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Highly singular (frequentially sparse) steady
solutions for the 2D Navier—Stokes equations
on the torus

Pierre Gilles Lemarié-Rieusset*

Abstract

We construct non-trivial steady solutions in H ! for the 2D Navier—
Stokes equations on the torus. In particular, the solutions are not
square integrable, so that we have to redefine the notion of solutions.

Keywords : Navier-Stokes equations, steady solutions, lacunary Fourier
series, nonuniqueness, Koch and Tataru theorem.

AMS classification : 35K55, 35Q30, 76D05.

Introduction

In this paper, we are looking for steady solutions « of the 2D Navier—Stokes
equations on the torus T¢ = R%/27Z2, i.e. for solutions of the equations

(1)

At —P(ii - Vi) = 0
diva =0

where « is a periodical distribution vector field, with mean value 0:

/Wﬁ(x) dz = 0.

*LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France; e-mail :
pierregilles.lemarierieusset Quniv-evry.fr




Such a periodical distribution vector field 4 can be written as a Fourier
series
u(zr) = Z cos(k - x)vy, + sin(k - x)wy,

2
keZ2

where k € Z% if and only if k = (ki, ko) € Z*\ {(0,0)} and arg(ky + iks) €
(—m/2,7/2]. The convergence in D’ is given by a slow growth of the coeffi-
cients:

|G| + || < ClR|Y

for some constants C' and N; in particular, @ € H*(T?) for s < —N — 1.
If k € Z* k # (0,0) and k ¢ Z2 , then we may replace k with —k (with —k €
7% ) and write cos(k-x)U), +sin(k-z)wy = cos((—k)-x) v +sin((—k) - z)(—wy),
hence the condition k € Zi is not essential.

In our equations, [P is the Leray projection operator on solenoidal vector
fields, defined by

P( Z cos(k - x)U + sin(k - x)wy) = Z prcos(k -z + 0k (2)
kez3 kez?
with — —
prcos(k - & 4 0;,) = cos(k - x)Uk’k—P + sin(k - x)wl‘fk—P

where

V (O - kL) + (W - kL)
k|2

(K1, ko)™ = (=Ko, k1), (K1, k2)|? = Kkf + k3 and py =

It is easy to check that, if the solution u satisfies @ € H'(T?), then
@ = 0. Thus, we shall not require (weak) diffentiability for «. Usually, it
is customary to rewrite @ - Vi in the equations as 9 (uyi@) + 0 (ugi) (since
divit = 0), where the derivatives are taken in the sense of distributions. In
order to define w;u, one then usually requires that @ be square integrable.

As we whall see it, it is easy to check that, if the solution w satisfies
@ € LP(T?) for some p > 2, then @ = 0. This is even true when @ belongs
to the Lorentz space L*!(T?). This is still probably the case for @ € L*(T?),
thus we will search for some solution « which is not square integrable. We
need however to be able to define P(4 - ﬁﬁ) when # is no longer square
integrable.



Definition 1 (Admissible vector fields). A divergence free periodical distri-
bution vector field is admissible for the steady problem on T? if it is of the
form

U= Z prcos(k - o + 0k (3)

2
keZ?

with

Z Z Pies Pies | P (cos(kr @ + Oy, ) sin(ko -z + Op,) (ki ka)ky ) || -~ <400 (4)

k1 EZikQEZi
for some N.

Ifu = Zkezi prcos(k-x+0,)kt = Zkezi i, 1s an admissible vector field,
we will then define P(@ - Vi) as

P(i- Vi)=Y Y Py, - Vii,). (5)
k1€Zi kQGZi
The main result in this paper is then the following one:

Theorem 1. There exists non-trivial solutions to the equations

{Aﬁ—]P’(ﬁ-Vﬁ)zO )

divi =0

where U is an admissible vector field (with mean value 0) with @ € H~(T?)N
BMO™!.

The paper is organized in the following manner: in Section 1, we recall
classical results on steady solutions on T% in section 2, we describe some
examples of admissible vector fields; in section 3, we prove Theorem 1; in
section 4, we comment on the Koch and Tataru theorem.

1 Steady solutions for the Navier-Stokes prob-
lem on T?: known results.

In this section, we recall known results on steady solutions for the Navier—
Stokes problem in L?*(T%), for d > 2.



