B

|n|1/p

∥

∥

∥

∥

∥

B,p,w

6 CB,d,p ‖D0‖B,p,d−1
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and the following convergence holds:

(2.11) lim
N→∞

sup
n<1,maxn>N

‖Sn‖B

|n|1/p
= 0 almost surely.

Such a result was know for d = 1 (see [35] and Proposition 2.1 in [3]).

When we consider the summation over squares, that is, sets of the form J1, nKd, where n is an integer

bigger than one, it turns out that we can embed the orthomartingale into an one-dimensional martingale.

As a consequence, only finite moments of order p are required.

Theorem 2.6 (Law of large numbers on squares). Let (B, ‖·‖B) be a separable r-smooth Banach space

for some r ∈ (1, 2], 1 < p < r and d ∈ N. There exists a constant CB,d,p such that the following holds:

if (Di)i∈Zd is an identically distributed orthomartingale difference random field such that ‖D0‖B ∈ Lp,

then the following inequality holds:

(2.12)

∥

∥

∥

∥

sup
n>1

‖Sn1‖B
nd/p

∥

∥

∥

∥

p,w

6 CB,d,p ‖D0‖B,p .

Moreover, the following convergence holds:

(2.13) lim
n→∞

‖Sn1‖B
nd/p

= 0 almost surely.

For convergence in Lp, we have the following result.

Theorem 2.7 (Convergence in Lp). Let (B, ‖·‖B) be a separable r-smooth Banach space for some

r ∈ (1, 2], 1 < p < r and d ∈ N. If (Di)i∈Zd is an identically distributed orthomartingale difference

random field such that ‖D0‖B ∈ Lp, then

(2.14) lim
maxN→∞

1

|N |1/p

∥

∥

∥

∥

max
14n4N

‖Sn‖B

∥

∥

∥

∥

p

= 0.

We point out that the convergence in (2.14) is as maxN → ∞, in other words, we require that only

one of the coordinates of N goes to infinity. Moreover, unlike in the case of almost sure convergence,

the consideration of squares instead of rectangles would not give a less restrictive condition.

2.2. Orthomartingale approximation. In this section, we assume that the random field (Xi)i∈Zd is

of the form

(2.15) Xi = X0 ◦ T i, Fi = T−iF0

where T i : Ω → Ω is such that T i ◦ T j = T i+j for each i, j ∈ Zd.

For example, one can consider the case where Ω = RZd
endowed with the product measure of a

probability measure µ and T i is the shift operator given by T i
(

(xk)k∈Zd

)

= (xk+i)k∈Zd .

An other example is the following: take probability spaces (Ωℓ,Aℓ, µℓ) and let Ω =
∏d

ℓ=1Ωℓ endowed

with the product σ-algebra and the product measure µ. Let Tℓ : Ωℓ → Ωℓ be a bijective bi-measure

preserving map and let F
(ℓ)
0 be a sub-σ-algebra of Aℓ such that TℓF

(ℓ)
0 ⊂ F

(ℓ)
0 . Then define Fi :=

∨d
ℓ=1 T

iℓ
ℓ F

(ℓ)
0 .

For i ∈ Zd, we define the map U i by U i (f) (ω) = f
(

T iω
)

. In order to extend the results of

Subsection 2.1 to a larger class of stationary random fields, we define the projection operator

(2.16) Pk (Y ) :=
∑

I⊂J1,dK

(−1)|I| E [Y | Fk−1I
] ,



6 LAW OF LARGE NUMBERS FOR STRICTLY STATIONARY BANACH-VALUED RANDOM FIELDS

where |I| denotes the cardinality of I and k − 1I = (kℓ − 1ℓ∈I)
d
ℓ=1. When d = 1, Pk (Y ) = E [Y | Fk]−

E [Y | Fk−1] and when d = 2,

(2.17) Pk1,k2 (Y ) = E [Y | Fk1,k2 ]− E [Y | Fk1−1,k2 ]− E [Y | Fk1,k2−1] + E [Y | Fk1−1,k2−1] .

The norm of such projectors is used in order to measure how far a random field from an orthomartin-

gale difference random field is. Indeed, if (Di)i∈Zd is an orthomartingale difference random field, then

Pk (D0) = 0 if k 6= 0. Moreover, the fact that the filtration is defined with the help of the action T

gives, for i, k ∈ Zd,

(2.18) ‖Pi+k (Xi)‖p,q = ‖Pk (X0)‖p,q .

It is tempting to express Xi as a sum of of projetors, namely, Xi =
∑

k∈Zd Pk (Xi), where the sum is

understood as limm→∞
∑

k∈Zd,‖k‖∞6m Pk (Xi) and the limit in the sense of the ‖·‖B,p,q for some p and

q. Since for fixed m, the sum
∑

k∈Zd,‖k‖∞6m Pk (Xi) is telescopic, only 2m terms are remaining: one

of them is E [Xi | Fm1] and the other one of the form E
[

Xi | Fm1I−(m+1)1JdK\I

]

for some proper subset

I of J1, dK, where 1I =
∑

i∈I ei. In order to make their contribution negligible, we need the following

assumptions:

(2.19) lim
m→∞

‖X0 − E [X0 | Fm1]‖B,p,q = 0,

(2.20) ∀ℓ0 ∈ J1, dK, lim
m→∞

∥

∥

∥E
[

X0 | Fm
∑

ℓ∈J1,dK\{ℓ0}
eℓ−meℓ0

]∥

∥

∥

B,p,q
= 0.

The following results give a strong law and convergence in Lp for stationary random fields.

Theorem 2.8 (Law of large numbers on rectangles). Let (Xi)i∈Zd be a strictly stationary random field

taking values in a separable r-smooth Banach space (B, ‖·‖B). and let (Fi)i∈Zd be a commuting filtration

such that (2.15) is satisfied. Suppose that (2.19) and (2.20) hold with q = d− 1 and that

(2.21)
∑

k∈Zd

‖Pk (X0)‖B,p,d−1 < ∞.

Then

(2.22) lim
N→∞

sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

= 0 almost surely.

The corresponding result for sums over squares reads as follows.

Theorem 2.9 (Law of large numbers on squares). Let (Xi)i∈Zd be a strictly stationary random field

taking values in a separable r-smooth Banach space (B, ‖·‖B). and let (Fi)i∈Zd be a commuting filtration

such that (2.15) is satisfied. Suppose that (2.19) and (2.20) hold with q = 0 and that

(2.23)
∑

k∈Zd

‖Pk (X0)‖B,p < ∞.

Then

(2.24) lim
n→∞

1

nd/p

∥

∥

∥

∥

∥

∥

∑

14i4n1

Xi

∥

∥

∥

∥

∥

∥

B

= 0 almost surely.

A similar result can be formulated for the convergence in Lp.
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Theorem 2.10 (Convergence in Lp). Let (Xi)i∈Zd be a strictly stationary random field taking values

in a separable r-smooth Banach space (B, ‖·‖B), 1 6 p < r, and let (Fi)i∈Zd be a commuting filtration

such that (2.15) is satisfied. Suppose that (2.19) and (2.20) hold with q = 0 and that

(2.25)
∑

k∈Zd

‖Pk (X0)‖B,p < ∞.

Then

(2.26) lim
N→∞

sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B,p

= 0.

3. Weak and strong law of large numbers for functions of independent Bernouilli

shifts

In this section, we will provide a Marcinkiewicz strong law of large numbers and convergence in Lp (B)

of normalized partials sums of random fields having the form

(3.1) Xi = g

(

f1

(

(

ε
(1)
i1−u1

)

u1∈Z

)

, . . . , fd

(

(

ε
(d)
id−ud

)

ud∈Z

))

,

where g : Rd → B is Hölder continuous with exponent α, that is, there exists a constant C such that for

each x1, . . . , xd, y1, . . . , yd ∈ R,

(3.2) ‖g (x1, . . . , xd)− g (y1, . . . , yd)‖B 6 C

d
∑

ℓ=1

|xℓ − yℓ|
α ,

(

ε
(ℓ)
uℓ

)

uℓ∈Z
are mutually independent i.i.d. sequences and f1, . . . , fd are measurable functions defined on

RZd
and taking values in R.

