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We construct non-trivial steady solutions in H -1 for the 2D Navier-Stokes equations on the torus. In particular, the solutions are not square integrable, so that we have to redefine the notion of solutions.

Introduction

In this paper, we are looking for steady solutions u of the 2D Navier-Stokes equations on the torus T d = R 2 /2πZ 2 , i.e. for solutions of the equations

∆ u -P( u • ∇ u) = 0 div u = 0 ( 1 
)
where u is a periodical distribution vector field, with mean value 0:

T 2 u(x) dx = 0.
Such a periodical distribution vector field u can be written as a Fourier series u(x) =

k∈Z 2 + cos(k • x) v k + sin(k • x) w k
where k ∈ Z 2 + if and only if k = (k 1 , k 2 ) ∈ Z 2 \ {(0, 0)} and arg(k 1 + ik 2 ) ∈ (-π/2, π/2]. The convergence in D is given by a slow growth of the coefficients:

| v k | + | w k | ≤ C|k| N
for some constants C and N ; in particular, u ∈ H s (T 2 ) for s < -N -1.

If k ∈ Z 2 , k = (0, 0) and k / ∈ Z 2 + , then we may replace k with -k (with -k ∈ Z 2 + ) and write cos(k

•x) v k +sin(k •x) w k = cos((-k)•x) v k +sin((-k)•x)(-w k ), hence the condition k ∈ Z 2
+ is not essential. In our equations, P is the Leray projection operator on solenoidal vector fields, defined by

P( k∈Z 2 + cos(k • x) v k + sin(k • x) w k ) = k∈Z 2 + ρ k cos(k • x + θ k )k ⊥ (2) 
with

ρ k cos(k • x + θ k ) = cos(k • x) v k • k ⊥ |k| 2 + sin(k • x) w k • k ⊥ |k| 2 where (k 1 , k 2 ) ⊥ = (-k 2 , k 1 ), |(k 1 , k 2 )| 2 = k 2 1 + k 2 2 and ρ k = ( v k • k ⊥ ) 2 + ( w k • k ⊥ ) 2 |k| 2 .
It is easy to check that, if the solution u satisfies u ∈ H 1 (T 2 ), then u = 0. Thus, we shall not require (weak) diffentiability for u. Usually, it is customary to rewrite u • ∇ u in the equations as ∂ 1 (u 1 u) + ∂ 2 (u 2 u) (since div u = 0), where the derivatives are taken in the sense of distributions. In order to define u i u, one then usually requires that u be square integrable.

As we whall see it, it is easy to check that, if the solution u satisfies u ∈ L p (T 2 ) for some p > 2, then u = 0. This is even true when u belongs to the Lorentz space L 2,1 (T 2 ). This is still probably the case for u ∈ L 2 (T 2 ), thus we will search for some solution u which is not square integrable. We need however to be able to define P( u • ∇ u) when u is no longer square integrable.

Definition 1 (Admissible vector fields).

A divergence free periodical distribution vector field is admissible for the steady problem on T 2 if it is of the form u =

k∈Z 2 + ρ k cos(k • x + θ k )k ⊥ (3) 
with

k 1 ∈Z 2 + k 2 ∈Z 2 + ρ k 1 ρ k 2 P cos(k 1 •x + θ k 1 ) sin(k 2 •x + θ k 2 )(k ⊥ 1 •k 2 )k ⊥ 2 H -N < +∞ (4)
for some N .

If u = k∈Z 2 + ρ k cos(k •x+θ k )k ⊥ = k∈Z 2 +
u k is an admissible vector field, we will then define P( u • ∇ u) as

P( u • ∇ u) = k 1 ∈Z 2 + k 2 ∈Z 2 + P( u k 1 • ∇ u k 2 ). ( 5 
)
The main result in this paper is then the following one:

Theorem 1. There exists non-trivial solutions to the equations

∆ u -P( u • ∇ u) = 0 div u = 0 ( 6 
)
where u is an admissible vector field (with mean value 0)

with u ∈ H -1 (T 2 ) ∩ BM O -1 .
The paper is organized in the following manner: in Section 1, we recall classical results on steady solutions on T d ; in section 2, we describe some examples of admissible vector fields; in section 3, we prove Theorem 1; in section 4, we comment on the Koch and Tataru theorem.