Case @ € H'(T?) N L(T?).

If @ € HY(T?) N L*(T?) (recall that, when d < 4, HY(T¢) C L*(T%)), we can
compute
-2
—/ \V&il? de = / w-P(u-Vi) de = / U-(u-Vi) de = / div (Mﬁ) dr =0.
Td Td Td Td 2
Thus @ = 0 (we are interested in vector fields with null mean value).

Case i € L(T%), p > d.

As p is subcritical when p > d, the initial value problem
00 = AU — P(U - V)
divd = 0 (7)
0(0, z) = tp(x)

with @y € LP has a unique solution in C([0,7), L”) for some time 7. This
solution ¥ is smooth on (0,7") x T<.

If « is a steady solution of (1), then ¢(t,z) = u(z) defines a solution of
the Cauchy problem (7) with initial value @y = @. Hence, if @ € LP, we find
that @ € H' N L* and finally @ = 0.

Case @ € L4T?), d > 3.

The value p = d is critical for the Cauchy problem (7). When @, € L%, the
problem has a solution 7 in C([0,7), L%) for some time T and this solution
7 is smooth on (0,7) x T¢. But uniqueness of solutions in C([0,T), L9) is
known only for d > 3. Thus, if @ is a steady solution of (1) with @ € L4(T¢)
and if d > 3, then u = 0.

Case i € L*(T%), d > 4.

Recently, Luo [7] constructed non trivial steady solutions in L*(T¢), d > 4
(this solution belongs to LP(T%) for some p € (2, d)). His proof was following
the scheme of convex integration developed by De Lellis and Székelyhidi [2]
in the case of non-steady solutions for the Euler equations and by Buckmas-
ter and Vicol [1] in the case of non-steady solutions for the Navier—Stokes

equations. However, his proof requires the spatial dimension d to be no lesser
than 4.



Case 4 € L*(T?).

Uniqueness of solutions of the Cauchy problem (7) in C([0,T), L*(T?)) is
not known. Proofs of uniqueness in C([0,T), L*(T?)) are based on maximal
regularity properties which are no longer true in the 2D case [3, 6, 9, 10, 4, §].
On the other hand, the proof of non-uniqueness in C([0,7T'), L*(T?)) is based
on convex integration methods which cannot be applied in the 2D case [1].

However, we have uniqueness in C([0,T'), L*!(T?)), where L*! is a Lorentz
space:

Proposition 1.
If U1 and Uy are two solutions of the Cauchy problem (7) with vy,v, €
C([O,T), LQ’I(TQ)) and '171(0, ) = ?72(0, ) = 710, then ’171 = 172.

Proof. We follow the lines of [4] and [9]. If
T" =sup{S >0/ v, =0, on[0,5)}

and if T < T, then ©1(T*,.) = Uo(T*,.): it is obvious if T* = 0, and is
a consequence of continuity if 0 < T* < T. Moreover, we can write the
integral formulation of the Navier-Stokes equations with initial time 7*: for
T"<t<Tand j=1,2

7i(t,) = -1 | / K(t= s~ y)(T(sy) @ T (s, ) dy ds
* JR
with
K(t,2)) < L Clpen s + L),
x|<m x| >
VNPT Hlsmyarz T SRR

Let
Koe(t,z) = ZKt$—27‘(’k

Then Kpu(t,.) € L1(T?) N L=(T?), with

[ per ()12 < 07 and [|Kper(t, ) [Joo < C(1+ 575).

We write #; = i + w;, with wy = e"T)AF,(T*,.). By density of L>(T?) in
L*Y(T?), we have

lim  sup Vit —T*|wo(t,.)]|ec =0,

0=0F Tt T 45



while, by continuity of ¥; and y, we have, for j = 1,2,

1 = 0.
. 0. 00 e

We now write, for W = vy — v and T* <t < T,
W(t, ) = /Tt /T2 Kper(t — 5,2 — y) (W(s,y) @ wWo(s,y)) dyds
+ /Tt 5 Kper(t — 8,2 — y)(W(s,y) @ wi(s,y)) dy ds
i /t /TQ Kper(t — 5,2 — y) (Wo (s, y) ® w(s,y)) dy ds
N / / Kyt = 5,7~ ) ({5, ) @005, ) dy ds

:51<t7 x) + 22(t7 33') + ZB(ta LE) + g4(ta ZL’)
and we estimate ||W(t,.)||2.00(r2).-
We first write, for o = ) — vh and T* <t < T,

t

120(8 )l zzee 4 [|Z5(2; )| 200 <C *IIerr(t— Ialldols, Mooll@(s, )l 2o ds

t
1

<C”/ ds su s — T*||Wy(s,.)||ee sup |[w(s,. 00

SO | s sup V=T (sl _sup [, )

=rC" sup Vs —T*||Wo(s,.)|lee sup [|W(s,.)| 2.