The random fields defined via (3.1) are strictly stationary and the filtration (Fi)i∈Zd given by

(3.3) Fi = σ
(

ε(1)u1
, u1 6 i1, . . . , ε

(d)
ud

, ud 6 id

)

is commuting. We would like to apply the results of Subsection 2.2. However, the assumption that for

each ℓ ∈ J1, dK and jk, k ∈ J1, dK\{ℓ}, E
[

Xi |
⋂

jℓ∈Z
Fj

]

= 0 may not be satisfied in most cases. Indeed,

let B = R, g (x1, x2) = x1 + x2 , the maps f1, f2 are projections on the coordinate of index zero and
(

ε
(1)
u1

)

u1∈Z
,
(

ε
(2)
u2

)

u2∈Z
are centered independent i.i.d. sequences, then E

[

Xi1,i2 |
⋂

j2∈Z
Fi1,j2

]

= ε
(1)
i1

.

To overcome this problem, we define for a non-empty subset J of J1, dK the σ-algebra

(3.4) GJ := σ
(

ε(j)uj
, uj ∈ Z, j ∈ J

)

,

and G∅ is the trivial σ-algebra. We then define

(3.5) XI
i :=

∑

J⊂I

(−1)|I|+|J |
E [Xi | GJ ] .

Notice that for each J ⊂ I, E [Xi | GJ ] = E
[

X∑

ℓ∈I iℓeℓ
| GJ

]

hence the coordinates of i which do not

belong to I do not play any role. For this reason, we write

(3.6) XI
iI

=
∑

J⊂I

(−1)|I|+|J |
E [Xi | GJ ] , iI =

∑

ℓ∈I

iℓeℓ.

Moreover, if X0 is such that ‖X0‖B,p,q < ∞, then the random field
(

XI
iI

)

iI∈ZI
satisfies (2.19) and (2.20)

with the filtration (Fi)i∈Zd replaced by (FiI )iI∈ZI . Finally, notice that Xi =
∑

I⊂J1,dK X
I
i . Therefore,
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it is possible to apply Theorems 2.8, 2.9 and 2.10 to each random field
(

XI
iI

)

iI∈ZI
in order to derive a

law of large numbers.

The appropriated normalization depends on an integer d0 defined as follows: for some subset I0

of cardinality d0,
∥

∥

∥
XI0

0

∥

∥

∥

B,1
6= 0 and for each set I of cardinality strictly smaller than d0, one has

∥

∥XI
0

∥

∥

B,1
= 0. We then define for n ∈ (N \ {0})d,

(3.7) πd0,p (n) = max
I:I⊂J1,dK,Card(I)=d0

∏

ℓ∈I

n
1/p
ℓ

∏

ℓ′∈J1,dK\I

nℓ′ .

When all the coordinates of n are equal, say to N , one has πd0,p (n) = πd0,p (N1) = Nd0/p+d−d0 .

In the previous example, if
∥

∥

∥
ε
(1)
0

∥

∥

∥

R,1
6= 0, one has d0 = 1 and if Xi1,i2 = ε

(1)
i1

ε
(2)
i2

then d0 = 2. In higher

dimension, for a prescribed D, one can construct similar examples with products over D coordinates in

order to get d0 = D.

It turns out that we can formulate a condition in terms of the measure of physical dependence

introduced in [36]. We define for i ∈ Z,

(3.8) δ
(ℓ)
B,p,q (i) :=

∥

∥

∥

∥

fℓ

(

(

ε
(ℓ),∗
i−uℓ

)

uℓ∈Z

)

− fℓ

(

(

ε
(ℓ)
i−uℓ

)

uℓ∈Z

)∥

∥

∥

∥

B,p,q

,

where ε
(ℓ),∗
i−uℓ

= ε
(ℓ)
i−uℓ

if uℓ 6= i and ε
(ℓ),∗
0 is a random variable independent of the sequence

(

ε
(ℓ)
u

)

u∈Z
and

has the same distribution as ε
(ℓ)
0 .

We are now in position to state a strong law of large numbers for random fields of the form (3.1).

Theorem 3.1 (Law of large numbers on rectangles). Let (Xi)i∈Zd be a strictly stationary random field

having the form (3.1) and let α ∈ (0, 1] satisfying (3.2). Let 1/α < p < r. Suppose that

(3.9)
∑

i∈Z

|i|d−1
(

δ
(ℓ)
B,pα,d−1 (i)

)α
< ∞.

Then

(3.10) lim
N→∞

sup
n<1,maxn>N

1

πd0,p (n)

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

= 0 almost surely.

Theorem 3.2 (Law of large numbers on squares). Let (Xi)i∈Zd be a strictly stationary random field

having the form (3.1) and let α ∈ (0, 1] satisfying (3.2). Let 1/α < p < r. Suppose that for each

ℓ ∈ J1, dK,

(3.11)
∑

i∈Z

|i|d−1
(

δ
(ℓ)
B,pα (i)

)α
< ∞.

Then

(3.12) lim
n→∞

1

nd0/p+d−d0

∥

∥

∥

∥

∥

∥

∑

14i4n1

Xi

∥

∥

∥

∥

∥

∥

B

= 0 almost surely.

Theorem 3.3 (Convergence in Lp). Let (Xi)i∈Zd be a strictly stationary random field having the form

(3.1) and let α ∈ (0, 1] satisfying (3.2). Let 1/α < p < r. Suppose that for each ℓ ∈ J1, dK,

(3.13)
∑

i∈Z

|i|d−1
(

δ
(ℓ)
B,pα (i)

)α
< ∞.
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Then

(3.14) lim
N→∞

sup
n<1,maxn>N

1

πd0,p (n)

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B,p

= 0.

4. Weak and strong law of large numbers for functions of independent random fields

In this Section, we study the case where (Xi)i∈Zd has the form

(4.1) Xi = f
(

(εi−k)k∈Zd

)

,

where f : RZd
→ B is measurable, (B, ‖·‖B) is a separable r-smooth Banach space and (εk)k∈Zd is an

i.i.d. random field. An approach via approximation by m-dependent random fields can be done. In order

to quantify this dependence, we will use the natural extension of the physical dependence measure to

random fields, which is defined as

(4.2) δB,p,q (i) :=
∥

∥

∥
f
(

(

ε∗i−k

)

k∈Zd

)

− f
(

(εi−k)k∈Zd

)

∥

∥

∥

B,p,q
, i ∈ Zd,

where ε∗u = εu if u 6= 0 and ε∗
0
= ε′

0
, where ε′

0
is independent of (εu)u∈Zd and has the same distribution

as ε0.

For i ∈ Zd, we denote by ‖i‖∞ the quantity maxℓ∈J1,dK |iℓ|. We are now in position to state a strong

law of large numbers for random fields of the form (4.1).

Theorem 4.1 (Law of large numbers on rectangles). Let (B, ‖·‖B) be a separable r-smooth Banach

space and let 1 < p < r. Let (Xi)i∈Zd be a centered random field admitting the representation (4.1).

Suppose that

(4.3)
∞
∑

k=1

kd(1−1/p)





∑

i:‖i‖∞=k

(δB,p,d−1 (i))
p





1/p

< ∞.

Then

(4.4) lim
N→∞

sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

= 0 a.s..

Theorem 4.2 (Law of large numbers on squares). Let (B, ‖·‖B) be a separable r-smooth Banach space

and let 1 < p < r. Let (Xi)i∈Zd be a centered random field admitting the representation (4.1). Suppose

that

(4.5)

∞
∑

k=1

kd(1−1/p)





∑

i:‖i‖∞=k

(δB,p (i))
p





1/p

< ∞.

Then

(4.6) lim
n→∞

1

nd/p

∥

∥

∥

∥

∥

∥

∑

14i4n1

Xi

∥

∥

∥

∥

∥

∥

B

= 0 a.s..

Theorem 4.3 (Convergence in Lp). Let (B, ‖·‖B) be a separable r-smooth Banach space and let 1 <

p < r. Let (Xi)i∈Zd be a centered random field admitting the representation (4.1). Suppose that

(4.7)
∞
∑

k=1

kd(1−1/p)





∑

i:‖i‖∞=k

(δB,p (i))
p





1/p

< ∞.
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Then

(4.8) lim
N→∞

sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B,p

= 0.