1 Steady solutions for the Navier-Stokes problem on T d : known results.

In this section, we recall known results on steady solutions for the Navier-

Stokes problem in L 2 (T d ), for d ≥ 2. Case u ∈ H 1 (T d ) ∩ L 4 (T d ). If u ∈ H 1 (T d ) ∩ L 4 (T d ) (recall that, when d ≤ 4, H 1 (T d ) ⊂ L 4 (T d )), we can compute - T d | ∇⊗ u| 2 dx = T d u•P( u•∇ u) dx = T d u•( u•∇ u) dx = T d div ( | u| 2 2 u) dx = 0.
Thus u = 0 (we are interested in vector fields with null mean value).

Case u ∈ L p (T d ), p > d.

As p is subcritical when p > d, the initial value problem

     ∂ t v = ∆ v -P( v • ∇ v) div v = 0 v(0, x) = u 0 (x) (7) 
with u 0 ∈ L p has a unique solution in C([0, T ), L p ) for some time T . This solution v is smooth on (0, T ) × T d . If u is a steady solution of (1), then v(t, x) = u(x) defines a solution of the Cauchy problem [START_REF] Luo | Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier-Stokes Equations in High Dimensions Arch[END_REF] with initial value u 0 = u. Hence, if u ∈ L p , we find that u ∈ H 1 ∩ L ∞ and finally u = 0.

Case u ∈ L d (T d ), d ≥ 3.
The value p = d is critical for the Cauchy problem [START_REF] Luo | Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier-Stokes Equations in High Dimensions Arch[END_REF]. When u 0 ∈ L d , the problem has a solution v in C([0, T ), L d ) for some time T and this solution v is smooth on (0, T ) × T d . But uniqueness of solutions in C([0, T ), L d ) is known only for d ≥ 3. Thus, if u is a steady solution of [START_REF] Buckmaster | Nonuniqueness of weak solutions to the Navier-Stokes equation[END_REF] 

with u ∈ L d (T d ) and if d ≥ 3, then u = 0. Case u ∈ L 2 (T d ), d ≥ 4.
Recently, Luo [START_REF] Luo | Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier-Stokes Equations in High Dimensions Arch[END_REF] constructed non trivial steady solutions in L 2 (T d ), d ≥ 4 (this solution belongs to L p (T d ) for some p ∈ (2, d)). His proof was following the scheme of convex integration developed by De Lellis and Székelyhidi [START_REF] De Lellis | The Euler equations as a differential inclusion[END_REF] in the case of non-steady solutions for the Euler equations and by Buckmaster and Vicol [START_REF] Buckmaster | Nonuniqueness of weak solutions to the Navier-Stokes equation[END_REF] in the case of non-steady solutions for the Navier-Stokes equations. However, his proof requires the spatial dimension d to be no lesser than 4.

Case u ∈ L 2 (T 2 ).

Uniqueness of solutions of the Cauchy problem [START_REF] Luo | Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier-Stokes Equations in High Dimensions Arch[END_REF] 

in C([0, T ), L 2 (T 2 )) is not known. Proofs of uniqueness in C([0, T ), L 3 (T 3
)) are based on maximal regularity properties which are no longer true in the 2D case [START_REF] Furioli | Sur l'unicité dans L 3 (R 3 ) des solutions "mild" de l'équation de Navier-Stokes[END_REF][START_REF] Lions | Unicité des solutions faibles de Navier-Stokes dans L N (Ω)[END_REF][START_REF] Meyer | Wavelets, paraproducts and Navier-Stokes equations[END_REF][START_REF] Monniaux | Uniqueness of mild solutions of the Navier-Stokes equation and maximal L p -regularity[END_REF][START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces limites pour Navier-Stokes[END_REF][START_REF] May | Extension d'une classe d'unicité pour les équations de Navier-Stokes[END_REF]. On the other hand, the proof of non-uniqueness in C([0, T ), L 2 (T 3 )) is based on convex integration methods which cannot be applied in the 2D case [START_REF] Buckmaster | Nonuniqueness of weak solutions to the Navier-Stokes equation[END_REF].