T*<s<t T*<s<t

For A > 0, we write
Zy(t,x) + Zu(t, x) / err(t — s, —y)(W(s,y) @ Wy (s,y))dyds
sup(t—A,T*)

sup(t—A,T* )
/ /2 per — 5T — y)(w('s?y) ® wl(s7y)) dy ds
T

T*
t
¥ / Kper(t = 5,2 — ) (@i(s,y) © (s, ) dy ds
sup(t—A,T*)
sup(t—A,T*)
+ / per S,$—y)(U72(8,y) ®117(S,y))dyd8
T*

=Z5.4(t, ) + Zs a(t, ) + 27 a(t, x) + Z5,4(t, ).

6



Since the pointwise product is bounded from L*! x L** to L', we have

t
125.4(2, Il <o/ Kt — 5, Y[ B2 (5, Yl g2 [[5(5, ) g2 s
sup(t—A,T*)
' 1
S(]’/ ds sup | 21 Sup T .
sup(t—A,T*) VI — 8 T*<s<t” d1(s, )l e || i(s, )z

<20VA sup [[d(s, )iz sup (s, ) e

T*<s<t T*<s<t

Similarly

1Zrat, ) < CVA sup ||dia(s, )20 sup (s, )2

T*<s<t T*<s<t

On the other hand, we have (for 7% < ¢t < min(7,7* + 1))
sup(t—A,T*)
126,4(t, )l SC/T [ Kper (t = 5, ool (s, )| 21 [W(s, ) [ 2. ds
sup(t—A,T*) 1
SC"/ —————ds sup ||[w(s,.)||rza sup [|d(s,.)| L2

e (t - 3)3/2 T*<s<t T*<s<t

1 - S
<20"— sup ||wi(s,.)||zz1 sup ||W(s,.)||z2e-
T*<s<t T*<s<t

Similarly

125,a(t, )Hoo_C— sup |[[Wa(s,.)||g21 sup |[[@(s, )| L2
A Tr<s<t T*<s<t

As L*> = [, LOO]%’OO, we find that, for 7% < t < min(T,T* + 1),

122(t, )|[r2ee < C sup |[[Wi(s,.)[z21 sup [[d(s,.)||r2e
T*<s<t T*<s<t

and

1Z4(t, )lz2ee < C sup |[[da(s,.)||z22 sup |[|di(s,.)|[r2e.
T*<s<t T*<s<t

Putting together those estimates, we get that, for 0 < § < min(1,7—T"%),

sup  ||W(t,.)||pzee < CA(S)  sup ||, )| p2e
T*<t<T*+6 T*<t<T*+6



A(0) = sup Vit =TJdo(t, oo + ([ (2, )| 2 z2) + [0, ) |21 (r2).

T*<t<T*+6

lim A(0) =

6—0t
we get that W/ = ¥} — ¥ is equal to 0 on [0,7* + §] for § small enough, in
contradiction with the definition of 7. Thus T* =T, and v} = 0. O

Corollary 1.
If @ is a steady solution of (1) with @ € L**(T?), then @ = 0.

Proof. We consider the Cauchy problem (7) where the initial value # is equal
to our steady solution #. We can construct a mild solution v; on a small time
interval [0, 7] such that @ € C([0,T], L*'), supy_yecq VEI|T1(t, )]loo < 400
and lim,_,o+ \/_Hvl( loe = 0. We have another solution in C([0,T], L**),
namely ¥5(¢,.) = @. By uniqueness, we find that @ = v;(%,.) € L, and thus
u=0. O

2 Admissible vector fields.

In this section, we describe some examples of admissible divergence free pe-
riodical distribution vector fields

u—z,okcosk: x+ Ok Zuk (8)

k622 keZQ

Square integrable vector fields

The most obvious example is the case @ € L? i.e. Zkezi |t ]|3 < +o0. We

have 1y, ® iy, € L' while the frequencies appearing in @y, ® iy, are k; + ko
and ky — ko (if k1 # ko, since uy - Vily, = 0). Thus,

1B (T, - Vi)l < Ol [lol| T |2 (1R + kel ™+ [y = kel ™71,

If N > 1, we have

S I < oo,

7€22\{(0,0)}



hence

> N iyl € 17

JEZ2\{(0,0)}

D D IP(@, - Vi) |-y < +oo.