We provide an application of the previous result to Hölderian functions of a linear random field,

which are represented as

(4.9) Xi = g





∑

k∈Zd

Ak (εi−k)



 ,

where g : B → B is α-Hölder continuous for some α ∈ (0, 1], that is, there exists a constant K (g) such

that for each x, x′ ∈ B,

(4.10)
∥

∥g (x)− g
(

x′
)∥

∥

B
6 K (g)

∥

∥x− x′
∥

∥

α

B
,

(B, ‖·‖B) is a separable r-smooth Banach space, (εu)u∈Zd is i.i.d. and B-valued, ε0 belongs to Lp for

some 1 < p < r, Ak : B → B is a linear bounded operator,
∑

k∈Zd ‖Ak‖
pα
B(B) < ∞, where ‖Ak‖B(B) =

supu∈B,u 6=0 ‖Ak (u)‖B / ‖u‖B.

Corollary 4.4. Let B be a separable r-smooth Banach space and 1 < p < r. Let (Xi)i∈Zd be a random

field defined as in (4.9). Suppose that pα > 1 and that

(4.11)

∞
∑

k=1

kd(1−1/p)





∑

i:‖i‖∞=k

‖ai‖
pα
B(B)





1/p

< ∞.

• If ‖ε0‖B,pα < ∞, then

(4.12) lim
N→∞

sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

(Xi − E [Xi])

∥

∥

∥

∥

∥

∥

B,p

= 0,

and

(4.13) lim
N→∞

sup
n>N

1

nd/p

∥

∥

∥

∥

∥

∥

∑

14i4n1

(Xi − E [Xi])

∥

∥

∥

∥

∥

∥

B

= 0 a.s..

• If ‖ε0‖B,pα,d−1 < ∞, then

(4.14) lim
N→∞

sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

(Xi − E [Xi])

∥

∥

∥

∥

∥

∥

B

= 0 a.s..

5. Proofs

5.1. Proof of Theorem 2.6. It suffices to prove that there exists a constant C (B, d, p) such that for

each identically distributed orthomartingale difference random field (Di)i∈Zd and each positive t,

(5.1)
∑

N>1

P

(

max
16n62N+1

‖Sn1‖B > 2dN/pt

)

6 C (B, d, p) t−p ‖D0‖
p
B,p .

Replacing Di by tDi, it suffices to prove (5.1) for t = 1. Define for ℓ > 1 the set

(5.2) Iℓ :=
{

i ∈ Zd, i < 1,max i = ℓ
}

.
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and

(5.3) dℓ =
∑

i∈Iℓ

Di.

For N > 1, let

(5.4) d′N,ℓ :=
∑

i∈Iℓ

∑

J⊂J1,dK

(−1)|J | E
[

Di1‖Di‖B62Nd/p | Fi−1J

]

,

(5.5) d′′N,ℓ :=
∑

i∈Iℓ

∑

J⊂J1,dK

(−1)|J | E
[

Di1‖Di‖B>2Nd/p | Fi−1J

]

.

The orthomartingale property of (Di)i∈Zd guarantees that dℓ = d′N,ℓ + d′′N,ℓ. Therefore, it suffices to

prove that

(5.6)
∑

N>1

P

(

max
16n62N

∥

∥

∥

∥

∥

n
∑

ℓ=1

d′N,ℓ

∥

∥

∥

∥

∥

B

> 2dN/p

)

6 C (B, d, p) ‖D0‖
p
B,p and

(5.7)
∑

N>1

P

(

max
16n62N

∥

∥

∥

∥

∥

n
∑

ℓ=1

d′′N,ℓ

∥

∥

∥

∥

∥

B

> 2dN/p

)

6 C (B, d, p) ‖D0‖
p
B,p .

Observe that for a fixed N > 1, the sequence
(

d′N,ℓ

)2N

ℓ=1
is a martingale difference sequence, Doob’s

inequality combined with Proposition A.1 gives that

(5.8) P

(

max
16n62N

∥

∥

∥

∥

∥

n
∑

ℓ=1

d′N,ℓ

∥

∥

∥

∥

∥

B

> 2dN/p

)

6 2−rdN/p

(

r

r − 1

)r

C (B, 1)
2N
∑

ℓ=1

E
[

∥

∥d′N,ℓ

∥

∥

r

B

]

.

Moreover, using the orthomartingale property of
(

∑

J⊂J1,dK (−1)|J | E
[

Di1‖Di‖B62Nd/p | Fi−1J

])

i∈Zd
fol-

lowed by the triangle inequality and the fact that (Di)i∈Zd is identically distributed, one gets

(5.9) P

(

max
16n62N

∥

∥

∥

∥

∥

n
∑

ℓ=1

d′N,ℓ

∥

∥

∥

∥

∥

B

> 2dN/p

)

6 2−rdN/p

(

r

r − 1

)r

C (B, 1)r C (B, d)r
2N
∑

ℓ=1

∑

i∈Iℓ

E





∥

∥

∥

∥

∥

∥

∑

J⊂J1,dK

(−1)|J | E
[

Di1‖Di‖B62Nd/p | Fi−1J

]

∥

∥

∥

∥

∥

∥

r

B





6 2Nd(1−r/p)

(

r2d

r − 1

)r

C (B, 1)r C (B, d)r E
[∥

∥

∥
D01‖D0‖B62Nd/p

∥

∥

∥

r

B

]

.

Then (5.6) follows from inequality (B.1).

Let us show (5.7). Using max16n62N

∥

∥

∥

∑n
ℓ=1 d

′′
N,ℓ

∥

∥

∥

B
6
∑2N

ℓ=1

∥

∥

∥
d′′N,ℓ

∥

∥

∥

B
and Markov’s inequality gives

P

(

max
16n62N

∥

∥

∥

∥

∥

n
∑

ℓ=1

d′′N,ℓ

∥

∥

∥

∥

∥

B

> 2dN/p

)

6 2−dN/p
2N
∑

ℓ=1

E





∥

∥

∥

∥

∥

∥

∑

i∈Iℓ

∑

J⊂J1,dK

(−1)|J | E
[

Di1‖Di‖B>2Nd/p | Fi−1J

]

∥

∥

∥

∥

∥

∥

B



 .

Then using the triangle inequality and the fact that (Di)i∈Zd is identically distributed gives

(5.10) P

(

max
16n62N

∥

∥

∥

∥

∥

n
∑

ℓ=1

d′′N,ℓ

∥

∥

∥

∥

∥

B

> 2dN/p

)

6 2d−dN(1−1/p)2NE
[

‖D0‖B 1‖D0‖B>2dN/p

]

.

and (5.7) follows from inequality (B.2). This ends the proof of Theorem 2.6.
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5.2. Proof of Theorem 2.7. The proof will be done via a truncation argument. Let C (B, d, p) be like

in Corollary A.2. Fix a positive ε and choose R such that

(5.11)
∥

∥

∥D01‖D0‖B>R

∥

∥

∥

B,p
6 2−d−1ε/C (B, d, p) .

Define

(5.12) D′
i :=

∑

I⊂J1,dK

(−1)|I| E
[

Di1‖Di‖B6R || Fi−1I

]

,D′′
i :=

∑

I⊂J1,dK

(−1)|I| E
[

Di1‖Di‖B>R || Fi−1I

]

.

By the orthomartingale property of Di, one has D′
i +D′′

i = Di. Consequently, for each n < 1,

(5.13) |N |−1/p max
14n4N

‖Sn‖B 6 |N |−1/p max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

D′
i

∥

∥

∥

∥

∥

∥

B

+ |N |−1/p max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

D′′
i

∥

∥

∥

∥

∥

∥

B

.

For the first term of the right hand side of (5.13), we use ‖·‖B,p 6 ‖·‖B,r and Proposition A.1 in order

to derive that

(5.14) |N |−1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

D′
i

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

6 C (B, d, p) |N |−1/p





∑

14i4N

∥

∥D′
i

∥

∥

r

B,r





1/r

.