However, we have uniqueness in C([0, T ), L 2,1 (T 2 )), where L 2,1 is a Lorentz space:

Proposition 1. If v 1 and v 2 are two solutions of the Cauchy problem (7) with v 1 , v 2 ∈ C([0, T ), L 2,1 (T 2 )) and v 1 (0, .) = v 2 (0, .) = u 0 , then v 1 = v 2 .
Proof. We follow the lines of [START_REF] Furioli | Unicité dans L 3 (R 3 ) et d'autres espaces limites pour Navier-Stokes[END_REF] and [START_REF] Meyer | Wavelets, paraproducts and Navier-Stokes equations[END_REF]. If

T * = sup{S ≥ 0 / v 1 = v 2 on [0, S)} and if T * < T , then v 1 (T * , .) = v 2 (T * , .): it is obvious if T * = 0,
and is a consequence of continuity if 0 < T * < T . Moreover, we can write the integral formulation of the Navier-Stokes equations with initial time T * : for

T * ≤ t < T and j = 1, 2 v j (t, .) = e (t-T * )∆ v j (T * , .) + t T * R 2 K(t -s, . -y)( v j (s, y) ⊗ v j (s, y) dy ds with |K(t, x)| ≤ C 1 ( √ t + |x|) 3 ≤ C(1 |x|<π 1 t 3/2 + 1 |x|≥π 1 |x| 3 ). Let K per (t, x) = k∈Z 2 K(t, x -2πk). Then K per (t, .) ∈ L 1 (T 2 ) ∩ L ∞ (T 2 ), with K per (t, .) 1 ≤ C 1 √ t and K per (t, .) ∞ ≤ C(1 + 1 t 3/2 ). We write v j = w 0 + w j , with w 0 = e (t-T * )∆ v j (T * , .). By density of L ∞ (T 2 ) in L 2,1 (T 2 ), we have lim δ→0 + sup T * <t<T * +δ √ t -T * w 0 (t, .) ∞ = 0,
while, by continuity of v j and w 0 , we have, for j = 1, 2,

lim δ→0 + sup T * <t<T * +δ w j (t, .) L 2,1 (T 2 ) = 0.
We now write, for w = v 1 -v 2 and T * ≤ t < T ,

w(t, x) = t T * T 2
K per (t -s, x -y)( w(s, y) ⊗ w 0 (s, y)) dy ds

+ t T * T 2 K per (t -s, x -y)( w(s, y) ⊗ w 1 (s, y)) dy ds + t T * T 2
K per (t -s, x -y)( w 0 (s, y) ⊗ w(s, y)) dy ds

+ t T * T 2 K per (t -s, x -y)( w 2 (s, y) ⊗ w(s, y)) dy ds = z 1 (t, x) + z 2 (t, x) + z 3 (t, x) + z 4 (t, x)
and we estimate w(t, .) L 2,∞ (T 2 ) . We first write, for w = v 1 -v 2 and T * ≤ t < T ,

z 1 (t, .) L 2,∞ + z 3 (t, .) L 2,∞ ≤C t T * K per (t -s, .) 1 w 0 (s, .) ∞ w(s, .) L 2,∞ ds ≤ C t T * 1 √ t -s √ s -T * ds sup T * <s<t √ s -T * w 0 (s, .) ∞ sup T * <s<t w(s, .) L 2,∞ =πC sup T * <s<t √ s -T * w 0 (s, .) ∞ sup T * <s<t w(s, .) L 2,∞ .
For A > 0, we write