2 2
k‘1€Z+ k2€Z+

and thus

Lacunary Fourier series

Let us consider a lacunary Fourier series

—+o00o
a Zpk cos(kj - x 4 O,k Zuk
=0
with
|kl > 8|kl
and

+o0
S Y < hoc
=0
where N > 0 (so that @ € H=V~!). We have.
Ptk - Vi, )| -25-5 <Cpi, i, 1K || (15| + )72

> | ]| P | p| P maX(|k‘j|7|kp|)

Noticing that

[ Ko Pk Pry o—(j—
<C i e g—(j—p)(N+1)
Z > Phi Pl ( |k|+]k|2N+2_ Z Z ]N|l<;|N ’

j=1 0<p<j—1 =1 0<p<j— 1

we find that
+o0o 400

>N Py, - Vidk,) || -2y < 400

p=0 j=0



Remark: We could have proved that P(@ - Vi) € H-2N=3 in another way:
we have @ € HV~1 N BNJ!: using paradifferential calculus and decompos-
ing the product w - Vi in two paraproducts and a remainder, we see that
the paraproducts are controlled in H=*¥=3 by ||| gy-~-1]|t]| g_~_1, while the

remainder is equal to 0.

Lacunary resonant Fourier modes

+o0 +oo
@=Y pi(cos(k;-x+ 0, )k +cos((k; +w;) - @+ ny,) (k) +w;) ™) = Z Uy,
=0 =0
with
kjy1| > 8lkjl, [kj| > 8lw;l, wj-k;j =0
and .
X, |k
iM < 400
— " |
7=0
We write

U, = pr, cos(k; - = + ij)k:jL and @y, = p, cos((k; + w;) - @ + mi,) (kj + w;) ™

00,00°

Following the computations of the case of lacunary solutions, we find that

+o0o “+o0o
SO AP, - Vi) m-s < 400,30 > P8, - Vi) || -5 < +00,

In particular, we have that Z;;OS pij < 400, so that @ € H~' N B!

p=0 0<j,j#p p=0 0<j,j#p

+o0 . +o0 .

> > G, - Vi)l <400, D [1B(, - Vadi, )|l < +oc.
p=0 0<j,j#p p=0 0<j,j#p

We now estimate the diagonal terms P(, - ﬁﬁkj) We have

Ty, - Vi, = Wy, - Vi, = 0,
while
Uy, - %vk]. :pzj(/’{:jL -wj) cos(k; - & + Oy,;) cos((k; + wj) - o 4 i, + g)(k:j + wj)*
:%pij(kf -wj) cos((2k; +wj) - + O, 4k, + g)(kzj + (,uj)L
+ %pi](k‘j “wj) cos(w; - = — O, + 1M, — g>(k3 + w;)*

10



and

Wy, - ﬁﬁkj :pij(kfj : wj) cos(kj - v + O, + z) cos((k; +wj) - x + 77;%.)1{:]-L

2
1
:ka (Kj - w; ) cos((2k; + wj) - T + O, + My, —l-g)k:]L
1 T

+ épij(kj cwy) cos(wy - @ — O, + Mk, — 5)]#
We have
PR b -5) cos(2 )+ 1,41, + ) (ks +5) s < Co (24
and

|wil

T
||P(pk (kj - w; ) cos((2k; + wj) -z + Oy, + M, — 5)1{#)”1{73 < C’pijm.
J

On the other hand, we have

T
P(Pij(kj W]l) cos(wj - T — ekj + Mk, + E)k’f) =0
and

T
(k+-wj) cos(wj-z—0,; +np, — 2 wi

T
_)(wj+kj)L) = PZ j 9/%i

P(pij(kj-wj) cos(w -z —0p; +nk, — 2 y

so that

m
IB(63, (- 05) cos(eoy - = B, + 1, = )@+ k) ) lr-» < O

7 s jl
Thus, we get
+00
ZH]P’ NV ) g-s < 400, Y |[P(d, - Vi, )|l 5-s < 400,
j=0

—

and P(« - V) is well defined in H 3.