Moreover, by definition of D′
i, one has

(5.15)
∥

∥D′
i

∥

∥

B,r
6 2d

∥

∥

∥Di1‖Di‖B6R

∥

∥

∥

B,r
= 2d

∥

∥

∥D01‖D0‖B6R

∥

∥

∥

B,r

where we used the fact that the random field (Di)i∈Zd is identically distributed. We thus infer the

bound

(5.16) |N |−1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

D′
i

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

6 C (B, d, p) 2d |N |1/r−1/p
∥

∥

∥
D01‖D0‖B6R

∥

∥

∥

B,r
.

Consequently, we can find N0 such that if maxN > N0, then

(5.17) |N |−1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

D′
i

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

< ε/2.

For the second term of the right hand side of (5.13), we apply Corollary A.2 and get that

(5.18) |N |−1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

D′′
i

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

6 C (B, d, p) |N |−1/p





∑

14i4N

∥

∥D′′
i

∥

∥

p

B,p





1/p

.

The triangle inequality combined with the identical distribution of
(

Di1‖Di‖B>R

)

i∈Zd
and (5.11) shows

that

(5.19) |N |−1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

D′′
i

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

< ε/2.

The combination of (5.13), (5.17) and (5.19) concludes the proof of Theorem 2.7.
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5.3. Proof of Theorem 2.8. It suffices to prove that for each positive ε,

(5.20) lim
N→∞

P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

> ε



 = 0.

Let us define

(5.21) X
(K)
i :=

∑

k:|k−i|∞6K

Pi+k (Xi) .

By assumption, the following convergence holds;

(5.22) lim
K→∞

∥

∥

∥

∥

∥

∥

Xi −
∑

k∈Zd:‖k‖∞6K

Pi+k (Xi)

∥

∥

∥

∥

∥

∥

B,p,d−1

= 0,

where ‖·‖p,q is defined as in (2.4). By (2.8), one obtains

(5.23) P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

> ε



 6 P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

X
(K)
i

∥

∥

∥

∥

∥

∥

B

> ε/2





+ (cpε/2)
−p

∥

∥

∥

∥

∥

∥

sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

k∈Zd:‖k‖∞>K

∑

14i4n

Pi+k (Xi)

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

R,p,w

and the triangle inequality for the norm ‖·‖R,p,w implies

(5.24) P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

> ε



 6 P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

X
(K)
i

∥

∥

∥

∥

∥

∥

B

> ε/2





+ (cpε/2)
−p





∑

k∈Zd:‖k‖∞>K

∥

∥

∥

∥

∥

∥

sup
n<1,maxn>N

1

|n|1/p

∑

14i4n

Pi+k (Xi)

∥

∥

∥

∥

∥

∥

B,p,w





p

.

Since (Pk+i (Xi))i∈Zd is an identically distributed orthomartingale difference random field, Theorem 2.5

gives

(5.25) P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

> ε



 6 P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

X
(K)
i

∥

∥

∥

∥

∥

∥

B

> ε/2





+ (cpε/2)
−p





∑

k∈Zd:‖k‖∞>K

‖Pk (X0)‖B,p,d−1





p

and since we can choose K such that the last term can be made as small as we wish, it suffices to show

that for each K,

(5.26) lim
N→∞

P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

X
(K)
i

∥

∥

∥

∥

∥

∥

B

> ε



 = 0,

which reduces, in view of the Borel-Cantelli lemma, to prove that

(5.27)
∑

N∈Nd

P





1

|2N |1/p
max

14n42N

∥

∥

∥

∥

∥

∥

∑

14i4n

X
(K)
i

∥

∥

∥

∥

∥

∥

B

> ε



 < ∞.
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By the results of Section 4 in [32], we can express X
(K)
i as

(5.28) X
(K)
i =

∑

I⊂J1,dK

∏

ℓ∈J1,dK\I

(Id−Ueℓ)D
(I)
i ,

where for I ( J1, dK,
(

D
(I)
i

)

iℓ∈Z,ℓ∈I
is a strictly stationary orthomartingale difference random field,

D
(I)
0

∈ Lp,d−1. In view of (5.27) and (5.28), it suffices to prove that for each I ⊂ J1, dK,

(5.29)
∑

N∈Nd

P





1

|2N |1/p
max

14n42N

∥

∥

∥

∥

∥

∥

∑

14i4n

U i
∏

ℓ∈J1,dK\I

(Id−Ueℓ)D
(I)
0

∥

∥

∥

∥

∥

∥

B

> ε



 < ∞.

For I = J1, dK, this follows from Theorem 2.5 and for I = ∅, one derives from

(5.30) max
14n42N

∥

∥

∥

∥

∥

∥

∑

14i4n

U i
∏

ℓ∈J1,dK

(Id−Ueℓ)D
(∅)
0

∥

∥

∥

∥

∥

∥

B

6 max
14n42N+1

Un
(∥

∥

∥
D

(∅)
0

∥

∥

∥

B

)

that

(5.31)
∑

N∈Nd

P





1

|2N |1/p
max

14n42N

∥

∥

∥

∥

∥

∥

∑

14i4n

U i
∏

ℓ∈J1,dK

(Id−Ueℓ)D
(∅)
0

∥

∥

∥

∥

∥

∥

B

> ε





6 2d
∑

N∈Nd

∣

∣2N
∣

∣P
(∥

∥

∥
D

(∅)
0

∥

∥

∥

B
> ε

∣

∣2N
∣

∣

1/p
)

and using

(5.32) Card

({

N ∈ Nd :

d
∑

ℓ=1

Nℓ = k

})

6 cdk
d−1,

one finds that

(5.33)
∑

N∈Nd

P





1

|2N |1/p
max

14n42N

∥

∥

∥

∥

∥

∥

∑

14i4n

U i
∏

ℓ∈J1,dK

(Id−Ueℓ)D
(∅)
0

∥

∥

∥

∥

∥

∥

B

> ε





6 cd

∞
∑

k=1

2kkd−1P
(∥

∥

∥D
(∅)
0

∥

∥

∥

B
> ε2k/p

)

,

which is finite using D
(∅)
0

∈ Lp,d−1 and (B.3).

Since the role played by the measure preserving maps is symmetric, it suffices to show that for each

ℓ0 ∈ J1, d− 1K,

(5.34)
∑

N∈Nd

P





1

|2N |1/p
max

14n42N

∥

∥

∥

∥

∥

∥

∑

14i4n

U i
∏

ℓ∈Jℓ0+1,dK

(Id−Ueℓ)D
(J1,ℓ0K)
0

∥

∥

∥

∥

∥

∥

B

> ε



 < ∞.

In order to ease the notations, we write for n = (nℓ)ℓ∈J1,dK, n′ ∈ Nℓ0 := (nℓ)ℓ∈J1,ℓ0K and n′′ :=

(nℓ)ℓ∈Jℓ0+1,dK, and similar notations for i′, i′′. We start from

(5.35) max
14n42N

∥

∥

∥

∥

∥

∥

∑

14i4n

U i
∏

ℓ∈Jℓ0+1,dK

(Id−Ueℓ)D
(J1,ℓ0K)
0

∥

∥

∥

∥

∥

∥

B
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6 max
1′′4n′′42N

′′+1′′
Un′′

max
1′4n′42N

′

∥

∥

∥

∥

∥

∥

∑

1′4i′4n′

U i′D
(J1,ℓ0K)
0

∥

∥

∥

∥

∥

∥

B

and we are therefore reduced to show that

(5.36)
∑

N∈Nd

∣

∣

∣
2N

′′
∣

∣

∣
P



 max
1′4n′42N

′

∥

∥

∥

∥

∥

∥

∑

1′4i′4n′

U i′D
(J1,ℓ0K)
0

∥

∥

∥

∥

∥

∥

B

> ε
∣

∣2N
∣

∣

1/p



 < ∞

for each positive ε. To do so, define for each N ∈ Nd the orthomartingale difference random fields
(

DN,0 ◦ T
i′
)

i′∈Zℓ0
and

(

D′
N,0 ◦ T

i′
)

i′∈Zℓ0
by

(5.37) DN,0 :=
∑

J⊂J1,ℓ0K

(−1)Card(J)
E

[

D
(J1,ℓ0K)
0

1∥
∥

∥

D
(J1,ℓ0K)
0

∥

∥

∥

B

6|2N |1/p
| F0−1J

]

,

(5.38) D′
N,0 :=

∑

J⊂J1,ℓ0K

(−1)Card(J)
E

[

D
(J1,ℓ0K)
0

1∥
∥

∥
D

(J1,ℓ0K)
0

∥

∥

∥

B

>|2N |1/p
| F0−1J

]

.