z 2 (t, x) + z 4 (t, x) = t sup(t-A,T * ) T 2 K per (t -s, x -y)( w(s, y) ⊗ w 1 (s, y)) dy ds + sup(t-A,T * ) T * T 2 K per (t -s, x -y)( w(s, y) ⊗ w 1 (s, y)) dy ds + t sup(t-A,T * ) T 2 K per (t -s, x -y)( w 2 (s, y) ⊗ w(s, y)) dy ds + sup(t-A,T * ) T * T 2 K per (t -s, x -y)( w 2 (s, y) ⊗ w(s, y)) dy ds = z 5,A (t, x) + z 6,A (t, x) + z 7,A (t, x) + z 8,A (t, x).
Since the pointwise product is bounded from L 2,1 × L 2,∞ to L 1 , we have

z 5,A (t, .) 1 ≤C t sup(t-A,T * ) K per (t -s, .) 1 w 1 (s, .) L 2,1 w(s, .) L 2,∞ ds ≤C t sup(t-A,T * ) 1 √ t -s ds sup T * <s<t w 1 (s, .) L 2,1 sup T * <s<t w(s, .) L 2,∞ ≤2C √ A sup T * <s<t w 1 (s, .) L 2,1 sup T * <s<t w(s, .) L 2,∞ .
Similarly

z 7,A (t, .) 1 ≤ C √ A sup T * <s<t w 2 (s, .) L 2,1 sup T * <s<t w(s, .) L 2,∞ .
On the other hand, we have (for T * ≤ t < min(T, T * + 1))

z 6,A (t, .) ∞ ≤C sup(t-A,T * ) T * K per (t -s, .) ∞ w 1 (s, .) L 2,1 w(s, .) L 2,∞ ds ≤C sup(t-A,T * ) T * 1 (t -s) 3/2 ds sup T * <s<t w 1 (s, .) L 2,1 sup T * <s<t w(s, .) L 2,∞ ≤2C 1 √ A sup T * <s<t w 1 (s, .) L 2,1 sup T * <s<t w(s, .) L 2,∞ .
Similarly

z 8,A (t, .) ∞ ≤ C 1 √ A sup T * <s<t w 2 (s, .) L 2,1 sup T * <s<t w(s, .) L 2,∞ . As L 2,∞ = [L 1 , L ∞ ]1 2 ,∞ , we find that, for T * ≤ t < min(T, T * + 1), z 2 (t, .) L 2,∞ ≤ C sup T * <s<t w 1 (s, .) L 2,1 sup T * <s<t w(s, .) L 2,∞ and z 4 (t, .) L 2,∞ ≤ C sup T * <s<t w 2 (s, .) L 2,1 sup T * <s<t w(s, .) L 2,∞ .
Putting together those estimates, we get that, for 0

< δ < min(1, T -T * ), sup T * ≤t≤T * +δ w(t, .) L 2,∞ ≤ CA(δ) sup T * ≤t≤T * +δ w(t, .) L 2,∞ with 
A(δ) = sup T * <t<T * +δ √ t -T * w 0 (t, .) ∞ + w 1 (t, .) L 2,1 (T 2 ) + w 2 (t, .) L 2,1 (T 2 ) .
As lim δ→0 + A(δ) = 0, we get that w = v 1 -v 2 is equal to 0 on [0, T * + δ] for δ small enough, in contradiction with the definition of T * . Thus T * = T , and v 1 = v 2 .

Corollary 1.

If u is a steady solution of (1) with u ∈ L 2,1 (T 2 ), then u = 0.

Proof. We consider the Cauchy problem [START_REF] Luo | Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier-Stokes Equations in High Dimensions Arch[END_REF] where the initial value u 0 is equal to our steady solution u. We can construct a mild solution v 1 on a small time interval [0, T ] such that v 1 ∈ C([0, T ], L 2,1 ), sup 0<t<T √ t v 1 (t, .) ∞ < +∞ and lim t→0 + √ t v 1 (t, .) ∞ = 0. We have another solution in C([0, T ], L 2,1 ), namely v 2 (t, .) = u. By uniqueness, we find that u = v 1 ( T 2 , .) ∈ L ∞ , and thus u = 0.