11



3 2D steady solutions.

We are going to prove Theorem 1 following the lines of [1] and [7], i.e. ap-
plying the convex integration scheme by using intermittencies in the Fourier
spectrum of the solution. In our case, however, computations will be much
more simple than in the ones in [1] and [7], as we don’t bother on convergence
in L2
We shall look for a solution
+oo +oo

=Y il =i+ Y U+
5=0 j=1
where
e iy = pocos(ko - z)ky with 0 < py < 1 and ko € Z*\ {(0,0)},

) ’[J}‘ = Pj COS(k‘j . ZL’)]{?JJ' and U_fj = ,Oj COS((]C]' + w]‘) -+ n])(kj + L%‘)J' Wlth
p; >0 and k;, w; € Z*\ {(0,0)},
o for j > 1, |k3]| > 8|k3j—1|; |k’]| > 8|Wj|, wj - k’j =0.
k;, w; and n; will be constructed by induction and we’ll check that

—+o00
2 |k1|
ijw < +00,
7j=1

so that @ is an admissible vector field such that @ € H~! (hence Au € H3)
and P(@- Vi) € H3.
Defining U,, = Z;'L:o @, we have the convergence of AU, —P(U, - VU,)
to Au — P(a - Vi) in H=3. We write, for n > 1,
AT, —B(T, - S0 = Vo4 SV 417,

J=1

o Vy = Aiiy(= Aiig — P(idy - Vi) = —polko|? cos(ko - )k

e forn > 1,
V, = AU, — P(i@, - VU,_1) = P(U,_, - Vii,)
1
— 5 (ks - wa)PZP(cos((2kn +wn) - @ + 1+ 5) (ki + wa) )
1

= 5 (k- Wi )P2P(cOs((2ky + ) - + 1 — k)

12



e forn>1, Wn = —§pn(kn Wn) COS(Wp + T + 1 — W)w#

Let us write A,, for the set of frequencies involved in the expansion of V,:

V, = Z cos(k - & + ) Tpp = Z Ak c0s(k - 2+ ap ) kT,
keAn keAn

with A\, = U"‘ ;;‘2 Using the formula

P(cos(a. - x + 0)a™ ﬁ( s(B-x+n)BY) + cos(B -z + )+ - V(cos(a. - z + 0)at))
L. B)cos(a. -z + 0)sin(B - x + 1))

'ﬁ
~—~~

-P BL -a)sin(a. - o+ 0) cos(B - x +n)a’)
= SB((cos(a+ §) - x+0 47— D)((at - B)F* + (5* - a)ah))
— SP((cos((a — B)-w + 6~y — D) (~(at - B)5* + (5 a)ah))
— Leos(at B)-a Mgt ) BEZIE Ly gy
=~ geos((a-+ )2+ 0+ (E- ) (a4 6)

1 ™ 1 |6|2_|O7|2 1
—geos((la=f)-a+b0-n+)(a '5)W( - B)

we see that we have more precisely 8n — 1 frequencies in A,, for n > 1:
o k =k, with A\, = —p,|ks|? and 1,1 =0

o k =k, +w, with A\, = —pulks + wu|? and 7,1 = 0y

o k =2k, +w, with A\, = —% é’; J::)Ppn and Ny =1 — 5

o for j =0,....,n =1, k =k, + k; with A\, = %,on,oj(kjL . kn)—lkﬁcfl,lc]j?f
and N, x = 5

o for j =0,...,n—1, k= ky — k; with Xy = Lpap; (ki - ) =l
and 7, = 5

e forj=1,...,n—1 k=k,+k;+w; with n,, =n; + % and

_1 1 [k +w; |*—[kn|?
Ange = 3Pnpi((Kj + wj) ™ - k) ot by ;|2

13



e forj=1,....n—1,k=k,—k;j —w; with n,, = —n; + 7 and
Kj+w;|2—|kn|?
A = 3 (ki - (e + o)) =t
o forj=0,....n—1,k=ky,+w,+k; with n,, =n, + 5 and A\, =