The equality D
(J1,ℓ0K)
0

= DN,0 +D′
N,0 reduces the proof of (5.36) to

(5.39)
∑

N∈Nd

∣

∣

∣2
N ′′
∣

∣

∣P



 max
1′4n′42N

′

∥

∥

∥

∥

∥

∥

∑

1′4i′4n′

U i′DN,0

∥

∥

∥

∥

∥

∥

B

> ε
∣

∣2N
∣

∣

1/p



 < ∞ and

(5.40)
∑

N∈Nd

∣

∣

∣
2N

′′
∣

∣

∣
P



 max
1′4n′42N

′

∥

∥

∥

∥

∥

∥

∑

1′4i′4n′

U i′D′
N,0

∥

∥

∥

∥

∥

∥

B

> ε
∣

∣2N
∣

∣

1/p



 < ∞.

In order to show (5.39), we use Corollary A.2 with p = r combined with the identical distribution of
(

U i′DN,0

)

i′∈Zℓ0
and derive that

(5.41)
∣

∣

∣
2N

′′
∣

∣

∣
P



 max
1′4n′42N

′

∥

∥

∥

∥

∥

∥

∑

1′4i′4n′

U i′DN,0

∥

∥

∥

∥

∥

∥

B

> ε
∣

∣2N
∣

∣

1/p





6 ε−rC (B, d, r)
∣

∣2N
∣

∣

−r/p ∣
∣2N

∣

∣ ‖DN,0‖
r
B,r

6 ε−rC (B, d, r) 2ℓ0
∣

∣2N
∣

∣

(1−r/p)
∥

∥

∥

∥

D
(J1,ℓ0K)
0

1∥
∥

∥
D

(J1,ℓ0K)
0

∥

∥

∥

B

6|2N |1/p

∥

∥

∥

∥

r

B,r

.

Then by (5.32), we reduce the proof of (5.39) to

(5.42)
∞
∑

k=1

2k(1−r/p)kd−1

∥

∥

∥

∥

D
(J1,ℓ0K)
0

1∥
∥

∥
D

(J1,ℓ0K)
0

∥

∥

∥

B

62k/p

∥

∥

∥

∥

r

B,r

< ∞,

which follows from (B.4). In order to show (5.40), we start by Markov’s inequality, which gives

∣

∣

∣
2N

′′
∣

∣

∣
P



 max
1′4n′42N

′

∥

∥

∥

∥

∥

∥

∑

1′4i′4n′

U i′D′
N,0

∥

∥

∥

∥

∥

∥

B

> ε
∣

∣2N
∣

∣



 6 2dε−1
∣

∣2N
∣

∣E

[

∥

∥

∥
D

(J1,ℓ0K)
0

∥

∥

∥

B
1∥
∥

∥

D
(J1,ℓ0K)
0

∥

∥

∥

B

>|2N |1/p

]

,

then we sum over N ∈ Nd, use (5.32) in order to reduce the proof of (5.40) to that of

(5.43)

∞
∑

k=0

2kkd−1E

[

∥

∥

∥D
(J1,ℓ0K)
0

∥

∥

∥

B
1∥
∥

∥
D

(J1,ℓ0K)
0

∥

∥

∥

B

>2k/p

]

< ∞.
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Then we use (B.5) to get (5.40) and conclude the proof of Theorem 2.8.

5.4. Proof of Theorem 2.9. The proof follows essentially the lines of that of Theorem 2.8 hence we

will mention only the crucial steps. The reduction to the case where the random field (Xi)i∈Zd admits

the representation (5.28) works in an analoguous way, replacing each occurence of supn<1,maxn>N by a

supremum over the n having identical coordinates. The analogue of (5.29) reads as

(5.44)

∞
∑

N=1

P





1

2Nd/p
max

16n62N

∥

∥

∥

∥

∥

∥

∑

14i4n1

U i
∏

ℓ∈J1,dK\I

(Id−Ueℓ)D
(I)
0

∥

∥

∥

∥

∥

∥

B

> ε



 < ∞.

For I = J1, dK, this follows from Theorem 2.6 and for I = ∅, we use the bound

(5.45)

∥

∥

∥

∥

∥

∥

∑

14i4n1

U i
∏

ℓ∈J1,dK

(Id−Ueℓ)D
(∅)
0

∥

∥

∥

∥

∥

∥

B

6 U1 max
J⊂J1,dK

Un1J

(∥

∥

∥D
(∅)
0

∥

∥

∥

B

)

from which it follows that

(5.46) P





1

2Nd/p
max

16n62N

∥

∥

∥

∥

∥

∥

∑

14i4n1

U i
∏

ℓ∈J1,dK\I

(Id−Ueℓ)D
(I)
0

∥

∥

∥

∥

∥

∥

B

> ε



 6 2NdP
(∥

∥

∥
D

(∅)
0

∥

∥

∥

B
> ε2Nd/p

)

and the convergence of the series in (5.44) is a consequence of the fact that
∥

∥

∥
D

(∅)
0

∥

∥

∥

B
belongs to Lp.

For ∅ ( I ( J1, dK, we use the same symmetry argument to deal with the case I = J1, ℓ0K for some

ℓ0 ∈ J1, d− 1K. Denoting as before i′ = (iℓ)ℓ∈J1,ℓ0K for i = (iℓ)ℓ∈J1,dK, we have

(5.47)

max
16n62N

∥

∥

∥

∥

∥

∥

∑

14i4n1

U i
∏

ℓ∈Jℓ0+1,dK

(Id−Ueℓ)D
(I)
0

∥

∥

∥

∥

∥

∥

B

6 U1
′′

max
J⊂Jℓ0+1,dK

max
16n62N

Un1J

∥

∥

∥

∥

∥

∥

∑

1′4i′4n1′

D
(J1,ℓ0K)
0

∥

∥

∥

∥

∥

∥

B

hence

(5.48) P



 max
16n62N

∥

∥

∥

∥

∥

∥

∑

14i4n1

U i
∏

ℓ∈J1,dK\I

(Id−Ueℓ)D
(I)
0

∥

∥

∥

∥

∥

∥

B

> ε2Nd/p





6 2d+ℓ0NP



 max
16n62N

Un1J

∥

∥

∥

∥

∥

∥

∑

1′4i′4n1′

D
(J1,ℓ0K)
0

∥

∥

∥

∥

∥

∥

B

> ε2Nd/p



 .

The control of the tail is done in a similar way, this time with 2Nd/p as a truncation level, which leads to

show the convergence of analogous series as in (5.42) and (5.43) but without the term kd−1 and where

k is a multiple of d, which follows from the fact that
∥

∥

∥D
(J1,ℓ0K)
0

∥

∥

∥

B
belongs to Lp. This ends the proof

Theorem 2.9.

5.5. Proof of Theorem 2.10. DefineX
(K)
i as in (5.21). Observe thatXi = X

(K)
i +

∑

k:|k−i|∞>K Pk (Xi),

hence

(5.49)
1

|N |1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

6
1

|N |1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

X
(K)
i

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

+
∑

k:|k−i|∞>K

1

|N |1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

Pi+k (Xi)

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

.
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Moreover, using Corollary A.2 then (2.18), one has

1

|N |1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

Pi+k (Xi)

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

6
C (B, d, p)

|N |1/p





∑

14i4N

‖Pi+k (Xi)‖
p
B,p





1/p

(5.50)

6 C (B, d, p) ‖Pk (X0)‖B,p(5.51)

hence in view of assumption (2.25), it suffices to prove that for each K,

(5.52) lim
R→∞

sup
N<1,maxN>R

1

|N |1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

U iX
(K)
0

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

= 0.

In view of the decomposition (5.28), this reduces to check that for each I ⊂ J1, dK,

(5.53) lim
R→∞

sup
N<1,maxN>R

1

|N |1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

∏

ℓ∈J1,dK\I

(Id−Ueℓ)U iD
(I)
0

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

= 0.