2 Admissible vector fields.

In this section, we describe some examples of admissible divergence free periodical distribution vector fields

u = k∈Z 2 + ρ k cos(k • x + θ k )k ⊥ = k∈Z 2 + u k . ( 8 
)

Square integrable vector fields

The most obvious example is the case u ∈ L 2 , i.e.

k∈Z 2 + u k 2 2 < +∞. We have u k 1 ⊗ u k 2 ∈ L 1 while the frequencies appearing in u k 1 ⊗ u k 2 are k 1 + k 2 and k 1 -k 2 (if k 1 = k 2 , since u k • ∇ u k = 0). Thus, P( u k 1 • ∇ u k 2 ) H -N ≤ C N u k 1 2 u k 2 2 (|k 1 + k 2 | -N -1 + |k 1 -k 2 | -N -1 ). If N > 1, we have j∈Z 2 \{(0,0)} |j| -N -1 < +∞, hence j∈Z 2 \{(0,0)} |j| -N -1 u k 2 +j 2 ∈ l 2
and thus

k 1 ∈Z 2 + k 2 ∈Z 2 + P( u k 1 • ∇ u k 2 ) H -N < +∞.

Lacunary Fourier series

Let us consider a lacunary Fourier series

u = +∞ j=0 ρ k j cos(k j • x + θ k j )k ⊥ j = +∞ j=0 u k j with |k j+1 | > 8|k j | and +∞ j=0 ρ 2 k j |k j | -2N < +∞
where N ≥ 0 (so that u ∈ H -N -1 ). We have.

P( u k j • ∇ u kp ) H -2N -3 ≤Cρ k j ρ kp |k j ||k p |(|k j | + |k p |) -2N -2 ≤C |k j | -N ρ k j |k p | -N ρ kp min(|k j |, |k p |) max(|k j |, |k p |) N +1
.

Noticing that

+∞ j=1 0≤p≤j-1 ρ k j ρ kp |k j ||k p | (|k j | + |k p |) 2N +2 ≤ C +∞ j=1 0≤p≤j-1 ρ k j |k j | N ρ kp |k p | N 8 -(j-p)(N +1) , we find that +∞ p=0 +∞ j=0 P( u kp • ∇ u k j ) H -2N -3 < +∞.
Remark: We could have proved that P( u • ∇ u) ∈ H -2N -3 in another way:

we have u ∈ H -N -1 ∩ B -N -1
∞,∞ ; using paradifferential calculus and decomposing the product u • ∇ u in two paraproducts and a remainder, we see that the paraproducts are controlled in

H -2N -3 by u H -N -1 u B -N -1
∞,∞ , while the remainder is equal to 0.

Lacunary resonant Fourier modes

u = +∞ j=0 ρ k j (cos(k j • x + θ k j )k ⊥ j + cos((k j + ω j ) • x + η k j )(k j + ω j ) ⊥ ) = +∞ j=0 u k j with |k j+1 | > 8|k j |, |k j | > 8|ω j |, ω j • k j = 0 and +∞ j=0 ρ 2 k j |k j | |ω j | < +∞.
We write

v k j = ρ k j cos(k j • x + θ k j )k ⊥ j and w k j = ρ k j cos((k j + ω j ) • x + η k j )(k j + ω j ) ⊥ . In particular, we have that +∞ j=0 ρ 2 k j < +∞, so that u ∈ H -1 ∩ B -1 ∞,∞
. Following the computations of the case of lacunary solutions, we find that +∞ p=0 0≤j,j =p