1 1 |k | = kntown|?
3PP (Kj - (kn + wn)) [k +wn+h; |2

o for j=0,....n—1, k =k, +w, —k;j with n,, =n, + 5 and A\, =
3PP ((Kn ern)l k)%

o forj=1,....,n—1,k=Fk,+w,+k;+w; with n,, =n, +n; + 5 and
Aok = 50np5 (ks +wi) ™+ (kn +wn)) ‘ﬁi:iﬂilzziﬁf

eforj=1,....,n—-1, k=Fk,+w, —kj —w; with n,p, =n, + -1, + 3

and Ay = 3pnp; ((kn + wn)® - (kj + ;) B e 7

[k twn—kj—w; |2

For k € A,, we find that 3|k, | < |k| < &|k,|, with

3.5
Sl < plhun] < 2 ClRual)

and the frequencies occuring in A, are greater than those occuring in A,,.
We then write

AO = {fyl}? Al = {727 s 778}7 s 7An = {74n2—5n+37 s 774n2+3n+1}7 s

We write, for j > 0,

Vi = Z Apos(y - @+ )y, = Z [Apl cos(y, - @ + 0 + €)1,

TEA; TrEA;

with €, € {0,1}. Thus we have

AU, —P(U, - VU,) ZZP\’COS’YP T+ oy + TV
Jj= O’YPGA

7r
—Z —p3(k; - wj) cos(w j-$+17j—§)wj.

We know the values of py, ko, hence of v, = ko, |\1| = polko|? and ap+eqm = 7.
We shall define by induction w, , k,, p, and 7, for n > 1: we remark that

14



Yn € Ajny for some j(n) < n (asn < 4n®—5n+3). Thus, if we already know
w; , kj, pj and n; for 0 < j <n — 1, we already know 7, |\,| and «,, + €,7.
The main idea is then to require that

€1
n

1
|)\n| COS(,Y” Tt + ENW)%J{ = §pi(ki_ ' wn) COS(wn CX ANy — g)w

We thus make the following choices:
e We take w, = v,.

e We take k, = N,w>, where the integer N, will fulfill some require-

n?

ments. Our first requirement will be that N,, € N is large enough to
grant that NV, > 8 and |k,,| > 8|k,_1].

e We then have
1

1
§pi(l€iwn) Cos(wn-m—knn—g)wi. = épiNn|wn|2Cos(wn-a:+77n+g)wi.
Thus, we take
2|\,

m
NP 2 I = e el =

Pn =

e We shall add another requirement on N,, in order to grant that

+oo

2 ’kj‘
Zp]m < 400,
7j=1

Recall that 0 < py < 1. Take Ny = 1. We first check by induction
1

that p, < poN, *(< 1). Indeed, there is a constant Cy such that
] 2 & ky| and

Al < Colkjm?pim) sup(L, pos - - -, pjtny)

3 _
so that, by induction, |A,| < Colkj(n)PN‘i% and p, < % < poNy, 1/4

j(n)

(if we take N,, > 4CSpy*). We have
2 [Knl 2 _ 2|\

< 2Cg>pONJ;j/ 4

wpl? T )

nHFn —
|wn

" |wnl N
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Thus,
Z ‘— 203,002 > NV <2Cpo(1 +Z (8n — 1)N /%),
= ’ n=0jeAn,

Hence, our last requirement on N,, will be that N,, > (8n — 1)*2

Theorem 1 is proved.

4 A remark on the Koch—Tataru theorem.

In our construction, we have @ € H~' N BMO~! with

|4]| - 4 1]4]| Brro-1 < Cpo.

Moreover,
[d — Unllsaro— < Cpoj(n)™> =ni00 0.

By the Koch—Tataru theorem [5], for py small enough, the evolutionary prob-
lem

8,5 = AG — P(7- V7)
divi =0 9)
(0, ) = u(x)

will have a smooth solution on (0, +00) x T? such that

e sup,.o V|| U(t,.)]|ee < +00

o sup, |V @ Tt ) o < +00

e 7€ C([0,+00), BMO™).
The steady solution # is another solution of the evolutionary problem (9),
with @ € C([0, +00), BMO™'). Of course, ¥ # 4 as lim;_, o, ||U(¢t, .)|| zz-1 = 0.
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