The case I = J1, dK corresponds to Theorem 2.7. Moreover, for I = ∅, using
∥

∥maxj∈J ‖Yj‖B
∥

∥

p
6

Card (J)1/p maxj∈J ‖Yj‖B,p, one has
∥

∥

∥

∥

∥

∥

max
14i4N

∥

∥

∥

∥

∥

∥

∑

14i4n

∏

ℓ∈J1,dK

(Id−Ueℓ)D
(∅)
i

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

6 2d
∥

∥

∥

∥

max
14i4N+1

∥

∥

∥
U iD

(∅)
0

∥

∥

∥

B

∥

∥

∥

∥

p

(5.54)

6 2dτ + |N + 1|1/p
∥

∥

∥

∥

D
(∅)
0

1∥
∥

∥

D
(∅)
0

∥

∥

∥

B

>τ

∥

∥

∥

∥

p

(5.55)

hence (5.53) holds for I = ∅. Since the role played by the coordinates is symmetric, it suffices to treat

the case I = J1, ℓ0K for each ℓ0 ∈ J1, d−1K. For such an ℓ0, denote for i = (iℓ)ℓ∈J1,dK ∈ Nd, i′ := (iℓ)ℓ∈J1,ℓ0K

and i′′ := (iℓ)ℓ∈Jℓ0+1,dK and similarly for n′,n′′, 1′ and 1′′. One has

(5.56) max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

∏

ℓ∈J1,dK\I

(Id−Ueℓ)U iD
(I)
0

∥

∥

∥

∥

∥

∥

B

6 max
1′′4i′′4N ′′+1

U i′′ max
1′4n′4N ′

∥

∥

∥

∥

∥

∥

∑

1′4i′4n′

U i′D
(I)
0

∥

∥

∥

∥

∥

∥

B

.

and by Theorem 2.7, the family






MN ′ :=
1

|N ′|
max

1′4n′4N ′

∥

∥

∥

∥

∥

∥

∑

1′4i′4n′

U i′D
(I)
0

∥

∥

∥

∥

∥

∥

p

B

,N ′ ∈ Nℓ0







,

is uniformly integrable and limR→∞maxN ′:maxN ′>R ‖MN ′‖B,p = 0. With the observation that

AN :=
1

|N |1/p

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

∏

ℓ∈J1,dK\I

(Id−Ueℓ)U iD
(I)
0

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p

(5.57)

6
1

|N ′′|1/p
max

1′′4i′′4N ′′+1

U i′′M
1/p
N ′ ,(5.58)

one get

(5.59) AN 6 2p min

{

∥

∥

∥
M

1/p
N ′

∥

∥

∥

B,p
,

τ

|N ′′|1/p
+
∥

∥

∥
MN ′1‖M

N′‖
B
>τ

∥

∥

∥

B,p

}

.

This ends the proof of Theorem 2.7.
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5.6. Proof of the results of Section 3. As pointed out before the statements of theorems, we can

decompose the random field (Xi)i∈Zd as a sum indexed by subsets I of J1, dK of random fields whose

coordinates are the restriction of those of i to the set I, namely,

(5.60) Xi =
∑

I⊂J1,dK,Card(I)>d0

XI
iI
,

where XI
iI

is defined as in (3.6). Consequently, for each n < 1,

(5.61)
1

πd0,p (n)

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

6
∑

I⊂J1,dK,Card(I)>d0

1
∏

ℓ∈I n
1/p
i

∥

∥

∥

∥

∥

∥

∑

1I4iI4nI

XI
1I

∥

∥

∥

∥

∥

∥

B

.

We are thus reduced to show that conditions (3.13) and (3.9) imply that for each I ⊂ J1, dK having d0

or more elements, the random field
(

XI
iI

)

iI∈ZI
satisfies the assumptions of Theorems 2.8, 2.9 and 2.10.

By the symmetric role played by the coordinates, it suffices to show that (3.13) (respectively (3.9))

implies that for each ℓ0 ∈ Jd0, dK,

(5.62)
∑

k∈Zℓ0

∥

∥

∥
Pk

(

X
J1,ℓ0K
0

)∥

∥

∥

B,p
< ∞

(respectively

(5.63)
∑

k∈Zℓ0

∥

∥

∥
Pk

(

X
J1,ℓ0K
0

)∥

∥

∥

B,p,d−1
< ∞).

To do so, we shall first prove that for q > 0,

(5.64) ∀ℓ ∈ J1, dK,
∑

i∈Z

|i|d−1
(

δ
(ℓ)
B,pα,q (i)

)α
< ∞

implies that

(5.65)
∑

k∈Zd

‖Pk (X0)‖B,p,q < ∞,

then that (5.65) implies that for each ℓ0 ∈ Jd0, dK,

(5.66)
∑

k∈Zℓ0

∥

∥

∥Pk

(

X
J1,ℓ0K
0

)∥

∥

∥

B,p,q
< ∞.

• Proof that (5.64) implies (5.65).

First, observe that by commutativity of the operators Pkeℓ and the fact that ‖Pk−kℓeℓ (X0)‖B,p,q 6

2d−1 ‖X0‖B,p,q, we get that for each k ∈ Zd,

(5.67) ‖Pk (X0)‖B,p,q 6 min
16ℓ6d

‖Pkeℓ (X0)‖B,p,q .

Define the random variable X
(k,ℓ)
0

by

(5.68) X
(k,ℓ)
0

= g

(

f1

(

(

ε
∗,(1)
i1−u1

)

u1∈Z

)

, . . . , fd

(

(

ε
∗,(d)
id−ud

)

ud∈Z

))

,

where ε
∗,(ℓ′)
u = ε(ℓ

′) if ℓ 6= ℓ′, ε
∗,(ℓ)
u = εu for u 6= kℓ and ε

∗,(ℓ)
kℓ

= ε
′,(ℓ)
kℓ

. In other words, only

the random variable ε
(ℓ)
kℓ

is replaced by a copy independent of the sequences
(

ε
(q)
uq

)

uq∈Zd
. Since

Pkℓeℓ

(

X
(k,ℓ)
0

)

= 0, we get that

(5.69) ‖Pk (X0)‖B,p,q 6 2 min
16ℓ6d

∥

∥

∥X0 −X
(k,ℓ)
0

∥

∥

∥

B,p,q
.
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. Using Hölder regularity of g and inequality (A.8), we derive that

‖Pk (X0)‖B,p,q 6 2C min
16ℓ6d

∥

∥

∥

∥

∣

∣

∣

∣

fℓ

(

(

ε
(ℓ),∗
kℓ−uℓ

)

uℓ∈Z

)

− fℓ

(

(

ε
(ℓ)
kℓ−uℓ

)

uℓ∈Z

)∣

∣

∣

∣

α∥
∥

∥

∥

B,p,q

(5.70)

6 2Cκα,p,q min
16ℓ6d

∥

∥

∥

∥

fℓ

(

(

ε
(ℓ),∗
kℓ−uℓ

)

uℓ∈Z

)

− fℓ

(

(

ε
(ℓ)
kℓ−uℓ

)

uℓ∈Z

)∥

∥

∥

∥

α

B,pα,q

(5.71)

= 2Cκα,p,q min
16ℓ6d

(

δ
(ℓ)
B,pα,q (kℓ)

)α
.(5.72)

Defining ak := max16ℓ6d

(

δ
(ℓ)
B,pα,q (k)

)α
, we are thus reduced to prove that

∑

k∈Zd min16ℓ6d akℓ <

∞. To do so, take a bijective map τ : N → Z such that the sequence (bi)i∈N =
(

aτ(i)
)

i∈N
is

non-increasing. We have to show that
∑

i1,...,id∈N
ci1,...,id < ∞, where ci1,...,id = min16ℓ6d biℓ .

By invariance of ci1,...,id under permutation of the indexes i1, . . . , id, it suffices to prove that
∑

i1,...,id,06i1,...,id−16id
ci1,...,id < ∞. Since (bi)i>1 is non-increasing, we derive that for each id > 0,

∑

06i1,...,id−16id
6 bidi

d−1
d . Summing over id and using (5.64) allows us to derive (5.65).