P( v kp • ∇ v k j ) H -3 < +∞, +∞ p=0 0≤j,j =p P( v kp • ∇ w k j ) H -3 < +∞, +∞ p=0 0≤j,j =p P( w kp • ∇ v k j ) H -3 < +∞, +∞ p=0 0≤j,j =p P( w kp • ∇ w k j ) H -3 < +∞.
We now estimate the diagonal terms P( u k j • ∇ u k j ). We have

v k j • ∇ v k j = w k j • ∇ w k j = 0, while v k j • ∇ w k j =ρ 2 k j (k ⊥ j • ω j ) cos(k j • x + θ k j ) cos((k j + ω j ) • x + η k j + π 2 )(k j + ω j ) ⊥ = 1 2 ρ 2 k j (k ⊥ j • ω j ) cos((2k j + ω j ) • x + θ k j + η k j + π 2 )(k j + ω j ) ⊥ + 1 2 ρ 2 k j (k ⊥ j • ω j ) cos(ω j • x -θ k j + η k j - π 2 )(k j + ω j ) ⊥ and w k j • ∇ v k j =ρ 2 k j (k j • ω ⊥ j ) cos(k j • x + θ k j + π 2 ) cos((k j + ω j ) • x + η k j )k ⊥ j = 1 2 ρ 2 k j (k j • ω ⊥ j ) cos((2k j + ω j ) • x + θ k j + η k j + π 2 )k ⊥ j + 1 2 ρ 2 k j (k j • ω ⊥ j ) cos(ω j • x -θ k j + η k j - π 2 )k ⊥ j .
We have

P(ρ 2 k j (k ⊥ j • ω j ) cos((2k j + ω j ) • x + θ k j + η k j + π 2 )(k j + ω j ) ⊥ ) H -3 ≤ Cρ 2 k j |ω j | |k j | and P(ρ 2 k j (k j • ω ⊥ j ) cos((2k j + ω j ) • x + θ k j + η k j - π 2 )k ⊥ j ) H -3 ≤ Cρ 2 k j |ω j | |k j | .
On the other hand, we have

P(ρ 2 k j (k j • ω ⊥ j ) cos(ω j • x -θ k j + η k j + π 2 )k ⊥ j ) = 0 and P(ρ 2 k j (k ⊥ j •ω j ) cos(ω j •x-θ k j +η k j - π 2 )(ω j +k j ) ⊥ ) = ρ 2 k j (k ⊥ j •ω j ) cos(ω j •x-θ k j +η k j - π 2 )ω ⊥ j so that P(ρ 2 k j (k ⊥ j • ω j ) cos(ω j • x -θ k j + η k j - π 2 )(ω j + k j ) ⊥ ) H -3 ≤ Cρ 2 k j |k j | |ω j | .
Thus, we get

+∞ j=0 P( v k j • ∇ w k j ) H -3 < +∞, +∞ j=0 P( w k j • ∇ v k j ) H -3 < +∞,
and

P( u • ∇ u) is well defined in H -3 .
3 2D steady solutions.

We are going to prove Theorem 1 following the lines of [START_REF] Buckmaster | Nonuniqueness of weak solutions to the Navier-Stokes equation[END_REF] and [START_REF] Luo | Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier-Stokes Equations in High Dimensions Arch[END_REF], i.e. applying the convex integration scheme by using intermittencies in the Fourier spectrum of the solution. In our case, however, computations will be much more simple than in the ones in [START_REF] Buckmaster | Nonuniqueness of weak solutions to the Navier-Stokes equation[END_REF] and [START_REF] Luo | Stationary Solutions and Nonuniqueness of Weak Solutions for the Navier-Stokes Equations in High Dimensions Arch[END_REF], as we don't bother on convergence in L 2 . We shall look for a solution

u = +∞ j=0 u j = u 0 + +∞ j=1 v j + w j
where

• u 0 = ρ 0 cos(k 0 • x)k ⊥ 0 with 0 < ρ 0 < 1 and k 0 ∈ Z 2 \ {(0, 0)}, • v j = ρ j cos(k j • x)k ⊥ j and w j = ρ j cos((k j + ω j ) • x + η j )(k j + ω j ) ⊥ with ρ j > 0 and k j , ω j ∈ Z 2 \ {(0, 0)}, • for j ≥ 1, |k j | > 8|k j-1 |, |k j | > 8|ω j |, ω j • k j = 0.
k j , ω j and η j will be constructed by induction and we'll check that

+∞ j=1 ρ 2 j |k j | |ω j | < +∞,
so that u is an admissible vector field such that u ∈ H -1 (hence ∆ u ∈ H -3 ) and P( u • ∇ u) ∈ H -3 . Defining U n = n j=0 u j , we have the convergence of ∆ U n -P(

U n • ∇ U n ) to ∆ u -P( u • ∇ u) in H -3 . We write, for n ≥ 1, ∆ U n -P( U n • ∇ U n ) = V 0 + n j=1 V j + W j • V 0 = ∆ u 0 (= ∆ u 0 -P( u 0 • ∇ u 0 )) = -ρ 0 |k 0 | 2 cos(k 0 • x)k ⊥ 0 • for n ≥ 1, V n = ∆ U n -P( u n • ∇ U n-1 ) -P( U n-1 • ∇ u n ) - 1 2 (k ⊥ n • ω n )ρ 2 n P(cos((2k n + ω n ) • x + η n + π 2 )(k n + ω n ) ⊥ ) - 1 2 (k n • ω ⊥ n )ρ 2 n P(cos((2k n + ω n ) • x + η n - π 2 )k ⊥ n ) • for n ≥ 1, W n = -1 2 ρ 2 n (k ⊥ n • ω n ) cos(ω n • x + η n -π 2 )ω ⊥ n
Let us write A n for the set of frequencies involved in the expansion of V n :

V n = k∈An cos(k • x + α n,k ) v n,k = k∈An λ n,k cos(k • x + α n,k )k ⊥ , with λ n,k = v n,k •k ⊥ |k| 2 .
Using the formula

P(cos(α. • x + θ)α ⊥ • ∇(cos(β • x + η)β ⊥ ) + cos(β • x + η)β ⊥ • ∇(cos(α. • x + θ)α ⊥ )) = -P((α ⊥ • β) cos(α. • x + θ) sin(β • x + η)β ⊥ ) -P((β ⊥ • α) sin(α. • x + θ) cos(β • x + η)α ⊥ ) = - 1 2 P((cos((α + β) • x + θ + η - π 2 )((α ⊥ • β)β ⊥ + (β ⊥ • α)α ⊥ )) - 1 2 P((cos((α -β) • x + θ -η - π 2 )(-(α ⊥ • β)β ⊥ + (β ⊥ • α)α ⊥ )) = - 1 2 cos((α + β) • x + θ + η + π 2 )(β ⊥ • α) |β| 2 -| α| 2 |α + β| 2 (α + β) ⊥ - 1 2 cos((α -β) • x + θ -η + π 2 )(α ⊥ • β) |β| 2 -| α| 2 |α + β| 2 (α -β) ⊥
we see that we have more precisely 8n -1 frequencies in A n for n ≥ 1:

• k = k n with λ n,k = -ρ n |k n | 2 and η n,k = 0 • k = k n + ω n with λ n,k = -ρ n |k n + ω n | 2 and η n,k = η n • k = 2k n + ω n with λ n,k = -1 2 (k ⊥ n •ωn) 2 |2kn+ωn| 2 ρ 2 n and η n,k = η n -π 2 • for j = 0, . . . , n -1, k = k n + k j with λ n,k = 1 2 ρ n ρ j (k ⊥ j • k n ) |k j | 2 -|kn| 2 |kn+k j | 2 and η n,k = π 2 • for j = 0, . . . , n -1, k = k n -k j with λ n,k = 1 2 ρ n ρ j (k ⊥ n • k j ) |k j | 2 -| kn| 2 |kn-k j | 2 and η n,k = π 2 • for j = 1, . . . , n -1, k = k n + k j + ω j with η n,k = η j + π 2 and λ n,k = 1 2 ρ n ρ j ((k j + ω j ) ⊥ • k n ) |k j +ω j | 2 -|kn| 2 |kn+k j +ω j | 2
For k ∈ A n , we find that and the frequencies occuring in A n+1 are greater than those occuring in A n . We then write A 0 = {γ 1 }, A 1 = {γ 2 , . . . , γ 8 }, . . . , A n = {γ 4n 2 -5n+3 , . . . , γ 4n 2 +3n+1 }, . . . We write, for j ≥ 0,