• Proof that (5.65) implies (5.66)

From the definition of X
J1,ℓ0K
0

given in (3.6), the following equality holds for each k ∈ Zℓ0 :

(5.73) Pk

(

X
J1,ℓ0K
0

)

=
∑

K⊂J1,ℓ0K

(−1)Card(K)
∑

J⊂J1,ℓ0K

(−1)Card(J)
E [E [X0 | GJ ] | Fk−1K

] .

Observe that if J is such J1, ℓ0K\J contains some j0, then for each K ⊂ J1, ℓ0K such that j0 /∈ K,

(5.74) E [E [X0 | GJ ] | Fk−1K
] = E

[

E [X0 | GJ ] | Fk−1K∪{j0}

]

.

As a consequence, only the term for J = J1, ℓ0K in the right hand side of (5.73) remains and

using commutativity of (Fi)i∈Zd gives

(5.75) Pk

(

X
J1,ℓ0K
0

)

= (−1)ℓ0
∑

K⊂J1,ℓ0K

(−1)Card(K)
E
[

E [X0 || Fk−1K
] | GJ1,ℓ0K

]

and it follows that

(5.76)
∥

∥

∥
Pk

(

X
J1,ℓ0K
0

)∥

∥

∥

B,p,q
6

∥

∥

∥
Pk1,...,kℓ0 ,0,...,0

(X0)
∥

∥

∥

B,p,q
,

from which (5.66) can be easily derived.

This ends the proof of the results of Section 3.

5.7. Proof of the results of Section 4. The proof of the results of Section 4 will first require some

preliminary notations and intermediate results. Define for m > 0 and i ∈ Zd the random variables

(5.77) Yi,m = E [Xi | σ (εk : ‖k − i‖∞ 6 m)] , Xi,m = Yi,m − Yi,m−1

and Yi,−1 = 0. Then Xi =
∑∞

m=0 Xi,m and the convergence holds in the almost sure sense. For a fixed

m, define m′ := 2m + 1 and for a ∈ Zd such that 1 4 a 4 m′1, let Ia be set of elements i ∈ Zd such

that there exists j ∈ Zd for which i = m′j + a. Notice that (Xi,m)
i∈Ia

is an i.i.d. random field, or

equivalently, that
(

Xm′j+a,m
)

j∈Zd is an i.i.d. random field.

Also, observe that for each integer m > 0 and each n < 1, it is possible to bound the partial sums of

(Xi)i∈Zd over rectangles via partial sums of the i.i.d. random fields
(

Xm′j+a,m
)

j∈Zd , namely,

(5.78)

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

6
∑

14a4m′1

∑

δ∈{0,1}d

∥

∥

∥

∥

∥

∥

∥

∑

04j4⌊ 1
m′n⌋−δ

Xm′j+a,m

∥

∥

∥

∥

∥

∥

∥

B

,
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where for x = (xℓ)ℓ∈J1,dK ∈ Rd, ⌊x⌋ = (⌊xℓ⌋)ℓ∈J1,dK and for a real number t, ⌊t⌋ is the unique integer

satisfying ⌊t⌋ 6 t < ⌊t⌋+ 1. Indeed, since the sets Ia, 1 4 a 4 m′1 are pairwise disjoint, the following

inequality takes place

(5.79)

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

6
∑

14a4m′1

∥

∥

∥

∥

∥

∥

∑

14i4n,i∈Ia

Xi

∥

∥

∥

∥

∥

∥

B

.

Then we express i ∈ Ia as i = m′j + a and translate the inequalities 1 4 i 4 n as 0 4 j 4
⌊

m−1 (n− a)
⌋

. The sum over δ ∈ {0, 1}d comes from the fact that for each ℓ,
⌊

m−1 (nℓ − aℓ)
⌋

∈
{⌊

m−1nℓ

⌋

,
⌊

m−1nℓ

⌋

− 1
}

.

We will express bounds on norm of maximal functions in terms of some norm of X0,m. For this

reason, we need the following intermediate result.

Lemma 5.1. Let 1 < p 6 r and q > 0. There exists a constant C depending only on B, p and q such

that

(5.80) ‖X0,m‖
B,p,q 6 C





∑

i:‖i‖∞=m

(δB,p,q (i))
p





1/p

.

Proof. This follows the idea of proof of Corollary 1 in [10] and Corollary 1.5 in [12], which is to express

X0,m as a sum of a martingale difference sequence and apply a Burkholder type inequality, namely,

Proposition A.3 in the case d = 1. �

Proof of Theorem 4.1. We have to show that (4.8) implies that for each positive ε,

(5.81) lim
N→∞

P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

> ε



 = 0.

Using the decomposition Xi = Yi,M−1 +
∑∞

m=M Xi,m, we derive that

(5.82) P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi

∥

∥

∥

∥

∥

∥

B

> ε





6 P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Yi,M−1

∥

∥

∥

∥

∥

∥

B

>
ε

2



+ P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∞
∑

m=M

∑

14i4n

Xi,m

∥

∥

∥

∥

∥

∥

B

>
ε

2





6 P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Yi,M−1

∥

∥

∥

∥

∥

∥

B

>
ε

2



+ P





∞
∑

m=M

sup
n<1

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi,m

∥

∥

∥

∥

∥

∥

B

>
ε

2



 .

Observe that if ‖k‖∞ > M , then Pk (Y0,M−1) = 0 hence by Theorem 2.8, one has

(5.83) lim
N→∞

P



 sup
n<1,maxn>N

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Yi,M−1

∥

∥

∥

∥

∥

∥

B

>
ε

2



 = 0.

Using (2.8) and the triangle inequality for the norm ‖·‖B,p,w, it suffices to show that

(5.84)

∞
∑

m=1

∥

∥

∥

∥

∥

∥

sup
n<1

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi,m

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p,w

< ∞.
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To do so, we use (5.78) and replacing n by m′n′ + b, where 0 4 b 4 (m′ − 1) 1, we derive that for each

fixed m,
∥

∥

∥

∥

∥

∥

sup
n<1

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi,m

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p,w

6
∑

14a4m′1

∑

δ∈{0,1}d

∥

∥

∥

∥

∥

∥

sup
n′<0

sup
04b4(m′−1)1

1

|mn′ + b|1/p

∥

∥

∥

∥

∥

∥

∑

04j4n′−δ

Xm′j+a,m

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p,w

and by Theorem 2.5, that

(5.85)

∥

∥

∥

∥

∥

∥

sup
n<1

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi,m

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p,w

6 Cmd(1−1/p) ‖X0,m‖
B,p,d−1 .

We conclude by Lemma 5.1. �

Proof of Theorem 4.2. We have to show that (4.5) implies that for each positive ε,

(5.86) lim
N→∞

P



sup
n>N

1

nd/p

∥

∥

∥

∥

∥

∥

∑

14i4n1

Xi

∥

∥

∥

∥

∥

∥

B

> ε



 = 0.

By replacing in the beginning of proof of Theorem 4.1 the suprema supn<1,maxn>N by supn>N and n

by n1 we reduce the proof to

(5.87)

∞
∑

m=1

∥

∥

∥

∥

∥

∥

sup
n>1

1

nd/p

∥

∥

∥

∥

∥

∥

∑

14i4n1

Xi,m

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p,w

< ∞.

By (5.78) applied with n = n1, and by decomposing the supremum over n according to the remainder

of n for the Euclidean division by m′, we derive that

(5.88)

∥

∥

∥

∥

∥

∥

sup
n>1

1

nd/p

∥

∥

∥

∥

∥

∥

∑

14i4n1

Xi,m

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p,w

6
∑

14a4m′1

∑

δ∈{0,1}d

∥

∥

∥

∥

∥

∥

sup
N>1

(

1

Nm′

)d/p
∥

∥

∥

∥

∥

∥

∑

04j4N1+δ

Xm′j+a,m

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p,w

.

A minor modification of the proof of Theorem 2.6 shows that (2.12) holds with Sn1 replaced by
∑

04j4N1+δ Xm′j+a,m. Therefore, by (5.88),

(5.89)

∥

∥

∥

∥

∥

∥

sup
n>1

1

nd/p

∥

∥

∥

∥

∥

∥

∑

14i4n1

Xi,m

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

p,w

6 Cmd(1−1/p) ‖X0,m‖
B,p

and (5.87) follows from Lemma 5.1.

�

Proof of Theorem 4.3. Using similar arguments as at the beginning of the proof of Theorem 4.1, it

suffices to prove that

(5.90)

∞
∑

m=0

sup
n<1

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi,m

∥

∥

∥

∥

∥

∥

B,p

< ∞.

By (5.78), it is possible to bound
∥

∥

∑

14i4nXi,m

∥

∥

B,p
by the sum of md terms, each of them being the

‖·‖B,p-norm of an independent random field on a rectangle having at most
∏d

ℓ=1 (nℓ/m
′ + 1) elements

hence by Corollary A.2, we infer that

(5.91) sup
n<1

1

|n|1/p

∥

∥

∥

∥

∥

∥

∑

14i4n

Xi,m

∥

∥

∥

∥

∥

∥

B,p

6 Cmd(1−1/p) ‖X0,m‖
B,p .
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We conclude by Lemma 5.1. �

Proof of Corollary 4.4. In view of Theorems 4.1, 4.2 and 4.3, it suffices to prove that there exists a

constant C such that for each i ∈ Zd,

(5.92) δB,p,d−1 (i) 6 C ‖Ai‖
α
B(B) .

To do so, observe that by (4.10) and linearity of Ai, the following inequalities hold almost surely

(5.93) ‖Xi −X∗
i ‖B 6 K (g)

∥

∥

∥

∥

∥

∥

∑

k∈Zd

Ak (εi−k)−
∑

k∈Zd

Ak

(

ε∗i−k

)

∥

∥

∥

∥

∥

∥

α

B

= K (g)
∥

∥Ai (ε0)−Ai

(

ε′
0

)∥

∥

α

B
.

Since Ai is bounded, we infer that

(5.94) ‖Xi −X∗
i ‖B 6 K (g) ‖Ai‖

α
B(B)

(

‖ε0‖
α
B +

∥

∥ε′0
∥

∥

α

B

)

and we conclude by (A.8). �

A. Moment inequalities for orthomartingales

First recall the following, rewritten in terms of norm ‖·‖B,r.

Proposition A.1 (Proposition A.1 in [13]). Let (B, ‖·‖B) be a separable r-smooth Banach space. For

each d > 1, there exists a constant C (B) such that for each orthomartingale difference random field

(Di)i∈Zd,

(A.1)

∥

∥

∥

∥

∥

∥

∑

14i4n

Di

∥

∥

∥

∥

∥

∥

B,r

6 C (B, d)





∑

14i4n

‖Di‖
r
B,r





1/r

.

Keeping in mind that an r-smooth Banach space is also p-smooth for 1 < p 6 r, we derive the

following consequence of Proposition A.1 and iterations of Doob’s inequality.

Corollary A.2. Let (B, ‖·‖B) be a separable r-smooth Banach space and let 1 < p 6 r. For each d > 1,

there exists a constant C (B, d, p) such that for each orthomartingale difference random field (Di)i∈Zd,

(A.2)

∥

∥

∥

∥

∥

∥

max
14n4N

∥

∥

∥

∥

∥

∥

∑

14i4n

Di

∥

∥

∥

∥

∥

∥

B

∥

∥

∥

∥

∥

∥

R,p

6 C (B, d, p)





∑

14i4N

‖Di‖
p
B,p





1/p

.

We will also need to control the Orlicz-norm associated to the function ϕp,q defined in (2.5) of sums

of an martingale difference sequence.

Proposition A.3. Let (B, ‖·‖B) be a separable r-smooth Banach space. For each 1 < p 6 r and q > 0,

there exists a constant C (B, p, q) such that for each martingale difference sequence (Di)i>1,

(A.3)

∥

∥

∥

∥

∥

n
∑

i=1

Di

∥

∥

∥

∥

∥

B,p,q

6 C

(

n
∑

i=1

‖Di‖B,p,q

)1/p

.

Proof. By Lemma 2.2 in [7], we can find a constant K depending only on B and p such that for each

x > 0, β > 1 and δ ∈ (0, β − 1),

(A.4) P

(

max
16n6N

∥

∥

∥

∥

∥

n
∑

i=1

Di

∥

∥

∥

∥

∥

B

> βx

)

6

(

K (B) δ

β − δ − 1

)r

P

(

max
16n6N

∥

∥

∥

∥

∥

n
∑

i=1

Di

∥

∥

∥

∥

∥

B

> x

)
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+ P



max







max
16i6N

‖Di‖B ,

(

N
∑

i=1

E
[

‖Di‖
p
B | Fi−1

]

)1/p






> δx



 .

Proceeding as in the proof of Theorem 21.1 in [1], we find that there exists a constant K (B, p, q) such

that for each λ,

(A.5) E

[

ϕp,q

(

‖
∑n

i=1 Di‖B
λ

)]

6 K (B, p, q)E



ϕp,q





max
{

max16i6n ‖Di‖B ,
(
∑n

i=1 E
[

‖Di‖
p
B | Fi−1

])1/p
}

λ







 .

Using the fact that there exists a constant κp,q such that for each x, y > 0, ϕp,q (xy) 6 κp,qϕp,q (x)ϕp,q (y),

we get that for each positive λ,R,

(A.6) E

[

ϕp,q

(

‖
∑n

i=1 Di‖B
Rλ

)]

6 K (B, p, q)κp,qϕp,q

(

1

R

)

E



ϕp,q





max
{

max16i6n ‖Di‖B ,
(
∑n

i=1 E
[

‖Di‖
p
B | Fi−1

])1/p
}

λ







 .

Take R0 such that K (B, p, q)κp,qϕp,q

(

1
R 0

)

6 1 in order to get that

(A.7)

∥

∥

∥

∥

∥

n
∑

i=1

Di

∥

∥

∥

∥

∥

B,p,q

6 R0

∥

∥

∥

∥

∥

∥

max







max
16i6n

‖Di‖B ,

(

n
∑

i=1

E
[

‖Di‖
p
B | Fi−1

]

)1/p






∥

∥

∥

∥

∥

∥

B,p,q

.

We derive (A.3) using

max







max
16i6n

‖Di‖B ,

(

n
∑

i=1

E
[

‖Di‖
p
B | Fi−1

]

)1/p






6

(

n
∑

i=1

‖Di‖
p
B

)1/p

+

(

n
∑

i=1

E
[

‖Di‖
p
B | Fi−1

]

)1/p

,

the triangle inequality and the fact that there exists a constant κ′α,p,q such that for each non-negative

random variable Y ,

(A.8) ‖Y α‖p,q 6 κ′α,p,q ‖Y ‖αpα,q ; ‖Y p‖1,q 6 κ′p,q ‖Y ‖α,p,q .

�

B. Bounds on series of truncated random variables

The truncation arguments we will use throughout the proofs lead to consideration of bounds of series

having the form
∑∞

k=1 akP (Y > bk),
∑∞

k=1 akE [Y 1Y 6bk ] or
∑∞

k=1 akE [Y 1Y >bk ] for some non-negative

random variable Y and some sequences (ak)k>1 and (bk)k>1.

Proposition B.1. For a non-negative random variable Y , d > 1, 1 < p < r, the following inequalities

take place:

(B.1)
∑

N>1

2Nd(1−r/p)1Y 62Nd/p 6 κd,p,r
(

1Y61 + Y p−r1Y >1

)

,

(B.2)
∑

N>1

2−dN(1−1/p)1Y >2dN/p 6 κd,pY
p−1,
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(B.3)
∞
∑

k=1

2kkd−1P
(

Y > ε2k/p
)

6 cdE [ϕp,d−1 (Y )] ,

(B.4)

∞
∑

k=1

2k(1−r/p)kd−1E
[

Y r1Y 62k/p
]

6 κp,r,dE [ϕp,d−1 (Y )] ,

(B.5)

∞
∑

k=1

2k(1−1/p)kd−1E
[

Y 1Y >2k/p
]

6 cp,dE [ϕp,d−1 (Y )] .

Proof. All these inequalities follow from the decompositions

(B.6) 1Y >2ak =

∞
∑

j=k

12aj<Y62a(j+1) and

(B.7) 1Y 62ak = 1Y 61 +
k
∑

j=1

12a(j−1)<Y 62aj ,

and the fact that

(B.8)

j
∑

k=1

2kakd−1 6 κa,d2
jjd−1.

�
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