V j = γp∈A j λ p cos(γ p • x + α p )γ ⊥ p = γp∈A j |λ p | cos(γ p • x + α p + p π)γ ⊥ p with p ∈ {0, 1}. Thus we have ∆ U n -P( U n • ∇ U n ) = n j=0 γp∈A j |λ p | cos(γ p • x + α p + p π)γ ⊥ p - n j=1 1 2 ρ 2 j (k ⊥ j • ω j ) cos(ω j • x + η j - π 2 )ω ⊥ j .
We know the values of ρ 0 , k 0 , hence of γ 1 = k 0 , |λ 1 | = ρ 0 |k 0 | 2 and α 0 + 0 π = π. We shall define by induction ω n , k n , ρ n and η n for n ≥ 1: we remark that γ n ∈ A j(n) for some j(n) < n (as n < 4n 2 -5n + 3). Thus, if we already know ω j , k j , ρ j and η j for 0 ≤ j ≤ n -1, we already know γ n , |λ n | and α n + n π.

The main idea is then to require that

|λ n | cos(γ n • x + α n + n π)γ ⊥ n = 1 2 ρ 2 n (k ⊥ n • ω n ) cos(ω n • x + η n - π 2 )ω ⊥ n .
We thus make the following choices:

• We take ω n = γ n .

• We take k n = N n ω ⊥ n , where the integer N n will fulfill some requirements. Our first requirement will be that N n ∈ N is large enough to grant that N n > 8 and |k n | > 8|k n-1 |.

• We then have

1 2 ρ 2 n (k ⊥ n •ω n ) cos(ω n •x+η n - π 2 )ω ⊥ n . = 1 2 ρ 2 n N n |ω n | 2 cos(ω n •x+η n + π 2 )ω ⊥ n .
Thus, we take

ρ n = 2|λ n | N n |ω n | 2 and η n = α n + n π - π 2 .
• We shall add another requirement on N n in order to grant that (if we take N n ≥ 4C 6 0 ρ -4 0 ). We have

ρ 2 n |k n | |ω n | = N n ρ 2 n = 2|λ n | |ω n | 2 ≤ 2C 3 0 ρ 0 N -1/4 j(n)

+∞ j=1 ρ 2 j 1 4nN

 21 |k j | |ω j | < +∞, Recall that 0 < ρ 0 < 1. Take N 0 = 1. We first check by induction that ρ n ≤ ρ 0 N -(≤ 1). Indeed, there is a constant C 0 such that |ω n | ≥ 1 C 0 |k j(n) | and |λ n | ≤ C 0 |k j(n) | 2 ρ j(n) sup(1, ρ 0 , . . . , ρ j(n) ) so that, by induction, |λ n | ≤ C 0 |k j(n) | 2 ρ 0

Thus,

Hence, our last requirement on N n will be that N n ≥ (8n -1) 12 .

Theorem 1 is proved.

4 A remark on the Koch-Tataru theorem.

In our construction, we have

By the Koch-Tataru theorem [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF], for ρ 0 small enough, the evolutionary problem

will have a smooth solution on (0, +∞) × T 2 such that

The steady solution u is another solution of the evolutionary problem (9), with u ∈ C([0, +∞), BM O -1 ). Of course, v = u as lim t→+∞ v(t, .) H -1 = 0.